
Can University Marks Measure Programming Skills for Novice Programmers? An Exploratory Study 1189

*Corresponding Author: Yong Wang; E-mail: yongwang@ahpu.edu.cn
DOI: 10.53106/160792642023112406002

Can University Marks Measure Programming Skills for
Novice Programmers?
An Exploratory Study

Fanghui Zha1, Yong Wang1,2*, Liqiang Mao3, Jin Liu4, Xue Wang1

1 School of Computer and Information, Anhui Polytechnic University, China
2 Institute of artificial intelligence, Hefei Comprehensive National Science Center

(Anhui Artificial Intelligence Laboratory), China
3 Wuhu Education Examination Center, China

4 International college, Chongqing University of Posts and Telecommunications, China
fanghuizha@qq.com, yongwang@ahpu.edu.cn, 617814@qq.com, 1402793952@qq.com, 2270946013@qq.com

Abstract

Programming skills are the key ability of programmers.
For novice programmers who are new and have little
experience in programming, it is important to measure
and improve their programming skills. In practice, novice
programmers learn programming knowledge and coding
ability at university, and course learning is the main way
for novice programmers to improve programming skills.
However, can university marks be used to measure the
programming skills of programming novices? To answer this
question, in a controlled experiment, we compare university
marks of novice programmers with their performance in
programming tasks. The results showed that there were 7
courses with significant correlation among the 13 courses,
among which the software engineering course had the most
significant correlation.

Keywords: Novice programmer, Programming skills, Course
scores, Correlation analysis

1 Introduction

As Internet companies increasingly demand higher
software quality, they also have higher requirements
for programmer’ programming skills. The complexity
of conceptual structure in specification, design, and
testing cannot be eliminated in the short term with better
programming languages and better tools [1]. Although
the software industry has flourished in the past 40 years,
practitioners still lack effective methods to eliminate
complexity, which has also led to the software industry still
relying heavily on the programming skills of programmers in
the process of industrialization [2-7].

However, for novice programmers who are studying at
university and are about to enter society, course learning is
the main way to improve their programming skills [8-9].
Therefore, it is more important whether these courses can
measure the programming skills of novice programmers

Around 2013, our country introduced the concept of

outcome-based education (OBE) to guide the reform of
engineering education, making the concept of OBE practical
in China. In today’s higher education teaching, people pay
more attention to the actual needs of the return of educational
investment and actual output, and the OBE of outcome-based
education has become the mainstream concept of educational
reform in our country. The OBE concept pays more attention
to the cultivation of students’ corresponding ability, takes
students as the center, conducts individualized evaluation,
and evaluates the final results of students according to the
requirements of different abilities in the course objectives, so
that students can accurately understand and solve problems.

Therefore, under the OBE concept, the course score is
obtained by the student after learning the knowledge related
to the course and acquiring the corresponding ability. It
represents the synthesis of the students’ learning in the
subject. Courses related to computer majors assess computer-
related knowledge and abilities, which may involve students’
programming skills [10-11].

Which courses of s tudents are re la ted to their
programming skills and can measure programming skills?
Regarding the exploration of measuring programming skills,
some scholars have found many influencing factors, but it
is not clear what the main influencing factors are and the
specific influence value of each factor [12-14]. This paper
mainly studies which courses can measure the programming
skills of novice programmers, analyzes the correlation
between different course scores and programming skills,
and finds the courses with significant correlation. The
contributions of this paper are as follows [15]:

• A test containing questions that measure programming
skills.

• Preliminary evaluation of questionnaires from 124
undergraduate students.

• The seven most relevant courses and analyzed them.

2 Preparation Work

2.1 Definition of Programming Skills
A person’s programming skills can be roughly divided

into the general design ability of program, the detailed design

1190 Journal of Internet Technology Vol. 24 No. 6, November 2023

ability, and the code specification ability. Among these,
general design ability is the ability to divide the program
into modules. The ability of detailed design is the ability to
design the algorithm of each module in detail. The ability
of code specification can be divided into the following five
points: first, divide modules reasonably. Reasonable module
division in the code can make later software maintenance and
software reuse easier to achieve. Secondly, define the function
clearly. There is a clear definition for each function in the
coding process, which can improve the understandability
of the program. Thirdly, code segmentation is clear and
short [16-17]. In the coding process, you should be able to
write clean code and present it in the form of paragraphs to
improve code readability. Fourthly, the naming is accurate.
Accurately define different functions and variables. Fifthly,
the annotation is clear. Some important lines of the code are
simply annotated to improve the quality of the code [15, 18].

2.2 Measure of Programming Skills
With the upgrading of the software industry, the demand

for talents in the IT industry is increasing, and the number
of novice programmers is also increasing. Therefore,
how to fully understand the programming skills of novice
programmers is very important. Obviously, course study is
an effective means to improve the programming skills of
students-novice programmers [19]. Therefore, it is necessary
to conduct research on the relationship between their course
scores and programming skills [20-21].

In the related research, there are many ways to measure
programming skills [22]. First, it can be measured through
code or program written. The better the programming skills,
the faster and more accurate the programming. Then, it
can also be measured by means of a survey questionnaire.
Design a questionnaire about programming skills, such as
how many projects you participated in or the total number of
lines of code written, and then evaluate programming skills
by answering these questions. The other is to organize the
students through experiments, then give some programming
questions, and test the students within the specified time to
measure their programming skills [11].

This paper proposes to measure the programming skills
of students through the analysis of their course scores. Thus,
which courses are indicative of programming skills is what
we need to study.

2.3 Impact of OBE on Measuring Programming Skills
The OBE is an educational concept based on learning

outcomes or result-oriented, which clearly focuses and
organizes each link in education, so that students can
achieve the expected results in the learning process. The
OBE education model focuses on analyzing the output
of students’ learning and reverse-designing the students’
educational structure and related evaluation systems. Under
the educational system of this concept, an effective teaching
system can be better designed for the programming skills
needs of novice programmers. Thus, they can better achieve
the output effect of measuring programming skills.

For the experimental results, it can also confirm the
above point of view. Course scores obtained in courses

that implement the outcome-based education model in the
teaching process can better reflect the level of students’
programming skills. For example, the software engineering
course shows a high correlation after analyzing the test
results of novice programmers. This is also because the
teacher adopts the OBE teaching mode in the teaching
process of the software engineering course, which can make
the students oriented by the learning results and pay attention
to the cultivation of students’ programming skills, so that
their programming skills level can be easily measured.

2.4 Challenges of OBE
There are still some challenges in the OBE concept.

These challenges are mainly summarized in the following
five aspects: first, it is unfair to implement standardized
evaluation for students of different backgrounds and schools
of different qualities. Secondly, the preset ability level may
not be applicable to different students. Thirdly, there is a lack
of sufficient empirical research to show that OBE is effective.
Fourthly, the implementation of OBE will increase the burden
on teachers and universities. Fifthly, in the implementation
process, it is easy to bundle other teaching reform programs
together.

3 Collection of Curriculum Data Related
to Programming Skills

3.1 The Process of Generating Data
According to the requirements of the outcome-based

education concept, it focuses on the cultivation of students’
abilities and a reasonable evaluation of the achievement of
course objectives. Therefore, in the process of cultivating
students of this major, it is necessary to formulate a complete
evaluation system of course objectives. The evaluation of the
achievement of the course objectives of this major is mainly
based on the assessment method, and the final evaluation
of the achievement of the course objectives is formed with
reference to the student questionnaires and symposiums
after the course. The detailed evaluation process is shown in
Figure 1.

Figure 1. Flow chart of course goal achievement evaluation

Can University Marks Measure Programming Skills for Novice Programmers? An Exploratory Study 1191

The degree of achievement of the overall objectives of
the course is calculated as follows:

C: the calculated value of the overall goal achievement
degree of the course;

Wi: the achievement degree weight coefficient of course
objective i;

OBi: calculated value of achievement degree of course
objective i, OBi = score Bi of objective i / weight Wi of
objective i.

Bi: the score of course objective i, Bi is obtained by the
weighted summation of the achievement value Tj of each
assessment sub-item of target i, and the weight of each
assessment sub-item is set as wj, then:

 * .i j jB T w= ∑ (1)

Tj: the achieved value of the assessment sub-item, Tj
= the average score of the assessment sub-item bj / the full
score of the sub-item Mj.

Wj: The weight of the assessment sub-items, Wj is
obtained by decomposing the weight of the course assessment
methods stipulated in the syllabus, as detailed in the syllabus
of each course.

Bj: The average score of the assessment sub-items.
There are different types of bj scores. One is the assessment
methods with specific scores such as assignments, tests, and
examinations, and the other is the score obtained from the
evaluation of the observation points, such as experiments,
design reports, practice reports, and acceptance. (If it is a
grade system, it needs to be converted into a percentage
system for calculation).

According to the above relationship, the simplified
calculation formula of C is as follows:

 * * .i
i i i i

i

B
C OB W W B

W
= = =∑ ∑ ∑ (2)

3.2 Reasonableness Assurance of Data
The data sources of curriculum goal achievement

evaluation include: syllabus, test paper, test paper scoring
standard, test paper analysis table, teaching process quality
evaluation table, etc.

First of all, after the completion of each course, the
teacher should analyze and explain the data content, source
and the collection method used in the evaluation of the
course objectives, as well as the correlation among these data
and the achievement of students’ ability. Then it corresponds
to these four reasonable guarantees:

Ensure that the syllabus is reasonable. It is necessary to
ensure the rationality of curriculum objectives, the relevance
of curriculum objectives and teaching content, and the
rationality of assessment methods.

(1) Ensure that the teaching content is in line with the
curriculum syllabus. In the teaching process, it is
necessary to ensure that teachers are in accordance
with the expected progress and teaching content to
complete the predetermined objectives of the course.

(2) Ensure that the content of the assessment is rea-

sonable to achieve the objectives of the assessment
course. Teachers should analyze and explain how the
assessment content connects to the course objectives
to ensure rationality.

(3) Ensure the rationality of the evaluation of course
objectives based on the questionnaire. It mainly an-
alyzes the validity of the questionnaire, explains the
content of the questionnaire, and deals with abnormal
data.

4 Data Preprocessing

Due to the variety of students’ courses, the dataset of
students’ course scores is relatively large, and there may be
data missing, data noise, data inconsistency, data redundancy,
and data repetition. Therefore, it is necessary to perform a
certain degree of preprocessing on the data of course scores
to make the analysis results of the whole data more authentic
and reliable.

4.1 Data Filtering
We first generate the datasets of all course scores of all

students in the entire major in the system, and then filter out
the required course scores of juniors and seniors.

In the selected course scores of the third-year students,
they are screened again to select the courses that they
participate in collectively, including Java Programming,
Software Engineering, Operating System, Big Data Storage
and Processing, Computing Methods, Computer Composition
and Structure, Database Principles and Applications I, Digital
Image Processing II, Data Structure, Advanced Language
Programming (C language), Scientific Computing Language
(Python language), College English (1), Humanities and
Social Sciences, a total of 13 courses.

In the course scores of the selected senior courses, their
Data Structure and Advanced Language Programming (C
language) are screened out as reference lines, and then
Software Engineering, Scientific Computing Language
(Python language), Database Principles and Applications I,
Computer Composition and Structure, and Operating System
are screened out, a total of 7 courses.

4.2 Data Cleansing
4.2.1 Missing Values Processing

Due to the process of acquiring information and data in
the real world, there will be various reasons for data loss and
vacancies. The treatment method for these missing values is
mainly based on the distribution characteristics of variables
and the importance of variables. In this experiment, some
students (mainly students who have changed majors) have
missing scores in some courses. After evaluation, the missing
variables are of high importance to the whole experiment,
so the method of filling statistics is used, and the average
value is initially used filling. However, some of the repeating
students’ scores are also missing. Due to the high missing
rate of such data and insufficient reference, such variables are
deleted.
4.2.2 Inconsistent Data Processing

In the score table of a course, there are inconsistencies

1192 Journal of Internet Technology Vol. 24 No. 6, November 2023

and contradictions in the scores of the same student. It shows
that the student completes the course in different semesters;
this is because the student failed to pass the course after
taking the course for the first time, so he needs to retake the
course. For this kind of data, we consider that students have
multiple score values in the course because of retakes, and
the retake courses are less rigorous than the formal courses,
so the students’ first course scores are taken as their final
grades for the course to make the results more realistic.
4.2.3 Data Redundancy Processing

Data redundancy is the situation where the amount of data
or the number of attributes exceeds what is required for data
analysis. In the exported data set of student course scores,
there are other attributes such as the academic year, course

program number, the course code, instructor, etc. These are
redundant attributes that exceed the needs of data analysis, so
they need to be deleted.

4.3 Data Description
After preprocessing the students’ course scores, an

operation can be performed on the data to visualize their
distribution.

From the under three-year students’ course score
distribution Figure 2, we can see that the scores of these
courses basically conform to the normal distribution, and the
distribution is relatively reasonable. Similarly, the distribution
results displayed after an operation of visualizing the course
scores of senior students are also more reasonable.

 (a) Software Engineering (b) Data Structure

 (c) Java Programming (d) Computational Methods

Figure 2. Course score distribution diagram

5 Mechanism for Getting Coding Test
Scores

In order to obtain reasonable student coding test results,
the better the students’ programming skills, the higher the
correct rate of the tasks they solve. Therefore, when asking
students to solve programming problems, each problem is

set as a corresponding level, and only the answers of the
test set that solve the question can be cleared and the score
of this question can be obtained. The better the students’
programming skills, the faster they can analyze and solve
problems. Therefore, after students solve coding problems,
we include efficiency points when grading students’ coding
problems. The faster a student successfully compiles and runs
through the test set, the higher the efficiency score.

Can University Marks Measure Programming Skills for Novice Programmers? An Exploratory Study 1193

5.1 Basic Score
The basic score of a level is the set clearance score of

each level. In order to better calculate and process students’
scores, we set the basic level score of each level to 15 points,
and there are 5 levels in total. Students can only get the basic
score of the level after running the code program written in
the platform and passing the evaluation.

5.2 Efficiency Score
Efficiency score refers to the comprehensive score of

students’ time to complete training tasks and correct tasks.
This provides a better assessment of students’ ability to solve
programming tasks. First calculate the student’s learning
efficiency /logS te = . Here, S is the student’s score for all
programming tasks and t is the time the student takes to
complete all programming tasks. Therefore, the formula for
calculating the efficiency score is as follow:

max

.eE s
e

= × (3)

As above, E is the efficiency score of students, emax is the
highest learning efficiency of students in the class, and s is
the corresponding score. However, if the student does not
complete the corresponding programming task, the student’s
efficiency score on the programming task will be 0. In the
experiment, we set an efficiency score of 5 points for each
level.

6 Experimental Verification

Constructing and verifying programming test questions
is a complex task, which requires reasonable programming
questions to be distributed and analyzed and verified with
course scores. In this paper, we implement this process
concretely. We designed a test paper on a programming topic,
and then organized the third-year students to take the test on
this topic. We assigned a specific comprehensive score for the
students' test results. At the same time, the test paper was also
distributed to some senior students to complete, and the test
results of senior students were scored. Then, a comparison
test was conducted between the test results of juniors and
seniors. Using the scores of the test questions as a baseline of
students’ programming skills, the correlation between course
scores and programming skills was analyzed.

6.1 Objective
Through our experiments, we aim to assess the correlation

between course performance and programming skills. To
the end, we propose three simple hypotheses. The first basic
assumption is that the better the programming skills, the
more correct they will be at solving the task. Because the
better the programming skills and the richer the programming
experience, the more experienced students participate in
more programming projects than the inexperienced students,
and thus can complete more programming tasks correctly.
The second hypothesis is that experienced students are faster
at analyzing problems and code because they have done

more and more frequently in programming problems before,
and they know how to better solve problems on their own.
The third hypothesis is that students with better coding skills
are also less evaluated (without other human factors) when
completing coding tasks.

For the verification of these three hypotheses, we have
integrated into specific experiments.

6.2 Material
We have designed f ive programming tasks for

programming, which are two Java language programming
tasks and three C language programming tasks. The score
setting for each question is twenty points, including fifteen
points for correct clearance and five points for efficiency.
Among them, a certain difficulty level is also set between the
questions. The Java language programming task is generally
relatively simple. The third question of the C language
programming task is the most difficult, and is regarded as a
question with a degree of distinction.

We give students specific topics and some simple
programming tips, let them complete these programming
tasks, pass the evaluation in the EduCoder platform, and
then count the students’ completion. In Figure 3, we show
the original topic and code of the first programming task.
Since it is the first topic, the setting is relatively simple. The
requirement of this topic is to count the total score of each
student, and use the Java language to code a program.

1 /*
2 * Task: Calculate the average score of each person.
3 * Output style: total score of student number x: y
4 *
5 **/

6 public class PassWord {
7 public static void main(String[] args) {
9 int[][] arr = new

10 int[][]{{90,88,87},{89,90,77},{66,78,60},{77,90,90},
 {8,9,78,67},{78,87,88}};

11 /********** Begin **********/
12 int x,y;
13 for(x=0;x<arr.length;x++){
14 int sum=0;
15 for(y=0;y<arr[x].length;y++){
16 sum+=arr[x][y];
17 }
18 System.out.println(x+1+"student's total score: "+sum);
19 }
20 /********** End **********/
21 }
22 }

Figure 3. Source code of the first task

The remaining programming tasks are to use the Java
language to output the student or teacher’s score sequence,
find the sum of the score sequence, insert the sort, and print
the calendar. Printing the calendar has a certain complexity

1194 Journal of Internet Technology Vol. 24 No. 6, November 2023

and can better distinguish students’ programming abilities.
There is also a certain inspection of the students’ coding
standards to test whether the students’ code comments and
function names are in compliance with the standards. We
not only count the specific grades of middle school students
on the EduCoder1 platform, but also check the details of the
experiments of students who have not passed the customs,
and give them a specific score.

To match the average programming level of undergraduate
students, we have selected some basic programming
algorithms and problems. However, a question with a certain
degree of difficulties was set up (this information can also
be obtained in the small survey of the difficulty feedback of
the students later), and the calendar of a certain month of the
year was printed out. Some students with rich programming
experience are also more aware of their own ideas and
purposes to solve problems in actual programming projects.
Thus, we expect that only students with a great deal of prior
programming experience can do this task well.

There are five programming tasks. In the process of
students completing the questions, the EduCoder platform
will count the students’ completion time, the number of
completed questions, the completion time, the number of
evaluations, and the efficiency of the questions, so that we
can pass these data and give them a final score to distinguish
their programming skills.

6.3 Subjects
All the research subjects were college students from

the school. There were 124 main research subjects, all of
whom were juniors. In addition, five senior students were
tested on the same programming task, and a test result was
obtained. Among these research objects, due to the change
of professional training direction, the third-year students had
learned two programming languages, C and Java at the same
time, while the fourth-year students had only learned the C
language. The other courses were basically the same.

6.4 Execution
The experiment was completed in April 2022. The

students did not know the specific purpose and thought
they were just participating in a lab class. Then, we briefly
introduced the topics and some experimental requirements to
the students. During the whole experiment, the students could
only complete the programming tasks independently. They
could not read textbooks or materials, and could not discuss
the answers with others. In addition, in the process of students
completing programming tasks, the front programming tasks
were closed and submitted after a period of time, so that the
experimental data could have a better authenticity. At the end
of the time, we also conducted a return visit to some students
to understand their views on these topics, whether the work
was completed as planned during the experiment, and the
difficulty level of the topics.

Five seniors also took the same test at another time,
completing three of the programming tasks independently.
Since they knew the purpose of the experiment and
participated voluntarily, the experiment was improved.

1 https://www.educoder.net/

6.5 Deviation
When arranging for these students to participate in the

experiment, due to time constraints, we failed to accurately
distribute the 5 questions according to the correct difficulty
level when we released the tasks in the EduCoder platform.
As a result, the number of students completing the later
programming tasks was smaller. In addition, when setting
the task, another training task was not set for the last
programming question, so the data of the two programming
questions are combined.

7 Experimental Result

Before beginning this experiment, we propose three
research questions:

RQ1. Can the programming skills of novice programmers
be measured by course scores?

RQ2. If yes, which courses can measure programming
skills?

RQ3. How does the assessment content, assessment
methods and process management of the course affect the
results?

From the experimental results, we can conclude that with
the difficulty of the programming task and the answering
time, the students’ answer scores are also different. Relatively
speaking, the simple and advanced tasks have more correct
numbers. The last harder programming task was done
correctly by fewer people. Then, after correlating all students’
programming proficiency test scores with their course scores,
it was found that Software Engineering course scores are the
most correlated with programming test scores, and this score
has a higher correlation with College English (1) scores and
is very unrelated to Humanities and Social Sciences. The
three research questions are specifically answered below.

7.1 Means and Standard Deviations
In Table 1, we outline how students completed these

programming tasks, where the column average represents
the average time in minutes. Because not all students
completed these tasks, it is necessary to count their number
of completions and the number of people who completed
them correctly. As can be seen from the table, the first
three tasks took less time and more people completed them
correctly. Task 4 took the longest and had the largest number
of participants, but the least number of people completed
it. When setting tasks, the first few tasks will close the
submission entry in turn after a period of time. Only task 4 is
set at the end, and task 4 is also the most difficult task.

Take into account the premature closing of the submission
entry during the experiment, and a comprehensive
examination of the students’ programming skills. We also
opened the specific experimental situation of those students
who participated in the task but failed to complete it correctly,
and gave a comprehensive score to their answers. Particularly
in the last task, by looking at the students’ answers, we
assigned a comprehensive score according to the reference
answers, as well as the requirements of the coding standard.

Can University Marks Measure Programming Skills for Novice Programmers? An Exploratory Study 1195

Table 1. Overview of completion of each task

Variable Mean N Correct

Task 1 10.94 81 71

Task 2 8.57 56 22

Task 3 16.07 92 53

Task 4 32.90 111 13

Mean: Average time for students to complete this task;
N: Number of students who complete this task;
Correct: Number of students with correct solution.

7.2 Correlations
We collated the test data of 124 students and then

performed a correlation analysis among all students’ coding
proficiency test scores and their course scores. Since we
are not sure whether the relationship is linear, we used
the Spearman rank correlation. We obtained a preliminary
result: among these courses, the correlation of test scores
and Software Engineering is the strongest, and it is also
closely related to Scientific Computing Language, Database
Principles and Applications I, Data Structure, Operating
System, Java Programming, and Computer Composition and
Structure, and extremely irrelevant to Humanities and Social
Sciences. Of the 13 courses, 7 courses are most significantly
relevant. The details are shown in Table 2, which gives the
Spearman rank correlation between test scores and course
scores.

Table 2. The Spearman rank correlation between test scores and
course scores

No. Course ρ N

1 Software Engineering .454** 124

2 Scientific Computing Language .334** 124

3 Database Principles and
Applications I .297** 124

4 Data Structure .273** 124

5 Operating System .265** 124

6 Computer Composition and
Structure .254** 124

7 Java Programming .232** 124

8 Big Data Storage and Processing .222 124

9 Digital Image Processing II .197 124

10 Advanced Language Programming .183 124

11 College English (1) .179 124

12 Humanities and Social Sciences .117 124

13 Computational Methods .078 124

7.3 Control Experiment
We also make a simple comparison and analysis of the

experimental data of five senior students and the experimental
data of junior students. Primarily comparing their scores for
task 3 and task 4 in their programming tasks, it is clear that
seniors perform better and have higher scores than juniors.

As shown in Table 3, the average scores of seniors are
significantly higher than those of juniors.

Table 3. Comparison of average scores

Variable Juniors Seniors

Task 3 7.82 19.06

Task 4 15.97 20.00

2 https://www.bilibili.com/

8 Exploratory Analysis

Because only the course scores and programming test
scores of juniors are analyzed, the data is relatively small
and single. An analysis was then conducted on the course
scores of 129 senior students. We extracted their scores from
two representative courses, Data Structures and Advanced
Language Programming, and performed a simple score
merging. We also sorted the scores from high to low, as one
of their programming scores. Then, we organized five of
these students to rank the programming skills of their seniors
in their majors. We compared the ranking results given by
them with the ranking results of the scores of the two courses,
and found that nearly half of the students who ranked in the
top 20 in programming skills were in line. Therefore, we
decided to use these two course scores as a reference for
programming scores, and performed a Spearman correlation
analysis with the remaining course scores.

The obtained results show that Software Engineering,
Database Principle and Application I, Operating System,
Computer Composition and Structure, and Scientific
Computing Language have the strongest correlation. This
result is close to the previous analysis results of the third-year
students, which also shows a reliability of the experimental
results.

We also had a brief panel with these five graduating
seniors, mainly to find out what they think can improve the
programming skills of novice programmers. Their main point
of view was that to improve their programming skills, they
need to practice more programming problems and look at
example codes for reference. If there is a problem, they can
look for some suitable solutions on the Internet, such as the
bilibili2 website. It is important to do programming questions
and algorithm questions, so that programming skills can
be truly improved. In addition, they also gave their own
opinions on the completed test questions. They believed that
the earlier questions were relatively basic questions, and the
last question had a certain degree of difficulty but was more
interesting and novel.

9 Discussion

The EduCoder platform used in the experiment is an
online practical teaching platform. It is an online practical
teaching service platform and innovative environment
widely used in domestic universities. On the EduCoder
platform, we set up five programming tasks, including two
Java language programming questions and three C language

1196 Journal of Internet Technology Vol. 24 No. 6, November 2023

programming questions. It is because Java language and C
language represent process programming and object-oriented
programming respectively, which can measure students’
programming skills more comprehensively. The platform can
set the time and scoring rules for students to complete tasks.
It can also check the student’s code to judge the situation
of a student’s work. There is also a code quality score, but
because of its imperfect scoring rules, we finally use manual
scoring to complete this operation.

In the process of setting programming tasks, we did not
think of a factor in the order of students’ problem-solving.
Therefore, we did not correctly sort the levels according
to the difficulty level when setting the levels, resulting in
insufficient participation of students in some of the simpler
tasks. The questions in this part were extracted, the students’
answers were analyzed in detail, and they were given
appropriate marks to balance the overall data.

10 Conclusion

Programming sk i l l s a re impor tan t fo r nov ice
programmers. Therefore, we urgently need a means or
standard that can measure their programming skills. In
general, programming skills are difficult to define accurately.
Therefore, it threatens the validity of the experiment and
makes the entire experiment more difficult to interpret.

Through Spearman correlation analysis of junior
students’ test scores and course scores, it was found that
junior students’ software engineering courses have the
strongest correlation with programming skills, and there
are another 6 courses as a course group is highly correlated.
Among them, college English also has a certain correlation
with programming skills, indicating that English ability is
very important for novice programmers. It is because that in
some mainstream programming languages and programming
environments, some English terminology words often appear,
and programmers with higher English proficiency are more
likely to master these terminology words and understand error
statements. Comparing the test results of seniors and juniors,
these novice programmers with better programming skills
are faster and more accurate. We also found that, compared
with other courses, the grades of courses that implement the
OBE mechanism can better reflect the programming skills of
novice programmers and measure their programming skills.

To improve the programming ski l l s of novice
programmers is important but not easy. In addition to more
practice, it is necessary to establish a complete teaching
system for these courses, and use their course scores to
evaluate students’ programming skills so as to better improve
the programming skills of novice programmers.

In future work, we hope that more meaningful
programming tasks can be set up in the experiment of
programming test to obtain richer experimental data. In
addition, it is necessary to further analyze the curriculum
groups with significant correlation and explore the correlation
between the curriculum group and measuring programming
skills.

Acknowledgment

This work was supported by the Key Project of
Anhui University Natural Science Foundation (Grant No.
YJS20210453, KJ2020A0361, and KJ2021A1028), Anhui
Province Scientific Research Planning Project (Grant No.
2022AH050953), National Natural Science Foundation of
China (Grant No. 62002084, 61976005), University Synergy
Innovation Program of Anhui Province (Grant No. GXXT-
2022-047), and Key Project of Natural Science Research of
Higher Education Institution of Anhui Province of China
(Grant No. KJ2020A0363, KJ2021A1028).

References

[1] M. Zhang, The Art of Code: Driving Software
Development with Engineering Thinking, Publishing
House o f E lec t ron ics Indus t ry, 2022 , ISBN:
9787121426711.

[2] S. K. Navandar, M. D. Laddha, A. W. Kiwelekar,
Analyzing Performance in a Computer Programming
Course Through a Two-System Model, International
Journal of Performability Engineering, Vol. 18, No. 2,
pp. 71-78, February, 2022.

[3] R. Bockmon, S. Cooper, J. Gratch, J. Zhang, M.
Dorodchi, Can Students’ Spatial Skills Predict Their
Programming Abilities? 2020 ACM Conference on
Innovation and Technology in Computer Science
Education, Trondheim, Norway, 2020, pp. 446-451.

[4] L. Zhao, X. Liu, C. Wang, Y.-S. Su, Effect of different
mind mapping approaches on pr imary school
students’ computational thinking skills during visual
programming learning, Computers and Education, Vol.
181, Article No. 104445, May, 2022.

[5] A. K. Erümit, Effects of different teaching approaches
on programming skills, Education and Information
Technologies, Vol. 25, No. 2, pp. 1013-1037, March,
2020.

[6] S. I. Malik, R. Mathew, A. Al-Sideiri, J. Jabbar, R. Al-
Nuaimi, R. M. Tawafak, Enhancing problem-solving
skills of novice programmers in an introductory
programming course, Computer Applications in
Engineering Education, Vol. 30, No. 1, pp. 174-194,
January, 2022.

[7] S. K. Navandar, A. W. Kiwelekar, M. D. Laddha, The
Impact of Cognitive Bias on Students’ Programming
Performance in an Introduction to Programming
Course, International Journal of Performability
Engineering, Vol. 18, No. 8, pp. 589-597, August, 2022.

[8] X. Zhang, J. D. Crabtree, M. G. Terwilliger, T.
T. Redman, Assessing Students’ Object-Oriented
Programming Skills with Java: The “Department-
Employee” Project, Journal of Computer Information
Systems, Vol. 60, No. 3, pp. 274-286, 2020.

[9] S. Kleinschmager, S. Hanenberg, How to rate
programming skills in programming experiments?:
a preliminary, exploratory, study based on university
marks, pretests, and self-estimation, the 3rd ACM
SIGPLAN workshop on Evaluation and usability of

Can University Marks Measure Programming Skills for Novice Programmers? An Exploratory Study 1197

programming languages and tools, Portland, Oregon,
USA, 2011, pp. 15-24.

[10] H. Y. Durak, The Effects of Using Different Tools in
Programming Teaching of Secondary School Students
on Engagement, Computational Thinking and Reflective
Thinking Skills for Problem Solving, Technology,
Knowledge and Learning, Vol. 25, No. 1, pp. 179-195,
March, 2020.

[11] Y. Li, Y. Song, A. Moukrim, S. Yu, An Ability-oriented
Approach for Teaching Programming Courses, 2020
IEEE Frontiers in Education Conference, Uppsala,
Sweden, 2020, pp. 1-6.

[12] Q. Sun, J. Wu, K. Liu, How are students’ programming
skills developed: an empirical study in an object-
oriented course, the 2019 ACM Turing Celebration
Conference, Chengdu, China, 2019, pp. 81:1-81:6.

[13] X. Yang, Integrated Teaching Content Design of
Programming Courses Based On Ability of Algorithm
Thinking and Program Applicat ion, 2021 4th
International Conference on Information Systems and
Computer Aided Education, Dalian, China, 2021, pp.
759-761.

[14] D. Bilegjargal, N.-L. Hsueh, Understanding Students’
Acceptance of Online Judge System in Programming
Courses: A Structural Equation Modeling Approach,
IEEE Access, Vol. 9, pp. 152606-152615, November,
2021.

[15] J. Siegmund, C. Kästner, J. Liebig, S. Apel, S.
Hanenberg, Measuring and modeling programming
experience, Empirical Software Engineering, Vol. 19,
No. 5, pp. 1299-1334, October, 2014.

[16] V. C. Ahku, S. Panchoo, Implementing Personalised
Learning For Mixed Ability Students For Computer
Programming In A Learning Environment, 2019
C o n f e re n c e o n N e x t G e n e r a t i o n C o m p u t i n g
Applications, Mauritius, 2019, pp. 1-8.

[17] X. Wei, L. Lin, N. Meng, W. Tan, S.-C. Kong, Kinshuk,
The effectiveness of partial pair programming on
elementary school students’ Computational Thinking
skills and self-efficacy, Computers and Education, Vol.
160, Article No. 104023, January, 2021.

[18] M. Nakayama, M. Uto, M. Temperini, F. Sciarrone,
Estimating Ability of Programming Skills using IRT
based Peer Assessments, 2021 19th International
Conference on Information Technology Based Higher
Education and Training, Sydney, Australia, 2021, pp.
1-6.

[19] M. Sagar, A. Gupta, R. Kaushal, Performance prediction
and behavioral analysis of student programming
ability, 2016 International Conference on Advances in
Computing, Communications and Informatics, Jaipur,
India, 2016, pp. 1039-1045.

[20] F. Zaffalon, A. Prisco, R. d. Souza, D. Teixeira, M.
Neves, J. L. Bez, N. Tonin, R. Penna, S. Botelho,
Estimating the Multiple Skills of Students in Massive
Programming Environments, 2021 IEEE Frontiers in
Education Conference, Lincoln, NE, USA, 2021, pp.
1-7.

[21] A. Prasad, K. Chaudhary, B. Sharma, Programming
skills: Visualization, interaction, home language

and problem solving, Education and Information
Technologies, Vol. 27, No. 3, pp. 3197-3223, April,
2022.

[22] M. Tahaei, K. Vaniea, Recruit ing Participants
With Programming Skills: A Comparison of Four
Crowdsourcing Platforms and a CS Student Mailing
List, the 2022 CHI Conference on Human Factors in
Computing Systems, New Orleans, LA, USA, 2022, pp.
590:1-590:15.

Biographies

Fanghui Zha received her B.S. degree
in computer science and technology from
Anhui Polytechnic University. She is
currently studying for her M.S. degree in
software engineering at Anhui Polytechnic
U n i v e r s i t y. H e r c u r r e n t r e s e a r c h
directions include knowledge tracking and
programming skills measurement.

Yong Wang received his B.S. and M.S.
degrees in computer science from Anhui
Polytechnic University, and he received
his Ph.D. degree in computer science and
technology from Nanjing University of
Aeronautics and Astronautics. His current
research interests include software testing,
fault localization, and program debugging.

Liqiang Mao received his B.S. degree in
computer science education from Anhui
Normal University, and And he is currently
employed in Wuhu Education Examination
Center. His current research interests
include software engineering, data analysis,
computer education.

Jin Liu is currently pursuing undergraduate
s t u d i e s i n E l e c t r o n i c I n f o r m a t i o n
Engineering at Chongqing University
of Posts and Telecommunications. She
participated in the compilation of Railway
Communication Signal Technology and
System Research and has won multiple
awards. Currently, she is participating in

Student Research Training Program on “Linear Prediction
Analysis, Synthesis, and MATLAB Implementation of
Speech Signals”.

Xue Wang received the B.S. degrees in
computer science and technology from
Lijiang College of Guangxi Normal
University. She is currently pursuing the
M.S. degree in software engineering at
Anhui Polytechnic University, China. Her
current research interests include software
testing, fault localization, and program

debugging.

