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Abstract

Programming skills are the key ability of programmers. 
For novice programmers who are new and have little 
experience in programming, it is important to measure 
and improve their programming skills. In practice, novice 
programmers learn programming knowledge and coding 
ability at university, and course learning is the main way 
for novice programmers to improve programming skills. 
However, can university marks be used to measure the 
programming skills of programming novices? To answer this 
question, in a controlled experiment, we compare university 
marks of novice programmers with their performance in 
programming tasks. The results showed that there were 7 
courses with significant correlation among the 13 courses, 
among which the software engineering course had the most 
significant correlation.

Keywords: Novice programmer, Programming skills, Course 
scores, Correlation analysis

1  Introduction

As Internet companies increasingly demand higher 
software quality, they also have higher requirements 
for programmer’ programming skills. The complexity 
of conceptual structure in specification, design, and 
testing cannot be eliminated in the short term with better 
programming languages and better tools [1]. Although 
the software industry has flourished in the past 40 years, 
practitioners still lack effective methods to eliminate 
complexity, which has also led to the software industry still 
relying heavily on the programming skills of programmers in 
the process of industrialization [2-7].

However, for novice programmers who are studying at 
university and are about to enter society, course learning is 
the main way to improve their programming skills [8-9]. 
Therefore, it is more important whether these courses can 
measure the programming skills of novice programmers

Around 2013, our country introduced the concept of 

outcome-based education (OBE) to guide the reform of 
engineering education, making the concept of OBE practical 
in China. In today’s higher education teaching, people pay 
more attention to the actual needs of the return of educational 
investment and actual output, and the OBE of outcome-based 
education has become the mainstream concept of educational 
reform in our country. The OBE concept pays more attention 
to the cultivation of students’ corresponding ability, takes 
students as the center, conducts individualized evaluation, 
and evaluates the final results of students according to the 
requirements of different abilities in the course objectives, so 
that students can accurately understand and solve problems.

Therefore, under the OBE concept, the course score is 
obtained by the student after learning the knowledge related 
to the course and acquiring the corresponding ability. It 
represents the synthesis of the students’ learning in the 
subject. Courses related to computer majors assess computer-
related knowledge and abilities, which may involve students’ 
programming skills [10-11].

Which courses  of  s tudents  are  re la ted to  their 
programming skills and can measure programming skills? 
Regarding the exploration of measuring programming skills, 
some scholars have found many influencing factors, but it 
is not clear what the main influencing factors are and the 
specific influence value of each factor [12-14]. This paper 
mainly studies which courses can measure the programming 
skills of novice programmers, analyzes the correlation 
between different course scores and programming skills, 
and finds the courses with significant correlation. The 
contributions of this paper are as follows [15]:

• A test containing questions that measure programming 
skills.

• Preliminary evaluation of questionnaires from 124 
undergraduate students.

• The seven most relevant courses and analyzed them.

2  Preparation Work

2.1 Definition of Programming Skills
A person’s programming skills can be roughly divided 

into the general design ability of program, the detailed design 
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ability, and the code specification ability. Among these, 
general design ability is the ability to divide the program 
into modules. The ability of detailed design is the ability to 
design the algorithm of each module in detail. The ability 
of code specification can be divided into the following five 
points: first, divide modules reasonably. Reasonable module 
division in the code can make later software maintenance and 
software reuse easier to achieve. Secondly, define the function 
clearly. There is a clear definition for each function in the 
coding process, which can improve the understandability 
of the program. Thirdly, code segmentation is clear and 
short [16-17]. In the coding process, you should be able to 
write clean code and present it in the form of paragraphs to 
improve code readability. Fourthly, the naming is accurate. 
Accurately define different functions and variables. Fifthly, 
the annotation is clear. Some important lines of the code are 
simply annotated to improve the quality of the code [15, 18].

2.2 Measure of Programming Skills
With the upgrading of the software industry, the demand 

for talents in the IT industry is increasing, and the number 
of novice programmers is also increasing. Therefore, 
how to fully understand the programming skills of novice 
programmers is very important. Obviously, course study is 
an effective means to improve the programming skills of 
students-novice programmers [19]. Therefore, it is necessary 
to conduct research on the relationship between their course 
scores and programming skills [20-21].

In the related research, there are many ways to measure 
programming skills [22]. First, it can be measured through 
code or program written. The better the programming skills, 
the faster and more accurate the programming. Then, it 
can also be measured by means of a survey questionnaire. 
Design a questionnaire about programming skills, such as 
how many projects you participated in or the total number of 
lines of code written, and then evaluate programming skills 
by answering these questions. The other is to organize the 
students through experiments, then give some programming 
questions, and test the students within the specified time to 
measure their programming skills [11].

This paper proposes to measure the programming skills 
of students through the analysis of their course scores. Thus, 
which courses are indicative of programming skills is what 
we need to study.

2.3 Impact of OBE on Measuring Programming Skills
The OBE is an educational concept based on learning 

outcomes or result-oriented, which clearly focuses and 
organizes each link in education, so that students can 
achieve the expected results in the learning process. The 
OBE education model focuses on analyzing the output 
of students’ learning and reverse-designing the students’ 
educational structure and related evaluation systems. Under 
the educational system of this concept, an effective teaching 
system can be better designed for the programming skills 
needs of novice programmers. Thus, they can better achieve 
the output effect of measuring programming skills.

For the experimental results, it can also confirm the 
above point of view. Course scores obtained in courses 

that implement the outcome-based education model in the 
teaching process can better reflect the level of students’ 
programming skills. For example, the software engineering 
course shows a high correlation after analyzing the test 
results of novice programmers. This is also because the 
teacher adopts the OBE teaching mode in the teaching 
process of the software engineering course, which can make 
the students oriented by the learning results and pay attention 
to the cultivation of students’ programming skills, so that 
their programming skills level can be easily measured.

2.4 Challenges of OBE
There are still some challenges in the OBE concept. 

These challenges are mainly summarized in the following 
five aspects: first, it is unfair to implement standardized 
evaluation for students of different backgrounds and schools 
of different qualities. Secondly, the preset ability level may 
not be applicable to different students. Thirdly, there is a lack 
of sufficient empirical research to show that OBE is effective. 
Fourthly, the implementation of OBE will increase the burden 
on teachers and universities. Fifthly, in the implementation 
process, it is easy to bundle other teaching reform programs 
together.

3 Collection of Curriculum Data Related 
to Programming Skills

3.1 The Process of Generating Data
According to the requirements of the outcome-based 

education concept, it focuses on the cultivation of students’ 
abilities and a reasonable evaluation of the achievement of 
course objectives. Therefore, in the process of cultivating 
students of this major, it is necessary to formulate a complete 
evaluation system of course objectives. The evaluation of the 
achievement of the course objectives of this major is mainly 
based on the assessment method, and the final evaluation 
of the achievement of the course objectives is formed with 
reference to the student questionnaires and symposiums 
after the course. The detailed evaluation process is shown in 
Figure 1.

Figure 1. Flow chart of course goal achievement evaluation
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The degree of achievement of the overall objectives of 
the course is calculated as follows:

C: the calculated value of the overall goal achievement 
degree of the course;

Wi: the achievement degree weight coefficient of course 
objective i;

OBi: calculated value of achievement degree of course 
objective i, OBi = score Bi of objective i / weight Wi of 
objective i.

Bi: the score of course objective i, Bi is obtained by the 
weighted summation of the achievement value Tj of each 
assessment sub-item of target i, and the weight of each 
assessment sub-item is set as wj, then:

                    * .i j jB T w= ∑                                      (1)

Tj: the achieved value of the assessment sub-item, Tj 
= the average score of the assessment sub-item bj / the full 
score of the sub-item Mj.

Wj: The weight of the assessment sub-items, Wj is 
obtained by decomposing the weight of the course assessment 
methods stipulated in the syllabus, as detailed in the syllabus 
of each course.

Bj: The average score of the assessment sub-items. 
There are different types of bj scores. One is the assessment 
methods with specific scores such as assignments, tests, and 
examinations, and the other is the score obtained from the 
evaluation of the observation points, such as experiments, 
design reports, practice reports, and acceptance. (If it is a 
grade system, it needs to be converted into a percentage 
system for calculation).

According to the above relationship, the simplified 
calculation formula of C is as follows:

           * * .i
i i i i

i

B
C OB W W B

W
= = =∑ ∑ ∑                    (2)

3.2 Reasonableness Assurance of Data
The data sources of curriculum goal achievement 

evaluation include: syllabus, test paper, test paper scoring 
standard, test paper analysis table, teaching process quality 
evaluation table, etc.

First of all, after the completion of each course, the 
teacher should analyze and explain the data content, source 
and the collection method used in the evaluation of the 
course objectives, as well as the correlation among these data 
and the achievement of students’ ability. Then it corresponds 
to these four reasonable guarantees:

Ensure that the syllabus is reasonable. It is necessary to 
ensure the rationality of curriculum objectives, the relevance 
of curriculum objectives and teaching content, and the 
rationality of assessment methods.

(1) Ensure that the teaching content is in line with the 
curriculum syllabus. In the teaching process, it is 
necessary to ensure that teachers are in accordance 
with the expected progress and teaching content to 
complete the predetermined objectives of the course.

(2) Ensure that the content of the assessment is rea-

sonable to achieve the objectives of the assessment 
course. Teachers should analyze and explain how the 
assessment content connects to the course objectives 
to ensure rationality.

(3) Ensure the rationality of the evaluation of course 
objectives based on the questionnaire. It mainly an-
alyzes the validity of the questionnaire, explains the 
content of the questionnaire, and deals with abnormal 
data.

4  Data Preprocessing

Due to the variety of students’ courses, the dataset of 
students’ course scores is relatively large, and there may be 
data missing, data noise, data inconsistency, data redundancy, 
and data repetition. Therefore, it is necessary to perform a 
certain degree of preprocessing on the data of course scores 
to make the analysis results of the whole data more authentic 
and reliable.

4.1 Data Filtering
We first generate the datasets of all course scores of all 

students in the entire major in the system, and then filter out 
the required course scores of juniors and seniors.

In the selected course scores of the third-year students, 
they are screened again to select the courses that they 
participate in collectively, including Java Programming, 
Software Engineering, Operating System, Big Data Storage 
and Processing, Computing Methods, Computer Composition 
and Structure, Database Principles and Applications I, Digital 
Image Processing II, Data Structure, Advanced Language 
Programming (C language), Scientific Computing Language 
(Python language), College English (1), Humanities and 
Social Sciences, a total of 13 courses.

In the course scores of the selected senior courses, their 
Data Structure and Advanced Language Programming (C 
language) are screened out as reference lines, and then 
Software Engineering, Scientific Computing Language 
(Python language), Database Principles and Applications I, 
Computer Composition and Structure, and Operating System 
are screened out, a total of 7 courses.

4.2 Data Cleansing
4.2.1 Missing Values Processing

Due to the process of acquiring information and data in 
the real world, there will be various reasons for data loss and 
vacancies. The treatment method for these missing values is 
mainly based on the distribution characteristics of variables 
and the importance of variables. In this experiment, some 
students (mainly students who have changed majors) have 
missing scores in some courses. After evaluation, the missing 
variables are of high importance to the whole experiment, 
so the method of filling statistics is used, and the average 
value is initially used filling. However, some of the repeating 
students’ scores are also missing. Due to the high missing 
rate of such data and insufficient reference, such variables are 
deleted.
4.2.2 Inconsistent Data Processing

In the score table of a course, there are inconsistencies 
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and contradictions in the scores of the same student. It shows 
that the student completes the course in different semesters; 
this is because the student failed to pass the course after 
taking the course for the first time, so he needs to retake the 
course. For this kind of data, we consider that students have 
multiple score values in the course because of retakes, and 
the retake courses are less rigorous than the formal courses, 
so the students’ first course scores are taken as their final 
grades for the course to make the results more realistic.
4.2.3 Data Redundancy Processing

Data redundancy is the situation where the amount of data 
or the number of attributes exceeds what is required for data 
analysis. In the exported data set of student course scores, 
there are other attributes such as the academic year, course 

program number, the course code, instructor, etc. These are 
redundant attributes that exceed the needs of data analysis, so 
they need to be deleted.

4.3 Data Description
After preprocessing the students’ course scores, an 

operation can be performed on the data to visualize their 
distribution. 

From the under three-year students’ course score 
distribution Figure 2, we can see that the scores of these 
courses basically conform to the normal distribution, and the 
distribution is relatively reasonable. Similarly, the distribution 
results displayed after an operation of visualizing the course 
scores of senior students are also more reasonable.

                       

                                              (a) Software Engineering                                                             (b) Data Structure

                     

                                                (c) Java Programming                                                         (d) Computational Methods

Figure 2. Course score distribution diagram

5  Mechanism for Getting Coding Test 
Scores

In order to obtain reasonable student coding test results, 
the better the students’ programming skills, the higher the 
correct rate of the tasks they solve. Therefore, when asking 
students to solve programming problems, each problem is 

set as a corresponding level, and only the answers of the 
test set that solve the question can be cleared and the score 
of this question can be obtained. The better the students’ 
programming skills, the faster they can analyze and solve 
problems. Therefore, after students solve coding problems, 
we include efficiency points when grading students’ coding 
problems. The faster a student successfully compiles and runs 
through the test set, the higher the efficiency score.
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5.1 Basic Score
The basic score of a level is the set clearance score of 

each level. In order to better calculate and process students’ 
scores, we set the basic level score of each level to 15 points, 
and there are 5 levels in total. Students can only get the basic 
score of the level after running the code program written in 
the platform and passing the evaluation. 

5.2 Efficiency Score
Efficiency score refers to the comprehensive score of 

students’ time to complete training tasks and correct tasks. 
This provides a better assessment of students’ ability to solve 
programming tasks. First calculate the student’s learning 
efficiency /logS te = . Here, S is the student’s score for all 
programming tasks and t is the time the student takes to 
complete all programming tasks. Therefore, the formula for 
calculating the efficiency score is as follow:

                           
max

.eE s
e

= ×                                        (3)

As above, E is the efficiency score of students, emax is the 
highest learning efficiency of students in the class, and s is 
the corresponding score. However, if the student does not 
complete the corresponding programming task, the student’s 
efficiency score on the programming task will be 0. In the 
experiment, we set an efficiency score of 5 points for each 
level.

6  Experimental Verification

Constructing and verifying programming test questions 
is a complex task, which requires reasonable programming 
questions to be distributed and analyzed and verified with 
course scores. In this paper, we implement this process 
concretely. We designed a test paper on a programming topic, 
and then organized the third-year students to take the test on 
this topic. We assigned a specific comprehensive score for the 
students' test results. At the same time, the test paper was also 
distributed to some senior students to complete, and the test 
results of senior students were scored. Then, a comparison 
test was conducted between the test results of juniors and 
seniors. Using the scores of the test questions as a baseline of 
students’ programming skills, the correlation between course 
scores and programming skills was analyzed.

6.1 Objective
Through our experiments, we aim to assess the correlation 

between course performance and programming skills. To 
the end, we propose three simple hypotheses. The first basic 
assumption is that the better the programming skills, the 
more correct they will be at solving the task. Because the 
better the programming skills and the richer the programming 
experience, the more experienced students participate in 
more programming projects than the inexperienced students, 
and thus can complete more programming tasks correctly. 
The second hypothesis is that experienced students are faster 
at analyzing problems and code because they have done 

more and more frequently in programming problems before, 
and they know how to better solve problems on their own. 
The third hypothesis is that students with better coding skills 
are also less evaluated (without other human factors) when 
completing coding tasks.

For the verification of these three hypotheses, we have 
integrated into specific experiments.

6.2 Material
We have designed f ive programming tasks  for 

programming, which are two Java language programming 
tasks and three C language programming tasks. The score 
setting for each question is twenty points, including fifteen 
points for correct clearance and five points for efficiency. 
Among them, a certain difficulty level is also set between the 
questions. The Java language programming task is generally 
relatively simple. The third question of the C language 
programming task is the most difficult, and is regarded as a 
question with a degree of distinction.

We give students specific topics and some simple 
programming tips, let them complete these programming 
tasks, pass the evaluation in the EduCoder platform, and 
then count the students’ completion. In Figure 3, we show 
the original topic and code of the first programming task. 
Since it is the first topic, the setting is relatively simple. The 
requirement of this topic is to count the total score of each 
student, and use the Java language to code a program.

1   /*
2   * Task: Calculate the average score of each person.
3   * Output style: total score of student number x: y
4   *
5   **/

 
6   public class PassWord {
7           public static void main(String[] args) {
9                      int[][] arr = new

10                      int[][]{{90,88,87},{89,90,77},{66,78,60},{77,90,90},
                     {8,9,78,67},{78,87,88}};

11   /********** Begin **********/
12                    int x,y;
13                    for( x=0;x<arr.length;x++){
14                            int sum=0;
15                            for(y=0;y<arr[x].length;y++){
16                                    sum+=arr[x][y];
17                                }
18                 System.out.println(x+1+"student's total score: "+sum);
19                     }
20   /********** End **********/
21           }
22   }

Figure 3. Source code of the first task

The remaining programming tasks are to use the Java 
language to output the student or teacher’s score sequence, 
find the sum of the score sequence, insert the sort, and print 
the calendar. Printing the calendar has a certain complexity 
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and can better distinguish students’ programming abilities. 
There is also a certain inspection of the students’ coding 
standards to test whether the students’ code comments and 
function names are in compliance with the standards. We 
not only count the specific grades of middle school students 
on the EduCoder1 platform, but also check the details of the 
experiments of students who have not passed the customs, 
and give them a specific score.

To match the average programming level of undergraduate 
students, we have selected some basic programming 
algorithms and problems. However, a question with a certain 
degree of difficulties was set up (this information can also 
be obtained in the small survey of the difficulty feedback of 
the students later), and the calendar of a certain month of the 
year was printed out. Some students with rich programming 
experience are also more aware of their own ideas and 
purposes to solve problems in actual programming projects. 
Thus, we expect that only students with a great deal of prior 
programming experience can do this task well.

There are five programming tasks. In the process of 
students completing the questions, the EduCoder platform 
will count the students’ completion time, the number of 
completed questions, the completion time, the number of 
evaluations, and the efficiency of the questions, so that we 
can pass these data and give them a final score to distinguish 
their programming skills.

6.3 Subjects
All the research subjects were college students from 

the school. There were 124 main research subjects, all of 
whom were juniors. In addition, five senior students were 
tested on the same programming task, and a test result was 
obtained. Among these research objects, due to the change 
of professional training direction, the third-year students had 
learned two programming languages, C and Java at the same 
time, while the fourth-year students had only learned the C 
language. The other courses were basically the same.

6.4 Execution
The experiment was completed in April 2022. The 

students did not know the specific purpose and thought 
they were just participating in a lab class. Then, we briefly 
introduced the topics and some experimental requirements to 
the students. During the whole experiment, the students could 
only complete the programming tasks independently. They 
could not read textbooks or materials, and could not discuss 
the answers with others. In addition, in the process of students 
completing programming tasks, the front programming tasks 
were closed and submitted after a period of time, so that the 
experimental data could have a better authenticity. At the end 
of the time, we also conducted a return visit to some students 
to understand their views on these topics, whether the work 
was completed as planned during the experiment, and the 
difficulty level of the topics.

Five seniors also took the same test at another time, 
completing three of the programming tasks independently. 
Since they knew the purpose of the experiment and 
participated voluntarily, the experiment was improved.

1 https://www.educoder.net/

6.5 Deviation
When arranging for these students to participate in the 

experiment, due to time constraints, we failed to accurately 
distribute the 5 questions according to the correct difficulty 
level when we released the tasks in the EduCoder platform. 
As a result, the number of students completing the later 
programming tasks was smaller. In addition, when setting 
the task, another training task was not set for the last 
programming question, so the data of the two programming 
questions are combined.

7  Experimental Result

Before beginning this experiment, we propose three 
research questions:

RQ1. Can the programming skills of novice programmers 
be measured by course scores?

RQ2. If yes, which courses can measure programming 
skills?

RQ3. How does the assessment content, assessment 
methods and process management of the course affect the 
results?

From the experimental results, we can conclude that with 
the difficulty of the programming task and the answering 
time, the students’ answer scores are also different. Relatively 
speaking, the simple and advanced tasks have more correct 
numbers. The last harder programming task was done 
correctly by fewer people. Then, after correlating all students’ 
programming proficiency test scores with their course scores, 
it was found that Software Engineering course scores are the 
most correlated with programming test scores, and this score 
has a higher correlation with College English (1) scores and 
is very unrelated to Humanities and Social Sciences. The 
three research questions are specifically answered below.

7.1 Means and Standard Deviations
In Table 1, we outline how students completed these 

programming tasks, where the column average represents 
the average time in minutes. Because not all students 
completed these tasks, it is necessary to count their number 
of completions and the number of people who completed 
them correctly. As can be seen from the table, the first 
three tasks took less time and more people completed them 
correctly. Task 4 took the longest and had the largest number 
of participants, but the least number of people completed 
it. When setting tasks, the first few tasks will close the 
submission entry in turn after a period of time. Only task 4 is 
set at the end, and task 4 is also the most difficult task.

Take into account the premature closing of the submission 
entry during the experiment,  and a comprehensive 
examination of the students’ programming skills. We also 
opened the specific experimental situation of those students 
who participated in the task but failed to complete it correctly, 
and gave a comprehensive score to their answers. Particularly 
in the last task, by looking at the students’ answers, we 
assigned a comprehensive score according to the reference 
answers, as well as the requirements of the coding standard.
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Table 1. Overview of completion of each task

Variable Mean N Correct

Task 1 10.94 81 71

Task 2 8.57 56 22

Task 3 16.07 92 53

Task 4 32.90 111 13

Mean: Average time for students to complete this task;
N: Number of students who complete this task;
Correct: Number of students with correct solution.

7.2 Correlations
We collated the test data of 124 students and then 

performed a correlation analysis among all students’ coding 
proficiency test scores and their course scores. Since we 
are not sure whether the relationship is linear, we used 
the Spearman rank correlation. We obtained a preliminary 
result: among these courses, the correlation of test scores 
and Software Engineering is the strongest, and it is also 
closely related to Scientific Computing Language, Database 
Principles and Applications I, Data Structure, Operating 
System, Java Programming, and Computer Composition and 
Structure, and extremely irrelevant to Humanities and Social 
Sciences. Of the 13 courses, 7 courses are most significantly 
relevant. The details are shown in Table 2, which gives the 
Spearman rank correlation between test scores and course 
scores.

Table 2. The Spearman rank correlation between test scores and 
course scores

No. Course ρ N

1 Software Engineering .454** 124

2 Scientific Computing Language .334** 124

3 Database Principles and 
Applications I .297** 124

4 Data Structure .273** 124

5 Operating System .265** 124

6 Computer Composition and 
Structure .254** 124

7 Java Programming .232** 124

8 Big Data Storage and Processing .222 124

9 Digital Image Processing II .197 124

10 Advanced Language Programming .183 124

11 College English (1) .179 124

12 Humanities and Social Sciences .117 124

13 Computational Methods .078 124

7.3 Control Experiment
We also make a simple comparison and analysis of the 

experimental data of five senior students and the experimental 
data of junior students. Primarily comparing their scores for 
task 3 and task 4 in their programming tasks, it is clear that 
seniors perform better and have higher scores than juniors. 

As shown in Table 3, the average scores of seniors are 
significantly higher than those of juniors.

Table 3. Comparison of average scores

Variable Juniors Seniors 

Task 3 7.82 19.06

Task 4 15.97 20.00

2 https://www.bilibili.com/

8  Exploratory Analysis

Because only the course scores and programming test 
scores of juniors are analyzed, the data is relatively small 
and single. An analysis was then conducted on the course 
scores of 129 senior students. We extracted their scores from 
two representative courses, Data Structures and Advanced 
Language Programming, and performed a simple score 
merging. We also sorted the scores from high to low, as one 
of their programming scores. Then, we organized five of 
these students to rank the programming skills of their seniors 
in their majors. We compared the ranking results given by 
them with the ranking results of the scores of the two courses, 
and found that nearly half of the students who ranked in the 
top 20 in programming skills were in line. Therefore, we 
decided to use these two course scores as a reference for 
programming scores, and performed a Spearman correlation 
analysis with the remaining course scores.

The obtained results show that Software Engineering, 
Database Principle and Application I, Operating System, 
Computer Composition and Structure, and Scientific 
Computing Language have the strongest correlation. This 
result is close to the previous analysis results of the third-year 
students, which also shows a reliability of the experimental 
results.

We also had a brief panel with these five graduating 
seniors, mainly to find out what they think can improve the 
programming skills of novice programmers. Their main point 
of view was that to improve their programming skills, they 
need to practice more programming problems and look at 
example codes for reference. If there is a problem, they can 
look for some suitable solutions on the Internet, such as the 
bilibili2 website. It is important to do programming questions 
and algorithm questions, so that programming skills can 
be truly improved. In addition, they also gave their own 
opinions on the completed test questions. They believed that 
the earlier questions were relatively basic questions, and the 
last question had a certain degree of difficulty but was more 
interesting and novel.

9  Discussion

The EduCoder platform used in the experiment is an 
online practical teaching platform. It is an online practical 
teaching service platform and innovative environment 
widely used in domestic universities. On the EduCoder 
platform, we set up five programming tasks, including two 
Java language programming questions and three C language 
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programming questions. It is because Java language and C 
language represent process programming and object-oriented 
programming respectively, which can measure students’ 
programming skills more comprehensively. The platform can 
set the time and scoring rules for students to complete tasks. 
It can also check the student’s code to judge the situation 
of a student’s work. There is also a code quality score, but 
because of its imperfect scoring rules, we finally use manual 
scoring to complete this operation.

In the process of setting programming tasks, we did not 
think of a factor in the order of students’ problem-solving. 
Therefore, we did not correctly sort the levels according 
to the difficulty level when setting the levels, resulting in 
insufficient participation of students in some of the simpler 
tasks. The questions in this part were extracted, the students’ 
answers were analyzed in detail, and they were given 
appropriate marks to balance the overall data.

10  Conclusion

Programming  sk i l l s  a re  impor tan t  fo r  nov ice 
programmers. Therefore, we urgently need a means or 
standard that can measure their programming skills. In 
general, programming skills are difficult to define accurately. 
Therefore, it threatens the validity of the experiment and 
makes the entire experiment more difficult to interpret.

Through Spearman correlation analysis of junior 
students’ test scores and course scores, it was found that 
junior students’ software engineering courses have the 
strongest correlation with programming skills, and there 
are another 6 courses as a course group is highly correlated. 
Among them, college English also has a certain correlation 
with programming skills, indicating that English ability is 
very important for novice programmers. It is because that in 
some mainstream programming languages and programming 
environments, some English terminology words often appear, 
and programmers with higher English proficiency are more 
likely to master these terminology words and understand error 
statements. Comparing the test results of seniors and juniors, 
these novice programmers with better programming skills 
are faster and more accurate. We also found that, compared 
with other courses, the grades of courses that implement the 
OBE mechanism can better reflect the programming skills of 
novice programmers and measure their programming skills.

To improve  the  programming ski l l s  of  novice 
programmers is important but not easy. In addition to more 
practice, it is necessary to establish a complete teaching 
system for these courses, and use their course scores to 
evaluate students’ programming skills so as to better improve 
the programming skills of novice programmers.

In future work,  we hope that  more meaningful 
programming tasks can be set up in the experiment of 
programming test to obtain richer experimental data. In 
addition, it is necessary to further analyze the curriculum 
groups with significant correlation and explore the correlation 
between the curriculum group and measuring programming 
skills.
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