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Abstract

Recently, the robust PCA/2DPCA methods have achieved 
great success in subspace learning. Nevertheless, most of 
them have a basic premise that the average of samples is zero 
and the optimal mean is the center of the data. Actually, this 
premise only applies to PCA/2DPCA methods based on L2-
norm. The robust PCA/2DPCA method with L1-norm has 
an optimal mean deviate from zero, and the estimation of 
the optimal mean leads to an expensive calculation. Another 
shortcoming of PCA/2DPCA is that it does not pay enough 
attention to the instinct correlation within the part of data. 
To tackle these issues, we introduce the maximum variance 
of samples’ difference into Block principal component 
analysis (BPCA) and propose a robust method for avoiding 
the optimal mean to extract orthonormal features. BPCA, 
which is generalized from PCA and 2DPCA, is a general 
PCA/2DPCA framework specialized in part learning, 
can makes better use of the partial correlation. However, 
projection features without sparsity not only have higher 
computational complexity, but also lack semantic properties. 
We integrate the elastic network into avoiding optimal mean 
robust BPCA to perform sparse constraints on projection 
features. These two BPCA methods (non-sparse and sparse) 
make the presumption of zero-mean data unnecessary and 
avoid optimal mean calculation. Experiments on reference 
benchmark databases indicate the usefulness of the 
proposed two methods in image classification and image 
reconstruction.

Keywords: BPCA, Avoiding optimal mean, Sparse modeling, 
L1-norm, Elastic net

1  Introduction

PCA [1] is a classical subspace learning and feature 
extraction technique wildly used in the areas of data analysis, 
pattern recognition, computer vision, etc. It uses pixelwise 
covariance, where two-dimensional images are expressed 
as long vectors. 2DPCA, which preserves the 2D spatial 
structure of images, was firstly developed by Yang and Zhang 
[2]. Although PCA/2DPCA have been successfully applied to 
many domains, they are sensitive to outliers as a result of the 
occupation of the L2-norm in the optimization formulation. 
In recent years, many L1-norm-based schemes were devised. 

L1-PCA [3] and R1-PCA [4] have complex characteristics 
of finding optimal basis features through linear or quadratic 
programming, and they are computationally expensive. 
Kwak proposed an intuitive and simple PCA with L1-
norm (PCA-L1) [5], which is invariant to rotations. Li et 
al. proposed robust 2DPCA with L1-norm referred to as 
2DPCA-L1 [6], which avoids transforming 2D images 
into 1D vectors. For extracting all directional features 
simultaneously, Nie et al. proposed robust non-greedy version 
of PCA-L1 referred to as PCAL1-nongreedy [7], and Wang et 
al. put forward 2DPCAL1-nongreedy [8] subsequently. Since 
both L2-norm and L1-norm are particular cases of Lp-norm 
(0 < p ≤ 2), Kwak et al. naturally proposed Lp-norm-based 
PCA (PCA-Lp) [9].

Taking the rows of the image matrix as the units of 
computation, two-dimensional PCA can be rewritten under 
the umbrella of PCA [10]. Block PCA [11-12] does not 
compute directly by vector units, but divides each data matrix 
into several pieces containing some rows and columns, and 
then expresses blocks-based process in the form of PCA. 
From this perspective, 2DPCA and PCA are particular cases 
of BPCA. Replaced L2-norm with L1-norm, Wang et al. 
proposed a robust L1-norm-based BPCA (BPCA-L1) [13], 
and Li et al. presented corresponding non-greedy method 
(BPCA-L1 non-greedy) [14].

The robust PCA techniques usually fixed optimal 
mean as the average of samples and presume the data are 
formerly centered. However, this presumption, which 
practically neglects the processing of mean optimization, is 
unsubstantial. Actually, it is a theoretical guarantee only in 
L2-norm-based optimization. Moreover, the outliers often 
tend to bias the predetermined mean of high-dimensional 
data and degrade the performance [15-17]. To deal with this 
issue, Luo et al. [18-19] developed robust PCA/2DPCA with 
avoiding optimal mean, which maximize the sum of projected 
differences.

The eigenvectors learned by the aforementioned 
approaches are still dense. Non-sparse features may have 
redundant information, which is not only poor in semantics, 
but also difficult to guarantee performance. It is highly 
advantageous to find the most relevant or outstanding element 
from many characteristics. H. Wang et al. proposed a robust 
and sparse model of 2DPCA with L1-norm (2DPCAL1-S) 
[20]. And then, J. Wang et al. presented a generalized sparse 
model of 2DPCA with Lp-norm (G2DPCA) [21]. 

Inspired by these works, we generalize two novel BPCA 
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models with avoiding optimal mean.
The major merits of our works are list as follows: 
1) The methods we proposed are under a unified 

subspace-learning framework of BPCA, which makes better 
use of the local correlation of the neighboring pixels. Under 
the umbrella of BPCA, the L1-norm based PCA/2DPCA with 
robustness and sparsity can be reformulated.

2) The Avoiding Optimal Mean L1-norm-based BPCA 
(BPCAL1-AOM) we proposed maximize the metric of 
samples’ difference projection to extract feature vectors and 
avoid mean optimization quite sensibly.

3) Above BPCAL1-AOM, we further propose a sparse 
model denoted as BPCAL1S-AOM, by which we acquire 
sparse features that have superior semantics and help to 
achieve better performance.

2  Brief Review

In this section, we revisit the methods of L1-norm-based 
PCA/2DPCA and BPCA.

2.1 PCA-L1 Revisited
Suppose the samples is X = {x1, ..., xn} ∈ Rd×n, where n is 

the number of the given data and d is the dimension. 
Generally, we assume the mean of all xi (i = 1, 2, …, n) is c 

(
1

1 n

i
i

c x
n =

= ∑ ). PCA is a dimensionality reduction model, 

which seeks the optimal linear subspace to solve the 
following problems:
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where 2
⋅  denote L2-norm.

Eq. (1) is the Minimum-error Formulation.
Correspondingly, PCA is also solving the dual problem:
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Eq. (2) is the Maximum Variance Formulation.
The equivalence of problem (1) and problem (2) can be 

proved directly by Lemma 1 [19].
Lemma 1.
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Proof. We represented the L2-norm by the trace, the left 
side of Eq. (3) is
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By the formulations as follows
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Eq. (4) is converted to
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The proof is completed.
Classical PCA is sensitive to outliers since L2-norm 

exaggerates the effect of noise. Kwad replaced L2-norm with 
L1-norm in maximum variance formulation and proposed 
a simple and intuitive robust PCA, which is referred to as 
PCA-L1 [5]:
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PCA-L1 seeks the optimal feature r* through an iterative 
procedure to solve the nonlinear optimization upon the 
objective function containing an absolute value. Define a 
formulation of the projection vector r (t + 1) at the (t + 1)th 
iteration as

 1
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where pi (t) is polarity function, which defined as
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2.2 2 DPCA-L1 Revisited
Let X = {X1, ..., Xn} be the n sample matrices without 

mean-centered. The dimension of Xi = (1, 2,..., n) is h×w. The 
purpose of 2DPCA-L1 is to tackle the following maximum 
optimization problem
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where 
1
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j ij
i

c x
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= ∑ and xij is the jth row transpose of the ith 

image matrix. i.e.,
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The iterative formulation of r (t + 1) is 
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where pij (t) is polarity function defined as
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2.3 BPCA-L1 Revisited
Eq. (8) and Eq. (12) show that 2DPCA-L1 can be 

reformulated as the form of PCA-L1. If we generalize row 
vectors to general pixels blocks, we can extend 2DPCA-L1 
to BPCA-L1.

Let X = {X1, X2,..., Xn} denotes n image matrices without 
mean-centered. BPCA-L1 method separates each image into 
m small blocks, which have the same number of pixels in a 

small block, i.e. ( ) ( ) ( )
1 2{ , , , }i i i

i mX b b b=  . When the block ( )i
kb

transforms to a vector ( )i
kx , we get the vectorization version 

of Xi,  which is denoted as ( ) ( ) ( )
1 2{ , , }v v v v

i mX x x x=  .  The 
vectorization is illustrated as Figure 1.

BPCA-L1 tends to seek a projection feature *r  to 
maximize the L1-norm-based variance, i.e.,
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where ( )
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To address this issue, the iterative formulation of r (t + 1) 
is defined as
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where ( )ijp t is polarity function, i.e.,
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Compared with Eq. (8) & Eq. (9) of PCA-L1, Eq. (12) & 
Eq. (13) of 2DPCA-L1 and Eq. (15) & Eq. (16) of BPCA-L1, 
we can see that BPCA-L1 is a general framework. Both 
PCA-L1 and 2DPCA-L1 are special cases of BPCA-L1. If 
each matrix is only one block, then BPCA-L1 degenerates 
into PCA-L1. If each row of the matrix is a block, BPCA-L1 
becomes 2DPCA-L1.

          

Figure 1. Transforming original image matrix to 3×3 block based vectored representation



992  Journal of Internet Technology Vol. 24 No. 4, July 2023

3  Problem Formulation

In Eq. (7), Eq. (10), Eq. (14), sample mean is assumed to 
be the optimal mean of ix . However, this assumption is 
incorrect in robust L1-norm-based BPCA methods. Lots of 
research work, such as optimal mean methods [15-17] or 
avoiding optimal mean methods [18-19] have attracted 
extensive attention. Inspired by these works, we generalize 
the BPCA framework with avoiding optimal mean.

3.1 Avoiding Optimal Mean BPCA-L1
Let X = {X1, …, Xn} denote n image matrices without 

mean-centered. Separate each image into m small blocks with 
the same number of pixels and get vectorization version of 

iX , which is denoted as v
iX , i.e., ( ) ( )

1{ , , }v i i
i mX x x=  . 

The sample mean of ( 1,2, , )v
iX i n=   is 

1 n
v
i

i
C X

n
= ∑ , 

that is to say the kth column of C is 
1

1 n
i

k k
i

c x
n =

= ∑ .

Theorem 1. The solution R* of BPCA which minimizes 
the reconstruction error based on Euclidean distance, i.e.,
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is likewise the solving strategy of the following issue
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Proof.

In Eq. (18), Let 
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expand the L2-norm of the matrix in terms of the column 
vectors, we get
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namely, the optimal mean is the mean of samples, i.e.,
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1
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I n  P C A / 2 D P C A ,  v a r i a n c e  m a x i m i z a t i o n  a n d 
reconstruction error minimization are dual problems. So, Eq. 
(17) can be converted to the following expression:
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In Eq. (22), we expand the L2-norm of the matrix in 
terms of the column vectors, then
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We denote the square L2-norm in G as trace, that is
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Let’s  subst i tu te  ( )

1

1 n
j

k k
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a x
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= ∑  in to  Eq.  (24)  and 

reformulate it as
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The trace of a scalar is itself, so
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In Eq. (18), let 
2

2
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H R X X= −∑ . Expand the 

square L2-norm of the matrix in H, wet get
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Denote the square L2-norm in H as trace, i.e.
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It is easy to turn into
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In keeping with Eq. (26) and Eq. (29), G and H have the 
same optimal solution obviously. 

The proof is completed.
We replace the L2-norm of Eq. (18) in Theorem 1 with 

L1-norm, then get the following problem formulation of 
Avoiding Optimal Mean BPCA-L1 which we refer to as 
BPCAL1-AOM.
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Note that the robust L1-norm-based BPCA methods often 
incorrectly uses the sample mean as the optimal mean, which 
affects the model performance. Problem formulation of Eq. 
(30) automatically avoids computing the optimal mean based 
on the L1-norm and makes assumptions on the central data 
unnecessary.

3.2 Avoiding Optimal Mean BPCA-L1 with Sparsity
Features extracted from images may contain redundant 

or irrelevant elements. Generally, a few outstanding features 
are very significant for image recognition, and these 
features often correspond to some key areas in the image, 
like mouth or eyes in the face. It makes sense to look for 
the most outstanding or significant elements from a great 

many of features. Sparsity usually contributes to the efficient 
execution of the algorithm, and sparse representation often 
corresponds to the local linear structure of the data. Sparse 
feature is efficient for classification and easy to interpret. 
Features extractions with the constraints of L1-norm, which is 
a common method for sparsity. Elastic net linearly combines 
L1-norm-measured lasso penalty with L2-norm-measured 
ridge penalty, which can overcome some limitations of lasso 
[20, 22]. In this methodology, we add constraints of L1-norm 
to variance and elastic net to feature vectors themselves to 
make features more robust and sparse. 

The objective function is designed as
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where R denotes projection matrix and RTR = I, η and λ are 
regulable coefficients of sparsity.

The problem formulation of Avoiding Optimal Mean 
BPCA-L1 with sparsity (BPCAL1S-AOM) is described as
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4  Problem Solution

The optimizations of Eq. (30) and Eq. (32) are difficult 
because L1-norm is nonlinear. In this section, we propose 
greedy strategies to address the multi-feature extraction 
problems.

4.1 Extracting Features by BPCAL1-AOM
Now, we develop a novel features extraction algorithm 

for BPCAL1-AOM to search the optimal feature r* that 
maximizes the variance of Eq. (30). 

Algorithm BPCAL1-AOM for d (d > 0) features extraction
1. Let τ = 1. τ is a counter for number of features
2. Find the optimal projection vector rτ

   1) Let t = 0. t is a counter for iterations
   2) Initialization: 
       Generate r(t) randomly subject to r(t)T r(t) =  1

3) Let 
( ) ( )
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5) Normalization: r(t + 1) = r(t+1) / ǁr(t + 1)ǁ2

6) Convergence test:
         if ǁr(t + 1) − r(t)ǁ2 > ε then go to step 3)
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         else rτ ← r, exit the iteration and go to 3. 
7) t = t +1
3. get deflated samples for greedy strategy:
    For all i ∈ {1, 2, ..., n} do

         ( 1) ( ) ( ( ))v v T v
i i iX X r r Xτ ττ τ τ+ = −

4. If τ < d, let τ = τ + 1 and go to step 2

The convergence of the algorithm of BPCAL1-AOM can 
be validated.

Theorem 2. In the above procedure of BPCAL1-AOM, 
the objective function holds non-decreasing, that is
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Proof.
In the right of inequality in Theorem 2,
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In the above procedure of BPCAL1-AOM algorithm
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Namely,

r (t + 1) and ( ) ( )

1 1 1

( )( )
m n n

i j
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−∑∑∑ are parallel.

It means that
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So, the proof is completed.
Because G(r(t)) is non-decreasing and the number of 

samples is limited, the iterative process of BPCAL1-AOM is 
convergent.

Theorem 3. In BPCAL1-AOM, the orthonormality of the 
features is guaranteed.

Proof.
By multiplying rτ

T to the deflated formulation of samples 
in BPCAL1-AOM, we get

               

( 1)

( ) ( ( ))

( ) ( ) 0.

T v
i

T v T T v
i i

T v T v
i i

r X

r X r r r X

r X r X
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τ τ

+
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That is to say, rτ is orthogonal to ( 1)v
iX τ + .

On the other hand, rτ+1 is a linear representation of the 
samples of ( 1), 1,2,v

iX i nτ + =  . That means rτ+1 is parallel 

to ( 1)v
iX τ + . So, rτ+1 is orthogonal to rτ.

In BPCAL1-AOM procedure, each rτ is normalized 
obviously. The proof is completed.

4.2 Extracting Features by BPCAL1S-AOM
To address the problem of Eq. (32), we proposed a novel 

robust and sparse BPCA-L1 method with avoiding optimize 
mean, which is referred to as BPCAL1S-AOM.

As we all know, it is extremely hard to obtain multiple 
sparse features simultaneously. Therefore, we calculate one 
optimal feature and deflate samples to extract the others 
greedily. 

From Eq. (31), we get the objective function for seeking 
one optimal vector as
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where pijk is polarity function as follows
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We try to construct appropriate iterative formulation of   
r(t + 1) for non-decreasing, i.e., G(r(t+1))≥ G(r(t)). Suppose 
r(t) is sparse, it contains some zero elements. Removed zero 
elements from r(t) and referred to as ( )r t . Accordingly, took 

out the elements from ( )i
kx  at the same indices and denoted as 

( )i
kx . For instance, if r(t) = (8, 0, 5, 0, 4)T and ( )i

kx = (51, 52, 

53, 54, 55)T, then ( )r t  = (8, 5, 4)T and ( )i
kx  = (51, 53, 55)T.

Now, we remove the zero from sparse feature and rewrite 
Eq. (33) as
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Eq. (36) above can be turned into
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               (37)

where 11
1( ) diag( ( ) , , ( ) )hD t r t r t

−−=  .

Following the classical approach, we construct an 
surrogate function of Eq. (37) [20] as
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           (38)

where ( | ( ))S r r t is a function of r, and ( )r t  is fixed.
( | ( ))S r r t  r e a c h e s  a  l o c a l  m a x i m u m  o n l y  i f 

( | ( )) 0S r r t
r
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, that is
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which means that
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Let *( 1)r t r+ = , therefore,
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Return the zeros to ( ) ( )( 1), ,i j
k kr t x x+  and get
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Evidently, (ηI + λD(t))−1 is a diagonal matrix, therefor, 
rewrite Eq. (42) as

( 1) ( ) ( ),r t a t b t+ =                                               (43)

where “°” indicates the element-wise product and
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                                           (45)

In Eq. (45), rp(t) is the pth entry of r(t).
We formally present an iterative algorithm for BPCAL1S-

AOM as follows.

Algorithm BPCAL1S-AOM for d(d > 0) features extraction
1. Let τ = 1. τ is a counter for number of features
2. Find the optimal projection vector rτ

   1) Let t = 0, t is a counter for iterations
   2) Initialization: 
       Generate r(t) randomly subject to r(t)T r(t) = 1

3) Let 
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5) Let 
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6) Let r(t + 1) = a(t) ° b(t) 
7) Normalization: r(t + 1) = r(t + 1) / ǁr(t + 1)ǁ2

8) Convergence test:
          if ǁr(t + 1) − r(t)ǁ2 > ε then go to step 3)
          else rτ ← r(t + 1), exit the iteration and go to 3. 
3. get deflated samples for greedy strategy:
    For all i ∈ {1, 2, ..., n} do

         ( 1) ( ) ( ( ))v v T v
i i iX X r r Xτ ττ τ τ+ = −

4. If τ < d, let τ = τ + 1 and go to step 2

We can futher validate the convergence of BPCAL1S-
AOM.

Theorem 4. In the procedure of BPCAL1S-AOM, the 
objective function holds non-decreasing:

 ( ( 1)) ( ( )).G r t G r t+ ≥                                            (46)

Proof.
Search optimal *r in surrogate function guarantee that
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Eq. (46) will be true if ( ( 1)) ( ( 1) | ( ))G r t S r t r t+ ≥ + .
Note that in Eq. (41), 
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So, we rewrite
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In Eq. (48) and Eq. (49), the 1st term holds the inequality:
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The 2nd term holds equality
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In 3rd term of ( ( 1) | ( ))S r t r t+ , there is
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The inequality in (52) guaranteed by Lemma 2 [20, 23].
Lemma 2. Any vector r holds the variational equality as:
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q q

r
r

ς
ς
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                                    (53)

and it reaches uniquely the minimum value while q qrς =  

for q = 1, 2, ...,  h. Follow (52), the 3rd term of G(r(t + 1)) 
holds the inequality:
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Combining (50), (51) and (54), we get 

 ( ( 1)) ( ( 1) | ( )).G r t S r t r t+ ≥ +                              (55)

The proof is completed.
Obviously, the number of samples is limited, the iterative 

process of BPCAL1S-AOM is convergent.

5  Experiments

For evaluating the performance of BPCAL1-AOM and 
BPCAL1S-AOM, we designed experimental schemes of 
classification and reconstruction upon three benchmark 
image sets: ORL, Yale and Feret. In BPCAL1S-AOM, there 
are seemed two joint tunable parameters of sparsity, η and λ. 
However, r(t + 1) in Eq. (42) will be normalized, that means, 
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Eq. (42) is equivalent to

 1
( ) ( )
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( 1)

( ) ( )( ) .
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So the sparse feature extraction only depends on the radio 
of η to λ. In experiment involve sparsity, we define ρ = log10 

η/ λ  and try to find the optimal value of ρ.

5.1 Classification
We applied BPCAL1-AOM and BPCAL1S-AOM to 

ORL and Yale in images classification and investigated the 
dependence of BPCAL1S-AOM on ρ, then compared them 
with 2DPCA, 2DPCA-L1, BPCA and BPCAL1-AOM.

Left of Figure 2 illustrate the great effect of ρ. In  ρ ∈

[−2, −1, 0, 1, 2], we find that ρ − 1 is a quite good value upon 
ORL. Left of Figure 3 shows a similar situation upon Yale 
but a better optional value of ρ is −2.

Figure 2 and Figure 3 depict the change of classification 
accuracies as the number of features increases. In general, the 
classification accuracies increase along with the number of 
features and reaches the maximum while the number is 5~10, 
then slightly declines and holds roughly the same. It means 
that the first serval features are adequate for recognition and 
surplus may deteriorate the performance. 

Comparing with other algorithms in classification 
experiments, we chose ρ = 1 upon ORL and ρ = −2  
upon Yale. Right of Figure 2 and Figure 3 show that the 
performance of BPCAL1-AOM and BPCAL1S-AOM are 
better than other methods. Compared with BPCAL1-AOM, 
Sparse features extracted by BPCAL1S-AOM not only have 
better semantics, but also contribute to better performance.

Figure 2. Classification accuracies of BPCAL1S-AOM upon ORL with various ρ and comparing with 2DPCA, 2DPCA-L1, 
BPCA, BPCAL1, BPCAL1-AOM

Figure 3. Classification accuracies of BPCAL1S-AOM upon Yale with various ρ and comparing with 2DPCA, 2DPCA-L1, 
BPCA, BPCAL1, BPCAL1-AOM

5.2 Reconstruction Error
In the experiments, we randomly selected 20 percent of 

all images and added random rectangle noises. Figure 4 and 
Figure 5 demontrates the average reconstruction error in 
experiments upon ORL and Yale database. The experimental 
results indicate that the value of sparse parameter ρ has a 
great impact on the algorithm performance. We can select 

appropriate ρ value in practice to obtain the sparse features 
with excellent performance. In the comparison experiment 
with other methods, we let ρ = 3  and observed that all 
reconstruction errors decrease with the increase of the feature 
number. The performance of BPCAL1-AOM and BPCAL1S-
AOM are better than other algorithms.
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5.3 Reconstruction of Image
This experiment is upon the Feret database. Figure 6 

illustrates the original images with or without noise and the 
reconstructed ones using 5 features. Three origin images 
are at column 1. The following six columns depict the 
rebuilding versions using the first 5 features, which produced 
respectively by 2DPCA, 2DPCA-L1, BPCA, BPCA-L1, 
BPCAL1-AOM, BPCAL1S-AOM.

6  Conclusion

We propose two avoiding optimal mean Block PCA 

methods which are denoted as BPCAL1-AOM and 
BPCAL1S-AOM respectively. These two robust methods take 
full advantage of the partial association among neighboring 
pixels. The extracted sparse features are semantic and 
effective. These virtues come from block-based computation, 
sparsity constraints of elastic net and the utilization of L1-
norm. On the other hand, these two L1-norm-based robust 
methods automatically avoid calculating the optimal mean 
without assuming zero average. The proposed approachs 
exert on several image application problems upon ORL, Yale 
and Feret. Experiments above demonstrate the efficacy of  
BPCAL1-AOM and BPCAL1S-AOM.

Figure 4. Average reconstruction errors of BPCAL1S-AOM upon ORL with various ρ and comparing with 2DPCA, 
2DPCA-L1, BPCA, BPCAL1, BPCAL1-AOM

Figure 5. Average reconstruction errors of BPCAL1S-AOM upon Yale with various ρ and comparing with 2DPCA, 
2DPCA-L1, BPCA, BPCAL1, BPCAL1-AOM

Figure 6. Image reconstructions: First column: original. Second to seven column: 2DPCA, 2DPCA-L1, BPCA, BPCA-L1, 
BPCAL1-AOM, BPCAL1S-AOM
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