
A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1099

*Corresponding Author: Qin Zheng; E-mail: 5521084@qq.com
DOI: 10.53106/160792642023092405008

A Maximum Semantic Reservation Mapping Method
Based on Ontology-to-graph Database

Hongyan Wan1,2, Huan Jin1, Qin Zheng1*, Weibo Li3, Junwei Fang4

1 School of Computer Science and Artificial Intelligence,Wuhan Textile University, China
2 Engineering Research Center of Hubei Province for Clothing Information, Wuhan Textile University, China

3 School of Economics, Wuhan Textile University, China
4 School of Computer Science, Wuhan University, China

hywan@wtu.edu.cn, jh_0230@163.com, 5521084@qq.com, leewb@wtu.edu.cn, 961609701@qq.com

Abstract

Ontology is a core concept model in a knowledge graph
which describes knowledge in the form of a graph. With the
increase in knowledge graphs, the semantic relationships
between concepts become more and more complex, which
increases the difficulty of reserving its semantic integrity
when storing it in a database. In this paper, we propose an
ontology-to-graph database mapping method, which can
reserve maximum semantic integrity and reduce redundant
information simultaneously with high storage efficiency
and query efficiency. In detail, the mapping method uses
an anonymous class storage strategy to handle indefinite
long nested structures, a multivariate functional relation
storage strategy for multivariate semantic analysis, and an
SWRL (Semantic Web Rule Language) storage strategy for
disassembling inference structures. We develop an ontology-
to-graph database prototype Neo4J4Onto to implement the
mapping method. Experimental results show that our method
achieves the maximum semantic integrity with the lowest
complexity compared to the 6 baseline methods. Besides,
compared to graphDB, Neo4J4Onto has better storage
and query efficiency, and the concept models retrieved by
Neo4J4Onto are more complete.

Keywords: Ontology storage, Graph database, Maximum
semantic reservation, Semantic integrity, Query efficiency

1 Introduction

Ontology is the core of various knowledge graphs [1]. It
uses a graph structure to represent knowledge, which makes
the description of knowledge more concise, more standard,
and easier to be shared [2]. Ontologyis being used in various
fields [3]. The number and scale of ontology are increasing
rapidly. The knowledge increase brings not only an increase
inquantity but also an increase instructural complexity,
which leads to many tough problems. These tough problems
include how to efficiently and completely organize and store
the semantic features in ontology, how to promote its query
efficiency, how to increase its availability and applicability,
etc.

Web-based ontology description languages are widely
used in various knowledge graphs, such as RDF/RDFS [4]
and OWL/OIL [5]. They can provide rich and convenient
primitives to support semantic expression and reasoning
[6]. However, the complete semantic information import of
ontology needs to consider more complex mapping rules.
Therefore, how to efficiently extract and completely store the
semantic information in the RDF/OWL file in the database
become a hot topic.

At present, there are three main types of database-
based ontology storage solutions: relational database, triple
database, and graph database [7-8]. Although relational
databases [9-15] are easy to model and understand, with the
increase of scale, the defects are gradually exposed. The
inter-table connection involved in querying seriously reduces
the system performance. The storage solutions based on a
triple database [16-17] can maintain the ontology structure to
a certain degree but it is relatively weak in the representation
of complex semantic information.

The graph database-based storage solutions mainly rely
on the advantages of graph structure, which matches the grid
structure between concepts in the ontology. It can improve
the storage and management efficiency, and the graph
traversal and graph query algorithms in graph databases also
improve the query efficiency, especially in large-scale data
[18-19]. However, the existing methods have the problems of
insufficient semantic preservation of ontology and have too
much redundant information. More complex mapping rules
need to be considered for the complete semantic information
import of ontology.

Thus, we propose a semantic reservation-based ontology-
to-graph database mapping method based on Neo4j (a
typical graph database), which can not only reserve the
maximum semantic integrity of ontology but also reduce the
space complexity and promote storage efficiency. The main
contributions of the mapping method are as follows:

(1) Storage solution for anonymous class: if the domain
or the range in an axiom is declared by an anonymous class,
namely, it is not declared by a named class with explicit URI,
the nested structure with inter-classes operations and property
restrictions in the anonymous class must be parsed correctly
and efficiently.

(2) Storage solution for multivariate functions: as a

1100 Journal of Internet Technology Vol. 24 No. 5, September 2023

multivariate function describes the relationship among
multiple classes (concepts), it is necessary to use multiple
nodes and edges to represent the relations between them, and
must guarantee the characteristics of the function at the same
time.

(3) Storage solution for rules: as the head and body of
a rule often contains several parameter assumptions and
relation hypotheses, more efficient storage methods are
needed to store classes, relations, functions, and individuals
in large-scale rule applications.

The structure of this paper is as follows. Section 2
presents the related work about ontology storage methods
based on a graph database. Section 3 presents the maximum
semantic reservation method, including the mapping rules
for ontology elements and the storage of rules. Section 4
presents the experiment and analysis, shows the comparison
results of 7 ontology storage methods, and the storage space
complexity analysis for the compared methods. The inference
results and query efficiency comparison of graphDB and
Neo4J4Onto are also shown in this section. Finally, the
conclusions are represented.

2 Related Work

Many researchers have proposed various ontology
storage methods based on graph databases [20-21]. The
basic semantic information implied in RDF/OWL or SWRL
can be directly transformed into the property graph model
[22-23] in a certain way. Thus, the core contents (such
as classes, instances, and relations) in the ontology can
be directly mapped into graph databases. However, some
complex semantic information in the ontology cannot be
directly mapped to nodes and relationships. The semantics
completeness of the large-scale upper-level ontology is
essential to the lower-level knowledge’s application in
knowledge graphs [24].

The core and basic 4 kinds of elements in an ontology are
named classes, individuals, object property relations, and data
property relations. Mapping named classes and individuals
to nodes and object property relations and data property
relations to edges are commonly used practices [25-28].
Wang et al [29] mapped object property relations to nodes,
and connect their domains and ranges by edges. Zhang et
al [25] stored the axioms of classes and individuals through
connecting the head and tail entities by edges. Bouhali et al
[30] mapped a property axiom to the edge’s property when
the property relation is mapped to an edge to store the axioms
describing the semantic information between property
relations. Gong et al [31] mapped a property axiom and
edge between two property relation nodes when the property
relation is mapped to a node. For anonymous classes, some
research stored the entire anonymous node in the form of
sub-graphs, but the efficiency of the storage structure and the
comprehensibility needs to be further improved [32-33]. For
the rules, due to the complexity of its storage and application,
most of the research did not support its storage [25-31].

There are some mature ontology storage systems, such
as stardog [32] and graphDB [33], which are based on the
RDF4J [34] framework. They can store the basic elements of

ontology efficiently, but also generate much more nodes than
the ontology has defined to store anonymous classes. Thus,
the storage efficiency needs to be further improved. They
only store binary function relations, which cannot meet the
needs of multi-relational storage. Stardog can store the basic
OWL inference rules, and graphDB can support the rule
storage defined by SWRL, but their storage efficiency needs
to be further improved.

All in all, current research cannot store the ontology
semantic information completely and efficiently, especially
for the storage of anonymous classes, multivariate functional
relations and rules. In this paper, we propose a semantic
reservation method for storing ontology based on Neo4J.
It stores all the concepts, individuals (entities), relations,
axioms, and rules in the ontology, and uses the structural
characteristics of Neo4j to map the mesh structure knowledge
of ontology, and stores procedures to implement rule-
based reasoning. Our method concentrates on ensuring the
maximum semantic integrity of the ontology and minimizing
information redundancy.

3 Semantic Reservation Method

3.1 Overview of the Method
Most graph databases use the property graph model to

create the graph, including Neo4j [35]. Compared with other
models, the attribute graph model has richer expressive
ability and can improve retrieval efficiency and save storage
space. As shown in Figure 1, a property graph is a directed
graph composed of vertex, edge, label, type, and property.
A vertex is also called a node, and an edge is also called a
relationship. All nodes have existed independently, and labels
are set for nodes. Nodes with the same label belong to one
group. Relationships are grouped by relationship types, and
the same type of relationships belongs to the same set. A
node can have zero or more labels, but the relationship must
set only one relationship type. The relationship is directed.
The two ends of a relationship are named starting node and
the ending node. The directed arrows are used to identify the
direction. The two-way relationship between the nodes is
identified in two opposite directions. Nodes and relationships
have their own set of properties. The set can be empty. If not,
each property will be stored as a key-value pair. In the Neo4J
property graph model, we can describe complex things
and connections through the nodes which are connected by
relationships. It also can describe various concepts and the
complex relations between them.

Figure 1. Property graph model

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1101

The property graph model has two core elements: nodes
and relationships. Each node is an entity in the graph. It can
contain enough properties in the form of key-value pairs,
and can also be labeled. These labels are equivalent to a
classification standard for specific knowledge domains. Each
relationship can be directed, undirected, or named, and each
relationship must have two corresponding nodes.

Ontology is composed of six basic modeling primitives
<C, R, F, X, L, I>. For more details, please refer to [36].

The structure between the primitives in the ontology can
be well matched with the graph structure of the property
graph model as shown in Figure 2.

Node
label
URI
name

Relation
label
name
domain
range

Rule
Rule
URI

MFRelation

type:MFRELATION

property
order

OPRelation

type:OPRELATION

URI
property
propertyAxiom

ClassAxiom

type:CAXIOM

InstanceAxiom

type:IAXIOM

operator

type:operator

domain1
domain2

Rule

label:Rule

name

MFunction

label:MFUNCTION

property
dimention

InstanceNode

label:INDIVIDUAL

DPRelation
hasOPRelation
belongTo

ClassNode

label:CLASS

DPRelation
hasOPRelation

InstanceOf

Figure 2. Mapping rules from ontology to graph database

The overall storage process is shown in Figure 3(a):
firstly, the named classes and class axioms are parsed to
construct the head and tail nodes in the graph database, then
the relations are parsed to create the edges between those
nodes according to Figure 3(b); next, the rules are stored
in the storage process in a graph database to facilitate the
application; finally, as the storage structures of individuals
are determined by the instantiate classes, the individuals are
parsed at the last step according to Figure 3(c). The mapping
rules are as follows:

Figure 3. The overall ontology mapping method

3.1.1 Mapping Rules for Named Classes
A Named Class can be directly mapped to a node with the

label CLASS, as shown in Table 1. According to the contents
in the tag <owl: Class>, the class name and URI are retrieved
and stored as properties of a node. The URI guarantees the
uniqueness of the node. The data property relations that
describe the named class are stored as the node’s properties
and processed by the relation storage algorithm.

Table 1. Tags of named class in OWL
Owl syntax DL syntax Example and comments

Owl: class C < o w l : C l a s s r d f : a b o u t = ”
#City”></owl:Class>

3.1.2 Mapping rules for Named Classes
An anonymous class does not have its own URI [37],

but it always contains rich semantic information, which
are always more complex than named classes. In property
relations, Anonymous Classes are always used to define the
domain concepts and/or the range concepts of the property
relations. In class axioms, the parent class or the equivalence
class of a named class is often represented by Anonymous
Classes. Therefore, the creation of anonymous classes
is extremely important to store and apply these kinds of
property relations and class axioms.

As shown in Table 2, there are six ways to define
anonymous classes inontology: in the form of intersection/
union/complement operation of classes (intersectionOf/
unionOf/ complementOf), in the form of enumerated
individual (oneOf), in the form of value constraint and in the
form of cardinality (Restriction). However, most Anonymous
Classes are not just involving a single inter-class operation
or a single property restriction. Their definitions may involve
several anonymous classes, which result in an uncertainty
length of the nested structure. Therefore, it is difficult to
transform the semantic fragments (of Anonymous Class) with
uncertain structure information into a sub-graph in the graph
database.

To generate meaningful and shortest storage structures
for Anonymous Classes, we proposed an anonymous class
parsing algorithm for dealing with the indefinite nested
structures. At first, the whole anonymous classesfragment
is read into a string variable named anonimyFrag. Then, the
semantic information is parsed from the innermost structure
of the fragments to the outer layer one by one. When the
labels defined in Table 2 are encountered, the corresponding
anonymous nodes is created according to the semantic
information described by anonymousclasses.

To improve the semantic expression capability of the
created anonymous node, the naming rules are as follows:

(1) For an anonymous node generated by a class
operation, its name is generated by combining the type of
name of the operation (such as intersectionOf/ unionOf/
complementOf) with each class name involved in the
operation.

1102 Journal of Internet Technology Vol. 24 No. 5, September 2023

(2) For an anonymous node generated by a property
restriction, its name is generated by combining the property
name with the range name of the property restriction.

Algorithm 1 shows the detailed steps for storing
AnonymousClasses.

Table 2. Tags of anonymous class in OWL
Owl syntax DL syntax Example and comments
Class operator

IntersectionOf
(C1,…,Cn) C1∩ … ∩Cn

<owl:intersectionOf
rdf:parseType=”Collection”>
<rdf:Description rdf:about=”#Budget
Accommodation”/>
<rdf:Description rdf:about=”#Hotel”/>
</owl:intersectionOf>

unionOf (C1,
…,Cn) C1 ∪ … ∪ Cn

<owl:unionOf
rdf:parseType=”Collection”>
<rdf:Description
rdf:about=”#Adventure”/>
<rdf:Description rdf:about=”#”/>
</owl:unionOf>

complementOf(C) ┐C <owl:complementOf
rdf:resource=”#Sports”/>

oneOf(I1,…In) {I1,…In}

<owl:oneOf
rdf:parseType=”Collection”>
<rdf:Description
rdf:about=”#OneStarRating”/>
<rdf:Description
rdf:about=”#ThreeStarRating”/>
<rdf:Description
rdf:about=”#TwoStarRating”/>
</owl:oneOf>

Property restriction

Restriction(OP
someValuesFrom
C)

∃ OP,C

<owl:Restriction>
<owl:onProperty
rdf:resource=”#hasActivity”/>
<owl:someValuesFrom
rdf:resource=”#Hiking”/>
</owl:Restriction>

Restriction(OP
allValuesFrom
(C))

∀ OP,C

<owl:Restriction>
<owl:onProperty
rdf:resource=”#hasPart”/>
<owl:allValuesFrom
rdf:resource=”#Beach”/>
</owl:Restriction>

Restriction(OP
hasValue (C)) ∃ OP.{C}

<owl:Restriction>
<owl:onProperty
rdf:resource=”#hasRating”/>
<owl:hasValue rdf:resource=”#ThreeS
tarRating”/>
</owl:Restriction>

Restriction(OP
minCaedinality
(n))

≥n OP

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasA
ccommodation”/>
<owl:minCardinality
rdf:data type=”scheme
a#nonNegativeInteger”/>
1</owl:minCardinality>
</owl:Restriction>

Restriction(OP
maxCardinality
(n))

≤n OP

<owl:Restriction>
<owl:onProperty rdf:resource=”#hasA
ccommodation”/>
<owl:maxCardinality
rdf:data type=”scheme
a#nonNegativeInteger”/>
3</owl:maxCardinality>
</owl:Restriction>

Algorithm 1. Storeanonymousclass
Input: String ontoURI:ontology URI

 String anonimyFrag: the fragment of anonymous classes
Output: URI anonymousClassURI: the created anonymousClas-
sURI for the whole anonymous fragment
Step1: Put all tags and URIs in anonimyFrag into a stack called
fragStack; create an empty stack called tmpStack with NULL;
Step2: For each element tmp in fragStack:

Step2.1: If the tmp is URI, push it into tmpStack;
Step2.2: If the tmp is an operator, then

Step2.2.1: Create node for anonymousClass by the
ontoURI and tmpStack, and return the unique identifier called
anonymousClassURI;

Step2.2.2: For each element domainNodeURI in tmp-
Stack, pop domainNodeURI and create an edge from the node
identified by domainNodeURI to anonymousClass;

Step2.2.3: Push the anonymousClassURI into tmpStack;
Step2.3: If the tmp is a restriction, then

Step2.3.1: Create a node for anonymousClass by the
ontoURI and tmpStack, and return the unique identifier called
anonymousClassURI;

Step2.3.2: Pop the element restrictionURI and the next
element rangeURI;

Step2.3.3: Create the restriction edge from anony-
mousClass to the node identified by rangeURI and assign the
URI of restriction edge with restrictionURI;

Step2.3.4: Push the anonymousClassURI into tmpStack;
Step2.4: Pop the top element of fragStack

Step3: Pop the tmpStack and return the anonymousClassURI.

3.1.3 Mapping Rules for Relation
Table 3 shows the tags of relation in OWL. Relations

in ontology contain relations between class and class, class
and individual, and individual and individual. The relations
involving individuals are handled by the individuals’ mapping
algorithm. In this section, only the relations between class
and class are discussed. The relations between class and class
can be divided into two types according to the range type:

One is data property relation. It is used to describe the
unique feature of the class defined in the domain entity and
its range is a value of a certain predefined datatype. To reduce
the complexity of the graph database, a data property relation
is mapped to the property of the class node in the graph
database with <relation, range>, according to the information
contained in <domain> in the fragment <DataProperty>.

The other is object property relation. It is used to describe
the relationship between the class defined in <domain>
and the class defined in <range>. Thus, an object property
relation is mapped to an edge with the label OPRELATION
from the class node defined in <domain> to the class node
defined in <range>, according to the information contained
in the fragment <objectProperty>. Besides adding the name
and URI as the edge’s attributes, property features including
[transitive], [symmetric], [asymmetric], [functional], and
[inverseFunctional] must be recorded as the edge’s attributes
too. It is worth noting that if the edge contains a [functional]
feature, Algorithm 3 is needed.

Algorithm 2 shows the detailed steps for storing relations.

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1103

Table 3. Tags of relations in OWL
Owl syntax DL syntax Example and comments
Relation description
owl:ObjectProperty OP <owl:ObjectProperty

rdf:about=”#hasActivity”>
<rdfs:domain
rdf:resource=”#Destination”/>
<rdfs:range
rdf:resource=”#Activity”/>
</owl:ObjectProperty>

rdfs: domain (Cd) OP (Cd, Cr)

rdfs:range(Cr)

owl:DatatypeProperty DP <owl: DatatypeProperty
rdf:about=”#hasCity”>
<rdfs:domain
rdf:resource=”#Contact”/>
</owl:DatatypeProperty>

rdfs:domain(Cd) DP (Cd, Cr)

rdfs:domain(Cr)

rdf:type OP type
[character]

<owl:ObjectProperty
rdf:about=”#hasPart”>
<rdf:type rdf:resource=”owl#Tr
ansitiveProperty”/>
</owl:ObjectProperty>

Algorithm 2. Storerelation
Input: Reasoneronto;// the result of ontology parsing
Output: Node nodes;// nodes updated according to all the Dataty-
peProperty relations defined in ontoURI

Edge edges; //edges created for all the ObjectProperty
relations defined in ontoURI

Step1: For each datatypeProperty in onto:
Step1.1: Find the domain class node and add property accord-

ing to the datatypeProperty;
Step1.2: If the datatypeProperty has axioms, call

storeRelationAxiom to store relation axiom
Step2: For each objectProperty in ontoURI:

Step2.1: If the objectProperty is a functional property, call
storeFunction to store functional property;

Step2.2: Otherwise, get domain class and range class according
to the objectProperty;

Step2.2.1: If the domain or range is a fragment of anony-
mous class, call storeAnonymousClass and assign the returned URI
to the domain or range;

Step2.2.2: Create an edge from the domain node to the
range node, and add corresponding properties according to the fea-
tures of the objectProperty;

Step2.2.3: If the objectPeorperty has axioms, call storeRe-
lationAxiom to store relation axiom.

3.1.4 Mapping rules for Function Based on Multivariate
Semantic Analysis
The function in ontology is a special kind of property

relation. This kind of property relation has a functional
features and involves two or more classes. When it only
involves two classes, it is called Binary Functional Relation
and the storage strategy is similar to the mapping rules
for relations. The difference only lies in that the label
BFUNCTION should be added to the nodes that have
two classes. If it involves more than two classes, it is
called Multivariate Functional Relation. It is obvious that
maintaining the integrity of the n-ary functional relation
(n>2) with the simple relation mapping rule is impossible.

As shown in Table 4, Multivariate Functional Relations
(MFRs) are defined in OWL in two ways:

The first definition can transform a multivariate relation
into multiple binary relations by reification [39-40]. To define

an n-ary functional relation F (C1, C2,…, Cn), a total of n+1
classes must be defined firstly, namely the class identified by
the name of MFR (CF) and the classes C1, C2,…, Cn; and then,
define n binary relations R1, R2,…, Rn to define the functional
relationships between CF and C1, C2,…, Cn, namely, R1:
CF→C1,…, Rn: CF→Cn; finally, use the tag <hasKey> to
define the combination relation among the MFR and R1,
R2,…, Rn.

Table 4. Tags of function in OWL
Owl syntax DL syntax Example and comments
Relation description

owl:Functional-
Property(F) F

<owl:FunctionalProperty
rdf:about=”#hasMother”>
<rdfs:domain rdf:re-
source=”#Son”/>
<rdfs:range rdf:re-
source=”#Mother”/>
</owl:FunctionalProperty >

HasKey

(C(OP1,…OPn)|

(DP1,…DPn))

OP(I1,I) and

OP(In,I)→I1=I2;

DP(I1,datatype)
andDP(In,data-
type)→I1=I2

<owl:Class
ref:abouy=”#ActivateA-
sIn”>
<owl:HasKey>
<owl:ObjectProperty rdf:re-
source=”#hasName”/>
<owl:ObjectProperty rdf:re-
source=”#hasOccupation”/>
<owl:ObjectProperty rdf:re-
source=”#in”/>
</owl:HasKey>
</owl:Class>

rdf:List
rdf:first
rdf:rest

<owl:FunctionalProperty
rdf:about=”#calcuArea”>
<rdfs:domain><rdf:List>
<rdf:List><rdf:first rdf:re-
source=”#Width”/>
<rdf:rest rdf:resource=”&rd-
f;nil”/></rdf:List>
</rdf:rest></rdf:List></
rdfs:domain>
<rdfs:range rdf:re-
source=”#Area”/>
</owl: FunctionalProperty >

As the idea of the reification follows the property graph
model, the mapping algorithm is simple: create the class
nodes according to the information in the <class> tag,
generate the edges from the first-class node to the rest of class
nodes, and name them according to the name of the binary
functional relations. To ensure the integrity and accuracy of
the semantics of MFR, adding the ordering property to each
edge.

The second definition is to extend the functionality of
the <domain> tag. The <domain> tag can contain multiple
classes by combining with <List>, <First>, <rest> [41].
To define an n-ary functional relation F (C1, C2, …, Cn) in
OWL, a total of n classes must be defined. The classes C1,
C2, …, Cn-1 is defined in tag <domain>, and Cn is defined
in tag <range>. The relation’s name is F. However, it is not
following the property graph model. To ensure the integrity
and accuracy of the semantics, it is necessary to reify the
multivariate functional relation before storing it. We convert
the multivariate functional relation into multiple binary
relations. Specifically, the functional relation is stored as a
node with the label MFUNCTION.A property to describe

1104 Journal of Internet Technology Vol. 24 No. 5, September 2023

the number of dimensions should be added to the node next.
The classes involved in tag <domain>are connected to the
function node, and the function node is connected to the class
in the tag <range>. At the same time, the order property of
the edge is recorded in the order of the function and the order
property of the range node is 0.

However, in the property graph model, one edge only
connects two nodes. To ensure the integrity and accuracy
of the semantics of MFR, besides converting the MFR into
multiple binary relations, the relations among the MFR
and the binary relations must be kept. Specifically, in our
algorithm, an MFR is stored as a class node (function node)
with the label MFUNCTION and the dimension property.
The classes involved in the <domain> tag are connected to
the function node, and the function node is connected to the
class in the <range> tag. At the same time, the order property
of each edge is recorded according to the order of the
function and the order property of the edge connected with
the range node is 0.

Algorithm 3 shows the detailed steps for storing
functions.

Algorithm 3. Storefunction
Input: OWL Relation relation; //the functional relation
Output: Created node and edge for function
Step1: Get all elements involved in the relation, the first element is
called firstClass, and so on.
Step2: If the relationship has only two elements,

Step2.1: Create an edge from the firstClass to the secondClass;
Step2.2: If the firstClass is a class with <HasKey> tag, assign

the count of elements involved in the tag to dimension. Add dimen-
sion property for the firstClass node with the value of the dimen-
sion.
Step3: Otherwise, the relation has more than two elements,

Step3.1: Create a node called MFnode and assign the relation’s
name to the node’s name;

Step3.2: Assign the count of elements involved in the relation
to dimension. Add dimension property to the node MFnode with
the value of dimension;

Step3.3: Create an edge from the MFnode to firstClass, and
add order property to the node firstClass with the value of the order.
And do the same for other elements involved in the relationship.

An individual is mapped to a node with the label
INDIVIDUAL. First, store the name, URI, and other
properties in the individual node according to the <owl:
NamedIndividual> tag. As the relation between a class and
an individual indicates that the individual belongs to the
class, which can be obtained by parsing the <type> tag, the
mapping rule for the relations between an individual and its
corresponding class is to create an edge named individualOf
to connect the individual and the class to which it belongs.
The relation between individual and individual corresponds
to the object property relation between the class and the class,
so we only need to connect the two individual nodes through
an edge.

3.2 Mapping Rules for Relation
3.2.1 Mapping Rules for Class Axioms

Class Axiom is mapped to an edge in the graph database
with the label CAXIOM, as shown in Table 5. As there
are only 3 types of CAs (subClassOf/ equivalentClass/
disjointWith) to be considered, adding a name property to
an axiom edge to identify its type is enough. A class axiom
may come from the ontology itself or the alignment of two
ontologies [42], adding a source property to each axiom edge
to distinguish its origin is necessary for data provenance.
If the domain or range class in the axiom is an anonymous
class, the anonymous class creation algorithm must be called
before the axiom edge is created.

Table 5. Tags of class axioms in OWL

Owl syntax DL
syntax Example and comments

Class axioms

Owl:subClassOf(C1,C2) C1⊆C2

<owl:Class rdf:about=”
#Adventure”>
<rdfs:subClassOf rdf:re-
source=” #Activity”/>
</owl:Class>

Owl:equivalentClass(C1,C2) C1=C2

<owl:Class rd-
f:about=”#Accommoda-
tionRating”>
<owl:equivalentClass>
<owl:oneOf rdf:parse-
Type=”Collection”>
<rdf:Description rd-
f:about=”#OneStarRat-
ing”/>
<rdf:Description rd-
f:about=”#TwoStarRat-
ing”/>
<rdf:Description rd-
f:about=”#ThreeStarRat-
ing”/>
</owl:oneOf>
</owl:equivalentClass>
</owl:Class>

owl:disjointWith(C1,C2)
C1∩C2

=ф

<owl:Class rd-
f:about=”#RuralArea”>
<owl:disjointWith rdf:re-
source=”#UrbanArea”/>
</owl:Class>

3.2.2 Mapping Rules for Individual
The mapping rule for Individual Axioms is similar to

the mapping rule for Class Axioms, as shown in Table 6. An
individual axiom is mapped to an edge between the individual
nodes in the graph database with the label IAXIOM. At the
same time, as the individual axiom may also be generated by
the ontology alignment, the source property also needs to be
added to the edge.

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1105

Table 6. Tags of individual axioms in OWL
Owl syntax DL

syntax
Example and comments

Individual axioms
owl: sameAs (I1,I2) I1⊆I2 <rdf:Description rdf:about=”#Wil-

liam_Jefferson_Clinton”>
<owl:sameAs rdf:resource=”#BillClin-
ton”/>
</rdf:Description>

wl: differentFrom
(I1,I2)

I1≠I2 <rdf:Description rdf:about==”Cosi_
fan_tutte”>
<owl:differentFrom rdf:re-
source=”#Don_Giovanni”/>
</ rdf:Description >

owl: AllDifferent
(I1,…,In)

I1≠I2…
≠In

<owl:AllDifferent>
<owl:distinctMembers rdf:parse-
Type=”Collection”>
<rdf:Description rdf:about=”#Don_
Giovanni”/>
<rdf:Description rdf:about=”#Nozze_
di_Figaro”/>
<rdf:Description rdf:about=”#Cosi_
fan_tutte”/>
</owl: distinctMembers>
</owl: AllDifferent>

3.2.3 Mapping Rules for Property Relation Axioms

Table 7. Tags of property relation axioms in OWL

Owl syntax Dl syntax Example and comments

Property relation
axioms

owl:subPropertyOf
(OP1,OP2)
(DP1,DP2)

OP1⊆OP2
or
DP1⊆DP2

<rdf:DatatypeProperty rd-
f:about=”#aimChatID”>
<rdfs:subPropertyOf rdf:re-
source=”#nick”/>
<rdfs:domain rdf:re-
source=”#Agent”/>
<rdfs:range rdf:resource=”#Lit-
eral”/>
</rdf:DatatypeProperty >

owl:equivalentProper-
ty(OP1,OP2)|
(DP1,DP2)

OP1=OP2
or
DP1=DP2

<rdf: ObjectProperty rd-
f:about=”#maker”>
<owl:equivalentProperty rdf:re-
source=”#creator”/>
<rdfs:domain rdf:re-
source=”#product”/>
<rdfs:range rdf:resource=”#A-
gent”/>
</rdf: ObjectProperty >

owl:in-
verseOf(OP1,OP2)|
(DP1,DP2)

OP1~OP2
Or
DP1~DP2

<owl:ObjectProperty rd-
f:about=”#hasActivity”>
<owl:inverseOf rdf:re-
source=”#isOfferedAt”/>
<rdfs:domain rdf:re-
source=”#Destination”/>
<rdfs:range rdf:resource=”#Ac-
tivity”/>
</owl:ObjectProperty>

Table 7 shows the tags of property relation axioms
in OWL. The property relation axiom corresponds to the
property relation, and the property relation is divided into
data property relation and object property relation. When
the axiom describes the relationship between two data

property relations, it is necessary to find the domain and the
range of the axiom which we called domain Property and
range Property. Then, because the data property relation is
stored as the node’s property, the axiom is also stored as
the node’s property. So, we find the node according to the
domain Property and add property <axiom, rangeProperty>
to the node. In addition, we also add property <axiom,
domainProperty> to the node which is the domain class of
range Property.

When the axiom describes the relationship between two
object property relations, it should be mapped to the property
of the edges generated by the two object property relations
in the graph database. And the two property names have
opposite meanings (subPropetyOf && supPropertyOf).

3.3 Storage of Rules
Ontology rules are used to discover the implicit logical

relationships in the ontology and check the compatibility
of ontology and knowledge. SWRL is a language that
semantically presents rules. The concept of rules in SWRL
is evolved from RuleML [35] and combined with OWL
ontology. SWRL can be seen as a combination of rules and
ontology, in which the ontology can be used directly to
describe the relationships between categories when writing
rules. The rules in the ontology are divided into two parts:

The first kind is defining rules according to Description
Logic, which is inferred by the semantic information between
the tags specified in OWL. It is divided into class rules,
individual rules, and property rules.

Common class rules include the following three types:
(1) R1: Subclass transitivity rules
(subClassOf(C1, C2) and subClassOf(C2,C3))

→subClassOf(C1,C3).
It means that if class C1 is a subclass of C2 and C2 is a

subclass of C3, then C1 is a subclass of C3.

(2) R2: Subclass property inheritance rules
 (subClassOf(C1,C2) and hasProper ty(C2,A))

→hasProperty(C1,A).
It indicates that if class C1 is a subclass of C2 and C2 has a

property A, then C1 also hasproperty A.
(3) R3: Subclass uncorrelation transfer rules
(d i s j o i n t Wi t h (C 1 , C 2) a n d s u b C l a s s O f (C , C 1)

→disjointWith(C,C2)).
It indicates that if classes C1 and C2 do not have

intersection, and C is a subclass of C1, then C and C2 do not
have an intersection either.

Common individual rules include the following two
types:

(1) R4: Individual property inheritance rules
(i n d i v i d u a l O f (e , C) a n d h a s P r o p e r t y (C , A))

→hasProperty(e,A).
It indicates that if e is an individual of C and C has

property A, then e also has property A.
(2) R5: Individual transfer property rules
(ind iv idua lOf (e ,C1) and subClassOf (C1 ,C2))

→IndividualOf(e,C2).
It indicates that if e is an individual of C1, C1 is a

subclass of C2, then e is also an individual of C2.

Common property rules include the following three types:

1106 Journal of Internet Technology Vol. 24 No. 5, September 2023

(1) R6: Property transitivity rules
(subPropertyOf(P1,P2) and subPropertyOf(P2,P3))

→subProperty Of(P1,P3).
It indicates that if P1 is a sub-property of P2 and P2 is a

sub-property of P3, then P1 is also a sub-property of P3.
(2) R7: Property transfer attribution rules
 (hasProperty (C, P1) and subPropertyOf (P1, P2))

→hasProperty (C, P2).
It indicates that if C has a property P1 and P1 is a sub-

property of P2, then C also has the property P2.
(3) R8: Property inverse rule
(i n v e r s e (P 1 , P 2) a n d i n v e r s e (P 2 , P 3) →

equivalentProperty (P1, P3)).
It indicates that if the properties P1 and P2 are mutually

inverse, and P2 and P3 are mutually inverse, then the property
P1 and P3 are equivalent properties.

The second kind is defining rules by SWRL. The SWRL
language consists of four parts: Imp, Atom, Variable, and
Built-in. As the rules defined by SWRL are various, defining
a storage procedure for each rule is unpractical. To promote
the degree of automation and generalizability, a graph based
SWRL rule storage and application method are proposed as
follows:

For each rule, map its parameters to nodes, and the
relations between the parameters to edges. After that,
distinguish the edges that belong to the rule head or rule body
by adding a different type of label to the edge.

Algorithm 4 shows the detailed steps for storing rules.

Algorithm 4. Storerule
Input: Reasoner onto: the result of ontology parsing
Output: create nodes and edges for the rule
Step1: Parse the body of the rule:

Step1.1: For each variable in the body, create a node for the
variable;

Step1.2: For each relation in the body, create an edge be-
tween variables involved in the relation with “ruleBody” type
label;
Step2: Parse the head of the rule:

Step2.1: For each relation, create an edge between variables
involved in the relation with “ruleHead” type label.

The rules defined by SWRL generally apply to
the ontology of a specific domain while the structural
information and quantity are uncertain. Through the rule
mapping algorithm, all the SWRL rules can be converted
into a property graph by decomposing the corresponding
rule headers and bodies. A sub-graph reasoning obtains
the structure of another subgraph. By combining the
characteristics of the graph database, a rule inference
machine can be implemented to execute the reasoning of all
rule graphs in a unique way of “subgraph-condition-action”.

4 Experiment and Analysis

In the experiment, the ontology is stored in Neo4J 3.4.0,
and the programming language is Java. The experimental
environment is listed below:

Operating system: ubuntu 16.04;

CPU: Intel Core i5-7300HQ CPU 2.50GHz;
Memory: 8.00 GB.

4.1 Integrity of Semantic Information
Ontology is disassembled into four categories: entities,

relations, axioms, and rules. Entities are divided into Named
ClassesI, Anonymous Classes (C*), and Individuals (I).
Relations are divided into Object Property relations (OP),
Data Property relations (DP), Binary Functional relations
(BF), and Multivariate Functional relations (MF). Axioms are
divided into Class aXioms (CX), Individual aXioms (IX), and
Property Axioms (PX). The storage capabilities of 7 ontology
storage methods are shown in Table 8.

TIe integrity of semanIic information should be
guaranteed first for ontology storage. It can be seen from
Table 9 that our method can store more complete ontology
elements and has the best semantic retention than other
methods. In addition to supporting the storage of basic
elements of an ontology, it can also support the storage of
anonymous classes, functional relationships, axioms, and
rules.

Table 8. Storage capability comparison among 7 ontology
storage methods

Entity Relation Axiom Rule
C C* I OP DP BF MF CX IX PX L

Paper [25] ● - ● ● ● ● - ● ● - -
Paper [26-28] ● - ● ● ● - - - - - -
Paper [29] ● - ● ● ● - - ● ● - -
Paper [30-31] ● - ● ● ● - - ● ● ● -
Stardog [32] ● ● ● ● ● ● ● ● ● ● -
graphDB [33] ● ● ● ● ● ● - ● ● ● ●
Our method ● ● ● ● ● ● ● ● ● ● ●

Note: “-” indicates that the element cannot be stored, “●” indicates
that the element can be stored.

4.2 Storage Space Complexity Analysis
The storage space complexity comparison is shown in

Table 9.
To store named claIs (C) and individuals (I) in ontology,

all methods need to create |C| and |I| nodes, including 2|C|
and 2|I| properties (for storing the properties Name and URI
of each node) in graph databases respectively. At the same
time, the count of relations between the individuals and the
classes is at least |I|.

Only the methods stated in [32-33] and our method can
store anonymous classes (C*).

Suppose anonymous class fragments in a specific
ontology involve m class operations and n restrictions, and
the total number of concepts involved in the class operations
is p. In our method, the number of generated anonymous
nodes is m + n, and the number of node properties is 2(m +
n). As an edge is generated each time a class is involved in a
class operation or a property restriction, the number of edges
generated for the anonymous class fragment is p + n, and the
number of edge properties is 2(p + n). In graphDB/stardog,
there will be p+2n+n nodes with p+2m+n node properties
and p+m+n edges with p+m+n edge properties.

Our method can support the storage of both BFs and

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1107

Multivariate Functional relations (MFs). For BFs, they are
stored as edges which are the same as OPs. Only |BF| edge
and 2|BF| edge properties need to be added. For an MF
involving n variants (MFn), an additional node and n edges
between this node and n variant nodes need to be generated.
Suppose all the MFs include N variants. Then, N edges
should be created.

For the storage of class axioms (CX) and individual
axioms (IX), |CX| and |IX| edges need to be created. And
as this kind of edge only needs name property, |CX| and
|IX| edge properties need to be created respectively. For the
storage of property axioms (PX), a property axiom is stored

as an edge property. Since it is necessary to add a property to
both the domain node and range node for the property axiom,
2|PX| edge properties need to be generated. For SWRL
rules, only our method and graphDB support their storage.
Assuming that the rule involves l variables and t relations,
our methods will generate l nodes and t edges. Meanwhile, in
graphDB, a total of at least 2l nodes, 2l node properties, 2l+t
edges and 2l+tedge properties will be generated.

In summary, the semantic reservation capability and the
space complexity of our method are the best of all of the
above methods.

Table 9. Storage space complexity analysis for the compared methods

C
Entity Relation
C* I OP DP BF&MF CX IX PX L

[25]
N; NP |C|;2|C| |I|;2|I| |DP|;|DP|
E; EP |I|;|I| |OP|;2|OP| 2|DP|;2|DP| |BF|;2|BF| |CX|;|CX| |IX|;|IX|

[26-28]
N; NP |C|;2|C| |I|;2|I| |DP|;|DP|
E; EP |I|;|I| |OP|;2|OP| 2|DP|;2|DP|

[29]
N; NP |C|;2|C| |I|;2|I| |OP|;2|OP| |DP|;|DP|
E; EP |I|;|I| 2|OP|;2|OP| 2|DP|;2|DP| |CX|;|CX| |IX|;|IX|

[30-31]
N; NP |C|;2|C| |I|;2|I| 0;|DP|
E; EP |I|;|I| |OP|;2|OP| |CX|;|CX| |IX|;|IX| 0;2|PX|

Stardog [32]/
graphDB [33]

N; NP |C|;2|C| p+2m+n;
p+2m+n |I|;2|I| |DP|;|DP| 2l;2l

E; EP p+m+n;
p+m+n; |I|;|I| |OP|;2|OP| 2|DP|;2|DP| |BF|;2|BF| |CX|;|CX| |IX|;|IX| 0;2|PX| 2l+t;

2l+t

Our Method
N; NP |C|;2|C| m+n;

2(m+n) |I|;2|I| 0;|DP| |MFn||;2|MFn| l;l

E; EP p+n;
2(p+n) |I|;|I| |OP|;2|OP| |BF|+N;2|BF|+N |CX|;|CX| |IX|;|IX| 0;2|PX| t;t

Table 10. Comparison of single ontology storage
Entity Relation Axiom Rule TotalC C* I OP DP F CX IX PX L

Travel.owl
[38]

Elements 34 26 14 6 4 4 47 3 1 0 /
graphDB N;NP 34;68 58;58 14;28 - - 0;0 - - - 0;0 106;158

Our method N;NP 34;68 26;52 14;28 - 0;4 0;4 - - - 0;0 74;153

graphDB E;EP - 87;87 15;15 6;12 4;8 4;8 47;47 0;0 0;2 0;0 163;179

Our method E;EP - 40;80 15;15 6;12 - 0;0 47;47 3;3 0;2 0;0 111;159

Step.owl [43]

Elements 21 7 0 16 3 6 12 0 1 2 /
graphDB N;NP 21;42 37;37 0;0 - - 0;0 - - - 35;35 93;114

Our method N;NP 21;42 7;14 0;0 - 0;3 6;0 - - - 9;9 37;68

graphDB E;EP - 65;65 0;0 16;32 3;6 6;12 12;12 0;0 0;2 39;39 141;168

Our method E;EP - 8;16 0;0 16;32 - 0;0 12;12 0;0 0;2 8;8 44;70

Foaf.rf [44]

Elements 22 0 0 40 27 4 19 0 11 0 /
graphDB N;NP 15;37 0;0 0;0 - - 0;0 - - - 0;0 15;37

Our method N;NP 22;44 0;0 0;0 - 0;27 4;0 - - - 0;0 26;71

graphDB E;EP - 0;0 0;0 33;73 27;54 4;8 23;23 0;0 0;22 0;0 90;180

Our method E;EP - 0;0 0;0 40;80 - 0;0 23;23 0;0 0;22 0;0 63;125

1108 Journal of Internet Technology Vol. 24 No. 5, September 2023

4.3 Ontology Import
As the papers in [25-31] did not provide codes, the

following experiments are only carried out by comparing
with the ontology storage tool graphDB and the prototype
Neo4J4Onto is developed to store ontology according to our
method.

Table 10 shows the number of elements contained in the
three ontology files [38, 43-44] and the number of generated
nodes (N), node properties (NP), edges (E), and edge
properties (EP) by graphDB [33] and Neo4J4Onto.

There are many axiom descriptions in travel.owl
involving anonymous classes, the number of nodes, and
edges, But the storage space of our method is significantly
smaller than that of graphDB. For step.owl, the number of
anonymous classes is small, but it contains two SWRL rules.
Our method still shows better performance than the graphDB.
For foaf.rdf, there are multiple concepts derived from other
ontology, which are not stored as nodes in graphDB. To keep
the integrity and consistency of the semantic information,
our method creates the corresponding nodes and edges for
these entities, which is consistent with the protégé analysis
results. Although the storage space is larger than graphDB,
the semantic reservation capability of our method is better.

Besides single ontology import, Neo4J4Onto provides
the function of batch ontology import. A unique node will be
generated for the concepts with the same URI even if they are
defined in different ontologies. In this way, the relationship
between different ontologies will be established and the
connections will lead to the transfer of properties, relations,
and so on, which increases the description ability of the
whole knowledge base.

4.4 Query in Database
The ontologies stored in the graph database (namely the

ontology library) are always used as an upper conceptual
model to construct, analyze and complete knowledge graphs.
Finding various conceptual models to guide the information
extraction of various unstructured data is a typical routine for
the ontology library, the completeness of retrieved concept
models and the query efficiency is vital. The inference
capability determines the completeness of retrieved concept
models. Thus, we analyze the inference capability among
protégé, graphDB, and Neo4J4Onto as follows.
4.4.1 Inference Capability

Inference capability refers to the capability of retrieving
conceptual models by applying axioms and rules. subClassOf,
disjointWith, equivalentClass and hasproperty are the most
frequently used axioms. As atoms were applied in various
rules and used to complete the concepts contained in models
and check their consistency, we selected them to evaluate the
inference capability. The results are listed in Table 11.

Table 11. Inference capability analysis among three tools
based on travel.owl [38]
Query Owl Protégé graphDB Neo4J4Onto
?sequivalentClass ?t 7 0 7 7
?s subClassOf ?t 30 32 78 45
?s disjointWith ?t 9 57 9 57
?s hasproperty ?t 6 - 69 69

(1) Inference capability of equivalentClass
In protégé, only the equivalent relation defined

between named classes is inferred. But in graphDB and
Neo4J4Onto, the equivalent relation defined between named
classes, named class, and anonymous class, anonymous
classes are all inferred. Thus, the results of graphDB and
Neo4J4Onto are equal, and the result of protégé is 0 as the
equivalentClassrelations defined in travel. Owl is between the
named class and the anonymous class.

(2) Inference capability of subClassOf
In protégé, only the subclass relation defined between

named classes is inferred. In Neo4J4Onto, the subclass
relation defined between named classes, named class, and
anonymous class, anonymous classes are all inferred. In
graphDB, not only the subclass relation defined between
different types of classes are inferred, the classes equivalent
to each other are treated as the subclass of each other.
Therefore, the result of protégé is the least, the result of
graphDB is the best and ours is in the middle.

(3) Inference capability of disjointWith
In protégé, only the disjoint relation defined between

named classes is inferred. In Neo4J4Onto, the disjoint
relation defined between named classes, named class, and
anonymous class, anonymous classes are all inferred. But in
graphDB, no inference is carried out on the disjoint relation.
Thus, the result of graphDB is the same as the one defined
in the owl file and the results of protégé and Neo4J4Onto are
the same as all the disjoint relations defined in travel.owl is
between named classes.

(4) Inference capability of hasproperty
In graphDB and Neo4J4Onto, a class’s property is

retrieved according to its inheritance relationship. In protégé,
it does not support this kind of inference. Therefore, the
results on travel.owl are listed in Table 12. It is worth noting
that the abundant properties attained from inference are vital
to complete concept models which can be used to guide the
information extraction further.

To sum up, our method performs well in reasoning and
can deduce reasonable results. Figure 4 shows the subclass
query result of the Capital concept in travel.owl by graphDB
and Neo4J4Onto.

Figure 4. The inference results of graphDB and Neo4J4Onto

4.4.2 Query Efficiency
Different storage strategies result in different query

efficiencies [45]. Table 12 lists the efficiency comparison
of 4 kinds of query operations. Namely, (1) and (2) queries
the subclass/superclass relationship between concepts; (3)
and (4) queries about all subclass relationships in a single
ontology and the whole database. The results indicate that
Neo4J4Onto has a much better performance than graphDB.

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1109

The more complex the query, the more efficient Neo4J4Onto
is.

Table 12. Query efficiency comparison between graphDB
and Neo4J4Onto

Query graphDB
(ms)

Neo4J4Onto
(ms)

Speed-up
Ratio

(1)?subClassOfDestination 99 25 296%

(2) Capital subClassOf ?s 99 24 312.5%

(3) All subClassOf in travel.owl 235 26 803.8%

(4) All subClassOf in database 423 29 1358.6%

5 Conclusion

This paper proposes a mapping method of an ontology-
to-graph database with maximum semantic reservation to
meet the challenge of semantic incompleteness and storage
information redundancy. The mapping method uses four
strategies to ensure semantic integrity and high efficiency
in storage and query. The mapping method proposed in this
paper is implemented in Neo4J4Onto by comparing and
analyzing the 6 baseline graph database storage methods.
Experiment results show that our method has the best
semantic integrity and better storage and query efficiency.
The method has a general validity and can be bridged with
popular ontology development tools such as protégé, which
will be our further work in the future.

References

[1] L. Ehrlinger, W. Wöß, Towards a Definition of
Knowledge Graphs, Conference on Semantic Systems
(SEMANTiCS), Leipzig, Germany, 2016, pp. 16-20.

[2] Y. Cui, L. Qiao, Y. Qie, Ontology Management and
Ontology Reuse in Web Environment, Challenges and
Opportunity with Big Data: 19th Monterey Workshop,
Beijing, China, 2016, pp.122-130.

[3] Y.-C. Tian, D.-L. Jing, C.-C. Yang, Y.-X Chen, H.-J.
Yang, An Ontological Approach for Architecture Design
of a Smart Tourism System-of-Systems, International
Journal of Performability Engineering, Vol. 16, No. 4,
pp. 587-598, April, 2020.

[4] S. Decker, S. Melnik, F. V. Harmelen, D. Fensel, M.
Klein, J. Broekstra, M. Erdmann, I. Horrocks, The
semantic web: The roles of XML and RDF, IEEE
Internet computing, Vol. 4, No. 5, pp. 63-73, September-
October, 2000.

[5] D.-L. McGuinness, F. V. Harmelen, OWL web ontology
language overview, W3C recommendation, February,
2004, http://www.w3.org/TR/owl-guide/.

[6] X.-H. Wang, D.-Q. Zhang, T. Gu, H. K. Pung, Ontology
based context modeling and reasoning using OWL,
Pervasive Computing and Communications Workshops,
Orlando, FL, USA, 2004, pp.18-22.

[7] Z. Ma, M.-A. Capretz, L. Yan, Storing massive resource
description framework (RDF) data: a survey, The
Knowledge Engineering Review, Vol. 31, No. 4, pp.

391-413, September, 2016.
[8] Z. Pan, T. Zhu, H. Liu, H. Ning, A survey of RDF

management technologies and benchmark datasets,
Journal of Ambient Intelligence and Humanized
Computing, Vol. 9, No. 5, pp. 1693-1704, October,
2018.

[9] S. Wang, X. Zhang, A high-efficiency ontology storage
and query method based on relational database,
International Conference on Electrical and Control
Engineering (ICECE), Yichang, China, 2011, pp. 4253-
4256.

[10] Z. Zhou, Y. Xing, A study on ontology storage based on
relational database, IEEE Conference Anthology, China,
2013, pp. 1-5.

[11] R. Kwuimi, J.-V. Dombeu, Z. Tranos, An empirical
analysis of semantic web mechanisms for storage
and query of ontologies in relational databases,
International Conference on Advances in Computing
and Communication Engineering (ICACCE), Durban,
South Africa, 2016, pp. 132-136.

[12] J.-V. Fonou-Dombeu, R. Kwuimi, The Underpinnings of
Ontology Storage in Relational Databases: An Empirical
Study, 2018 International Conference on Advances in
Big Data, Computing and Data Communication Systems
(icABCD), Durban, South Africa, 2018, pp. 1-9.

[13] F. Zhang, Z.-M. Ma, W. Li, Storing OWL ontologies in
object-oriented databases, Knowledge-Based Systems,
Vol. 76, pp. 240-255, March, 2015.

[14] M.-S. Hema, R. Maheshprabhu, M.-N. Guptha, Data
Access in Heterogeneous Data Sources Using Object
Relational Database, International Conference on
Intelligent Information Technologies, Chennai, India,
2017, pp. 23-33.

[15] S. P. Shantharajah, E. Maruthavani, A Survey on
Challenges in Transforming No-SQL Data to SQL
Data and Storing in Cloud Storage based on User
Requirement, International Journal of Performability
Engineering, Vol. 17, No. 8, pp. 703-710, August, 2021.

[16] T. Neumann, G. Weikum, The RDF-3X engine
for scalable management of RDF data, The VLDB
Journal—The International Journal on Very Large Data
Bases, Vol. 19, No. 1, pp. 91-113, February, 2010.

[17] L. Zou, M. T. Özsu, Graph-Based RDF Data
Management, Data Science and Engineering, Vol. 2,
No. 1, pp. 56-70, March, 2017.

[18] C. Vicknair, M. Macias, Z. Zhao, X. F. Nan, Y. X. Chen,
D. Wilkins, A comparison of a graph database and a
relational database: a data provenance perspective,
Proceedings of the 48th annual Southeast regional
conference, Oxford, Mississippi, USA, 2010, Article
No. 42.

[19] P. Pham, T. Nguyen, P. Do, Computing Domain
Ontology Knowledge Representation and Reasoning
on Graph Database, Information Systems Design and
Intelligent Applications, Da Nang, Vietnam, 2017, pp.
765-775.

[20] I. Horrocks, P.-F. Patel-Schneider, H. Boley, S. Tabet,
B. Grosof, M. Dean, SWRL: A semantic web rule
language combining OWL and RuleML, W3C Member
submission, September, 2004, https://www.w3.org/

1110 Journal of Internet Technology Vol. 24 No. 5, September 2023

Submission/SWRL/.
[21] C. Blankenberg, B. Gebel-Sauer, P. Schubert, Using

a graph database for the ontology-based information
integration of business objects from heterogenous
Business Information Systems, Procedia Computer
Science, Vol. 196, pp. 314-323, 2022.

[22] R. Angles, The Property Graph Database Model,
Proceed ings o f t he 12 th A lber to Mende l zon
International Workshop on Foundations of Data
Management, Cali, Colombia, 2018, pp. 23-30.

[23] N. Vanitha, C. R. R. Robin, D. D. H. Miriam, An
ontology based cyclone tracks classification using swrl
reasoning and svm, Computer Systems Science and
Engineering, Vol. 44, No.3, pp. 2323-2336, 2023.

[24] P.-S. Sen, N. Mukherjee, Ontology-Based Data
Modeling for NoSQL Databases: A Case Study in
e-Healthcare Application, SN Computer Science, Vol.
4, Article No. 3, 2023, https://doi.org/10.1007/s42979-
022-01405-5.

[25] H. Zhang, X. Hou, N. Li, A Storage Method of Ontology
Based on Graph Database, Fourth International
Conference on Information Science and Cloud
Computing (ISCC2015), Guangzhou, China, 2015, pp.
34-50.

[26] X.-W. He, Probing Optimisation of RDF Semantic
Data Storage in Big Data, Computer Applications and
Software, Vol. 32, No. 4, pp. 38-41 & 55, April, 2015.

[27] L.-H. Xiang, J-G. Gu, G. Wu, Distributed storage
for RDF data based on graph database, Computer
applications and software, Vol. 31, No. 11, pp. 35-
39, November, 2014, DOI: 10.3969/j.issn.1000-
386x.2014.11.009. (in Chinese)

[28] J.-H. Kang, Z.-X. Luo, Research on RDF data storage
based on graph database Neo4j, Information technology,
Vol. 6, pp. 115-117, June, 2015, DOI: 10.13274/j.cnki.
hdzj.2015.06.030. (in Chinese)

[29] H. Wang, Q. Q. Zhang, W. W. Cai, Y. Jiang, Research
on storage method for domain ontology based on
Neo4j, Application Research of Computers, Vol. 34,
No. 8, pp. 2404-2407, August, 2017, DOI: 10.3969/
j.issn.1001-3695.2017.08.038. (in Chinese)

[30] R. Bouhali, A. Laurent, Exploiting RDF Open Data
Using NoSQL Graph Databases, Artificial Intelligence
Applications and Innovations: 11th IFIP WG 12.5
International Conference (AIAI), Bayonne, France,
2015, pp. 8-10.

[31] F. Gong, Y.-H. Ma, W.-J. Gong, X.-R. Li, C.-T. Li, X.
Yuan, Neo4j graph database realizes efficient storage
performance of oilfield ontology, PloS one, Vol. 13, No.
11, pp. 12-14, November, 2018.

[32] Stardog, 2017, Available: https://www.stardog.com/.
[33] Ontotext, 2017, Available: http://ontotext.com/products/

graphdb/.
[34] RDF4J, 2017, Available: http://rdf4j.org/.
[35] Neo4j, http://neo4j.org/.
[36] A. Gómez-Pérez, V. R. Benjamins, Overview of

knowledge sharing and reuse components: Proceedings
of the IJCAI-99 workshop on Ontologies and Problem-
Solving Methods (KRR5), Stockholm, Sweden, 1999,
pp. 45-59.

[37] R. D. Virgilio, Smart RDF data storage in graph
databases, Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid
Computing, Madrid, Spain, 2017, pp. 872-881.

[38] travel.owl, 2017, http://protege.stanford.edu/ontologies/
travel.owl/, accessed in 2020.

[39] A. C. Kanmani, T. Chockalingam, N. Guruprasad,
RDF data model and its multi reification approaches:
A comprehensive comparitive analysis, International
Conference on Inventive Computation Technologies
(ICICT), Coimbatore, India, 2016, pp. 1-5.

[40] A. Chebba, T. Bouabana-Tebibel, S. H. Rubin,
Attributed and n-ary relations in OWL for knowledge
modeling, Computer Languages, Systems & Structures,
Vol. 54, pp. 183-198, December, 2018.

[41] H.-U. Krieger, C. Willms, Extending owl ontologies by
cartesian types to represent n-ary relations in natural
language, Proceedings of the 1st Workshop on Language
and Ontologies, London, UK, 2015, pp. 1-7.

[42] Y. Kalfoglou, M. Schorlemmer, Ontology mapping: the
state of the art, The knowledge engineering review, Vol.
18, No. 1, pp. 1-31, January, 2003.

[43] step.owl, 2017, https://lov.linkeddata.es/dataset/lov/
vocabs/step.

[44] foaf.rdf, 2017, http://xmlns.com/foaf/spec/.
[45] A. Brek, Z. Boufaida, Enhancing Information Extraction

Process in Job Recommendation using Semantic
Technology, International Journal of Performability
Engineering, Vol. 18, No. 5, pp. 369-379, May, 2022.

Biographies

Hongyan Wan received the Ph.D. degree
from Wuhan University in 2021. She
is currently a lecturer in the School of
Computer Science and Artificial Intelligence
at Wuhan Textile University. Her research
interests include software engineering,
natural language processing, machine
learning, and intelligent algorithms.

Huan Jin was born in Daye City, Hubei
Province. Her research interests include
software requirements t racking and
machine learning.

Qin Zheng is currently an associate
professor in the School of Computer
Science and Artificial Intelligence at Wuhan
Textile University. Her research interests
include software engineering and machine
learning.

A Maximum Semantic Reservation Mapping Method Based on Ontology-to-graph Database 1111

Weibo Li i s current ly an associa te
professor in School of Economics, Wuhan
Textile University. His research interests
include Internet of Things, cloud computing
and big data, machine learning, network
information retrieval, and intelligent
algorithms.

Junwei Fang received the master degree
from Wuhan University in 2020. His
research interests include machine learning,
requirement engineering, and intelligent
algorithms.

