
Investigating Failure Patterns in Machine Learning-based Object Detection Tasks in Software Development Courses 1001

*Corresponding Author: Ziyuan Wang; E-mail: wangziyuan@njupt.edu.cn
DOI: 10.53106/160792642023072404017

Investigating Failure Patterns in Machine Learning-based Object
Detection Tasks in Software Development Courses

Ziyuan Wang1*, Jinwu Guo1, Dexin Bu1, Chongchong Shi2

1 School of Computer Science and Technology, Nanjing University of Posts and Telecommunications, China

2 Changzhou Xingyu Automotive Lighting Systems Co., Ltd, China
wangziyuan@njupt.edu.cn, guojinwu.0801@foxmail.com, bdexin@qq.com, qwerscc@163.com

Abstract

Object detection, one of the popular tasks in computer
vision, is to find all objects of interest in an image and
determine their category and location. When people use deep
learning frameworks to implement object detection networks,
defects are often caused by human-introduced faults. These
defects may cause different types of failures. Exploring
frequent failure patterns in object detection programs can
help developers detect and fix defects more effectively and
efficiently. Therefore, we conducted an empirical study
on failure patterns in deep learning-based object detection
programs submitted in university software development
courses. By exploring 101 submissions of a Yolov4 object
detection task completed by 104 students, we found the most
frequent 13 failure patterns in these submissions and six
types of root causes of these failures. To help students and
entry-level software engineers avoid possible faults in object
detection programs, 13 concrete suggestions that belong to
six classes are given in this paper. These results can reveal
some basic laws of failures and mistakes in the development
of deep learning-based object detection programs and provide
guidances to assist students and entry-level developers
in improving their skills in developing object detection
programs.

Keywords: Object detection, Empirical study, Education,
Failure pattern, Root cause

1 Introduction

The deep learning (DL) technique has been widely utilized
in many fields [1], and object detection is one of the most
common applications of the DL technique [2]. Implementing
object detection program by calling APIs provided by the
DL framework is often regarded as coursework in university
software development courses. Because the DL framework
provides rich functional APIs, software engineers can quickly
use these APIs to complete their customized object detection
tasks. However, it isn’t easy to correctly develop an object
detection program by using these APIs provided by the
DL framework. People often make mistakes, which may
trigger failures of their DL-based programs. Collecting and
analyzing frequent mistakes, classifying them into different

failure patterns, investigating root causes of these failures,
and giving suggestions on how to avoid them are of great
significance for detecting and repairing mistakes in object
detection programs and guaranteeing the correct running of
these programs. It is also helpful for students and entry-level
software engineers to understand the mistakes that are easy to
make when implementing object detection networks, and to
avoid possible failures induced by these mistakes.

There have been many empirical studies on the defects
and failures in different open-source softwares. Some people
conducted empirical studies on bugs in traditional softwares,
including CXF [3], Camel [3], Blockchain [4], and others [5-
7]; Some people conducted empirical studies on bugs in DL-
related softwares, including Caffe [8], TensorFlow [8-10],
Keras [8], Theano [8], Torch [8], Scikit-learn [11], Paddle
[11], and others [12-14]. However, empirical studies on bugs
in object detection programs are still lacking. Therefore, we
conduct the first empirical study on bugs in DL-based object
detection tasks in software development courses.

We collect 101 programs submitted by 104 students in
university software development courses. Then we manually
analyze mistakes in these programs, classify them into the
most frequent 13 failure patterns, and find six types of root
causes of these failures. It is found that failures that students
and entry-level software engineers are prone to trigger when
implementing object detection programs include Path Not
Found, Type Mismatch, and GPU Out of Memory. And in
order to avoid these types of failures, some suggestions for
students and entry-level software engineers in the field of
object detection are given. They should pay attention to the
following issues when developing DL-based object detection
programs, including the conversion of file paths between
different systems, the type of Python parameters, and the
setting of network training parameters.

The key contributions of this paper are as follows:
(1) Collect mistakes made by university students in

developing the object detection program Yolov4, and conduct
an empirical study on them;

(2) Classify failures caused by these mistakes into the
most frequent 13 failure patterns within four categories, and
illustrate cases of these failure patterns;

(3) Analyze the root cause of these failures and give
suggestions for the students and entry-level developers to
avoid potential risks due to these failures.

The rest of this paper is organized as follows. Section

1002 Journal of Internet Technology Vol. 24 No. 4, July 2023

2 introduces the research questions, research subjects, and
research design of the empirical study in detail. Section 3
introduces the types of failure; Section 4 analyzes the root
causes of failures. Section 5 gives some suggestions on how
to avoid failures. Section 6 describes the potential threats to
validity. Section 7 briefly reviews related works. Section 8
gives a conclusion.

2 Methodology

This section introduces the methodology of empirical
study, including research questions, research subjects, and
research design.

2.1 Research Questions
We focus on the following three research questions.
RQ1 (Failure patterns): Which types of failures occur

most frequently in object detection networks?
By answering this question, we can find failures occur

most frequently in object detection networks developed by
students or entry-level developers. This finding could be
beneficial for them to prepare high-quality test cases that can
trigger these failures effectively and efficiently before the
implementation of object detection networks.

RQ2 (Root causes): What are the root causes of those
frequent failures in object detection networks?

By answering this question, we can understand why those
failures occur most frequently in object detection networks
developed by students or entry-level developers. This finding
could provide guidance for maintainers of object detection
networks to debug programs, including both locating and
fixing bugs.

RQ3 (How to avoid): How to avoid those frequent
failures in object detection networks?

By answering this question, we can give reasonable
suggestions on how to code DL-based object detection
programs with fewer defects and failures. This finding could
help students or entry-level developers improve their skills in
implementing object detection networks.

2.2 Research Subject
In the software development course, we arranged an

object detection task that requires students to use Python to
train the object detection network based on Yolov4 [15] and
make a training set according to the COCO2017 [16] data
set. The prepared data set is used for network training. After
the network training is completed, the test set is used for
testing, and the mean average precision (mAP) of network
detection is observed. In this task, the specific work that
students need to complete includes: learning the API for the
DL framework, e.g. the API for convolution (conv1d())
and pooling (avg_ pool1d()), loading training data
and implementing network training by Python. Then, the
prepared test set is inputted into the trained model for testing.
In addition, students also need to improve the mAP of the
network as much as possible to achieve higher scores.

The DL framework we chose is PyTorch, which is much
easier to deploy. And students can complete their tasks more
quickly.

We collect 101 programs of 104 students in three classes
using Yolov4 to complete object detection tasks in software
development courses and take the failure triggered in the
program as the research subject. We collect all relevant
information for each failure, including input data, source
code, execution script, log, and runtime data for analysis.
All failures in our study are caused by improper human
operation, excluding caused by objective factors such as
hardware or system problems.

2.3 Research Design
We manually analyze and classify failures. First,

search the log for the keywords that cause the failure,
such as assert, wrong, error, exception, fault,
failure, crash, and unsuccessful, to locate
the information that triggers the failure. Then, manually
analyze all relevant defect logs to determine the failure and
classify it. Finally, we summarize failure patterns into four
dimensions: Object Detection, Execution Environment, Code
Fault, and Data. For the controversial pattern, we invite the
corresponding students to participate in the discussion until
a consensus is reached. Each program’s source code and logs
are manually analyzed through discussion with students. For
data-related failures, additional checks are performed on the
input data, summarizing the root causes of failures.

3 Failure Classification

There are mainly 13 failures patterns collected from all
the 101 submitted programs. These failures patterns could be
classified into four categories that shown in Table 1.

3.1 Object Detection
Totally 18% of failures are related to object detection

networks. In this dimension, GPU out of memory is the
most frequent failure, accounting for 12% of all failures.
When the model calculates that the memory used exceeds
the available physical memory of the GPU, GPU out of
memory will occur. CPU out of memory occurs when the
program runs beyond the main memory. API misuse, mainly
in violation of the provisions of the API interface document,
such as optimizer.zero_Grad() and model.zero_
Grad() is confused. The former is to clear the gradient
of the parameters corresponding to the optimizer, and the
latter is to clear the gradient of the entire network. Finally,
loss becoming Nan indicates that the calculated loss value
becomes uncertain or cannot be expressed. For example, in
gradient explosion, loss after each iteration becomes larger
with each iteration, and finally exceeds the range of floating-
point representation, then becomes Nan.

3.2 Execution Environment
Execution environment related failures occur in the

interaction with the platform rather than in the execution
of code logic, accounting for 32.6% of the total failures. In
this dimension, the path not found accounts for 26%. For
example, the data set path not found triggers the failure that
loads the training data for network training, and the output
path not found triggers the failure that finds the written file.

Investigating Failure Patterns in Machine Learning-based Object Detection Tasks in Software Development Courses 1003

Secondly, the dependencies of the program execution are not
imported correctly, resulting in the failure to use the relevant
libraries correctly. For example, “no module named
tools.Nnwrap” will be reported when using CONDA
install PyTorch [17] through the command line.

Table 1. Categories of failure patterns

Category Pattern Description Ratio

Object
detection

GPU out of
memory

Insufficient
GPU memory to
continue the DL
coputation

12%

CPU out of
memory

Insufficient main
memory 2.9%

API misuse
API usage violates
framework
assumptions

2.5%

Loss NaN Loss value is not a
number 0.6%

Subtotal 18%

Execution
environment

Path not found File or directory
cannot be found 26%

Module not
fonud

Dependency not
loaded 6.6%

Subtotal 32.6%

Code fault

Type
mismatch

Parameter type
mismatch function 16%

Attribute not
found

Referencing a
non-existent
Python class field,
function, etc.

15.1%

Syntax defect Violation of the
grammatical rules 13.2%

Illegal index
Accessing array
elements with an
out-of-range

1.2%

Division by
zero

Dividing a decimal
value by zero 0.3%

Subtotal 45.8%

Data

Corrupt data Input erro data 2.8%

Encoding
mismatch

Data cannot be
correctly encoded
or decoded

1.2%

Subtotal 3.6%

Total 100%

3.3 Code Fault
Code fault is the most frequent in all dimensions,

accounting for 45.8% of all failures. Their types are similar

to other Python programs, and 16% of failures are type
mismatches. For example, when the constructor format
is __init__, not _init_, “Typeerror: this
constructor takes no arguments” will be reported
when writing incorrectly. 15.1% are Attribute not found,
most of which occur when starting Python scripts. E,g,,
the nonexistent function “attributeerror: type
object ‘add_dim’ has no attribute ‘dim_
value’ is called”. Since Python has strict space
indentation, it is very easy to make syntax defects, such as
“indentation error: expected an indented
block”. Incorrect index values, such as “indexerror:
list index out of range”. The divisor is zero, such
as “zerodivisionerror: division by zero”.

3.4 Data
Data accounts for 3.6% of all failures, divided into

corrupt data and encoding mismatch. The corrupt data shows
that data integrity is broken, such as training data label fault
or training field loss. For encoding mismatch, for example,
the interpreter uses UTF-8 to decode, but the file is in the
encoding format of GBK.

4 Root Causes

To understand why these failures occured in the object
detection programs, we analyze the root causes of these
failures manually. According to the analysis results, we can
classify the root causes of failures into six categories.

4.1 Network Training Parameters
Excluding hardware factors, the cause of GPU out of

memory is the value of batch_ size setting is too
large, and the subdivisions setting is too small. After
modifying the value of parameters batch_size and
subdivisions, the failure is fixed. Large batch sizes
and small subdivisions will improve the training efficiency
of the network; however, they significantly increase GPU
memory consumption. Due to the lack of experience in
deep neural network parameter optimization, GPU out of
memory accounts for a high proportion. As shown in Figure
1, when the value of batch_size is 64, and the value of
subdivisions is 8, Yolov4 cannot be trained normally,
and GPU is out of memory. After adjusting the batch_
size to 32 and the subdivisions to 16, it can train
normally.

Figure 1. Adjust batch_size and subdivisions

When the learning_rate is set too high, the network
training will not converge, and the loss value will become
larger with each iteration and eventually exceed the range
of the floating-point representation, resulting in Nan. As
shown in Figure 2, when the learning_rate is 0.01, the

1004 Journal of Internet Technology Vol. 24 No. 4, July 2023

network has a gradient explosion, and loss Nan occurs.
After reducing the learning_rate to 0.001, the network
can train normally.

Figure 2. Adjust learning_rate

4.2 Differences in Execution Environment
Due to the difference between the local environment and

the network requirement environment, the script execution
defect is caused, and the network cannot be started correctly.
For the file path not found, due to the provisions of Linux and
Windows on different symbols in the path, the corresponding
path needs to be manually modified. Because the students
rarely use Linux and do not understand this aspect, the data
file cannot be loaded or written so that the path not found is
more easily triggered. As shown in Figure 3, the format of
the same path in different systems is inconsistent due to the
different use of slashes in Linux and Windows systems.

Figure 3. Path not found

As shown in Figure 4, if the library on which the program
depends is not imported correctly, the execution environment
will also be different, and the network cannot be started
correctly.

Figure 4. Module defect

4.3 API Mismatch
First, the correct use of API in the interface document is

not correctly understood because the current Chinese API
documents are directly translated from English documents,
and the interpretation of relevant interfaces may have
translation errors or ambiguous semantics.

As shown in Figure 5, optimizer.zero_ grad()
is to clear the parameter and gradient corresponding to the
optimizer, and model.zero_ grad() is to clear the
gradient of the entire network.

Figure 5. API mismatch

Second, it may be that the third-party library update
iteration speed is inconsistent, resulting in incompatibility
between the interfaces of different libraries.

4.4 Coding Fault
Nearly half of the failures are coding faults, which can

be quickly repaired through the log. The main reason is that
students have little programming experience, and Python is a
dynamic programming language with no strict requirements
for parameter types and function types, so it is easy to
make faults in the coding process. As shown in Figure 6,
the function of dumps() requires the parameter type to be
String, and the type of file passed in will cause a type defect.

Figure 6. Type defect

In addition, Python has strict regulations on code
indentat ion. Some s tudents may be used to other
programming languages such as Java and ignore the
indentation of Python, which may lead to coding defects.
As shown in Figure 7, we need to extract the values in the
dictionary for return. However, we failed to extract all the
key_values due to code indentation, resulting in a numerical
defect.

Figure 7. Syntax defect

On the use of the default value of the function parameter,
since the default value of the Python parameter is only used
once, it will not be assigned after multiple calls, which will
also cause parameter defects. For index defect, as shown in
Figure 8, since the sequence number of the list starts from 0,
the length should be subtracted by 1 when obtaining the last
element of the list.

Figure 8. Index out of array

Investigating Failure Patterns in Machine Learning-based Object Detection Tasks in Software Development Courses 1005

As shown in Figure 9, the float number needs to be
converted into an integer type for processing in the program.
Directly using int() for type conversion will throw it to the
decimal part and trigger failure.

Figure 9. Division by zero

To reduce coding defects, we should standardize code
writing and improve the code review process. Maybe some
static code review tools could be designed for such a specific
requirement.

4.5 Data
Data fault accounts for 3.6% of all failures. For the object

detection network, there may be label defect in making
training sets by students, or the detection object is not strictly
labeled, triggering network training failure. The encoding
defect is caused by the inconsistent encoding format between
the interpreter and the data file. As shown in Figure 10,
the decoding type of the file is different from the encoding
method. When loading the file, the garbled code is triggered,
and the data cannot be loaded correctly.

Figure 10. Encoding type defect

4.6 Others
For GPU and CPU out of memory, it is also possible that

the students run other programs unrelated to the network
simultaneously while training the network, resulting in the
memory being unable to satisfy the network training needs,
thus leading to the training stop.

5 Implication

To help students and entry-level software engineers avoid
possible faults in object detection tasks, we give 13 concrete
suggestions that belong to six classes. These suggestions
correspond to those root causes one by one

5.1 Object Detection
5.1.1 GPU Out of Memory

The larger the value of batch_size and the smaller
the value of subdivisions, the higher the network
training efficiency, but it will also increase the GPU memory
consumption. Therefore, the appropriate value of batch_
size and subdivisions parameters should be set
according to hardware to ensure normal network calculation.
5.1.2 Loss Nan

In order to avoid the failure of loss Nan caused by

gradient explosion, an appropriate learning_rate should
be set before network training. It is suggested to set a higher
learning_rate before network training. If there is a
loss Nan, the training efficiency and convergence speed
can be achieved by continuously reducing the learning_
rate until there is no Nan. Generally, it can be 1-10 times
lower than the current learning_rate.

5.2 Execution Environment
5.2.1 Path Not Found

To be compatible with different representations of the
same path in different environments, it is recommended
to put the read file and the code execution file in the same
directory and use the Python built-in function to load.
5.2.2 Module Not Found

For dependency defects, it is suggested that in the case
of multiple third-party libraries with the same name. The
third-party libraries should be strictly imported according to
object detection network requirements to avoid failure due to
differences in the execution environment caused by importing
dependency defects.

5.3 API Mismatch
It is suggested that users carefully read the relevant API

documents to understand the functions of different APIs. At
the same time, the document maintainer should also update
the documents in time.

5.4 Coding Fault
5.4.1 Attribute Not Found

When calling a function, carefully check whether the
function name is correct, whether the called function exists
in the class, and name the function strictly following the
function naming rules.
5.4.2 Type Mismatch

The parameters should be passed in strict accordance
with the parameter type of the calling function.
5.4.3 Syntax Defect

Strictly control the code indentation format to avoid
failure caused by code indentation defects during coding with
Python.
5.4.4 Illegal Index

When accessing list elements, remember that the initial
index of the list is 0, and pay attention to the boundary of the
list. Avoid trigger array out-of-range failures.
5.4.5 Division by Zero

If the integer part is 0, it should be avoided from
becoming a divisor or using the function of ceil for
processing.

5.5 Data
5.5.1 Input Data Defect

When making the object detection network training data,
the category of the object to be detected should be carefully
checked to avoid label defects.
5.5.2 Input Data Defect

The decoding type of the file should be the same as the
encoding method of the interpreter. Otherwise, the garbled
code will be triggered, and the data cannot be loaded
correctly.

1006 Journal of Internet Technology Vol. 24 No. 4, July 2023

5.6 Others
During network training, other irrelevant programs

should be closed to avoid network training stopping due to
other programs occupying too many system resources.

6 Threats to Validity

The primary internal threat is that there is too much
manual analysis and effort in our study. But we tried our
best to minimize the subjectivity in the analysis. To reduce
the threat, four authors analyzed the failures separately and
discussed inconsistent results until at least an agreement was
reached.

The external threats mainly involve two aspects. Firstly,
it is possible that the research subjects (programs submitted
by students) included in our study are not representative of
the overall population. Therefore, we limit the suggestions
provided by our empirical study to students and entry-
level developers in the field of object detection. Secondly,
our empirical study focused on the PyTorch-based Yolov4
object detection networks. For some other object detection
networks, such as SSD [18] and fast-RCNN [19-20], the
classification and the root cause of failure may be different.
However, from our conclusion, most of the mistakes are
not related to the structure of the DL framework, so the
difference in the framework does not affect the correctness of
our empirical results.

7 Relate Works

7.1 Empirical Study on Traditional Software
Yi et al. studied Bitcoin, Ethereum, Coin Monero,

and Stellar programs on GitHub for blockchain, manually
extracted the bugs in the program, and then analyzed the
bugs at three levels. Finally, they divided these bugs into
four categories and found 21 attack modes of blockchain,
and proposed methods to avoid them according to different
attack modes [4]. Zhao et al. collected the bugs generated in
the process of software construction by studying open source
projects: CXF, camel, and others, and comprehensively
analyzed the bugs. By comparing the differences between
build-process-bugs and other bugs in bug severity, fix time,
and the number of files modified, the author found that the
time spent on repeating a build-process-bugs was 2.03 times
that of non-build bugs and the number of source files that
need to be changed to repair an error in the build-process-
bugs is 2.34 times that of non-build bugs, which indicates
that the repair process of build-process-bug is more labor-
intensive than other bugs [3]. Hirsch et al. collected 54,755
closed bug reports from 103 GitHub projects, created a
benchmark dataset of 10,459 bug reports using heuristics,
manually analyzed the root cause of bugs and classified them
into three categories (semantic, memory, and concurrency),
and based on this proposed a supervised machine learning
approach for predicting the root cause of bugs [5]. Dalal et
al. conducted root cause analysis on some historical severe
software failures and some software failures that are still
evolving, in addition to summarizing and comparing various
approaches to defect root cause analysis [6].

7.2 Empirical Study on Deep Learning Software
Sun et al. collected 329 closed bugs in three popular

machine learning (ML) projects on Github through artificial
inspection, divided these bugs into seven categories,
and summed up 12 repair modes. After that, an in-depth
exploration was carried out from the time of repair and the
software maintenance cycle where the bug was located.
It was found that 70% of ML bugs were repaired within a
month, and In the software maintenance cycle, the highest
proportion is corrective maintenance [11]. Islam collected
2716 posts and 500 fixed bug commits on deep learning
frameworks such as Caffe, TensorFlow, Keras, Thean, and
Torch in StackOverflow and GitHub for empirical study.
After analyzing the types of bugs, the root causes of bugs,
the impact of bugs, and the stages in which bugs are prone
to occur, the authors found that data errors and logic errors
are the most severe types of errors in deep learning software,
occurring more than 48% of the time. They found the
same antipatterns that cause bugs in different deep learning
frameworks [8]. Zhang et al. conducted a comprehensive
empirical study on the failure of deep learning. After
collecting the failure programs in the 4960 Microsoft deep
learning platform Philly, they were divided into 20 categories
by manually checking the failure messages. In addition, they
also extracted 400 sample failures that were summarized to
summarize common failure causes and solutions. Finally,
the author also proposed tools for deep learning platforms
based on the research content to avoid potential risks [12].
Zhang et al. pulled StackOverflow, and the program for
building TensorFlow on the Github QA page collected 175
related bugs and made a quantitative analysis of these bugs,
summed up the characteristics of common TensorFlow bugs
and the root causes of bugs. Then, research the strategies of
TensorFlow users to detect and locate bugs and summarize
five kinds of positioning and repair strategies [9]. Han
J take the first step to perform an exploratory study on
the dependency networks of deep learning libraries. The
study unveils some commonalities in various aspects of
deep learning libraries and reveals some discrepancies as
for the update behaviors, update reasons, and the version
distributions. The findings highlight some directions for
researchers and also provide suggestions for deep learning
developers and users [21]. Tambon extracted closed issues
related to Keras from the TensorFlow GitHub repository,
categorized the bugs based on the effects on the users’
programs and the components where the issues occurred,
using information from the issue reports. They then derived
a threat level for each of the issues, based on the impact they
had on the users’ programs and provided a set of guidelines to
facilitate safeguarding against such bugs in DL frameworks
[22].

8 Conclusion

Compared with traditional software, the development of
DL-based software involves fewer lines of code but larger-
scaled deep neural networks. For a developer of DL-based
software, the risk of introducing bugs into the software
still exists. As object detection is one of the most popular

Investigating Failure Patterns in Machine Learning-based Object Detection Tasks in Software Development Courses 1007

application scenarios of deep learning techniques, it’s helpful
to pay attention to the bugs in DL-based object detection
programs. To understand which types of failures occur most
frequently in object detection programs and what are the root
causes of them, we conduct an empirical study to investigate
failure patterns in DL-based object detection programs. By
exploring 101 submissions of a Yolov4 object detection task
developed by 104 students in software development courses,
we found the most frequent 13 failure patterns, six types of
root causes of these failures, and 13 concrete suggestions to
avoid these failures. Our empirical results can reveal basic
laws of mistakes in the development of object detection
programs, provide useful guidance to assist students and
entry-level developers in improving skills in developing
object detection programs, and assist teachers in performing
high-quality teaching tasks of the development of object
detection programs in university software development
courses.

References

[1] R.-B. Abdessalem, A. Panichella, S. Nejati, L.-C.
Briand, T. Stifter, Testing Autonomous Cars for Feature
Interaction Failures Using Many-objective Search, 33rd
ACM/IEEE International Conference on Automated
Software Engineering (ASE), Montpellier, France, 2018,
pp. 143-154.

[2] Y. Lecun, Deep Learning & Convolutional Networks,
IEEE Hot Chips 27 Symposium (HCS), Cupertino, CA,
USA, 2015, pp. 1-95.

[3] X. Zhao, X. Xia, P.-S. Kochhar, D. Lo, S. Li, An
Empirical Study of Bugs in Build Process, 29th Annual
ACM Symposium on Applied Computing (SAC),
Gyeongju, Korea, 2014, pp. 1187-1189.

[4] X. Yi, D. Wu, L. Jiang, K. Zhang, W. Zhang, Diving
Into Blockchain’s Weaknesses: An Empirical Study
of Blockchain System Vulnerabilities, October, 2021,
https://arxiv.org/abs/2110.12162.

[5] T. Hirsch, B. Hoffer, Root Cause Prediction Based on
Bug Reports, 31st IEEE International Symposium on
Software Reliability Engineering Workshops (ISSREW),
Coimbra, Portugal, 2020, pp. 171-176.

[6] S. Dalal, R.-S. Chhillar, Empirical Study of Root Cause
Analysis of Software Failure, ACM SIGSOFT Software
Engineering Notes, Vol. 38, No. 4, pp. 1-7, July, 2013.

[7] P. Bhattacharya, L. Ulanova, I. Neamtiu, S.-C.
Koduru, An Empirical Analysis of Bug Reports and
Bug Fixing in Open Source Android Apps, 17th
European Conference on Software Maintenance and
Reengineering (CSMR), Genova, Italy, 2013, pp. 133-
143.

[8] M.-J . Is lam, G. Nguyen, R. Pan, H. Rajan, A
Comprehensive Study on Deep Learning Bug
Characteristics, 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE),
Tallinn, Estonia, 2019, pp. 510-520.

[9] Y. Zhang, Y. Chen, S.-C. Cheung, Y. Xiong, L. Zhang,
An Empirical Study on TensorFlow Program Bugs,

27th ACM SIGSOFT International Symposium on
Software Testing and Analysis (ISSTA), Amsterdam, The
Netherlands, 2018, pp. 129-140.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen,
C. Citro, G.-S. Corrado, A. Davis, J. Dean, M. Devin,
X. Zheng, TensorFlow: Large-Scale Machine Learning
on Heterogeneous Distributed Systems, March, 2016,
https://arxiv.org/abs/1603.04467.

[11] X. Sun, T. Zhou, G. Li, J. Hu, H. Yang, B. Li, An
Empirical Study on Real Bugs for Machine Learning
Programs, 24th Asia-Pacific Software Engineering
Conference (APSEC), Nanjing, China, 2017, pp. 348-
357.

[12] R. Zhang, W. Xiao, H. Zhang, Y. Liu, H. Lin, M.
Yang, An Empirical Study on Program Failures of
Deep Learning Jobs, 42nd International Conference
on Software Engineering (ICSE), Seoul, South Korea,
2020, pp. 1159-1170.

[13] T. Chappelly, C. Cifuentes, P. Krishnan, S. Gevay,
Machine Learning for Finding Bugs: An Initial Report,
IEEE Workshop on Machine Learning Techniques for
Software Quality Evaluation (MaLTeSQuE), Klagenfurt,
Austria, 2017, pp. 21-26.

[14] F. Thung, S. Wang, D. Lo, L. Jiang, An Empirical
Study of Bugs in Machine Learning Systems, 23rd
IEEE International Symposium on Software Reliability
Engineering (ISSRE), Dallas, Texas, USA, 2012, pp.
271-280.

[15] A. Bochkovskiy, C.-Y. Wang, H. Liao, YOLOv4:
Optimal Speed and Accuracy of Object Detection, April,
2020, https://arxiv.org/abs/2004.10934.

[16] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D.
Ramanan, P. Dollár, C.-L. Zitnick, Microsoft COCO:
Common objects in context, European conference on
computer vision. Springer (ECCV), Zurich, Switzerland,
2014, pp. 740-755.

[17] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G.
Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison,
A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J.
Bai, S. Chintala, PyTorch: An Imperative Style, High-
Performance Deep Learning Library, Advances in
Neural Information Processing Systems (NIPS), Curran
Associates, Vancouver, Canada, 2019, pp. 8024-8035.

[18] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed,
C.-Y. Fu, A.-C. Berg, SSD: Single Shot MultiBox
Detector, European Conference on Computer Vision
(ECCV), Amsterdam, Netherlands, 2016, pp. 21-37.

[19] R. Girshick, Fast R-CNN, IEEE International
Conference on Computer Vision (ICCV), Santiago,
Chile, 2015, pp. 1440-1448.

[20] Z. Cai, N. Vasconcelos, Cascade R-CNN: Delving
into High Quality Object Detection, IEEE Computer
Society Conference on Computer Vision and Pattern
Recognition (CVPR), Salt Lake City, UT, USA, 2018,
pp. 6154-6162.

[21] J. Han, S. Deng, D. Lo, C. Zhi, J. Yin, X. Xia, An
Empirical Study of the Dependency Networks of
Deep Learning Libraries, International Conference on
Software Maintenance (ICSME), Adelaide, Australia,

1008 Journal of Internet Technology Vol. 24 No. 4, July 2023

2020, pp. 868-878.
[22] F. Tambon, A. Nikanjam, L. An, F. Khomh, G. Antoniol,

Silent Bugs in Deep Learning Frameworks: An
Empirical Study of Keras and TensorFlow, December,
2021, https://arxiv.org/abs/2112.13314.

Biographies

Ziyuan Wang received the Ph.D. degrees
in computer science from Southeast
University in 2009. He is currently an
associate professor in computer science
with the School of Computer Science and
Technology, Nanjing University of Posts
and Telecommunications, China. His
research interests mainly include software

testing and programming language.

Jinwu Guo received the B.S. degree
i n m a n a g e m e n t e n g i n e e r i n g f r o m
N a n j i n g U n i v e r s i t y o f P o s t s a n d
Telecommunicat ions in 2019. He is
currently pursuing the M.S. degree in
software engineering at Nanjing University
of Posts and Telecommunications, China.

Dexin Bu received the B.S.degree in the
internet of things engineering from Anhui
Polytechnic University in 2020. She is
currently pursuing the M.S. degree in
software engineering at Nanjing University
of Posts and Telecommunications, China.

Chongchong Shi received the B.S. degree
in automation from Changzhou Institute of
Technology in 2017. She currently works as
a hardware engineer at Changzhou Xingyu
Automotive Lighting Systems Co., Ltd,
China.

