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Abstract

About 70% of the total cost of the water distribution 
system is used in the design of water distribution network 
(WDN), and selecting the most suitable pipe diameter for 
the WDN is the main way to reduce construction costs. The 
Rafflesia optimization algorithm (ROA) is a novel meta-
heuristic algorithm, which was proposed recently. It has the 
characteristics of escaping local optimal solutions and stable 
performance. To further increase the solution quality and 
convergence speed of the algorithm, the opposition-based 
learning strategy is adopted in this paper to initialize the 
ROA algorithm population (namely the OBLROA algorithm). 
In this paper, the two-loop pipe network is taken as an actual 
test case, and the OBLROA algorithm is used to design the 
minimum cost pipe diameter combination. The experimental 
results show that the OBLROA algorithm can find the lowest 
cost pipe diameter combination of the two-loop pipe network 
under the constraints of pressure and velocity. Compared with 
some previous research work, the OBLROA algorithm needs 
the least number of evaluations to find the optimal solution, 
showing strong competitiveness.

Keywords: Water distribution network, Rafflesia optimization 
algorithm, Opposition-based learning, Two-loop network

1  Introduction

The water distribution network (WDN) is one of the 
important infrastructures in urban life, providing basic 
services such as clean drinking water and fire-fighting water 
to urban residents [1-2]. Pipe diameter selection is critical 
to the operational efficiency, cost and reliability of water 
distribution systems. The pipe diameter selection of the WDN 
has been proved be an NP-hard combinational optimization 
problem [3-4]. Early pipe diameter design methods usually 
use traditional methods [5-6]. However, these methods cannot 
fully take into account the influence of various complex 
factors of the entire pipe network, so the optimal pipe 
diameter selection cannot be obtained. With the development 
and popularization of optimization algorithms [7-8], more 
and more people begin to use optimization algorithms to 

solve NP-hard combinatorial optimization problems [9-11]. 
Therefore, some scholars try to use intelligent optimization 
algorithms to optimize pipe diameter design to reduce the 
cost of optimal design of the WDN [12-13].

The optimal design of the WDN commonly involves the 
use of optimization algorithms [14-15], common algorithms 
include genetic algorithm (GA) [16], differential evolution 
(DE) algorithm [17-18], particle swarm optimization (PSO) 
algorithm [19-20], etc. For example, Vairavamoorthy 
and Ali optimized the pipe diameter design of the Hanoi 
network and the New York City tunnel system using a real-
number encoded GA algorithm [21]. By combining the DE 
algorithm with the hydraulic model solver EPANET, Vasan 
and Simonovic solved the design optimization problem of the 
WDN [22]. Surco et al. used the PSO algorithm to optimize 
the pipe diameter design of four WDNs, including two-loop 
network and Balerma network [23]. In addition, the simulated 
annealing algorithm (SA) [24-25], shuffled frog leaping 
algorithm (SFLA) [26-27], water cycle algorithm (WCA) 
[28-29], whale optimization algorithm (WOA) [30-31], etc. 
have also been used to optimize the design of the WDN. 
Although the above algorithms can be used in the optimal 
design of the WDN, there are some limitations associated 
with most algorithms [32-33], such as premature convergence 
[34], easy to fall into local optimal solution [35], etc. These 
shortcomings make them less efficient in solving problems, 
and cannot give the optimal solution in a short time.

Rafflesia optimization algorithm (ROA) algorithm is a 
newly developed intelligent optimization algorithm [36]. It 
keeps the exploitation process and the exploration process in 
balance. The algorithm still has the ability to escape the local 
optimal solution at the later stage of iteration. The population 
initialization of the ROA algorithm adopts a random method, 
and values are randomly selected in the feasible domain 
space. However, the random initialization of the population 
[37-38] may have some disadvantages, such as the relatively 
uneven distribution and the quality of the initial solution. 
These shortcomings will cause the algorithm to spend more 
time and resources to search for a better solution. Therefore, 
the opposition-based learning strategy [39-40] is adopted in 
this paper to initialize the population of the ROA algorithm 
to improve the quality of the initial population. And the ROA 
algorithm based on the opposition-based learning strategy 
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(OBLROA) is employed for optimizing the pipe diameter 
selection of the WDN. The contributions of this paper are as 
follows:

1. Rafflesia optimization algorithm based on opposition-
based learning (namely the OBLROA algorithm) is proposed.

2. The optimal design problem of the two-loop network is 
solved by the ROA and the OBLROA algorithm. This is also 
the first research on the application of the ROA algorithm to 
solve the WDN.

3. Compared with some previous research work, the 
OBLROA algorithm shows excellent performance in solving 
the design problem of the two-loop pipe network.

The remaining content of this paper: Section 2 introduces 
the optimal design model of the WDN and the original ROA 
algorithm. Section 3 describes the OBLROA algorithm, 
and gives the scheme for the algorithm to solve the optimal 
design of the WDN. The solving ability of the algorithm 
to the WDN design problem is tested by using a two-loop 
network model in Section 4. Section 5 summarizes the work 
of this paper.

2  Preliminaries

2.1 The Optimal Design of Water Distribution Network
The optimal design of the WDN can be stated as a 

minimum cost optimization problem with the choice of pipe 
size as the decision variable. The original objective function 
of the problem can be expressed as:

( ) 1
 ( ) .pipeN

i i ii
minZ D c D L

=
= ∑                     (1)

Where Z is the construction cost of the WDN. The total 
number of pipes is Npipe. Di represents the diameter of the i-th 
pipe. ci (Di) is the unit price of the pipe with diameter Di. Li 
represents the length of the i-th pipe.

Assuming that the structure, node demand, node 
elevation and pipe length of the WDN are known, the 
following conditions need to be met to find the minimum cost 
combination of pipe diameters:

(1) Mass conservation constraints
This constraint requires that the total flows flowing into 

nodes in a pipe network is equal to the total flows flowing out 
of nodes.

1 0.nodesN
j jQ= =∑                                     (2)

where Nnodes is the total count of nodes. Qj represents the 
inflow or outflow traffic from the j-th node.

(2) Energy conservation constraints
Closed pipes form loops. This constraint requires that 

the algebraic sum of the head losses in the pipes in each loop 
be equal to zero. The energy equation of the p-th loop is 
expressed as:
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where hi represents the head loss of the i-th pipe. l represents 

the total count of loops in the WDN. hi is expressed by the 
Hazen-Williams equation as:
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Where Qi represents the flow in the i-th pipe. C is the 
roughness coefficient of the pipe material.

(3) Nodal pressure constraints
To meet the user’s demand for water consumption, the 

node pressure of any node in the pipe network should meet or 
exceed the minimum service node pressure, namely:

.ij m nH H≥                                        (5)

Where Hj represents the pressure of the j-th node. Hmin 
represents the minimum service pressure.

(4) Standard pipe diameter constraint

1 2{ , ,  ..., }.i nD D D D D∈ =                            (6)

D is a set of standard pipe diameter sizes available in the 
market.

(5) Pipe velocity constraints
When the velocity of water within a pipe is too high, it 

is easy to cause a pipe burst phenomenon. Therefore, it is 
necessary to constrain the water velocity within the pipe.

.i maxV V≤                                          (7)

Where Vi represents the velocity of water within the i-th pipe. 
Vmax represents the maximum allowable water velocity.

To prevent the pipe from bursting, according to the pipe 
velocity constraints, a penalty item for violating constraints 
is incorporated into the original objective function. 
Mathematically, the updated objective function is:
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The second term on the right-hand side of the equation 
represents the penalty term. δ is the penalty coefficient. vi (Di) 
is a binary function with a value of 0 or 1.
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2.2 Rafflesia Optimization Algorithm
As a meta-heuristic algorithm, the ROA algorithm is 

developed according to the growth characteristics of Rafflesia 
plants [41-42]. It mainly contains three stages: the stage of 
attracting insects, the stage of “swallowing” insects, and the 
stage of dispersing seeds. In the stage of attracting insects, 
the ROA algorithm uses two different strategies to update 
individuals with poor fitness and good fitness respectively. 
In the stage of “swallowing” insects, by reducing the worst 
individual, the execution efficiency of the ROA algorithm 
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is enhanced. In the stage of dispersing seeds, the ROA 
algorithm starts from the current optimal individual to find a 
better solution in the global scope.
2.2.1 The Stage of Attracting Insects

The stage of attracting insects uses two strategies 
to update individuals. Among them, strategy 1 updates 
individuals with poor fitness, and the number accounts for 
1/3 of the population size. Strategy 2 updates individuals 
with good fitness, and the number accounts for 2/3 of the 
population size.

Strategy 1:
Strategy 1 uses new individuals to replace individuals 

with poor fitness in the population. The dimension k (k = 1, 2, 
…, D) of the newly added individual is abstracted into a 3D 
space, as shown in Figure 1. The equation used to calculate 
the position of the newly added individual is:

sin cos .
k

k k k
i bestX X d β γ= + ×                       (10)

Where Xi (i = 1, 2, …, NP/3) is the new individual. Xbest 
represents the current best individual. βk represents the angle 
between best iX X→  and dimension k+1, and the value is (0, 
π/2). best iX X→ is a vector composed of Xi and Xbest ∙ γk 
represents the angle between the projection of  best iX X→ on 
the plane formed by k-dimensional and (k+1)-dimensional 
and k-dimensional, and the value is (0, π). The distance 
between Xi and Xbest is represented as d. Its value is equivalent 
to the distance between random individual XR and Xbest.

2
1
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Then, the new individuals will replace the individuals 
with poor fitness:

.i
worst iX X=                                     (12)
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Figure 1. Schematic diagram of dimension representation

Strategy 2:
The position update equation of individuals with good 

fitness is:

( ) (1 ) .j j best jX X v t X X randµ µ= + × × + − × − ×


       (13)

Where Xj (j = 1, 2, …, 2
3
NP× ) is the currently updated 

individual. μ represents an impact factor whose value is in 
the interval [-1,1]. v



is the velocity of the individual, which 
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Where A is the amplitude of individual movement, and the 
value is 2.5. B is the lateral offset, the value is 0.1. ω0 and ω1 
are the frequency period and the horizontal frequency period 
respectively, and the values are both 0.025. θ represents 
the phase whose value is in the interval (2, 2π). The phase 
difference between translation and rotation is represented by 
φ, and its value is -0.78545. The variable  represents time, 
and its value is 1.
2.2.2 The Stage of “Swallowing” Insects

The ROA algorithm executes the stage of “swallowing” 
insects after a specific number of iterations. At this stage, 
the algorithm will eliminate the worst individual. During 
the entire iterative process of the algorithm, the number of 
individuals eliminated accounts for nearly one-third of the 
total population size.
2.2.3 The Stage of Dispersing Seeds

In this stage, the position update equation of the 
individual is:

exp( 1) ( 0.5).
_m best

iterX X rd sign rand
Max iter

= + × − × −  (16)

Where Xm (i = 1, 2, …, NP) is the position of the 
individual to be updated. iter represents the current number 
of iterations, and Max_iter is the maximum number of 

iterations. 
1

_
iter

Max itere
−

is an impact factor that varies with the 

number of iterations. The value of sign (rand − 0.5) is 1 or 
-1, and its purpose is to increase the diversity of dimension 
values. rd is the distribution range of the individual.

( ) .rd rand ub lb lb= × − +                          (17)

Where rand represents a random number in the interval 
[0, 1]. ub and lb are the upper and lower bounds of the 
interval, respectively.

3  Rafflesia Optimization Algorithm 
Based on Opposition-based Learning 
Strategy

3.1 The Opposition-based Learning Strategy
The original ROA algorithm uses a purely random 
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strategy to initialize the algorithm population, which may 
lead to a poor initial solution of the algorithm. The quality 
and convergence speed of the obtained optimal solution are 
also affected. The population initialization method using 
opposition-based learning can enhance the accuracy and 
effectiveness of the algorithm’s initial solution. In addition, it 
can also broaden the search for feasible solutions. To improve 
both the quality of the initial solution and the optimal 
solution, and to speed up the convergence speed of the ROA 
algorithm, this section will implement the opposition-based 
learning approach for population initialization.

First, a random initial population of NP individuals is 
generated using a random strategy. Because the optimal 
design of the WDN is a discretization problem, each 
individual x in the population is generated by discretization.

( ( )).x round lb rand ub lb= + × −                     (18)

After that, each individual in the random initial 
population generates its reverse individual x′  according to 
the Equation (19).

.x ub lb x′ = + −                                   (19)

Finally, the pipe diameters selected by all individuals 
in the random population and the reverse population are 
sequentially transferred to the hydraulic model for simulation 
calculation. Upon completion of the calculation, the cost 
values of 2*NP individuals are sorted in ascending order, and 
the first NP individuals with lower cost are selected as the 
final initial population. In the subsequent iterative process, 
the update strategy of the three phases of the OBLROA 
algorithm is consistent with the ROA algorithm.

3.2 Coding Scheme and Solution Steps
The OBLROA algorithm is a continuous optimization 

algorithm, and the optimal design of the WDN is a discrete 
optimization problem. Therefore, when using the OBLROA 
algorithm to find the optimal pipe diameter combination, 
it is necessary to carry out integer discretization of the 
OBLROA algorithm. This section designs the rounding 
rules in the iterative process of the algorithm. First, the 
correspondence between the WDN model and the OBLROA 
algorithm is established. The number of pipes in the WDN 
model corresponds to the number of dimensions of the 
algorithm. The position number of the optional pipe diameter 
in the collection corresponds to the dimension value of the 
population individual. The maximum position number is 
denoted as NUM. The dimension value of the population 
individual is a continuous variable after being updated in 
different stages of the OBLROA algorithm. After that, the 
continuous variables are discretized. The updated dimension 
values are taken as absolute values and rounded up. When 
the dimension value is greater than NUM, the remainder is 
allocated to the dimension value. When the dimension value 
is equal to 0, a random value is assigned to the optional 
position number. Finally, the diameter combination selected 
by the individual can be known according to the dimension 
value of this individual.

Start

Load .inp file to get 
network data

Set parameters and generate 
initial population

Update individuals according to the 
OBLROA algorithm and discretize

Import the pipe diameter selected by the 
individual into the model for calculation

Are constraints 
met?

Calculate the cost according 
to the objective function

Update the optimal pipe diameter 
combination and minimum cost

Termination 
condition met?

Import the optimal pipe diameter combination 
into EPANET for verification

End

Yes

Yes

No

No

Figure 2. Flowchart of the OBLROA algorithm linked to the 
hydraulic simulation

Figure 2 depicts the flowchart of the OBLROA algorithm 
linked to the hydraulic simulation. The steps to solve the 
WDN optimal design using the OBLROA algorithm are as 
follows:

Step 1: Load the .inp file of EPANET to obtain data such 
as the number of pipes, pipe length, and number of nodes of 
the pipe network model;

Step 2: Set the experimental parameters and algorithm 
parameters, and generate the initial population based on the 
opposition-based learning strategy, and record the initial 
optimal cost and optimal pipe diameter combination;

Step 3: Update the population individual based on the 
different stages of the OBLROA algorithm, and round the 
dimension value of the population individual according to the 
above discretization rules;

Step 4: Transfer the pipe diameter selected by the 
population individual to EPANET for simulation calculation, 
and obtain data such as pipe flow velocity and node pressure;

Step 5: Judging whether the data obtained in Step 4 
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satisfies constraints such as node pressure and pipe velocity. 
If the conditions are met, calculate the cost value according 
to the objective function; otherwise, go to Step3; 

Step 6: Update the current optimal cost and optimal pipe 
diameter combination. Check if the termination condition 
has been satisfied. If yes, transfer the optimal pipe diameter 
combination to EPANET for verification and rationality 
check; otherwise, go to Step 3.

4  Experimental Simulation and Analysis

The hydraulic model of the two-loop network is used 
to evaluate the effectiveness of the OBLROA algorithm in 
solving the design problem of the WDN in this section. As 
shown in Figure 3, the two-loop network has 7 nodes and 
8 pipes, and has a 210-meter reservoir for its water supply. 
All pipes are 1000 meters in length. The basic information 
of each node is listed in Table 1. The roughness coefficient 
C of all pipes is 130, the maximum allowable flow velocity 
Vmax is 3m/s, and the minimum allowable pressure head 
Hmin of all nodes is 30m. The available pipe diameters and 
corresponding construction costs of the two-loop network 
are shown in Table 2. There are 148 optional solutions 
for this pipe network, and the cost value of the known 
optimal solution is $419000. The experiment sets the initial 
population size NP to 50, the maximum number of iterations 
Max_iter to 150, and the penalty coefficient δ to 100,000. The 
simulation test software is MATLAB2018b and EPANET2.2.

3 2

5 4

7 6

12

7 3

4

58

6

Reservoir

1

Figure 3. Layout of the two-loop network

Table 1. Basic data of the two-loop network

Node ID Elevation
(m)

Base demand
(CMH)

Junc 2 150 100
Junc 3 160 100
Junc 4 155 120
Junc 5 150 270
Junc 6 165 330
Junc 7 160 200
Resvr 1 210 -

Table 2. Cost data for the two-loop network
Serial

number
Diameter

(in.)
Diameter

(mm)
Cost
($/m)

1 1 25.4 2
2 2 50.8 5
3 3 76.2 8
4 4 101.6 11
5 6 152.4 16
6 8 203.2 23
7 10 254.0 32
8 12 304.8 50
9 14 355.6 60
10 16 406.4 90
11 18 457.2 130
12 20 508.0 170
13 22 558.8 300
14 24 609.6 550

Table 3 records some previous research work and the 
solution results achieved via the original ROA algorithm and 
the OBLROA algorithm for the two-loop network design 
problem. The last column in the table records the minimum 
number of evaluations required by the algorithm to find 
the optimal solution. As shown in the table, the minimum 
number of evaluations required by Suribabu (2010) to obtain 
the optimal solution is less than the original ROA algorithm. 
However, with the addition of the opposition-based 
learning strategy to the ROA algorithm, a set of feasible 
initial solutions can be found more quickly. Therefore, the 
OBLROA algorithm required the least number of evaluations 
to find the optimal solution among all the research work in 
the table.

Table 3. Comparison with previous research work on the 
two-loop network

Author Algorithm Cost ($) Minimum
evaluations

Savic and Walters
(1997) [16] GA 419,000 65,000

Cunha and Sousa
(1999) [25] SA 419,000 25,000

Eusuff and Lansey
(2003) [26] SFLA 419,000 11155

Suribabu and 
Neelakantan
(2006) [20]

PSO 419,000 1875

Suribabu (2010) [17] DE 419,000 1320
Sedki and Ouazar

(2012) [18] PSO-DE 419,000 2500

Reca, Martinez, and
Lopez (2017) [43] B-GA 419,000 2,000

Praneeth, Vasan, and
Raju (2019) [29] WCA 419,000 2,200

This work ROA 419,000 1707
This work OBLROA 419,000 939
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Figure 4 depicts the convergence curves of the original 
ROA algorithm and the OBLROA algorithm in the process 
of solving the problem. The initial cost of the original ROA 
algorithm is $896,000. The minimum cost is 419000 when 
iterating to the iteration 35. In iterations 1 to 6, the algorithm 
evaluates 6*50 times. In iterations 7 to 21, the algorithm 
evaluates 15*49 times. In iterations 22 to 35, the algorithm 
evaluates 14*48 times. Therefore, the original ROA algorithm 
finds the optimal solution after about 1707 evaluations. 
The initial cost of the OBLROA algorithm is $763,000. 
When iterating to the iteration 17, the minimum cost is 
$419000. The OBLROA algorithm finds the optimal solution 
after about 939 evaluations (including 100 initialization 
evaluations).
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Figure 4. The convergence curves of the algorithms

Finally, the optimal pipe diameter combination obtained 
by the OBLROA algorithm is transferred to EPANET for 
verification. The verified nodal heads and pressures are 
recorded in Table 4. Data such as water flow velocity and 
head loss in the pipe are recorded in Table 5. Figure 5 depicts 
the schematic diagram of the nodal pressure in EPANET 
and the water velocities in the pipes. Pressure (Velocity) is a 
state parameter describing the nodes (pipes) in Figure 5. The 
redder the color of the node (line), the greater the pressure 
(velocity) of the node (pipe). In Figure 5, the value next to 
each node (line) is the pressure (velocity) value of the current 
node (pipe). It can be seen from the data in the chart that 
the verification results obtained by the hydraulic simulation 
calculation can meet the constraints in Section 2. This proves 
that the OBLROA algorithm can effectively and quickly 
solve the optimal design of the WDN.

Table 4. Data values at the nodes
Node ID Head (m) Pressure (m)
Junc 2 203.25 53.25
Junc 3 190.46 30.46
Junc 4 198.45 43.45
Junc 5 183.81 33.81
Junc 6 195.44 30.44
Junc 7 190.55 30.55

Resvr 1 210.00 0.00

Table 5. Data values in the pipes

Link ID Flow
(CMH)

Velocity
(m/s)

Unit 
Headloss
(m/km)

Friction
Factor

Pipe 1 1120.0 1.90 6.75 0.017
Pipe 2 336.86 1.85 12.78 0.019
Pipe 3 683.14 1.46 4.80 0.018
Pipe 4 32.56 1.12 14.64 0.023
Pipe 5 530.58 1.14 3.00 0.019
Pipe 6 200.58 1.10 4.89 0.020
Pipe 7 236.86 1.30 6.66 0.020
Pipe 8 -0.58 0.32 6.75 0.034

Figure 5. Schematic diagram of the two-loop network 
verification in the EPANET

5  Conclusion

This paper employs the ROA algorithm, which is 
based on the opposition-based learning strategy, to solve 
the optimal design problem of the WDN. By applying the 
opposition-based learning strategy during the initialization 
phase, feasible solutions to the problem can be quickly 
found, resulting in faster convergence of the algorithm 
towards finding the optimal solution. To successfully solve 
the optimal design problem of the WDN, this paper designs 
the discretization rules and solution steps of the OBLROA 
algorithm. In the experimental part, this paper uses the 
OBLROA algorithm to solve the hydraulic model of the two-
loop network. Compared with the original ROA algorithm 
and some previous research works, the OBLROA algorithm 
requires the least number of evaluations to find the optimal 
solution. The verification results of the solution in EPANET 
further demonstrate that the OBLROA algorithm is highly 
effective in solving the optimal design problem of the WDN.

As a typical practical application, the WDN will always 
be the research focus of our work. In future work, we will 
continue to focus on how to further improve the solution 
performance of the ROA algorithm, and how to apply the 
algorithm to solve optimization problems in the WDN and 
other applications.
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