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Abstract

Object detection, one of the popular tasks in computer 
vision, is to find all objects of interest in an image and 
determine their category and location. When people use deep 
learning frameworks to implement object detection networks, 
defects are often caused by human-introduced faults. These 
defects may cause different types of failures. Exploring 
frequent failure patterns in object detection programs can 
help developers detect and fix defects more effectively and 
efficiently. Therefore, we conducted an empirical study 
on failure patterns in deep learning-based object detection 
programs submitted in university software development 
courses. By exploring 101 submissions of a Yolov4 object 
detection task completed by 104 students, we found the most 
frequent 13 failure patterns in these submissions and six 
types of root causes of these failures. To help students and 
entry-level software engineers avoid possible faults in object 
detection programs, 13 concrete suggestions that belong to 
six classes are given in this paper. These results can reveal 
some basic laws of failures and mistakes in the development 
of deep learning-based object detection programs and provide 
guidances to assist students and entry-level developers 
in improving their skills in developing object detection 
programs. 
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1  Introduction

The deep learning (DL) technique has been widely utilized 
in many fields [1], and object detection is one of the most 
common applications of the DL technique [2]. Implementing 
object detection program by calling APIs provided by the 
DL framework is often regarded as coursework in university 
software development courses. Because the DL framework 
provides rich functional APIs, software engineers can quickly 
use these APIs to complete their customized object detection 
tasks. However, it isn’t easy to correctly develop an object 
detection program by using these APIs provided by the 
DL framework. People often make mistakes, which may 
trigger failures of their DL-based programs. Collecting and 
analyzing frequent mistakes, classifying them into different 

failure patterns, investigating root causes of these failures, 
and giving suggestions on how to avoid them are of great 
significance for detecting and repairing mistakes in object 
detection programs and guaranteeing the correct running of 
these programs. It is also helpful for students and entry-level 
software engineers to understand the mistakes that are easy to 
make when implementing object detection networks, and to 
avoid possible failures induced by these mistakes.

There have been many empirical studies on the defects 
and failures in different open-source softwares. Some people 
conducted empirical studies on bugs in traditional softwares, 
including CXF [3], Camel [3], Blockchain [4], and others [5-
7]; Some people conducted empirical studies on bugs in DL-
related softwares, including Caffe [8], TensorFlow [8-10], 
Keras [8], Theano [8], Torch [8], Scikit-learn [11], Paddle 
[11], and others [12-14]. However, empirical studies on bugs 
in object detection programs are still lacking. Therefore, we 
conduct the first empirical study on bugs in DL-based object 
detection tasks in software development courses. 

We collect 101 programs submitted by 104 students in 
university software development courses. Then we manually 
analyze mistakes in these programs, classify them into the 
most frequent 13 failure patterns, and find six types of root 
causes of these failures. It is found that failures that students 
and entry-level software engineers are prone to trigger when 
implementing object detection programs include Path Not 
Found, Type Mismatch, and GPU Out of Memory. And in 
order to avoid these types of failures, some suggestions for 
students and entry-level software engineers in the field of 
object detection are given. They should pay attention to the 
following issues when developing DL-based object detection 
programs, including the conversion of file paths between 
different systems, the type of Python parameters, and the 
setting of network training parameters. 

The key contributions of this paper are as follows: 
(1) Collect mistakes made by university students in 

developing the object detection program Yolov4, and conduct 
an empirical study on them; 

(2) Classify failures caused by these mistakes into the 
most frequent 13 failure patterns within four categories, and 
illustrate cases of these failure patterns; 

(3) Analyze the root cause of these failures and give 
suggestions for the students and entry-level developers to 
avoid potential risks due to these failures. 

The rest of this paper is organized as follows. Section 
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2 introduces the research questions, research subjects, and 
research design of the empirical study in detail. Section 3 
introduces the types of failure; Section 4 analyzes the root 
causes of failures. Section 5 gives some suggestions on how 
to avoid failures. Section 6 describes the potential threats to 
validity. Section 7 briefly reviews related works. Section 8 
gives a conclusion. 

2  Methodology 

This section introduces the methodology of empirical 
study, including research questions, research subjects, and 
research design. 

2.1 Research Questions
We focus on the following three research questions.
RQ1 (Failure patterns): Which types of failures occur 

most frequently in object detection networks?
By answering this question, we can find failures occur 

most frequently in object detection networks developed by 
students or entry-level developers. This finding could be 
beneficial for them to prepare high-quality test cases that can 
trigger these failures effectively and efficiently before the 
implementation of object detection networks.

RQ2 (Root causes): What are the root causes of those 
frequent failures in object detection networks?

By answering this question, we can understand why those 
failures occur most frequently in object detection networks 
developed by students or entry-level developers. This finding 
could provide guidance for maintainers of object detection 
networks to debug programs, including both locating and 
fixing bugs.

RQ3 (How to avoid): How to avoid those frequent 
failures in object detection networks?

By answering this question, we can give reasonable 
suggestions on how to code DL-based object detection 
programs with fewer defects and failures. This finding could 
help students or entry-level developers improve their skills in 
implementing object detection networks.

2.2 Research Subject
In the software development course, we arranged an 

object detection task that requires students to use Python to 
train the object detection network based on Yolov4 [15] and 
make a training set according to the COCO2017 [16] data 
set. The prepared data set is used for network training. After 
the network training is completed, the test set is used for 
testing, and the mean average precision (mAP) of network 
detection is observed. In this task, the specific work that 
students need to complete includes: learning the API for the 
DL framework, e.g. the API for convolution (conv1d()) 
and pooling (avg_ pool1d()), loading training data 
and implementing network training by Python. Then, the 
prepared test set is inputted into the trained model for testing. 
In addition, students also need to improve the mAP of the 
network as much as possible to achieve higher scores.

The DL framework we chose is PyTorch, which is much 
easier to deploy. And students can complete their tasks more 
quickly.

We collect 101 programs of 104 students in three classes 
using Yolov4 to complete object detection tasks in software 
development courses and take the failure triggered in the 
program as the research subject. We collect all relevant 
information for each failure, including input data, source 
code, execution script, log, and runtime data for analysis. 
All failures in our study are caused by improper human 
operation, excluding caused by objective factors such as 
hardware or system problems.

2.3 Research Design
We manually analyze and classify failures. First, 

search the log for the keywords that cause the failure, 
such as assert, wrong, error, exception, fault, 
failure, crash, and unsuccessful, to locate 
the information that triggers the failure. Then, manually 
analyze all relevant defect logs to determine the failure and 
classify it. Finally, we summarize failure patterns into four 
dimensions: Object Detection, Execution Environment, Code 
Fault, and Data. For the controversial pattern, we invite the 
corresponding students to participate in the discussion until 
a consensus is reached. Each program’s source code and logs 
are manually analyzed through discussion with students. For 
data-related failures, additional checks are performed on the 
input data, summarizing the root causes of failures. 

3  Failure Classification

There are mainly 13 failures patterns collected from all 
the 101 submitted programs. These failures patterns could be 
classified into four categories that shown in Table 1. 

3.1 Object Detection
Totally 18% of failures are related to object detection 

networks. In this dimension, GPU out of memory is the 
most frequent failure, accounting for 12% of all failures. 
When the model calculates that the memory used exceeds 
the available physical memory of the GPU, GPU out of 
memory will occur. CPU out of memory occurs when the 
program runs beyond the main memory. API misuse, mainly 
in violation of the provisions of the API interface document, 
such as optimizer.zero_Grad() and model.zero_
Grad() is confused. The former is to clear the gradient 
of the parameters corresponding to the optimizer, and the 
latter is to clear the gradient of the entire network. Finally, 
loss becoming Nan indicates that the calculated loss value 
becomes uncertain or cannot be expressed. For example, in 
gradient explosion, loss after each iteration becomes larger 
with each iteration, and finally exceeds the range of floating-
point representation, then becomes Nan.

3.2 Execution Environment
Execution environment related failures occur in the 

interaction with the platform rather than in the execution 
of code logic, accounting for 32.6% of the total failures. In 
this dimension, the path not found accounts for 26%. For 
example, the data set path not found triggers the failure that 
loads the training data for network training, and the output 
path not found triggers the failure that finds the written file. 
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Secondly, the dependencies of the program execution are not 
imported correctly, resulting in the failure to use the relevant 
libraries correctly. For example, “no module named 
tools.Nnwrap” will be reported when using CONDA 
install PyTorch [17] through the command line.

Table 1. Categories of failure patterns

Category Pattern Description Ratio

Object 
detection

GPU out of 
memory

Insufficient 
GPU memory to 
continue the DL 
coputation 

12%

CPU out of 
memory 

Insufficient main 
memory 2.9%

API misuse 
API usage violates 
framework 
assumptions

2.5%

Loss NaN Loss value is not a 
number 0.6%

Subtotal 18%

Execution 
environment

Path not found File or directory 
cannot be found 26%

Module not 
fonud

Dependency not 
loaded 6.6%

Subtotal 32.6%

Code fault

Type 
mismatch 

Parameter type 
mismatch function 16%

Attribute not 
found

Referencing a 
non-existent 
Python class field, 
function, etc.

15.1%

Syntax defect Violation of the 
grammatical rules 13.2%

Illegal index 
Accessing array 
elements with an 
out-of-range

1.2%

Division by 
zero 

Dividing a decimal 
value by zero 0.3%

Subtotal 45.8%

Data

Corrupt data Input erro data 2.8%

Encoding 
mismatch

Data cannot be 
correctly encoded 
or decoded 

1.2%

Subtotal 3.6%

Total 100%

3.3 Code Fault
Code fault is the most frequent in all dimensions, 

accounting for 45.8% of all failures. Their types are similar 

to other Python programs, and 16% of failures are type 
mismatches. For example, when the constructor format 
is __init__, not _init_, “Typeerror: this 
constructor takes no arguments” will be reported 
when writing incorrectly. 15.1% are Attribute not found, 
most of which occur when starting Python scripts. E,g,, 
the nonexistent function “attributeerror: type 
object ‘add_dim’ has no attribute ‘dim_
value’ is called”. Since Python has strict space 
indentation, it is very easy to make syntax defects, such as 
“indentation error: expected an indented 
block”. Incorrect index values, such as “indexerror: 
list index out of range”. The divisor is zero, such 
as “zerodivisionerror: division by zero”.

3.4 Data
Data accounts for 3.6% of all failures, divided into 

corrupt data and encoding mismatch. The corrupt data shows 
that data integrity is broken, such as training data label fault 
or training field loss. For encoding mismatch, for example, 
the interpreter uses UTF-8 to decode, but the file is in the 
encoding format of GBK.

4  Root Causes

To understand why these failures occured in the object 
detection programs, we analyze the root causes of these 
failures manually. According to the analysis results, we can 
classify the root causes of failures into six categories.

4.1 Network Training Parameters
Excluding hardware factors, the cause of GPU out of 

memory is the value of batch_ size setting is too 
large, and the subdivisions setting is too small. After 
modifying the value of parameters batch_size and 
subdivisions, the failure is fixed. Large batch sizes 
and small subdivisions will improve the training efficiency 
of the network; however, they significantly increase GPU 
memory consumption. Due to the lack of experience in 
deep neural network parameter optimization, GPU out of 
memory accounts for a high proportion. As shown in Figure 
1, when the value of batch_size is 64, and the value of 
subdivisions is 8, Yolov4 cannot be trained normally, 
and GPU is out of memory. After adjusting the batch_ 
size to 32 and the subdivisions to 16, it can train 
normally.

 

Figure 1. Adjust batch_size and subdivisions

When the learning_rate is set too high, the network 
training will not converge, and the loss value will become 
larger with each iteration and eventually exceed the range 
of the floating-point representation, resulting in Nan. As 
shown in Figure 2, when the learning_rate is 0.01, the 
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network has a gradient explosion, and loss Nan occurs. 
After reducing the learning_rate to 0.001, the network 
can train normally.

Figure 2. Adjust learning_rate

4.2 Differences in Execution Environment 
Due to the difference between the local environment and 

the network requirement environment, the script execution 
defect is caused, and the network cannot be started correctly. 
For the file path not found, due to the provisions of Linux and 
Windows on different symbols in the path, the corresponding 
path needs to be manually modified. Because the students 
rarely use Linux and do not understand this aspect, the data 
file cannot be loaded or written so that the path not found is 
more easily triggered. As shown in Figure 3, the format of 
the same path in different systems is inconsistent due to the 
different use of slashes in Linux and Windows systems.

Figure 3. Path not found

As shown in Figure 4, if the library on which the program 
depends is not imported correctly, the execution environment 
will also be different, and the network cannot be started 
correctly. 

Figure 4. Module defect

4.3 API Mismatch
First, the correct use of API in the interface document is 

not correctly understood because the current Chinese API 
documents are directly translated from English documents, 
and the interpretation of relevant interfaces may have 
translation errors or ambiguous semantics. 

As shown in Figure 5, optimizer.zero_ grad() 
is to clear the parameter and gradient corresponding to the 
optimizer, and model.zero_ grad() is to clear the 
gradient of the entire network. 

Figure 5. API mismatch

Second, it may be that the third-party library update 
iteration speed is inconsistent, resulting in incompatibility 
between the interfaces of different libraries.

4.4 Coding Fault
Nearly half of the failures are coding faults, which can 

be quickly repaired through the log. The main reason is that 
students have little programming experience, and Python is a 
dynamic programming language with no strict requirements 
for parameter types and function types, so it is easy to 
make faults in the coding process. As shown in Figure 6, 
the function of dumps() requires the parameter type to be 
String, and the type of file passed in will cause a type defect.

Figure 6. Type defect

In addition, Python has strict regulations on code 
indentat ion.  Some s tudents  may be used to  other 
programming languages such as Java and ignore the 
indentation of Python, which may lead to coding defects. 
As shown in Figure 7, we need to extract the values in the 
dictionary for return. However, we failed to extract all the 
key_values due to code indentation, resulting in a numerical 
defect.

Figure 7. Syntax defect

On the use of the default value of the function parameter, 
since the default value of the Python parameter is only used 
once, it will not be assigned after multiple calls, which will 
also cause parameter defects. For index defect, as shown in 
Figure 8, since the sequence number of the list starts from 0, 
the length should be subtracted by 1 when obtaining the last 
element of the list.

Figure 8. Index out of array
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As shown in Figure 9, the float number needs to be 
converted into an integer type for processing in the program. 
Directly using int() for type conversion will throw it to the 
decimal part and trigger failure.

Figure 9. Division by zero 

To reduce coding defects, we should standardize code 
writing and improve the code review process. Maybe some 
static code review tools could be designed for such a specific 
requirement.

4.5 Data
Data fault accounts for 3.6% of all failures. For the object 

detection network, there may be label defect in making 
training sets by students, or the detection object is not strictly 
labeled, triggering network training failure. The encoding 
defect is caused by the inconsistent encoding format between 
the interpreter and the data file. As shown in Figure 10, 
the decoding type of the file is different from the encoding 
method. When loading the file, the garbled code is triggered, 
and the data cannot be loaded correctly.

Figure 10. Encoding type defect 

4.6 Others
For GPU and CPU out of memory, it is also possible that 

the students run other programs unrelated to the network 
simultaneously while training the network, resulting in the 
memory being unable to satisfy the network training needs, 
thus leading to the training stop.

5  Implication

To help students and entry-level software engineers avoid 
possible faults in object detection tasks, we give 13 concrete 
suggestions that belong to six classes. These suggestions 
correspond to those root causes one by one

5.1 Object Detection
5.1.1 GPU Out of Memory

The larger the value of batch_size and the smaller 
the value of subdivisions, the higher the network 
training efficiency, but it will also increase the GPU memory 
consumption. Therefore, the appropriate value of batch_
size and subdivisions parameters should be set 
according to hardware to ensure normal network calculation. 
5.1.2 Loss Nan

In order to avoid the failure of loss Nan caused by 

gradient explosion, an appropriate learning_rate should 
be set before network training. It is suggested to set a higher 
learning_rate before network training. If there is a 
loss Nan, the training efficiency and convergence speed 
can be achieved by continuously reducing the learning_
rate until there is no Nan. Generally, it can be 1-10 times 
lower than the current learning_rate.

5.2 Execution Environment
5.2.1 Path Not Found

To be compatible with different representations of the 
same path in different environments, it is recommended 
to put the read file and the code execution file in the same 
directory and use the Python built-in function to load.
5.2.2 Module Not Found

For dependency defects, it is suggested that in the case 
of multiple third-party libraries with the same name. The 
third-party libraries should be strictly imported according to 
object detection network requirements to avoid failure due to 
differences in the execution environment caused by importing 
dependency defects.

5.3 API Mismatch
It is suggested that users carefully read the relevant API 

documents to understand the functions of different APIs. At 
the same time, the document maintainer should also update 
the documents in time.

5.4 Coding Fault
5.4.1 Attribute Not Found

When calling a function, carefully check whether the 
function name is correct, whether the called function exists 
in the class, and name the function strictly following the 
function naming rules.
5.4.2 Type Mismatch

The parameters should be passed in strict accordance 
with the parameter type of the calling function.
5.4.3 Syntax Defect

Strictly control the code indentation format to avoid 
failure caused by code indentation defects during coding with 
Python.
5.4.4 Illegal Index

When accessing list elements, remember that the initial 
index of the list is 0, and pay attention to the boundary of the 
list. Avoid trigger array out-of-range failures.
5.4.5 Division by Zero

If the integer part is 0, it should be avoided from 
becoming a divisor or using the function of ceil for 
processing.

5.5 Data
5.5.1 Input Data Defect

When making the object detection network training data, 
the category of the object to be detected should be carefully 
checked to avoid label defects.
5.5.2 Input Data Defect

The decoding type of the file should be the same as the 
encoding method of the interpreter. Otherwise, the garbled 
code will be triggered, and the data cannot be loaded 
correctly.
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5.6 Others
During network training, other irrelevant programs 

should be closed to avoid network training stopping due to 
other programs occupying too many system resources.

6  Threats to Validity 

The primary internal threat is that there is too much 
manual analysis and effort in our study. But we tried our 
best to minimize the subjectivity in the analysis. To reduce 
the threat, four authors analyzed the failures separately and 
discussed inconsistent results until at least an agreement was 
reached.

The external threats mainly involve two aspects. Firstly, 
it is possible that the research subjects (programs submitted 
by students) included in our study are not representative of 
the overall population. Therefore, we limit the suggestions 
provided by our empirical study to students and entry-
level developers in the field of object detection. Secondly, 
our empirical study focused on the PyTorch-based Yolov4 
object detection networks. For some other object detection 
networks, such as SSD [18] and fast-RCNN [19-20], the 
classification and the root cause of failure may be different. 
However, from our conclusion, most of the mistakes are 
not related to the structure of the DL framework, so the 
difference in the framework does not affect the correctness of 
our empirical results.

7  Relate Works

7.1 Empirical Study on Traditional Software
Yi et al. studied Bitcoin, Ethereum, Coin Monero, 

and Stellar programs on GitHub for blockchain, manually 
extracted the bugs in the program, and then analyzed the 
bugs at three levels. Finally, they divided these bugs into 
four categories and found 21 attack modes of blockchain, 
and proposed methods to avoid them according to different 
attack modes [4]. Zhao et al. collected the bugs generated in 
the process of software construction by studying open source 
projects: CXF, camel, and others, and comprehensively 
analyzed the bugs. By comparing the differences between 
build-process-bugs and other bugs in bug severity, fix time, 
and the number of files modified, the author found that the 
time spent on repeating a build-process-bugs was 2.03 times 
that of non-build bugs and the number of source files that 
need to be changed to repair an error in the build-process-
bugs is 2.34 times that of non-build bugs, which indicates 
that the repair process of build-process-bug is more labor-
intensive than other bugs [3]. Hirsch et al. collected 54,755 
closed bug reports from 103 GitHub projects, created a 
benchmark dataset of 10,459 bug reports using heuristics, 
manually analyzed the root cause of bugs and classified them 
into three categories (semantic, memory, and concurrency), 
and based on this proposed a supervised machine learning 
approach for predicting the root cause of bugs [5]. Dalal et 
al. conducted root cause analysis on some historical severe 
software failures and some software failures that are still 
evolving, in addition to summarizing and comparing various 
approaches to defect root cause analysis [6].

7.2 Empirical Study on Deep Learning Software
Sun et al. collected 329 closed bugs in three popular 

machine learning (ML) projects on Github through artificial 
inspection, divided these bugs into seven categories, 
and summed up 12 repair modes. After that, an in-depth 
exploration was carried out from the time of repair and the 
software maintenance cycle where the bug was located. 
It was found that 70% of ML bugs were repaired within a 
month, and In the software maintenance cycle, the highest 
proportion is corrective maintenance [11]. Islam collected 
2716 posts and 500 fixed bug commits on deep learning 
frameworks such as Caffe, TensorFlow, Keras, Thean, and 
Torch in StackOverflow and GitHub for empirical study. 
After analyzing the types of bugs, the root causes of bugs, 
the impact of bugs, and the stages in which bugs are prone 
to occur, the authors found that data errors and logic errors 
are the most severe types of errors in deep learning software, 
occurring more than 48% of the time. They found the 
same antipatterns that cause bugs in different deep learning 
frameworks [8]. Zhang et al. conducted a comprehensive 
empirical study on the failure of deep learning. After 
collecting the failure programs in the 4960 Microsoft deep 
learning platform Philly, they were divided into 20 categories 
by manually checking the failure messages. In addition, they 
also extracted 400 sample failures that were summarized to 
summarize common failure causes and solutions. Finally, 
the author also proposed tools for deep learning platforms 
based on the research content to avoid potential risks [12]. 
Zhang et al. pulled StackOverflow, and the program for 
building TensorFlow on the Github QA page collected 175 
related bugs and made a quantitative analysis of these bugs, 
summed up the characteristics of common TensorFlow bugs 
and the root causes of bugs. Then, research the strategies of 
TensorFlow users to detect and locate bugs and summarize 
five kinds of positioning and repair strategies [9]. Han 
J take the first step to perform an exploratory study on 
the dependency networks of deep learning libraries. The 
study unveils some commonalities in various aspects of 
deep learning libraries and reveals some discrepancies as 
for the update behaviors, update reasons, and the version 
distributions. The findings highlight some directions for 
researchers and also provide suggestions for deep learning 
developers and users [21]. Tambon extracted closed issues 
related to Keras from the TensorFlow GitHub repository, 
categorized the bugs based on the effects on the users’ 
programs and the components where the issues occurred, 
using information from the issue reports. They then derived 
a threat level for each of the issues, based on the impact they 
had on the users’ programs and provided a set of guidelines to 
facilitate safeguarding against such bugs in DL frameworks 
[22]. 

8  Conclusion

Compared with traditional software, the development of 
DL-based software involves fewer lines of code but larger-
scaled deep neural networks. For a developer of DL-based 
software, the risk of introducing bugs into the software 
still exists. As object detection is one of the most popular 
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application scenarios of deep learning techniques, it’s helpful 
to pay attention to the bugs in DL-based object detection 
programs. To understand which types of failures occur most 
frequently in object detection programs and what are the root 
causes of them, we conduct an empirical study to investigate 
failure patterns in DL-based object detection programs. By 
exploring 101 submissions of a Yolov4 object detection task 
developed by 104 students in software development courses, 
we found the most frequent 13 failure patterns, six types of 
root causes of these failures, and 13 concrete suggestions to 
avoid these failures. Our empirical results can reveal basic 
laws of mistakes in the development of object detection 
programs, provide useful guidance to assist students and 
entry-level developers in improving skills in developing 
object detection programs, and assist teachers in performing 
high-quality teaching tasks of the development of object 
detection programs in university software development 
courses.
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