
Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1177

*Corresponding Author: Yong Li; E-mail: liyong@live.com
DOI: 10.53106/160792642023112406001

Privacy Protection Optimization for Federated Software Defect Prediction
via Benchmark Analysis

Ying Liu1,2, Yong Li1,2*, Ming Wen2, Wenjing Zhang1

1 College of Computer Science and Technology, Xinjiang Normal University, China
 2 Xinjiang Electronics Research Institute, China

liuying.void@gmail.com, liyong@live.com, wmconet@126.com, zwenj0801@163.com

Abstract

Federated learning is a privacy-preserving machine
learning technique that coordinates multi-participant co-
modeling. It can alleviate the privacy issues of software
defect prediction, which is an important technical way
to ensure software quality. In this work, we implement
Federated Software Defect Prediction (FedSDP) and
optimize its privacy issues while guaranteeing performance.
We first construct a new benchmark to study the performance
and privacy of Federated Software defect prediction. The
benchmark consists of (1) 12 NASA software defect datasets,
which are all real software defect datasets from different
projects in different domains, (2) Horizontal federated
learning scenarios, and (3) the Federated Software Defect
Prediction algorithm (FedSDP). Benchmark analysis shows
that FedSDP provides additional privacy protection and
security with guaranteed model performance compared to
local training. It also reveals that FedSDP introduces a large
amount of model parameter computation and exchange
during the training process. There are model user threats and
attack challenges from unreliable participants. To provide
more reliable privacy protection without losing prediction
performance we proposed optimization methods that use
homomorphic encryption model parameters to resist honest
but curious participants. Experimental results show that our
approach achieves more reliable privacy protection with
excellent performance on all datasets.

Keywords: Software defect prediction, Federated learning,
Homomorphic encryption, Privacy protection

1 Introduction

The increasing awareness of personal data protection [1]
has limited the development of software defect prediction.
Software defect prediction is vital in the modern industry to
improve software reliability and avoid software problems
during operation [2]. However, as data collection and use
continue to expand, there are growing concerns about the
security and privacy of the data being collected and shared
[3]. On the other hand, software vendors and organizations
have realized the potential benefits of consolidating their
data assets, particularly improving statistical capabilities for
analytical and predictive tasks. This has led to the problem of

software defect data silos, which has stalled the development
of software defect prediction techniques with extreme
reliance on data. Therefore, it is necessary to navigate its
development under the premise of privacy protection. In
the past five years of research, different privacy-preserving
approaches for software defect prediction have been
explored. They generally use differential privacy techniques
to achieve privacy preservation, but this does not adequately
guarantee the performance of software defect prediction
models.

In recent years, how to further improve data security
and user privacy and unleash data values while ensuring
model performance without loss has become a hot research
topic in academia and industry. Federated learning is a
privacy-preserving machine learning technique that trains
models on dispersed software defect data through edges
to share model updates with servers [4]. Thus, Federated
Learning can effectively mitigate the risk of potential privacy
breaches. In addition to privacy protection, implementing
federated software defect prediction has other advantages:
the communication overhead is reduced by avoiding massive
data uploads [4], global models can be applied to different
projects, and participants can obtain models adapted to local
data.

This work focuses on the privacy-preserving aspects
of federated learning in software defect prediction while
guaranteeing the performance of software defect prediction
models. Privacy preservation is further optimized by
constructing a new benchmark and performing benchmark
analysis, using the Paillier technique to encrypt the large
number of model parameters introduced in the training of the
federated model, and using polynomial Taylor expansions
to approximate the base model loss function to improve the
computational efficiency of the algorithm. Comprehensive
experimental results of the analysis demonstrate the
practicality and effectiveness of the approach. We summarize
the contributions of this paper as follows:

(I) We constructed a new benchmark for FedSDP and
analyzed its privacy issues through the benchmark. The
constructed federated software defect prediction benchmark
has the following features: (1) Using the publicly available
NASA Software Defect Dataset, which includes 12 software
project modules and acts as a publicly available dataset
specifically designed to study software defect prediction
models, (2) Setting federated scenarios based on software
defect data features, (3) Designing a suitable algorithm for

1178 Journal of Internet Technology Vol. 24 No. 6, November 2023

FedSDP, (4) Standardizing base models and performance
evaluation metrics.

(II)We propose an approach to optimize privacy
protection: homomorphic encryption. Encrypting federated
training model parameters to avoid attackers launching
inference attacks based on model parameters.

The rest of this paper is organized as follows. In Section
2, we introduce the related work. Section 3 describes the
FedSDP benchmark. Section 4 analyzes the benchmark
results and provides insights. In Section 5, we propose
optimization methods to improve the privacy protection of
FedSDP. Finally, Section 6 concludes the paper and presents
future work.

2 Related Work

2.1 Software Defect Prediction
Currently, most of the research work on software defect

prediction methods is based on machine learning techniques,
with data as the key driving the performance of defect
prediction algorithm models [5]. With the development of
machine learning techniques, methods for building software
defect prediction models have tended to be enriched, such
as decision trees [6], support vector machines [7], and
Naive Bayes [8] algorithms, among which the Naive Bayes
algorithm has a better performance with an accuracy rate
of 71% [9]. Some researchers have also proposed a cross-
project software defect prediction method, which uses the
labeled data from related source projects to build a defect
prediction model to achieve target project defect prediction.
For example, in a cross-project prediction method based on
feature migration, He et al [10] obtained the optimal subset
of attributes from the source and target projects to build
defect prediction models as a way to alleviate the problem of
insufficient data for the target projects. Mi et al [11] proposed
an active learning based data selection algorithm considering
that the prior knowledge of the target item can match
the source item with the defect pattern of the target item.
Menzies et al [12] implemented cross-item defect prediction
by building local models through clustering clusters of
source and target items. In software defect prediction model
training, software defect data plays a crucial role, containing
sensitive information such as code data and software
version data, which will directly threaten the reputation and
property security of the organization or enterprise if leaked
or exploited during the training process. Therefore, there is a
need to explore more effective privacy protection methods for
software defect prediction to deal with the strict regulatory
environment of user privacy and data security.

2.2 Federated Learning
2.2.1 Federated Learning Benchmarks

Caldas et al. proposed LEAF in [13], which focuses on a
benchmark framework for natural language processing and
image classification. Luo et al in [14] proposed a real-world
dataset for object detection. Both works use the Federated
Averaging (FedAvg) algorithm as a baseline implementation.
In this work, we introduce a new benchmark for federated
learning combined with software defect prediction and

analyze the benchmark to reveal potential privacy issues.
2.2.2 Privacy Protection in Federated Learning

Unlike centralized algorithm training, federated learning
algorithm training only requires model parameters to be
computationally exchanged between the participants and the
server, avoiding direct exposure of data and providing natural
protection for data privacy. However, the model parameters
and gradients, as private data for the model training task,
contain information about the data features, posing the risk of
leakage. It has been shown that some of the original data can
be restored by gradients. Zhu et al [15] explored the problem
of sensitive information leakage using model gradients
and proposed a privacy attack method. Tramèr et al [16]
incorporated machine learning models through prediction
API and proposed a corresponding defense. Song et al [17]
exploit the machine learning model over-memory to obtain
user privacy information. Fredrikson et al [18] first proposed
an approach to protect sensitive data using cryptography
and security protocols. In subsequent work, Fredrikson et
al [19] introduced a model inversion attack method based
on confidential information. Shokri et al [20] proposed a
neural network-based model membership inference attack
that reveals the privacy leakage problem in machine learning
models. Unreliable participants will exacerbate the risk of
privacy breaches. It inferred other participant labels or data
based on legitimately obtained intermediate parameters.
Geyer et al [21] first proposed a federated learning differential
privacy-preserving algorithm for the user level. Huang et al
[22] proposed the alternating direction method of multipliers
(ADMM) perturbation algorithm, which provides a highly
usable protection scheme for nonsmooth convex objective
functions. Aono et al [23] used encryption mechanisms to
protect federated training in a client-server architecture.
Inspired by encryption mechanisms, we use homomorphic
encryption algorithms in federal software defect prediction to
provide more reliable privacy protection.

3 FedSDP Benchmark

In this section, we introduce the FedSDP benchmark,
a new benchmark for implementing federated learning for
software defect prediction. It includes 12 datasets (Section
3.1), horizontal federated learning scenarios (Section 3.2),
model selection (Section 3.3), the federated software defect
prediction algorithm (Section 3.4), and performance metrics
(Section 3.5).

3.1 Datasets
To simulate a realistic scenario of FedSDP, we selected

12 NASA software defect prediction datasets from the
PROMISE database [24], which is a publicly available
dataset published by NASA specifically for building
software defect prediction models, with the data described
in Table 1. These data differ significantly in terms of design
language, defect rate, and example number. Maurice et al
[25] proposed a series of metrics and measures to measure
software complexity and quality. McCabe et al [26] proposed
a measure of software complexity, the McCabe complexity.
Radjenović et al [27] summarized various metrics for

Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1179

evaluating software defect prediction. Basili et al [28]
validated the effectiveness of object-oriented design metrics as
quality indicators. Elish et al [29] compared the effectiveness
of three package-based software defect prediction metric
suites in Eclipse. Olague et al [30] empirically validated three
software metrics suites to predict the propensity for errors in
object-oriented classes developed using highly iterative or
agile software development processes. Each software module
in the dataset contains public attributes such as McCabe,
Lines of Code, and Halatead. It can effectively model the
participating parties in federated learning.

Table 1. The characteristics of 12 datasets for the FedSDP
benchmark

Data Language Examples Attributes Defect (%)
JM1 C 7,720 22 20.9
PC2 C 5,589 37 0.41
MC1 C 1,952 39 1.8
PC5 C 1,694 39 27.0
PC3 Java 1,409 38 10.5
PC4 C++ 1,270 38 13.9
KC1 C++ 1,162 22 25.3
PC1 C 919 22 6.5
CM1 C 505 38 48.0
MW1 C 375 38 7.5
KC3 Java 324 40 13.0
MC2 C++ 155 40 32.9

3.2 Horizontal Federated Learning
Yang et al [31] first divided federated learning into

horizontal FL, vertical FL, and federated migration learning.
Kairouz et al [32] then further explored different forms
of division in federated learning, including device-based
division, data-based division, and model-based division.
In horizontal federated learning, different participants have
different sample spaces but intersect in the feature space
(Figure 1). Software defect data has overlapping data
characteristics, so this paper is concerned with software
defect prediction horizontal federated learning scenarios.
A client-server architecture is used, where each dataset is
defined as a separate client that communicates directly with
the server for federated learning. In this case, keeping the
data in the client can greatly reduce the risk of a privacy
breach.

ID feature_1 feature_2 feature_3 label ···

1

2

3

ID feature_1 feature_2 feature_3 label ···

11

12

13

Client A

Client B

X

X

yA

yB

Figure 1. Horizontal federated learning scenario data segmentation

3.3 Model Selection
Software defect prediction targets to measure the code

properties of software modules that contain defects in
historical releases. Machine learning techniques are usually
used to construct software defect prediction models. The
logistic regression algorithm (LR) belongs to the generalized
linear regression model, where the probability value of the
predicted outcome is calculated by the attribute eigenvector
coefficients and is chosen as the baseline in software defect
prediction [33]. Therefore, we use logistic regression as the
base model to perform federated learning.

3.4 Federated Software Defect Prediction Algorithm
The Federated Software Defect Prediction algorithm

uses the standard Federated Average Algorithm (FedAvg),
which involves the client training the model using a local
dataset and uploading model parameter updates to the
server; the server is responsible for initializing the model
and aggregating model updates from the client by weighted
averaging. Figure 2 shows the implementation of the FedAvg
to Federated Software Defect Prediction algorithm, where the
client and server train and share the global model.

Assume that the aggregation server model parameters are
Wt, the data characteristics of participant A and participant
B are XA and XB (XA = XB), the initial model parameters are
WA and WB (WA = WB = Wt), the label of participant A is yA∈
{−1,1}NA, and the label of participant B is yB∈ {−1,1}NB,
with 1 denoting a defective module and -1 denoting a non-
defective module; The data features and label space of the
participants are the same for (XA, yA) and (XB, yB), where N
is the number of sample entries in the dataset and t is the
number of model training epochs. The predicted output of the
logistic regression model is y^ = Sigmoid(Z), where Z = WtXi,
i = A, B …. The training objective of the logistic regression
algorithm is to find the model parameters that minimize
the value of the loss function, such as the participant A,

* ˆarg min (,)
AA WW L y y= , where L(.,.) is the cross-entropy loss

function, 1ˆ(,) N
iy y == Σ (yi log y^i + (1 − yi) log(1 − y^i)).

In each epoch round, training is performed using the
small-batch Stochastic Gradient Gradient (mini-batch SGD)
algorithm, which first samples small batches of sample
data X(b), Y(b), from the participants. Computational model
gradients for participant P on sampled small batch sample
data.

() ()
() () ()

() ()
() () ()

ˆ(,) 1 ,

ˆ(,) ˆwhere .

b b
b b T b

P P
P

b b
b b b

L y yW X Z
W BS

L y yZ y y
Z

∂
∇ = = ∇

∂

∂
∇ = = −

∂

(1)

BS is the number of sampling training samples
(Batch Size). The participant P model is updated as

()b
P P PW W Wη= − ∇ , where η i s the grad ien t descent

step size. The model update of the aggregation server is

1180 Journal of Internet Technology Vol. 24 No. 6, November 2023

()1 1

1

m
t t t t

i i
i

W W W Wλ+ +

=

= + −∑ , where W t+1
i denotes the model

of the (i)th participant after the (t + 1)th round of local update

and λ is the learning rate. We summarize the Federated
Software Defect Prediction algorithm (FedSDP) in Algorithm
1.

Figure 2. FedSDP algorithm process using FedAvg
(Each epoch consists of the following steps: (1) The server sends the global model to the client. (2) The client trains the model using local
data. (3) The client uploads the model parameters to the server. (4) The server aggregates the model updates from the client by weighted
average to obtain a new global model.)

Algorithm 1. Federated Software Defect Prediction (FedSDP)
with FedAvg
Input: E, B, K, η, T, N, nk, n

Output: wT, wT
k

Server:
 Initialize w0;
 for each round t = 0 to T − 1 do
 Ct ← (randomly select K out of N clients);
 for each client k ∈Ct concurrently do

 1t
kw + ← Client (wt, k, t);

 end
 // n: total size of dataset; nk: size of client k’s dataset;

 1 1
t

t tk
k C k

n
w w

n
+ +

∈← Σ ;

 end
 return wT;
Client(w, k, t):
 β ← (divide local data into batches of size B);
for each local epoch e = 0 to E-1 do

 for b β∈ do

 // parameter w update;
 w ← w − ηℒ(w; b);
 end
 end
 return w ;
return

3.5 Performance Metrics
Software defect prediction is a binary classification

problem where the goal is to study the classification of
software modules into defective and non-defective modules.
A few defective modules are defined as positive cases and
most non-defective modules are defined as negative cases in
the classification learning task. Table 2 shows the confusion
matrix for software defect prediction.

Table 2. Confusion matrix description

Defective module
status

Predicted results

Defective module Non-defective
module

Defective module True Positive (TP) False Negative (FN)

Non-defective
module False Positive (FP) True Negative (TN)

The task of software defect prediction is to find as many
defective modules as possible, and its prediction accuracy
(Precision, P) can be calculated based on the confusion
matrix, P = TP/(TP + FP), which represents the proportion of
defective modules correctly predicted; Recall (R) represents
the “ability” of the algorithm model to correctly predict
software modules “metric, R = TP/(TP + FN); on this basis,
F1 (F1-score) value is defined: F1 = 2PR/(P + R), which
represents the weighted summed average of accuracy and
recall, which can visually reflect the stability of software

Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1181

defect prediction model. Therefore, we used Precision
(P), F1-score (F1), and Recall metrics for FedSDP model
evaluation.

4 Benchmark Analysis

Using the benchmarks in Section 3, we conducted
extensive experiments on different federated settings,
analyzed the results of the algorithmic model experiments,
and investigated the effects of batch size B and the number of
local epochs E, as well as the performance comparison with
local training, and gained meaningful insights by analyzing
the experimental results. We constructed 12 clients for the
following experiments, each using one of the 12 datasets
for training. In each round of communication, we select all
clients for aggregation.

4.1 Impact of Batch Size
Batch size is an important hyperparameter in FedSDP that

affects the client’s computations. A smaller batch size will

lead to increased computation for the client in each training
round, assuming a fixed number of local epochs and dataset
size. Fixing local epoch number E = 1 global training is 300
rounds. We compare the performance of different batch sizes
B = 32, B = 64, and B = 128 in Figure 3. The performance of
most clients improved slightly when we reduced the batch
size to increase the amount of computation. Therefore, we
use B = 32 as the default batch size setting.

4.2 Communication Cost
In FedSDP, the trade-off between communication cost

and performance depends on the number of local epochs.
Setting the default batch size B = 32 and fixing the global
training for 300 rounds, Figure 4 shows the performance for
different local epochs E = 1, E = 5, and E = 10. Although E =
1 and E = 10 perform better than E = 5 for a few clients, E =
5 substantially outperforms E = 1 and E = 10 for all clients.
Even though lowering the local epoch E generally improves
performance, it adds additional communication costs.

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

P

 B=32 B=64 B=128

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

F
1

 B=32 B=64 B=128

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
l
l

 B=32 B=64 B=128

Figure 3. Performance comparison of different batch sizes. Batch size B = 32 performs better in most clients

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

P

 E=1 E=5 E=10

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

F
1

 E=1 E=5 E=10

JM1 PC2 MC1 PC5 PC3 PC4 KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
l
l

 E=1 E=5 E=10

Figure 4. Performance comparison for the different number of local epochs
 (The default batch size B = 32 and the total number of training rounds T = 300. The number of local epochs E = 5 performs better in most
clients.)

1182 Journal of Internet Technology Vol. 24 No. 6, November 2023

4.3 Upper Bound of FedSDP
We compare the model performance obtained from

FedSDP and local training. Following the previous
conclusion, we use the local epoch E = 5 and batch size B
= 32 as the default hyperparameter settings for the FedSDP
algorithm. Table 3 and Table 4 show the experimental results
of local training and FedSDP and the F1-scores are compared
in Figure 5. Although the federated model performed slightly
worse than local training on the larger sample size datasets
PC3 and PC2 (Figure 5(a)), it outperforms local training
on most of the smaller datasets (Figure 5(b)). These results
suggest that clients with smaller datasets can more effectively
acquire knowledge from other clients. The dataset size has
a significant impact on the performance and generalization
ability of the federated model. Since clients with larger
datasets dominate the federated aggregation, less knowledge
is obtained from other clients; the models trained by clients
with smaller datasets have poor generalization ability, so
more knowledge is needed from other clients to improve their
ability. Therefore, FedSDP can facilitate knowledge sharing
and collaboration among different clients, thus improving the
performance and efficiency of the whole model, especially in
the case of uneven distribution of data sets.

JM1 PC2 MC1 PC5 PC3 PC4
0.0

0.2

0.4

0.6

0.8

1.0

F1

 FedSDP Local Training

KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

F1

 FedSDP Local Training

(a)

(b)

Figure 5. Performance (F1-score) of FedSDP compared with local
training
(Although in (a) the federated models perform slightly worse than
local training on larger datasets, they outperform local training on
smaller datasets in (b).)

Table 3. Performance of models trained on each dataset (Local
Training)

Datasets P F1 Recall
JM1 0.854 0.779 0.823
PC2 0.998 0.997 0.997
MC1 0.991 0.987 0.991
PC5 0.978 0.976 0.978
PC3 0.917 0.866 0.909
PC4 0.915 0.864 0.906
KC1 0.870 0.850 0.874
PC1 0.893 0.858 0.878
CM1 0.899 0.830 0.884
MW1 0.917 0.861 0.906
KC3 0.883 0.850 0.850
MC2 0.869 0.816 0.840

Table 4. Performance of models trained on each dataset (FedSDP)
Datasets P F1 Recall

JM1 0.854 0.790 0.825
PC2 0.993 0.989 0.990
MC1 0.988 0.989 0.993
PC5 0.973 0.970 0.974
PC3 0.839 0.800 0.864
PC4 0.909 0.860 0.899
KC1 0.866 0.850 0.871
PC1 0.922 0.910 0.932
CM1 0.880 0.886 0.899
MW1 0.946 0.888 0.925
KC3 0.877 0.837 0.850
MC2 0.872 0.826 0.840

4.4 Privacy of FedSDP
FedSDP has a higher privacy guarantee than traditional

centralized software defect prediction model training.
However, FedSDP is based on client-server architecture,
including the parameter upload and parameter distribution
phases. As a result, it may not offer comprehensive and
adequate privacy protection for parameters and still faces
the risk of information leakage. For example, Lyv et al [34]
and Wang et al [35] elaborated on the possible attacks on
federated learning. Liu et al [36] analyzed parameter privacy
risk in federated learning, where malicious attackers can
launch reconstruction and inference attacks based on model
parameters.

5 Privacy Protection Optimization

Based on the conclusions of the benchmark analysis, we
investigate further and optimize the privacy protection of
FedSDP. In this section, we apply partially homomorphic
encryption (Paillier) to the FedSDP algorithm to improve
its privacy-preserving capability. As described in Section 4,
the FedSDP algorithm neglects the protection of the model
parameters, and there is a risk of private information leakage.

5.1 Paillier Partially Homomorphic Encryption
Homomorphic Encryption (HE) [37] is a cryptographic

method that allows operations on the ciphertext space and
the result of the decrypted ciphertext operations is the same

Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1183

as the result of the plaintext operations. Homomorphic
encryption can be classified as Fully HE (FHE), Somewhat
HE (SHE), and Partially HE (PHE) based on the supported
operations. We use the partially homomorphic encryption
algorithm Paillier [38], which has the advantage of ciphertext
computation of fully homomorphic encryption and greatly
improves the computational efficiency with half the effort.
The Paillier encryption algorithm generates the key pair <pk,
sk> in the initialization phase. The public key <pk> is used
for encryption and can be disclosed to each participating
party, and the private key <sk> is used for decryption and is
kept only in the trusted party without being disclosed. For
a given integer x. y, the Paillier encryption algorithm can
perform the following operations.

• Encryption: Enc (x, pk) →
 

x ;

• Decryption: Dec (
 

x , sk); → x

• Homomorphic addition: HAdd (
 

x ,
 

y) →
 

z ,

where
 

z satisfies Dec (
 

z , sk) = x + y;

• Scalar addition: SAdd (
 

x , y) →
 

z , where
 

z

satisfies Dec (
 

z , sk) = x + y;

• Scalar multiplication: SMul (x,
 

y) →
 

z , where

 

z satisfies Dec (
 

z , sk) = x × y.
Similarly, the above operations are also applicable to

homomorphic operations between vectors or matrices. It
should be noted that in the above operations in cipher space,
such as the “

 

z = x
 

y ” expresses the meaning of “Dec

(SMul (x,
 

y , sk) = x × y”, that is, “z = x × y”. The result of
the decrypted ciphertext space operation is exactly the same
as the corresponding plaintext space operation.

5.2 FedSDP with Paillier
From (1), it can be seen that the LR algorithm model

gradient calculation involves a large number of complex
logarithmic and exponential operations, so to apply the
Paillier encryption algorithm, the method of Taylor loss
approximation of the original target loss function was used
inspired by Hardy et al [39], and the Taylor expansion of
the logistic regression original logarithmic loss function

1
1 log(1)

T
i iy xN

iL e
N

θ−
== Σ + was performed to finally obtain

the encryption gradient calculation.

[]
1

1 1 1(1) .
4 2

n
T

i i i
i

L x y x
n

θ
θ =

 ∂       = + −       ∂  
∑ (2)

The gradient operation after Taylor’s second-order
expansion involves only addition and number multiplication
operations, which can be directly applied to the Paillier
encryption algorithm for parameter privacy protection.
We summarize the secure logistic regression algorithm in
Algorithm 2. Before the algorithm model is trained, the

server generates a key pair for the selected cryptosystem
and shares the public key with the participants, and then the
server sends the encrypted ciphertext

 

m to the participants.
Algorithm 3 summarizes the training process with

Paillier: (1) At the beginning of training, we disclose the
public key pk and make the encrypted initialized model

0w 

 
 

 available to all clients. (2) Each client computes the
encryption gradient using the local dataset and performs
encryption training. (3) The clients upload the updated model
parameters kw 

 
 

 to the server. (4) The server securely
aggregates the model updates from the client to obtain the
new global model. Figure 6 shows the algorithm process of
FedSDP with Paillier.

Figure 7 compares the performance of FedSDP and
FedSDP with Paillier on all participants. The FedSDP with
Paillier approach not only encrypts the FedSDP algorithm
model training parameters and reduces the risk of privacy
leakage, but also shows better performance across all
participants, such as the datasets KC3 and CM1 (Figure
7(b)) which both have improved performance. Table 5 shows
the F1-score changes of FedSDP and FedSDP with Paillier
compared to local training. Experimental results show
that although FedSDP with Paillier uses an approximate
polynomial Taylor loss function for security gradient
calculation, the model performance is approximately lossless.
It also added extra security and privacy protection, which is
undoubtedly more valuable.

Algorithm 2. Secure logistic regression
Input: m, η, s′

Output: θ
create an homomorphic encryption key pair
send the public key to Client
Enc (m, pk) →

 

m , send
 

m to Client
θ ← 0, ℓH ← ∞
repeat

for every mini-batch S′ do
secure gradient ℓS′ (θ)
θ ← θ – η (ℓS′ (θ) + Γθ);

secure logistic loss ℓH (θ)
if ℓH (θ) stable then break

until max epoch
return θ

Algorithm 3. FedSDP with Paillier
Input: E, B, K, η, T, N, nk, n

Output: Tw 

 
 

, T
kw 

 
 

Server:
 Initialize w0, <pk, sk>;

 0w 

 
 

← Enc (w0, pk)

 for each round t = 0 to T-1 do
 Ct ← (randomly select K out of N clients);
 for each client k∈Ct concurrently do

 1t
kw +

 

 
 

← Client(tw 

 
 

, k, t, pk);

1184 Journal of Internet Technology Vol. 24 No. 6, November 2023

 End
 // n: total size of dataset; nk: size of client k’s dataset;

 1tw +
 

 
 

← 1
t

tk
k C k

n
w

n
+

∈Σ  

 
 

;

 End

 return Tw 

 
 

;

Client(
 

w , k, t, pk):

 β ←(divide local data into batches of size B);
for each local epoch e = 0 to E-1 do
 for b∈β do

 // encryption parameter
 

w update;

 

w ←
 

w − η∇ℒ
 

w , b, pk);

 end
 end

 return
 

w ;

return

Table 5. F1-score of Local Training, FedSDP, and FedSDP with
Paillier

Datasets Local Training FedSDP FedSDP with
Paillier

JM1 0.779 +0.011 -0.007

PC2 0.997 -0.008 -0.017

MC1 0.987 +0.002 +0.003

PC5 0.976 -0.006 -0.005

PC3 0.866 -0.066 -0.024

PC4 0.864 -0.004 -0.045

KC1 0.850 +0.004 -0.033

PC1 0.858 +0.052 +0.021

CM1 0.830 +0.056 +0.073

MW1 0.861 +0.027 +0.018

KC3 0.850 -0.013 +0.017

MC2 0.816 +0.010 -0.049

Figure 6. FedSDP with Paillier process
(Each epoch consists of the following steps: (1) The server sends the public key and encrypted global model to the client. (2) The client
encrypts the training model using local data. (3) The client uploads the encrypted model parameters to the server. (4) The server aggregates
the model updates from the client by weighted average to obtain a new encrypted global model.)

Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1185

6 Conclusion

In this paper, we investigate the privacy-preserving
challenges of implementing federated learning in software
defect prediction by constructing a new benchmark and
performing a benchmark analysis. This benchmark defines
a horizontal federated software defect prediction scheme.
The benchmark analysis presents privacy issues and useful
insights into FedSDP. FedSDP can avoid centralized data
sharing and protect data privacy, while allowing multiple
organizations to cooperate in software defect prediction
research, improving the efficiency of data utilization and
sample diversity. Integrating software defect data from
different organizations can improve the generalization ability
and prediction accuracy of the model, while also avoiding the
problem of poor model prediction due to the lack of data from
some organizations. We propose optimization methods to
solve the privacy issues in FedSDP. To tackle the challenges
of honest and curious participants and parameter privacy,
we employ partially homomorphic encryption (Paillier)
to mask the large number of model parameters introduced
in the FedSDP algorithm model training. To improve the
computational efficiency of the algorithm, a polynomial
Taylor expansion is used to approximate the base model loss
function so that the target parameters involve only additive
and multiplicative operations. Numerical results show that
our method effectively protects the privacy of software defect
data and solves the problem of data islands under the premise
of ensuring performance. This paper focuses only on the
privacy preservation of software defect prediction data in the

real world. For future work, the challenge of data privacy
protection for software defect prediction systems will be
considered.

Acknowledgment

This work is sponsored by Natural Science Foundation
of Xinjiang Uygur Autonomous Region (2022D01A225),
the Xinjiang Key Research and Development Program
(2022B01007-1) and the National Natural Science
Foundation of China (62241209).

References

[1] B. Custers, A. M. Sears, F. Dechesne, I. Georgieva, T.
Tani, S. van der Hof, EU personal data protection in
policy and practice, TMC Asser Press, 2019.

[2] M. Pandit , D. Gupta, Performance of Genetic
Programming-based Software Defect Prediction Models,
International Journal of Performability Engineering,
Vol. 17, No. 9, pp. 787-795, September, 2021.

[3] P. Esperanca, L. Aslett, C. Holmes, Encrypted
accelerated least squares regression, Proceedings of the
20th International Conference on Artificial Intelligence
and Statistics, Fort Lauderdale, Florida, USA, 2017, pp.
334-343.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, B.
A. y. Arcas, Communication-efficient learning of deep
networks from decentralized data, Proceedings of the
20th International Conference on Artificial Intelligence

JM1 PC2 MC1 PC5 PC3 PC4
0.0

0.2

0.4

0.6

0.8

1.0

P

 FedSDP FedSDP with Paillier

JM1 PC2 MC1 PC5 PC3 PC4
0.0

0.2

0.4

0.6

0.8

1.0

F
1

 FedSDP FedSDP with Paillier

JM1 PC2 MC1 PC5 PC3 PC4
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
l
l

 FedSDP FedSDP with Paillier

KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

P

 FedSDP FedSDP with Paillier

KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

F
1

 FedSDP FedSDP with Paillier

KC1 PC1 CM1 MW1 KC3 MC2
0.0

0.2

0.4

0.6

0.8

1.0

R
e
c
a
l
l

 FedSDP FedSDP with Paillier

(a)

(b)

Figure 7. Performance comparison of FedSDP and FedSDP with Paillier with local epochs E = 5 and batch size B = 32

1186 Journal of Internet Technology Vol. 24 No. 6, November 2023

and Statistics, Fort Lauderdale, Florida, USA, 2017, pp.
1273-1282.

[5] K. E. Rao, G. A. Rao, P. S. Rao, A Weighted Ada-
Boosting Approach for Software Defect Prediction using
Characterized Code Features Associated with Software
Quality, International Journal of Performability
Engineering, Vol. 18, No. 11, pp. 798-807, November,
2022.

[6] J. Wang, B.-J. Shen, Y.-T. Chen, Compressed C4.5
models for software defect prediction, 2012 12th
International Conference on Quality Software, Xi’an,
China, 2012, pp. 13-16.

[7] H.-M. Zhu, Y.-P. Wu, A pso algorithm with high speed
convergence, Control and Decision, Vol. 25, No. 1, pp.
20-24, January, 2010.

[8] P. Subramanian, N. Ramkumar, T. T. Narendran, K.
Ganesh, A technical note on ‘Analysis of closed loop
supply chain using genetic algorithm and particle swarm
optimisation’, International Journal of Production
Research, Vol. 50, No. 2, pp. 593-602, 2012.

[9] T. Menzies, J. Greenwald, A. Frank, Data mining
static code attributes to learn defect predictors, IEEE
transactions on software engineering, Vol. 33, No. 1,
pp. 2-13, January, 2007.

[10] P. He, B. Li, X. Liu, J. Chen, Y.-T. Ma, An empirical
study on software defect prediction with a simplified
metric set, Information and Software Technology, Vol.
59, pp. 170-190, March, 2015.

[11] W.-B. Mi, Y. Li, M. Wen, Y.-R. Chen, Using active
learning selection approach for cross-project software
defect prediction, Connection Science, Vol. 34, No. 1,
pp. 1482-1499, June, 2022.

[12] T. Menzies, A. Butcher, D. Cok, A. Marcus, L.
Layman, F. Shull, B. Turhan, T. Zimmermann, Local
versus global lessons for defect prediction and effort
estimation, IEEE Transactions on software engineering,
Vol. 39, No. 6, pp. 822-834, June, 2013.

[13] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan,
V. Smith, A. Talwalkar, Leaf: A benchmark for
federated settings, December, 2018, https://arxiv.org/
abs/1812.01097v1.

[14] J.-H. Luo, X.-Y. Wu, Y. Luo, A.-B. Huang, Y.-F.
Huang, Y. Liu, Q. Yang, Real-world image datasets for
federated learning, October, 2019, https://arxiv.org/
abs/1910.11089v1.

[15] H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, R. Garnett, Advances in Neural
Information Processing Systems 32 (NeurIPS 2019),
Curran Associates, Inc., 2019.

[16] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, T.
Ristenpart, Stealing Machine Learning Models via
Prediction APIs, USENIX security symposium, Austin,
Texas, USA, 2016, pp. 601-618.

[17] C.-Z. Song, T. Ristenpart, V. Shmatikov, Machine
learning models that remember too much, Proceedings
of the 2017 ACM SIGSAC Conference on computer and
communications security, Dallas, Texas, USA, 2017, pp.
587-601.

[18] M. Fredrikson, E. Lantz, S. Jha, S. Lin, D. Page, T.
Ristenpart, Privacy in pharmacogenetics: An end-to-end

case study of personalized warfarin dosing, Proceedings
of the 23rd USENIX Security Symposium, San Diego,
California, USA, 2014, pp. 17-32.

[19] M. Fredrikson, S. Jha, T. Ristenpart, Model inversion
attacks that exploit confidence information and basic
countermeasures, Proceedings of the 22nd ACM
Conference on Computer and Communications Security,
Denver, Colorado, USA, 2015, pp. 1322-1333.

[20] R. Shokri, M. Stronati, C.-Z. Song, V. Shmatikov,
Membership inference attacks against machine learning
models, 2017 IEEE symposium on security and privacy
(SP), San Jose, California, USA, 2017, pp. 3-18.

[21] R. C. Geyer, T. Klein, M. Nabi, Differentially private
federated learning: A client level perspective, December,
2017, https://arxiv.org/abs/1712.07557v1.

[22] Z.-H. Huang, R. Hu, Y.-X. Guo, E. Chan-Tin, Y.-
M. Gong, DP-ADMM: ADMM-based distributed
learning with differential privacy, IEEE Transactions on
Information Forensics and Security, Vol. 15, pp. 1002-
1012, July, 2019.

[23] L. T. Phong, Y. Aono, T. Hayashi, L.-H. Wang, S.
Moriai, Privacy-preserving deep learning via additively
homomorphic encryption, IEEE Transactions on
Information Forensics and Security, Vol. 13, No. 5, pp.
1333-1345, May, 2018.

[24] Y. Li, Software defects prediction based on under-
sampling and ensemble algorithm, Journal of Computer
Applications, Vol. 34, No. 8, pp. 2291-2294, August,
2014.

[25] M. H. Halstead, Elements of Software Science
(Operating and programming systems series), Elsevier
Science Inc, 1977.

[26] T. J . McCabe , A complex i ty measure , IEEE
Transactions on software Engineering, Vol. SE-2, No.
4, pp. 308-320, December, 1976.

[27] D. Radjenović, M. Heričko, R. Torkar, A. Živkovič,
Software fault prediction metrics: A systematic literature
review, Information and software technology, Vol. 55,
No. 8, pp. 1397-1418, August, 2013.

[28] V. R. Basili, L. C. Briand, W. L. Melo, A validation of
object-oriented design metrics as quality indicators,
IEEE Transactions on software engineering, Vol. 22,
No. 10, pp. 751-761, October, 1996.

[29] M. O. Elish, A. H. Al-Yafei, M. Al-Mulhem, Empirical
comparison of three metrics suites for fault prediction
in packages of object-oriented systems: A case study of
Eclipse, Advances in Engineering Software, Vol. 42, No.
10, pp. 852-859, October, 2011.

[30] H. M. Olague, L. H. Etzkorn, S. Gholston, S.
Quattlebaum, Empirical validation of three software
metrics suites to predict fault-proneness of object-
oriented classes developed using highly iterative or agile
software development processes, IEEE Transactions on
software Engineering, Vol. 33, No. 6, pp. 402-419, June,
2007.

[31] Q. Yang, Y. Liu, T.-J. Chen, Y.-X. Tong, Federated
machine learning: Concept and applications, ACM
Transactions on Intelligent Systems and Technology
(TIST), Vol. 10, No. 2, pp. 1-19, March, 2019.

[32] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet,

Privacy Protection Optimization for Federated Software Defect Prediction via Benchmark Analysis 1187

M. Bennis, A. N. Bhagoji, K. Bonawitz, Z. Charles,
G. Cormode, R. Cummings, R. G. L. D’Oliveira,
H. Eichner, S. E. Rouayheb, D. Evans, J. Gardner,
Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M.
Gruteser, Z. Harchaoui, C.-Y. He, L. He, Z.-Y. Huo,
B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi,
M. Khodak, J. Konecný, A. Korolova, F. Koushanfar,
S. Koyejo, T. Lepoint, Y. Liu, P. Mittal, M. Mohri, R.
Nock, A. Özgür, R. Pagh, H. Qi, D. Ramage, R. Raskar,
M. Raykova, D. Song, W.-K. Song, S. U. Stich, Z.-
T. Sun, A. T. Suresh, F. Tramèr, P. Vepakomma, J.-
Y. Wang, L. Xiong, Z. Xu, Q. Yang, F. X. Yu, H. Yu,
S. Zhao, Advances and open problems in federated
learning, Foundations and Trends® in Machine
Learning, Vol. 14, No. 1-2, pp. 1-210, June, 2021.

[33] F. Rahman, P. Devanbu, How, and why, process metrics
are better, 2013 35th International Conference on
Software Engineering (ICSE), San Francisco, California,
USA, 2013, pp. 432-441.

[34] L. Lyu, H. Yu, Q. Yang, Threats to federated
learning: A survey, March, 2020, https://arxiv.org/
abs/2003.02133v1.

[35] J.-Z. Wang, L.-W. Kong, Z.-C. Huang, L.-J. Chen, Y.
Liu, C.-X. Lu, J. Xiao, Research advances on privacy
protection of federated learning, Journal of Big Data
Research, Vol. 7, No. 3, pp. 130-149, May, 2021.

[36] Y.-X. Liu, H. Chen, Y.-H. Liu, C.-P. Li, Privacy-
preserving Techniques in Federated Learning, Journal
of Software, Vol. 33, No. 3, pp. 1057-1092, March,
2022.

[37] R. L. Rivest, L. Adleman, M. L. Dertouzos, On
data banks and privacy homomorphisms, in: R. A.
DeMillo, D. P. Dobkin, A. K. Jones, R. J. Lipton (Eds.),
Foundations of secure computation, Academic Press,
1978, pp. 169-179.

[38] P. Paillier, Public-key cryptosystems based on composite
degree residuosity classes, International Conference
on the Theory and Applications of Cryptographic
Techniques, Prague, Czech Republic, 1999, pp. 223-
238.

[39] S. Hardy, W. Henecka, H. Ivey-Law, R. Nock, G.
Patrini, G. Smith, B. Thorne, Private federated learning
on vertically partitioned data via entity resolution and
additively homomorphic encryption, November, 2017,
https://arxiv.org/abs/1711.10677v1.

Biographies

Ying Liu received the B.S. degree in
Network Engineering from Xinjiang
Normal University. He is currently a
graduate student at Xinjiang Normal
University. His research interests include
Machine Learning and Software Reliability
Engineering.

Yong Li received the Ph.D. degree in
Computer Science from Nanjing University
of Aeronautics and Astronautics in 2018.
He is currently an Associate Professor of
Xinjiang Normal University. His research
interests include Machine Learning and
Intelligent Software Engineering.

M i n g We n g r a d u a t e d f r o m X i ’ a n
University of Technology in 1988 with
a major in automatic control. Now he is
the director and researcher of software
development and testing center of Xinjiang
Electronic Research Institute. His research
interests include Software Engineering and
Artificial Intelligence.

Wenjing Zhang received the B.S. degree
in Software Engineering from Xinjiang
Normal University. She is currently a
graduate student at Xinjiang Normal
University. Her research interests include
Software Data Science and Incremental
Learning.

