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Abstract

Federated learning is a privacy-preserving machine 
learning technique that coordinates multi-participant co-
modeling. It can alleviate the privacy issues of software 
defect prediction, which is an important technical way 
to ensure software quality. In this work, we implement 
Federated Software Defect Prediction (FedSDP) and 
optimize its privacy issues while guaranteeing performance. 
We first construct a new benchmark to study the performance 
and privacy of Federated Software defect prediction. The 
benchmark consists of (1) 12 NASA software defect datasets, 
which are all real software defect datasets from different 
projects in different domains, (2) Horizontal federated 
learning scenarios, and (3) the Federated Software Defect 
Prediction algorithm (FedSDP). Benchmark analysis shows 
that FedSDP provides additional privacy protection and 
security with guaranteed model performance compared to 
local training. It also reveals that FedSDP introduces a large 
amount of model parameter computation and exchange 
during the training process. There are model user threats and 
attack challenges from unreliable participants. To provide 
more reliable privacy protection without losing prediction 
performance we proposed optimization methods that use 
homomorphic encryption model parameters to resist honest 
but curious participants. Experimental results show that our 
approach achieves more reliable privacy protection with 
excellent performance on all datasets.

Keywords: Software defect prediction, Federated learning, 
Homomorphic encryption, Privacy protection

1  Introduction

The increasing awareness of personal data protection [1] 
has limited the development of software defect prediction. 
Software defect prediction is vital in the modern industry to 
improve software reliability and avoid software problems 
during operation [2]. However, as data collection and use 
continue to expand, there are growing concerns about the 
security and privacy of the data being collected and shared 
[3]. On the other hand, software vendors and organizations 
have realized the potential benefits of consolidating their 
data assets, particularly improving statistical capabilities for 
analytical and predictive tasks. This has led to the problem of 

software defect data silos, which has stalled the development 
of software defect prediction techniques with extreme 
reliance on data. Therefore, it is necessary to navigate its 
development under the premise of privacy protection. In 
the past five years of research, different privacy-preserving 
approaches for software defect prediction have been 
explored. They generally use differential privacy techniques 
to achieve privacy preservation, but this does not adequately 
guarantee the performance of software defect prediction 
models.

In recent years, how to further improve data security 
and user privacy and unleash data values while ensuring 
model performance without loss has become a hot research 
topic in academia and industry. Federated learning is a 
privacy-preserving machine learning technique that trains 
models on dispersed software defect data through edges 
to share model updates with servers [4]. Thus, Federated 
Learning can effectively mitigate the risk of potential privacy 
breaches. In addition to privacy protection, implementing 
federated software defect prediction has other advantages: 
the communication overhead is reduced by avoiding massive 
data uploads [4], global models can be applied to different 
projects, and participants can obtain models adapted to local 
data.

This work focuses on the privacy-preserving aspects 
of federated learning in software defect prediction while 
guaranteeing the performance of software defect prediction 
models. Privacy preservation is further optimized by 
constructing a new benchmark and performing benchmark 
analysis, using the Paillier technique to encrypt the large 
number of model parameters introduced in the training of the 
federated model, and using polynomial Taylor expansions 
to approximate the base model loss function to improve the 
computational efficiency of the algorithm. Comprehensive 
experimental results of the analysis demonstrate the 
practicality and effectiveness of the approach. We summarize 
the contributions of this paper as follows:

(I) We constructed a new benchmark for FedSDP and 
analyzed its privacy issues through the benchmark. The 
constructed federated software defect prediction benchmark 
has the following features: (1) Using the publicly available 
NASA Software Defect Dataset, which includes 12 software 
project modules and acts as a publicly available dataset 
specifically designed to study software defect prediction 
models, (2) Setting federated scenarios based on software 
defect data features, (3) Designing a suitable algorithm for 
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FedSDP, (4) Standardizing base models and performance 
evaluation metrics.

(II)We propose an approach to optimize privacy 
protection: homomorphic encryption. Encrypting federated 
training model parameters to avoid attackers launching 
inference attacks based on model parameters.

The rest of this paper is organized as follows. In Section 
2, we introduce the related work. Section 3 describes the 
FedSDP benchmark. Section 4 analyzes the benchmark 
results and provides insights. In Section 5, we propose 
optimization methods to improve the privacy protection of 
FedSDP. Finally, Section 6 concludes the paper and presents 
future work.

2  Related Work

2.1 Software Defect Prediction
Currently, most of the research work on software defect 

prediction methods is based on machine learning techniques, 
with data as the key driving the performance of defect 
prediction algorithm models [5]. With the development of 
machine learning techniques, methods for building software 
defect prediction models have tended to be enriched, such 
as decision trees [6], support vector machines [7], and 
Naive Bayes [8] algorithms, among which the Naive Bayes 
algorithm has a better performance with an accuracy rate 
of 71% [9]. Some researchers have also proposed a cross-
project software defect prediction method, which uses the 
labeled data from related source projects to build a defect 
prediction model to achieve target project defect prediction. 
For example, in a cross-project prediction method based on 
feature migration, He et al [10] obtained the optimal subset 
of attributes from the source and target projects to build 
defect prediction models as a way to alleviate the problem of 
insufficient data for the target projects. Mi et al [11] proposed 
an active learning based data selection algorithm considering 
that the prior knowledge of the target item can match 
the source item with the defect pattern of the target item. 
Menzies et al [12] implemented cross-item defect prediction 
by building local models through clustering clusters of 
source and target items. In software defect prediction model 
training, software defect data plays a crucial role, containing 
sensitive information such as code data and software 
version data, which will directly threaten the reputation and 
property security of the organization or enterprise if leaked 
or exploited during the training process. Therefore, there is a 
need to explore more effective privacy protection methods for 
software defect prediction to deal with the strict regulatory 
environment of user privacy and data security.

2.2 Federated Learning
2.2.1 Federated Learning Benchmarks

Caldas et al. proposed LEAF in [13], which focuses on a 
benchmark framework for natural language processing and 
image classification. Luo et al in [14] proposed a real-world 
dataset for object detection. Both works use the Federated 
Averaging (FedAvg) algorithm as a baseline implementation. 
In this work, we introduce a new benchmark for federated 
learning combined with software defect prediction and 

analyze the benchmark to reveal potential privacy issues.
2.2.2 Privacy Protection in Federated Learning

Unlike centralized algorithm training, federated learning 
algorithm training only requires model parameters to be 
computationally exchanged between the participants and the 
server, avoiding direct exposure of data and providing natural 
protection for data privacy. However, the model parameters 
and gradients, as private data for the model training task, 
contain information about the data features, posing the risk of 
leakage. It has been shown that some of the original data can 
be restored by gradients. Zhu et al [15] explored the problem 
of sensitive information leakage using model gradients 
and proposed a privacy attack method. Tramèr et al [16] 
incorporated machine learning models through prediction 
API and proposed a corresponding defense. Song et al [17] 
exploit the machine learning model over-memory to obtain 
user privacy information. Fredrikson et al [18] first proposed 
an approach to protect sensitive data using cryptography 
and security protocols. In subsequent work, Fredrikson et 
al [19] introduced a model inversion attack method based 
on confidential information. Shokri et al [20] proposed a 
neural network-based model membership inference attack 
that reveals the privacy leakage problem in machine learning 
models. Unreliable participants will exacerbate the risk of 
privacy breaches. It inferred other participant labels or data 
based on legitimately obtained intermediate parameters. 
Geyer et al [21] first proposed a federated learning differential 
privacy-preserving algorithm for the user level. Huang et al 
[22] proposed the alternating direction method of multipliers 
(ADMM) perturbation algorithm, which provides a highly 
usable protection scheme for nonsmooth convex objective 
functions. Aono et al [23] used encryption mechanisms to 
protect federated training in a client-server architecture. 
Inspired by encryption mechanisms, we use homomorphic 
encryption algorithms in federal software defect prediction to 
provide more reliable privacy protection.

3  FedSDP Benchmark

In this section, we introduce the FedSDP benchmark, 
a new benchmark for implementing federated learning for 
software defect prediction. It includes 12 datasets (Section 
3.1), horizontal federated learning scenarios (Section 3.2), 
model selection (Section 3.3), the federated software defect 
prediction algorithm (Section 3.4), and performance metrics 
(Section 3.5).

3.1 Datasets
To simulate a realistic scenario of FedSDP, we selected 

12 NASA software defect prediction datasets from the 
PROMISE database [24], which is a publicly available 
dataset published by NASA specifically for building 
software defect prediction models, with the data described 
in Table 1. These data differ significantly in terms of design 
language, defect rate, and example number. Maurice et al 
[25] proposed a series of metrics and measures to measure 
software complexity and quality. McCabe et al [26] proposed 
a measure of software complexity, the McCabe complexity. 
Radjenović et al [27] summarized various metrics for 
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evaluating software defect prediction. Basili et al [28] 
validated the effectiveness of object-oriented design metrics as 
quality indicators. Elish et al [29] compared the effectiveness 
of three package-based software defect prediction metric 
suites in Eclipse. Olague et al [30] empirically validated three 
software metrics suites to predict the propensity for errors in 
object-oriented classes developed using highly iterative or 
agile software development processes. Each software module 
in the dataset contains public attributes such as McCabe, 
Lines of Code, and Halatead. It can effectively model the 
participating parties in federated learning.

Table 1. The characteristics of 12 datasets for the FedSDP 
benchmark

Data Language Examples Attributes Defect (%)
JM1 C 7,720 22 20.9
PC2 C 5,589 37 0.41
MC1 C 1,952 39 1.8
PC5 C 1,694 39 27.0
PC3 Java 1,409 38 10.5
PC4 C++ 1,270 38 13.9
KC1 C++ 1,162 22 25.3
PC1 C 919 22 6.5
CM1 C 505 38 48.0
MW1 C 375 38 7.5
KC3 Java 324 40 13.0
MC2 C++ 155 40 32.9

3.2 Horizontal Federated Learning
Yang et al [31] first divided federated learning into 

horizontal FL, vertical FL, and federated migration learning. 
Kairouz et al [32] then further explored different forms 
of division in federated learning, including device-based 
division, data-based division, and model-based division. 
In horizontal federated learning, different participants have 
different sample spaces but intersect in the feature space 
(Figure 1). Software defect data has overlapping data 
characteristics, so this paper is concerned with software 
defect prediction horizontal federated learning scenarios. 
A client-server architecture is used, where each dataset is 
defined as a separate client that communicates directly with 
the server for federated learning. In this case, keeping the 
data in the client can greatly reduce the risk of a privacy 
breach.
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ID feature_1 feature_2 feature_3 label ···
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Figure 1. Horizontal federated learning scenario data segmentation

3.3 Model Selection
Software defect prediction targets to measure the code 

properties of software modules that contain defects in 
historical releases. Machine learning techniques are usually 
used to construct software defect prediction models. The 
logistic regression algorithm (LR) belongs to the generalized 
linear regression model, where the probability value of the 
predicted outcome is calculated by the attribute eigenvector 
coefficients and is chosen as the baseline in software defect 
prediction [33]. Therefore, we use logistic regression as the 
base model to perform federated learning.

3.4 Federated Software Defect Prediction Algorithm
The Federated Software Defect Prediction algorithm 

uses the standard Federated Average Algorithm (FedAvg), 
which involves the client training the model using a local 
dataset and uploading model parameter updates to the 
server; the server is responsible for initializing the model 
and aggregating model updates from the client by weighted 
averaging. Figure 2 shows the implementation of the FedAvg 
to Federated Software Defect Prediction algorithm, where the 
client and server train and share the global model.

Assume that the aggregation server model parameters are 
Wt, the data characteristics of participant A and participant 
B are XA and XB (XA = XB), the initial model parameters are 
WA and WB (WA = WB = Wt), the label of participant A is yA∈
{−1,1}NA, and the label of participant B is yB∈ {−1,1}NB, 
with 1 denoting a defective module and -1 denoting a non-
defective module; The data features and label space of the 
participants are the same for (XA, yA) and (XB, yB), where N 
is the number of sample entries in the dataset and t is the 
number of model training epochs. The predicted output of the 
logistic regression model is y^ = Sigmoid(Z), where Z = WtXi, 
i = A, B …. The training objective of the logistic regression 
algorithm is to find the model parameters that minimize 
the value of the loss function, such as the participant A, 

* ˆarg min ( , )
AA WW L y y= , where L(.,.) is the cross-entropy loss 

function, 1ˆ( , ) N
iy y == Σ (yi log y^i  + (1 − yi) log(1 − y^i)).

In each epoch round, training is performed using the 
small-batch Stochastic Gradient Gradient (mini-batch SGD) 
algorithm, which first samples small batches of sample 
data X(b), Y(b), from the participants. Computational model 
gradients for participant P on sampled small batch sample 
data.
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BS  is  the number of sampling training samples 
(Batch Size). The participant P model is updated as 

( )b
P P PW W Wη= − ∇ ,  where  η  i s  the  grad ien t  descent 

step size. The model update of the aggregation server is 
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= + −∑ , where W t+1
i  denotes the model 

of the (i)th participant after the (t + 1)th round of local update 

and λ is the learning rate. We summarize the Federated 
Software Defect Prediction algorithm (FedSDP) in Algorithm 
1.

Figure 2. FedSDP algorithm process using FedAvg 
(Each epoch consists of the following steps: (1) The server sends the global model to the client. (2) The client trains the model using local 
data. (3) The client uploads the model parameters to the server. (4) The server aggregates the model updates from the client by weighted 
average to obtain a new global model.)

Algorithm 1. Federated Software Defect Prediction (FedSDP) 
with FedAvg
Input: E, B, K, η, T, N, nk, n

Output: wT, wT
k

Server:
    Initialize w0;
    for each round t = 0 to T − 1 do 
        Ct ← (randomly select K out of N clients);
        for each client k ∈Ct concurrently do

          1t
kw +  ← Client (wt, k, t);

        end
        // n: total size of dataset; nk: size of client k’s dataset;

        1 1
t

t tk
k C k

n
w w

n
+ +

∈← Σ ;

    end
    return wT;
Client(w, k, t):
    β ← (divide local data into batches of size B);
for each local epoch e = 0 to E-1 do

        for b β∈  do

            // parameter w update;
             w ← w − ηℒ(w; b);
        end
    end
    return w ;
return

3.5 Performance Metrics
Software defect prediction is a binary classification 

problem where the goal is to study the classification of 
software modules into defective and non-defective modules. 
A few defective modules are defined as positive cases and 
most non-defective modules are defined as negative cases in 
the classification learning task. Table 2 shows the confusion 
matrix for software defect prediction.

Table 2. Confusion matrix description

Defective module 
status

Predicted results

Defective module Non-defective 
module

Defective module True Positive (TP) False Negative (FN)

Non-defective 
module False Positive (FP) True Negative (TN)

The task of software defect prediction is to find as many 
defective modules as possible, and its prediction accuracy 
(Precision, P) can be calculated based on the confusion 
matrix, P = TP/(TP + FP), which represents the proportion of 
defective modules correctly predicted; Recall (R) represents 
the “ability” of the algorithm model to correctly predict 
software modules “metric, R = TP/(TP + FN); on this basis, 
F1 (F1-score) value is defined: F1 = 2PR/(P + R), which 
represents the weighted summed average of accuracy and 
recall, which can visually reflect the stability of software 
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defect prediction model. Therefore, we used Precision 
(P), F1-score (F1), and Recall metrics for FedSDP model 
evaluation.

4  Benchmark Analysis

Using the benchmarks in Section 3, we conducted 
extensive experiments on different federated settings, 
analyzed the results of the algorithmic model experiments, 
and investigated the effects of batch size B and the number of 
local epochs E, as well as the performance comparison with 
local training, and gained meaningful insights by analyzing 
the experimental results. We constructed 12 clients for the 
following experiments, each using one of the 12 datasets 
for training. In each round of communication, we select all 
clients for aggregation.

4.1 Impact of Batch Size
Batch size is an important hyperparameter in FedSDP that 

affects the client’s computations. A smaller batch size will 

lead to increased computation for the client in each training 
round, assuming a fixed number of local epochs and dataset 
size. Fixing local epoch number E = 1 global training is 300 
rounds. We compare the performance of different batch sizes 
B = 32, B = 64, and B = 128 in Figure 3. The performance of 
most clients improved slightly when we reduced the batch 
size to increase the amount of computation. Therefore, we 
use B = 32 as the default batch size setting.

4.2 Communication Cost
In FedSDP, the trade-off between communication cost 

and performance depends on the number of local epochs. 
Setting the default batch size B = 32 and fixing the global 
training for 300 rounds, Figure 4 shows the performance for 
different local epochs E = 1, E = 5, and E = 10. Although E = 
1 and E = 10 perform better than E = 5 for a few clients, E = 
5 substantially outperforms E = 1 and E = 10 for all clients. 
Even though lowering the local epoch E generally improves 
performance, it adds additional communication costs.
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Figure 3. Performance comparison of different batch sizes. Batch size B = 32 performs better in most clients
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Figure 4. Performance comparison for the different number of local epochs
 (The default batch size B = 32 and the total number of training rounds T = 300. The number of local epochs E = 5 performs better in most 
clients.)
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4.3 Upper Bound of FedSDP
We compare the model performance obtained from 

FedSDP and local training. Following the previous 
conclusion, we use the local epoch E = 5 and batch size B 
= 32 as the default hyperparameter settings for the FedSDP 
algorithm. Table 3 and Table 4 show the experimental results 
of local training and FedSDP and the F1-scores are compared 
in Figure 5. Although the federated model performed slightly 
worse than local training on the larger sample size datasets 
PC3 and PC2 (Figure 5(a)), it outperforms local training 
on most of the smaller datasets (Figure 5(b)). These results 
suggest that clients with smaller datasets can more effectively 
acquire knowledge from other clients. The dataset size has 
a significant impact on the performance and generalization 
ability of the federated model. Since clients with larger 
datasets dominate the federated aggregation, less knowledge 
is obtained from other clients; the models trained by clients 
with smaller datasets have poor generalization ability, so 
more knowledge is needed from other clients to improve their 
ability. Therefore, FedSDP can facilitate knowledge sharing 
and collaboration among different clients, thus improving the 
performance and efficiency of the whole model, especially in 
the case of uneven distribution of data sets.
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Figure 5. Performance (F1-score) of FedSDP compared with local 
training 
(Although in (a) the federated models perform slightly worse than 
local training on larger datasets, they outperform local training on 
smaller datasets in (b).)

Table 3. Performance of models trained on each dataset (Local 
Training)

Datasets P F1 Recall
JM1 0.854 0.779 0.823
PC2 0.998 0.997 0.997
MC1 0.991 0.987 0.991
PC5 0.978 0.976 0.978
PC3 0.917 0.866 0.909
PC4 0.915 0.864 0.906
KC1 0.870 0.850 0.874
PC1 0.893 0.858 0.878
CM1 0.899 0.830 0.884
MW1 0.917 0.861 0.906
KC3 0.883 0.850 0.850
MC2 0.869 0.816 0.840

Table 4. Performance of models trained on each dataset (FedSDP)
Datasets P F1 Recall

JM1 0.854 0.790 0.825
PC2 0.993 0.989 0.990
MC1 0.988 0.989 0.993
PC5 0.973 0.970 0.974
PC3 0.839 0.800 0.864
PC4 0.909 0.860 0.899
KC1 0.866 0.850 0.871
PC1 0.922 0.910 0.932
CM1 0.880 0.886 0.899
MW1 0.946 0.888 0.925
KC3 0.877 0.837 0.850
MC2 0.872 0.826 0.840

4.4 Privacy of FedSDP
FedSDP has a higher privacy guarantee than traditional 

centralized software defect prediction model training. 
However, FedSDP is based on client-server architecture, 
including the parameter upload and parameter distribution 
phases. As a result, it may not offer comprehensive and 
adequate privacy protection for parameters and still faces 
the risk of information leakage. For example, Lyv et al [34] 
and Wang et al [35] elaborated on the possible attacks on 
federated learning. Liu et al [36] analyzed parameter privacy 
risk in federated learning, where malicious attackers can 
launch reconstruction and inference attacks based on model 
parameters.

5  Privacy Protection Optimization

Based on the conclusions of the benchmark analysis, we 
investigate further and optimize the privacy protection of 
FedSDP. In this section, we apply partially homomorphic 
encryption (Paillier) to the FedSDP algorithm to improve 
its privacy-preserving capability. As described in Section 4, 
the FedSDP algorithm neglects the protection of the model 
parameters, and there is a risk of private information leakage.

5.1 Paillier Partially Homomorphic Encryption
Homomorphic Encryption (HE) [37] is a cryptographic 

method that allows operations on the ciphertext space and 
the result of the decrypted ciphertext operations is the same 
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as the result of the plaintext operations. Homomorphic 
encryption can be classified as Fully HE (FHE), Somewhat 
HE (SHE), and Partially HE (PHE) based on the supported 
operations. We use the partially homomorphic encryption 
algorithm Paillier [38], which has the advantage of ciphertext 
computation of fully homomorphic encryption and greatly 
improves the computational efficiency with half the effort. 
The Paillier encryption algorithm generates the key pair <pk, 
sk> in the initialization phase. The public key <pk> is used 
for encryption and can be disclosed to each participating 
party, and the private key <sk> is used for decryption and is 
kept only in the trusted party without being disclosed. For 
a given integer x. y, the Paillier encryption algorithm can 
perform the following operations.

• Encryption: Enc (x, pk) → 
 

x ;

• Decryption: Dec (
 

x , sk); → x

• Homomorphic addition: HAdd (
 

x ,
 

y ) →
 

z , 

where
 

z satisfies Dec (
 

z , sk) = x + y;

• Scalar addition: SAdd (
 

x , y) →
 

z , where 
 

z

satisfies Dec (
 

z , sk) = x + y;

• Scalar multiplication: SMul (x, 
 

y ) →
 

z , where 

 

z  satisfies Dec (
 

z , sk) = x × y.
Similarly, the above operations are also applicable to 

homomorphic operations between vectors or matrices. It 
should be noted that in the above operations in cipher space, 
such as the “

 

z = x
 

y ” expresses the meaning of  “Dec 

(SMul (x, 
 

y , sk) = x × y”, that is, “z = x × y”. The result of 
the decrypted ciphertext space operation is exactly the same 
as the corresponding plaintext space operation.

5.2 FedSDP with Paillier
From (1), it can be seen that the LR algorithm model 

gradient calculation involves a large number of complex 
logarithmic and exponential operations, so to apply the 
Paillier encryption algorithm, the method of Taylor loss 
approximation of the original target loss function was used 
inspired by Hardy et al [39], and the Taylor expansion of 
the logistic regression original logarithmic loss function 

1
1 log(1 )

T
i iy xN

iL e
N

θ−
== Σ +  was performed to finally obtain 

the encryption gradient calculation.

[ ]
1

1 1 1( 1 ) .
4 2

n
T

i i i
i

L x y x
n

θ
θ =

 ∂       = + −       ∂  
∑ (2)

The gradient operation after Taylor’s second-order 
expansion involves only addition and number multiplication 
operations, which can be directly applied to the Paillier 
encryption algorithm for parameter privacy protection. 
We summarize the secure logistic regression algorithm in 
Algorithm 2. Before the algorithm model is trained, the 

server generates a key pair for the selected cryptosystem 
and shares the public key with the participants, and then the 
server sends the encrypted ciphertext 

 

m to the participants.
Algorithm 3 summarizes the training process with 

Paillier: (1) At the beginning of training, we disclose the 
public key pk and make the encrypted initialized model 

0w 

 
 

 available to all clients. (2) Each client computes the 
encryption gradient using the local dataset and performs 
encryption training. (3) The clients upload the updated model 
parameters kw 

 
 

 to the server. (4) The server securely 
aggregates the model updates from the client to obtain the 
new global model. Figure 6 shows the algorithm process of 
FedSDP with Paillier.

Figure 7 compares the performance of FedSDP and 
FedSDP with Paillier on all participants. The FedSDP with 
Paillier approach not only encrypts the FedSDP algorithm 
model training parameters and reduces the risk of privacy 
leakage, but also shows better performance across all 
participants, such as the datasets KC3 and CM1 (Figure 
7(b)) which both have improved performance. Table 5 shows 
the F1-score changes of FedSDP and FedSDP with Paillier 
compared to local training. Experimental results show 
that although FedSDP with Paillier uses an approximate 
polynomial Taylor loss function for security gradient 
calculation, the model performance is approximately lossless. 
It also added extra security and privacy protection, which is 
undoubtedly more valuable.

Algorithm 2. Secure logistic regression
Input: m, η, s′ 

Output: θ
create an homomorphic encryption key pair
send the public key to Client
Enc (m, pk) → 

 

m , send 
 

m  to Client
θ ← 0, ℓH ← ∞
repeat

for every mini-batch S′ do
secure gradient ℓS′ (θ)
θ ← θ – η (ℓS′ (θ) + Γθ);

secure logistic loss ℓH (θ)
if ℓH (θ) stable then break

until max epoch
return θ

Algorithm 3. FedSDP with Paillier
Input: E, B, K, η, T, N, nk, n

Output: Tw 

 
 

, T
kw 

 
 

Server:
    Initialize w0, <pk, sk>; 

    0w 

 
 

← Enc (w0, pk)

    for each round t = 0 to T-1 do 
        Ct ← (randomly select K out of N clients);
        for each client k∈Ct concurrently do

            1t
kw +

 

 
 

← Client( tw 

 
 

, k, t, pk);
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        End
        // n: total size of dataset; nk: size of client k’s dataset;

        1tw +
 

 
 

← 1
t

tk
k C k

n
w

n
+

∈Σ  

 
 

;

    End

    return Tw 

 
 

;

Client(
 

w , k, t, pk):

    β ←(divide local data into batches of size B);
for each local epoch e = 0 to E-1 do
        for b∈β do

            // encryption parameter 
 

w update;

            
 

w  ←
 

w − η∇ℒ
 

w , b, pk);

        end 
    end

    return 
 

w ;

return

Table 5. F1-score of Local Training, FedSDP, and FedSDP with 
Paillier 

Datasets Local Training FedSDP FedSDP with 
Paillier

JM1 0.779 +0.011 -0.007

PC2 0.997 -0.008 -0.017

MC1 0.987 +0.002 +0.003

PC5 0.976 -0.006 -0.005

PC3 0.866 -0.066 -0.024

PC4 0.864 -0.004 -0.045

KC1 0.850 +0.004 -0.033

PC1 0.858 +0.052 +0.021

CM1 0.830 +0.056 +0.073

MW1 0.861 +0.027 +0.018

KC3 0.850 -0.013 +0.017

MC2 0.816 +0.010 -0.049

Figure 6. FedSDP with Paillier process 
(Each epoch consists of the following steps: (1) The server sends the public key and encrypted global model to the client. (2) The client 
encrypts the training model using local data. (3) The client uploads the encrypted model parameters to the server. (4) The server aggregates 
the model updates from the client by weighted average to obtain a new encrypted global model.)
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6  Conclusion

In this paper, we investigate the privacy-preserving 
challenges of implementing federated learning in software 
defect prediction by constructing a new benchmark and 
performing a benchmark analysis. This benchmark defines 
a horizontal federated software defect prediction scheme. 
The benchmark analysis presents privacy issues and useful 
insights into FedSDP. FedSDP can avoid centralized data 
sharing and protect data privacy, while allowing multiple 
organizations to cooperate in software defect prediction 
research, improving the efficiency of data utilization and 
sample diversity. Integrating software defect data from 
different organizations can improve the generalization ability 
and prediction accuracy of the model, while also avoiding the 
problem of poor model prediction due to the lack of data from 
some organizations. We propose optimization methods to 
solve the privacy issues in FedSDP. To tackle the challenges 
of honest and curious participants and parameter privacy, 
we employ partially homomorphic encryption (Paillier) 
to mask the large number of model parameters introduced 
in the FedSDP algorithm model training. To improve the 
computational efficiency of the algorithm, a polynomial 
Taylor expansion is used to approximate the base model loss 
function so that the target parameters involve only additive 
and multiplicative operations. Numerical results show that 
our method effectively protects the privacy of software defect 
data and solves the problem of data islands under the premise 
of ensuring performance. This paper focuses only on the 
privacy preservation of software defect prediction data in the 

real world. For future work, the challenge of data privacy 
protection for software defect prediction systems will be 
considered.
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