
Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 975

*Corresponding Author: Tie Bao; E-mail: baotie@jlu.edu.cn
DOI: 10.53106/160792642023072404015

Deep Learning-Based Self-Admitted Technical Debt Detection
Empirical Research

Yubin Qu1,2,3, Tie Bao1*, Meng Yuan1, Long Li4

1 College of Computer Science and Technology, Jilin University, China
2 School of Information Engineering, Jiangsu College of Engineering and Technology, China

3 Guangxi Key Laboratory of Trusted Software, Guilin University of Electronic Technology, China
4 College of Cyber Security, Jinan University, China

yubinqu@icloud.com, baotie@jlu.edu.cn, wojade@gmail.com, lilong@guet.edu.cn

Abstract

Self-Admitted Technical Debt (SATD) is a workaround
for current gains and subsequent software quality in software
comments. Some studies have been conducted using NLP-
based techniques or CNN-based classifiers. However, there
exists a class imbalance problem in different software
projects since the software code comments with SATD
features are significantly less than those without Non-SATD.
Therefore, to design a classification model with the ability
of dealing with this class imbalance problem is necessary for
SATD detection. We propose an improved loss function based
on information entropy. Our proposed function is studied
in a variety of application scenarios. Empirical research
on 10 JAVA software projects is conducted to show the
competitiveness of our new approach. We find our proposed
approach can perform significantly better than state-of-the-art
baselines.

Keywords: Deep learning, Convolutional neural network,
Long short-term memory, Loss function, Class imbalance

1 Introduction

The software development process often requires
a balance between quality and speed of development.
Technical debt describes a sub-optimal choice in the software
development process. This choice needs to be addressed
by repayment at a later stage [1]. If we fail to pay off our
technical debt in a timely manner, there is a high risk of
potential harm to our software products [2-4]. We are more
concerned with technical debt introduced at the initiative of
the programmer, which is described through code comments,
called Self-admitted technical debt (SATD) [5].

The prevalent phenomenon of SATD was first discovered
by Potdar et al. The major difference between SATD and
other technical debts is that SATD exists only in code
comments. For example, the comment “// Experimental/
Testing, will be removed” from the project “apache-
ant1.7.0” implies a defect, and we should pay this technical
debt. Otherwise there is a high risk that such experimental
code will cause unexpected production environment errors.

This kind of experimental code is common in the software
development process, and timely detection and correction of
experimental code is an effective way to improve software
quality. In recent years, much previous research has proved
that although the ratio of SATD code in projects is not high,
it will increase the complexity of the software and risk of
software product downtime in production environments [6].
Detecting SATD and devoting more time and manpower to
the software testing process can effectively reduce potential
software risks.

To solve the problem of SATD detecting, techniques
using machine learning have been studied. Some studies
resorted to manually detect SATD patterns [5-7]. The biggest
shortcomings of pattern recognition-based SATD detection
methods are that only part of SATD patterns can be used
in subsequent projects. Natural language processing (NLP)
technology has been used to detect SATD [2]. Maximum
entropy classifiers are trained in the dataset to identify
two common types of technical debt, including design and
requirement debt. Huang et al. proposed to treat SATD as
text, and they introduced a text analyzing-based machine
learning approach to detect SATD using feature selection
and Naive Bayes Multinominal classifier [8]. Ren et al.
proposed that convolutional neural networks could be
employed to discover different semantic features of SATD
through different convolutional kernels, thus ultimately
enabling the detection of SATD [9-10]. Recently, deep
learning techniques based on deep neural networks have
been successfully applied in a wide range of different
fields, including the field of graphic image processing for
object recognition, natural language processing, speech
recognition, and so on. In particular, convolutional neural
networks use filters to extract key information from the
local view and obtain the core characteristics of the research
objective. Related previous studies can be summarized into
the following categories: human-summarized patterns, NLP-
based techniques, text-mining techniques, and CNN-based
techniques. All these research methods are evaluated on
open-source projects. For example, the experiment of text-
mining techniques has been conducted in eight different
areas of open source software projects [8]; an extensive set
of experiments of neural network-based detection method
is conducted for 10 open-source projects [10]. For these

976 Journal of Internet Technology Vol. 24 No. 4, July 2023

open-source projects, there exist a class imbalance problem
in experimental datasets. A cross-entropy loss function that
considers different types of weights is designed to cope with
imbalances in data sets using CNN-based techniques [10-11].
The cross-entropy loss function that considers different types
of weights was effective because of the feature extraction
ability using one-dimension convolution kernels. For solving
the class imbalance, the loss function using cross entropy that
considers different types of weights can alleviate performance
loss. This method can avoid the over-fitting problem and
the performance loss problem caused by undersampling
[12-14]. However, the classification difficulty of different
instances is not considered. As shown in Lin’s research
[12], although the loss value of a large number of easy-to-
classify instances is small, it will also affect the performance
of the classification model through accumulation effects.
Moreover, deep learning techniques have been extremely
successful in several application areas and have achieved
classification performance that even surpasses that of
humans. When detecting SATD, DL can learn the intrinsic
characteristics from labeled instances [10, 15]. Therefore, we
propose a novel loss function based on information entropy
for SATD using DL. In the novel loss function, instances
that are difficult to be classified are given a higher penalty,
and instances that are easy to be classified are given a lower
penalty.

To be fair, we conducted experiments on 10 open source
software projects coded in JAVA covering different domains
to validate our proposed approach. The data set of source
code comments contains a total of 259,229 comments [2, 10].
For investigating the differences of different technical debts,
five different types of technical debts, are researched using
our proposed focal loss compared with the maximum entropy
classifier. For investigating class imbalance problems,
within-project classification, cross-project classification,
and performance differences of different neural network
structures, two types of instances, SATD or NON-SATD are
researched. Precision, recall, and F1-measure are computed.
The Wilcoxon Signed-rank Statistical test is used to test if the
differences of different metrics are statistically significant at
the p-value <0.05. Cohen’s d effect size is used to quantify
the amount of difference.

We have summarized the contributions of the study as
follows:

1. We present a novel loss funct ion based on
information entropy using DL for the class imbalance
problem on SATD detection.

2. We are the first to investigate the impact of different
technical debts using CNN-base classifiers. The
experimental results show that our approach
outperforms the NLP-based techniques.

3. The source code associated with the SATD project
has been contributed to GitHub to facilitate
comparative research by other researchers. (https://
github.com/qyb156/SATD_EmpricalResearch_DL)

We have structured our paper in the following way.
Section II gives a brief overview of the background of Neural
Networks, the class imbalance problem, and SATD. Section
III describes the proposed loss function in detail, including
the design motivation and implementation details of the loss

function that considers different types of weights. Section IV
gives a brief description of the experimental design we used,
in which describes the details of the basis of the experiment
in detail, including the subjects, etc. Section V gives a
detailed description of the results of our experiments. Section
VI explores the experimental design in terms of internal and
external threats. Section VII provides an overview of future
research directions and offers research insights.

2 Background

In this subsection we would like to give a brief statement
of the technical basis of the study on neural networks. Then
we discuss the class imbalance problem. Finally, we analyze
the related work for SATD.

2.1 Neural Networks
The term deep learning was first used and described in

2006 [16]. Artificial neural networks were regarded as having
the ability to learn the essential characteristics from raw data.
We learned this ability step by step through a multilayer
neural network [17]. Different from feature engineering
in traditional machine learning, this learning method was
called end-to-end learning. In 2012, Deep Convolutional
Neural Networks (CNN) were introduced for ImageNet
classification. The results on the test data show that CNNs
clearly outperform other methods [18]. Recurrent neural
network (RNN) is another widely used neural network. LSTM
was firstly proposed in 1997 [19] to avoid gradient vanishing
problems. LSTM was good at handling events with long
delays and time intervals in time series and is widely used
by many scholars conducting research on natural language
processing [20]. By introducing the Attention mechanism,
the distance between any two positions can be reduced to a
constant [21]. BERT (Bidirectional Encoder Representations
from Transformers) was firstly proposed in 2018 and it was
firstly used in Google [22]. Language representation model
and bidirectional transformers are the core of BERT. Due
to the great success of DL in image recognition and other
fields, both academia and industry devoted great enthusiasm
to various application fields. In software engineering, deep
learning has gradually been popularized and applied in
various research directions, such as requirements engineering
[23-24], software design [25-27], software development
[28-29], software code clone detection [30], software defect
prediction [31-32], etc. However, based on the recent surveys
[33], prior to 2015, deep learning was not valued and rarely
widely adopted in software engineering. From 2015 to now,
the studies of software engineering research based on deep
learning have grown steadily. For SATD, some studies were
using DL. For example, TextCNN was introduced to interpret
the SATD pattern [10]. Attention-based Neural Networks
were introduced to SATD detection [15]. They introduced
word embedding techniques to identify SATD only in the
language model construction phase [34].

2.2 Class Imbalance
Class imbalance exists in various fields. Though the ratio

of the class with fewer data is low, the class with fewer data

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 977

had greater influence. For example, when checking lung
cancer, most people tend to be healthy, but few people with
potential lung cancer should be considered more. In software
engineering, there is also the class imbalance for the SATD
data set.

There are several traditional approaches for class
imbalance [35], (1) oversampling methods. This method
uses random sampling repeatedly for the minority class. For
DL, this oversampling method may slow down the training
speed and cause an overfitting problem. (2) undersampling
method. For SATD, this method may exacerbate the problem
of insufficient data and drop valuable instances. (3) cost-
sensitive method. Classification models can be reformed,
such as cost sensitive learning framework, cost sensitive data
distribution method with Adaptive Boosting, cost-sensitive
neural network [36]. We have designed different types of
weights in our loss function to address the problems posed by
different case distributions.

2.3 Self-Admitted Technical Debt
Cunningham firstly introduced technical debt to describe

a scenario in which short-term metrics such as quality of
software development and speed of software development
delivery need to be considered together [1, 8]. Previous
studies showed that technical debt was inevitable, and if it
cannot be dealt with in time, it would reduce product quality
and increase system risk [3, 6]. However, technical debt is
not explicitly present in the code comments. In previous
studies of technical debt, the static analysis of code has been
studied in depth, yet the potential technical debt in code
annotations has not been considered [37-38]. Recently Self-
Admitted Technical Debt was proposed [5]. This type of
technical debt is introduced by programmers on their own
initiative, depending on the needs of the software project,
etc. Its purpose is to provide sub-optimal technical solutions
for the current software code, etc., and these codes may be
optimized through software refactoring. Although the ratio
of SATD in the entire software project is not very high, its
impact should not be underestimated. Because rule-based
detection could not be used for code comments due to its
natural non-structural characteristics, source Code comments
with SATD cannot be automatically detected by computers.

Based on the recent survey [39], six different approaches
at the file level were introduced to identify SATD. These
methods for detecting SATD can be broadly divided into
two different types: (1) pattern-based approaches for
textual patterns in comments; (2) machine learning-based
approaches. In previous studies, SATD detection mostly used
text mining methods [2, 8]. Software engineering has also
made extensive use of deep learning techniques and has made
extensive progress [33].

3 Our Proposed Approach

In this section, we briefly describe the SATD detection
process using DL. Figure 1 shows SATD detection process in
our study. Our proposed loss function based on information
entropy is described in detail.

3.1 SATD Detection Process using DL
As shown in Figure 1, there are three main phases:

collecting training data sets from open-source projects,
optimizing loss function for DL, and SATD prediction.
First of all, the code comment corpus was collected from 10
open-source projects. For different projects, there is a class
imbalance problem [15]. In prior studies, the performance
was evaluated in two aspects: within-project aspect, cross-
project aspect [44]. For the within-project aspect, 10-fold
cross-validation was performed to assess the classification
performance. For the cross-project aspect, the experiments
were conducted in ten rounds. In each round nine projects
were used to train DL models and the remaining project was
used to test their model. There is an obvious class imbalance
problem in every project. The ratio of SATD ranges from
2.36% to 15.90%. The count of SATD ranges from 104 to
1,413. For example, In the case of ten fold cross validation,
when 90% of the data is used as the training dataset, then the
remaining 10% of the dataset is used to test the performance
of the model. For the project EMF, there may be about 94
(104×0.9) instances used to train the DL model. This means
that there will be a small number of instances used to train
DL models. As we all know, the larger-scale data sets can
help train the model. Therefore, an intuitive approach by
merging multiple open-source data sets to a whole data set
can be adopted. The intuitive basis for this approach is that in
different projects, code comments have potentially consistent
semantic features.

Secondly, the loss function was optimized in different
neural networks. As shown in Figure 1, neural networks
using specially designed loss function were validated in the
validation data set to determine the best hyper-parameters.

CNN was adopted in this research using the same network
described by Ren et al. [10]. This network was inspired by
Kim’s TextCNN [9]. Semantic analysis of code annotations
by convolutional neural networks is obtained by operating
on distributed vector representations of the input by different
convolutional kernels. The final output is obtained through a
number of different network layers, and based on the output
values it is determined whether the code annotations contain
SATD. Hyperparameters of our CNN network are the same
as Ren’s CNN since there were the best hyperparameters
on 10 open-source projects. Word embeddings were used
as word representations since the comments’ rich semantic
and syntactic features can be captured. To be consistent
with GloVe [40], we set the dimension of the SATD vector
as 200. Kim’s CNN implementation and Ren’s CNN are
based on TensorFlow. Based on the same CNN structure, we
reproduced our TextCNN using PyTorch. There are a number
of key deep neural network hyperparameters to choose,
including the dimensionality of the word embeddings for
code annotations and the size and number of convolutional
kernels for semantic analysis, and so on. Glove was used
in our TextCNN and the dimension of the SATD vector is
set to 200, which is different form Ren’s word embedding
dimension (300). Other hyperparameters discribed before in
out TextCNN are same as Ren’s TextCNN. The difference
between our TextCNN and other architectures is that we
devise a novel loss function to solve the class imbalance
problem in the code annotation dataset. In addition to the

978 Journal of Internet Technology Vol. 24 No. 4, July 2023

hyperparameter tuning, the termination of training CNN in
time is a common means to avoid the over-fitting problem.
Our designed model has excellent scalability and can be
extended to model BERT at any time. In our experiment,
the lstm model is based on PyTorch using neural network
modules. In order to be consistent with TextCNN, GloVe
is used to embed code comments and the word embedding
dimension is 200. Similarly, in the training process of our
lstm, we observed the trend of loss function reduction in
the validation data set. When we found that the loss in
the training data set of ten consecutive batches no longer

decreased, we terminated lstm training and saved the network
structure.” In our experiment, the BERT pretrained model
based on PyTorch is used. The pytorch_model module is
downloaded locally and loaded using PyTorch. To be fair, the
default parameters of the BERT pretrained model are used.
Similarly, in the training process of our Bert, we observed
the trend of loss function reduction in the validation data
set. When we found that the loss in the training data set of
ten consecutive batches no longer decreased, we terminated
BERT training and saved the network structure.

Figure 1. The flow of our proposed SATD detection approach

3.2 Our Improved Focal Loss based on Information
Entropy
Cross entropy, from Shannon’s information theory,

measures the similarity of two different data distributions
in terms of their similarity. This method is intuitive and
continuous and can be used to optimize the loss value in deep
neural networks. The cross entropy loss function was firstly
proposed for finding the optimization results for specified
domains [41].

y specifies the class of different SATD types, y ∈ {0, 1},
and q specifies the estimated probability with label y =1. If
the label y =1, the corresponding source comment contains
SATD.

(,) 1*log() 0*log().Loss y q q q= − − (1)

I f the l abe l y =0 , the re i s NON-SATD in the
corresponding source comment.

(,) 0*log() (1 0)*log(1).Loss y q q q= − − − − (2)

We redefine the cross-entropy loss function formally as
Equation 3.

log() 1
(,) .

log(1) 0
q if y

Loss y q
q if y

− =
= − − =

 (3)

For convenience, qt is defined as:

 1
.

1 0t

q if y
q

q if y
=

=  − =
 (4)

Equation 3 can be rewritten as Equation 5.

(,) log().tLoss y q q= − (5)

From Lin’s research [12], a loss with non-trivial
magnitude is incurred for instances, which can be easily
classified. These instances are often in the majority category.
If there is a serious class imbalance, the loss value of a large
number of code annotations containing SATD accumulates
and exceeds that of code annotations with a small number of
SATD. Probably the neural networks using the loss function
shown in Equation (5) tends to predict the class with fewer
data as the wrong class.

The cost-sensitive approach introduces the design of
weights so that class imbalances can be dealt with, which
was used in Ren’s study [10]. For example, y =1 corresponds

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 979

to the SATD instances with the size m and y =0 corresponds
to the NONSATD instances with the size n. Equation 3 can
be rewritten as Equation (6)

log() 1
(,) .

log(1) (1) 0

nq if y
m nLoss y q

nq if y
m n

− × = += 
− − × − =
 +

 (6)

For convenience, ratio t is defined as:

 1
 .

1 0
t

n if y
m nratio

n if y
m n

 = += 
 − =
 +

 (7)

Equation 5 can be rewritten as Equation 8.

(,) log() .t tLoss y q q ratio= − × (8)

The focal loss is proposed for dense detectors [12].
The intuition of this approach is that we want to reduce the
weight of a large number of easily classifiable instances so
that they have less influence in the loss function optimization
process, thereby reversing the influence of a few classes. The
Equation (8) can be rewritten as Equation (9).

(,) log() (1) .t t tLoss y q q ratio q γ= − × × − (9)

This loss function tunes the focus using a modulating
factor (1-q)γ with tunable focusing parameter γ ∈ [0,
5]. The problem for this kind of sepcified loss is that a
hyperparameter is introduced. Hyperparameter optimization
has always been a tedious and time-consuming process [42].
Through empirical research, γ = 2 can work best in their
experiment for object detection [12].

To solve the problem of hyperparameter optimization of
the modulating factor, we propose an improved loss function
based on information entropy. Information entropy can be
formulated for binary classification as Equation (10).

1

0
() () log(()).i ii

Entropy p p x p x
=

= −∑ (10)

pi(x) indicates the estimated probability of the i-th class.
Information entropy can be used to measure the amount of
information contained in the current predicted instance. The

greater the amount of information, the lower the certainty
that the current instance is predicted, and the instance should
be considered easy to classify; conversely, an instance with
a lower amount of information should be considered hard to
classify. To amplify the influence of information entropy on
hard-to-classify instances, the influence factor θ is shown in
Equation (11).

3(2 ()) .Entropy pθ = + (11)

In this subsection, we first introduce the motivation of
using information entropy to modify the modulating factor.
Then we describe the computing process of information
entropy. In active learning, uncertainty sampling is
considered to be the simplest and most commonly used
framework [43-44]. There are some strategies to implement
uncertainty sampling, in which the most popular sampling
strategy uses entropy as an uncertainty measure [45] shown
in Equation (10). Using entropy as an uncertainty measure is
investigated in our prior work [46]. The reason that Entropy
can be used for uncertainty sampling in active learning or in
our approach as shown in Equation (11) shows that this is
a metric centered on the amount of information, which can
represent the amount of information needed to “encode” a
distribution. This method can be directly used for machine
learning models based on statistical probabilities [47]. Then
in our experiment, one source comment from the test data
set is firstly embedded. The output word-embedding result is
inputted into our trained TextCNN model. For this instance,
p(x) is computed and the Entropy according to Equation
(10) is computed. If p(x) is closest to 0.5, the Entropy may
be close to 1 and θ can be amplified; If p(x) is closest to 0
or 1, the Entropy may be close to 0 and the θ almost cannot
be changed. The process of computing Entropy is shown in
Figure 2.

Equation 9 can be rewritten as Equation 12.

(,) log() .t tLoss y q q ratio θ= − × × (12)

Compared with Equation 9, some important features are
considered in Equation 12. First, the class imbalance problem
is considered by using the factor ratio t . This cost sensitive
approach, which can deal with the class imbalance problem,
is used in previous studies [10, 12]. Second, we are still
using cross-entropy to calculate the loss values directly from
different data distributions. Third, there is still a modulating
factor in Equation 12.

Figure 2. The process of computing entropy

980 Journal of Internet Technology Vol. 24 No. 4, July 2023

Table 1. Comparison of impact factor amplification
p = 0.01 p = 0.1

Impact factor of focal loss ((1−qt)
2) 0.9801 0.81

Impact factor of our loss function (θ) 7.0691 3.588

However, there is an obvious difference that the
loss function is designed according to the difficulty of
classification. In Equation 9, there is a hyperparameter γ
in the modulating factor. In Equation 12, there is not any
hyperparameter and the modulating factor, which is replaced
by the θ. Information entropy is used to measure the difficulty
and the modulating factor is amplified. As shown in Table
1, for example, the estimated probability p is from p = 0.01
to p = 0.1. If the estimated probability p = 0.01 representing
an instance with SATD, this indicates that the classification
difficulty has increased tenfold compared with the estimated
probability p = 0.1. For focal loss, there is a little change in
magnification from 0.81 to 0.98. But for our proposed loss
function, the magnification is from 3.588 to 7.069. Using our
approach, the loss function has been significantly enlarged
and strengthened for cases that are not easy to classify.

4 Experimental Setup

In this section, we first briefly describe the motivation for
our study. Based on this research question, we then describe
our entire experimental procedure from various perspectives,
including experimental design.

4.1 Research Questions
The detection performance of SATD is our primary

concern when conducting research, so we must first address
the question of whether our method is optimal. Research
questions (RQs) are designed for our empirical study:

RQ1: Whether better classification performance than
NLP can be achieved using our designed method?

The motivation of RQ1 is that we compare our proposed
approach with NLP techniques between the 10 selected
projects for different technical debt types. For design and
requirement debt, the maximum entropy classifier can
achieve better performance using NLP techniques [2].

RQ2: Can our proposed approach of improved focal loss
solve the class imbalance problem for SATD detection?

The motivation of RQ2 is that, in the training data set, the
class imbalance problem is widespread. We propose to use
an improved focal loss to solve this problem. To verify the
effectiveness of our proposed approach, we need to compare
it with the normal cross-entropy loss function.

RQ3: Is it more effective using our improved focal loss
than weighted loss for within-project classification?

The motivation of RQ3 is that whether our proposed
approach can outperform the weighted loss approach.
Convolutional neural networks are used to extract features
from code comments [10]. For different projects with
different SATD characteristics, we need to investigate which
models are able to learn the most features from the historical
dataset.

4.2 Dataset Description
We conducted our experiments on 10 public open-source

projects [2], including Apache Ant, and so on. These datasets
are used by other comparison strategies and they allow the
performance of the different strategies to be fully evaluated
[8, 10]. The dataset description is shown in Table 2. Since
the ratio of SATD is from 2.36% to 15.90%, there is an
obvious class imbalance in every project. The ten datasets
were collected from different types of projects, making these
data highly representative. Also because of the different sizes
of these software projects, it makes the evaluation of the
strategies more credible. Most of these projects are coded in
Java or for Java platforms.

Table 2. Statistics of SATD comments in our benchmark
gathered from open-source projects
Project Release Comments SATD % of SATD
Ant 1.7.0 4,137 131 3.17%
ArgoUML 0.34 9,548 1,413 14.80%
JMeter 2.10 8,162 374 4.58%
Columba 1.4 6,478 204 3.15%
EMF 2.4.1 4,401 104 2.36%
Hibernate 3.3.2 2,968 472 15.90%
JEdit 4.2 10,322 256 2.48%
JFreeChart 1.0.19 4423 209 4.73%
JRuby 1.4.0 4897 662 13.52%
SQuirrel 3.0.3 7230 285 3.94%

This data was labelled by Maldonado et al. They followed
the following steps for data collection as shown in Figure 3,
including pre-processing the data, cleaning the data etc. [2].

Figure 3. The process of data collection

Firstly, they used a plug-in called JDeodorant to collect
raw code comments from projects coded in JAVA, and the
total number of data cleaned was 25,923.

Secondly, by introducing several heuristic data cleaning
strategies, they obtained a synthesis of 62,566 training data.
These heuristic strategies were effective in reducing the
workload and improving the quality of the dataset.

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 981

Finally, to address the issue of possible bias in the
labelled data, they conducted statistical tests by means of
stratified sampling. The results of the test showed that the
sampling results are highly consistent across different user
groups.

4.3 Performance Evaluation Measures
To investigate the impact of different loss functions based

on different deep learning models, we consider the following
performance measures: precision, recall, and F1-measure.
These performance evaluation measures have been used in
previous studies for evaluating the results of experiments on
the imbalanced datasets [2, 8, 10].

4.4 Experimental Design
The experiment is repeatedly performed m times (m=10).

The data is sampled using the sampling method described
earlier.

The experimental environment is a workstation
computer equipped with Nvidia RTX 2070 GPU, Intel(R)
Core i7-10700K CPU and 64GB RAM. The experimental
environment runs on the Windows 10 operating system.

5 Experimental Results

In this section, we report and analyze experimental results
to answer related research questions.

5.1 Result Analysis for RQ1
Approach. For this research question, we would like

to investigate how effectively we can classify self-admitted
technical debt comments using our proposed approach. We
train the TextCNN using our improved focal loss using the
selected 10 projects. Each source comment has a category
If there is no SATD in the code comment, it is marked as
without-technical-debt; if the code comment contains a
defect, it is marked as defect-debt. In keeping with previous
research, nine software projects were randomly selected

and the data from each project were randomly sampled and
finally combined as a training dataset. The remaining one
software project was also used as a test dataset for model
performance evaluation. We use the final remaining dataset
to evaluate the performance of our model by the TextCNN
with our improved focal loss. Using comments from 9 out of
10 projects to create the training dataset is reasonable. The
training comments from different domains of applications
can make convolutional neural networks learn more deep
features.

The classifier used for comparison is a maximum
entropy classifier. We implement the classifier based on the
Stanford Classifier, which is a Java implementation. A series
of data items are input to the maximum entropy classifier,
and the features of the data items are automatically learned
by the maximum entropy classifier. The classifier uses the
maximum posterior decision rule and selects the category
with the highest probability. In order to fairly compare the
performance of the different strategies, the results mentioned
in the paper were used directly when evaluating two specific
technical debts: design debt and requirement debt [2].

Results - design debt. As shown in Table 3, for the
design type of SATD, our proposed method outperforms the
NLP-based detection method in most cases in terms of F1
metrics. The range of values for the indicator F1-measure
is [0.54, 0.98], while we obtain a mean value of 0.6953 for
the F1-measure indicator. In contrast, the natural language
processing-based classifier, whose F1-measure takes values
in the range [0.47, 0.814], has a mean value of 0.62. The
average value has increased by 12.13%. However, we also
see that in these two projects: ArgoUML and Hibernate,
our classifier performance is weaker than the NLP-based
classifier. In addition, we see that on the three test projects
(Columba, EMF, and JEdit) with a higher-class imbalance
rate, our classifier has a larger performance improvement
than the NLP-based classifier. In particular, in the JEdit
project, the performance has been improved by 90%. This is
probably related to our classifier’s ability to focus on class
imbalance problems in the training dataset.

Table 3. Comparison of F1-measure between our approach and NLP-based approach for design debt
Project SATD Sample count % of SATD Our NLP Imp. Over NLP
Ant 95 4098 2.32% 0.554 0.517 7.16%
JMeter 316 8057 3.92% 0.78 0.731 6.70%
ArgoUML 801 9452 8.47% 0.659 0.814 −19.04%
Columba 126 6468 1.95% 0.65 0.601 8.15%
EMF 78 4390 1.78% 0.663 0.47 41.06%
Hibernate 355 2968 11.96% 0.658 0.744 −11.56%
JEdit 196 10322 1.90% 0.98 0.509 92.53%
JFreeChart 184 4408 4.17% 0.54 0.492 9.76%
JRuby 343 4897 7.00% 0.8 0.783 2.17%
SQuirrel 209 7215 2.90% 0.669 0.54 23.89%

Results - requirement debt. As shown in Table 4, for the
requirement type of SATD, our proposed method outperforms
the NLP-based detection method in most cases in terms of F1

metrics. We see that for most of the projects, the F1-measure
achieved by our approach is higher than the NLP-based
approach. Using our proposed method, the F1-measure metric

982 Journal of Internet Technology Vol. 24 No. 4, July 2023

has a range of [0.447, 0.998] and a mean value of 0.6577, in
contrast to the natural language processing classifier, which
has a range of [0.091, 0.804] and a mean value of 0.403.
The average value has increased by 63.04%. Compared with
the experimental results for the design debt, we see that
our classifier has a large performance improvement on all
projects (except for the Columba project). In addition, we
see that on the three test projects (Ant, JMeter, and JEdit)
with a higher-class imbalance rate, our classifier has a larger
performance improvement than the NLP-based classifier.
In particular, in the JEdit project, the performance has been
improved by 997%.

Results - defect debt, documentation debt, and test
debt. Table 5, Table 6 and Table 7 present the F1-measure of
the two approaches, as well as the improvement achieved by
our approach compared to the NLP-based approach. From the
experimental data we can intuitively see that our approach
outperforms the natural language processing based classifier
significantly. From the experimental results, we can see that
for the serious class imbalance problems, the performance
using NLP-based approach is poor, and the recall rate is
almost 0. The classifier we proposed obviously has a very
strong generalization and it can deal with class imbalance
problem.

Table 4. Comparison of F1-measure between our approach and NLP-based approach for requirement debt
Project SATD Sample count of SATD Our NLP Imp. Over NLP
Ant 13 4098 0.32% 0.784 0.154 409.09%
JMeter 21 8057 0.26% 0.447 0.237 88.61%
ArgoUML 411 9452 4.35% 0.631 0.595 6.05%
Columba 43 6468 0.66% 0.564 0.804 −29.85%
EMF 16 4390 0.36% 0.908 0.381 138.32%
Hibernate 64 2968 2.16% 0.52 0.476 9.24%
JEdit 14 10322 0.14% 0.998 0.091 996.70%
JFreeChart 15 4408 0.34% 0.487 0.321 51.71%
JRuby 110 4897 2.25% 0.5 0.435 14.94%
SQuirrel 50 7215 0.69% 0.738 0.54 36.67%

Table 5. Comparison of F1-measure between our approach and NLP-based approach for defect debt
Project SATD Sample count of SATD Our NLP Imp. Over NLP
Ant 13 4098 0.32% 0.753 0.075 904.00%
JMeter 22 8057 0.27% 0.471 0.065 624.62%
ArgoUML 127 9452 1.34% 0.407 0.12 239.17%
Columba 13 6468 0.20% 0.717 0 +∞
EMF 8 4390 0.18% 0.918 0 +∞
Hibernate 52 2968 1.75% 0.422 0.16 163.75%
JEdit 43 10322 0.42% 0.994 0.09 1004.44%
JFreeChart 9 4408 0.20% 0.667 0 +∞
JRuby 161 4897 3.29% 0.187 0.15 24.67%
SQuirrel 24 7215 0.33% 0.8 0.041 1851.22%

Table 6. Comparison of F1-measure between our approach and NLP-based approach for documentation debt
Project SATD Sample count % of SATD Our NLP Imp. Over NLP
Ant 0 4098 0.00% 0 0
JMeter 3 8057 0.04% 0.95 0.5 90.00%
ArgoUML 30 9452 0.32% 0.694 0.044 1477.27%
Columba 16 6468 0.25% 0.68 0.027 2418.52%
EMF 0 4390 0.00% 0 0 −
Hibernate 1 2968 0.03% 0.96 0 +∞
JEdit 0 10322 0.00% 0 0 −
JFreeChart 0 4408 0.00% 0 0 −
JRuby 2 4897 0.04% 0.9 0 +∞
SQuirrel 2 7215 0.03% 0.998 0.056 1682.14%

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 983

5.2 Result Analysis for RQ2
Approach. Ren’s TextCNN model [10] is trained using

two kinds of loss functions. While the cross-entropy loss
function is still used to calculate the loss values due to
different distributions, we have redesigned and implemented
an information entropy-based loss function based on our
proposed loss function. In order to be consistent with
the previous study for subsequent comparisons, the
hyperparameters of the deep neural network layers are
the same as the model of Ren et al. We reimplement the
TextCNN model using Pytorch. Nine of the project comments
are used to train the classification model and the remaining
project is used for the test data set. Therefore, there are 10
projects to be computed. Precision, recall, and F1-measure
are used to evaluate different loss functions.

Results. The comparison results are shown for different
loss functions in terms of precision, recall, and F1-measure
as Table 8. It is very intuitive to see that our proposed method
has various degrees of performance improvement over
the original method. The precision value of our approach
increases by 9.34% on average; The recall value of our
approach increases by 15.78% on average; The F1-measure
value of our approach increases by 13.20% on average.
The SATD ratio of the Ant project is 3.17%. We can see the
precision value increases by 27.62% and the recall value
increases by 17.19%. The SATD ratio of the EMF project is
2.36%. We can see the recall value increases by 42.10% and
the F1-measure value increases by 16.80%. Therefore, we
believe that our approach can effectively deal with the class
imbalance problem for SATD detection.

Table 7. Comparison of F1-measure between our approach and NLP-based approach for test debt
Project SATD Sample count % of SATD Our NLP Imp. Over NLP
Ant 10 4098 0.24% 0.836 0.143 484.62%
JMeter 12 8057 0.15% 0.746 0.14 432.86%
ArgoUML 44 9452 0.47% 0.661 0.01 6510.00%
Columba 6 6468 0.09% 0.88 0.29 203.45%
EMF 2 4390 0.05% 0.986 0 +∞
Hibernate 0 2968 0.00% 0 0 −
JEdit 3 10322 0.03% 0.999 0.8 24.88%
JFreeChart 1 4408 0.02% 0.952 0 +∞
JRuby 6 4897 0.12% 0.75 0 +∞
SQuirrel 1 7215 0.01% 0.994 0.5 98.80%

Table 8. Precision, recall, F1-measure of our approach with improved focal loss versus normal loss (NL)
Precision Recall F1-measure

Project NL Our Improv. NL Our Improv. NL Our Improv.
Ant 0.478 0.61 27.62% 0.64 0.75 17.19 0.547 0.673 23.00%
ArgoUML 0.81 0.85 4.94% 0.912 0.919 0.77 0.858 0.883 2.90%
Columba 0.799 0.85 6.39% 0.799 0.948 18.65 0.799 0.896 12.10%
EMF 0.788 0.799 1.40% 0.553 0.786 42.10 0.65 0.792 21.80%
Hibernate 0.901 0.942 4.55% 0.728 0.831 14.10 0.805 0.883 9.70%
JEdit 0.78 0.99 26.90% 0.6 0.97 61.67 0.678 0.98 44.50%
JFreeChart 0.655 0.695 6.10% 0.75 0.8 6.67 0.699 0.744 6.40%
JMeter 0.806 0.896 11.16% 0.788 0.83 5.33 0.797 0.862 8.20%
JRuby 0.8 0.87 8.75% 0.874 0.91 4.12 0.835 0.89 6.60%
SQuirrel 0.778 0.802 3.08% 0.688 0.745 8.28 0.73 0.772 5.80%
Average 0.7595 0.8304 9.34% 0.7332 0.8489 15.78% 0.74 0.838 13.20%

5.3 Result Analysis for RQ3
Approach. 10 projects belong to different domain fields,

and there are different class imbalance ratios in different
projects. For investigating different SATD characteristics,
each project is studied individually. Therefore, a total of ten
projects need to be investigated. For each project, 80% of the
data is randomly sampled using a stratified way as training
data, 10% of the data is randomly sampled as verification

data, and the remaining 10% is used as the test data set.
On the test data set, the change values of metrics such as
precision, recall, and F1-measure, are calculated to compare
our approach with Ren’s approach [10]. The Wilcoxon
Signed-rank test was introduced into our data testing process.
We use the p-value variation to verify that our classification
method maintains a high classification performance on
different items with different evaluation metrics. Finally,

984 Journal of Internet Technology Vol. 24 No. 4, July 2023

Cohen’s d effect size is used to quantify the amount of
difference. For different effect sizes, it represents the diversity
between related methods. The difference is considered Small
(d = 0.2), medium (d = 0.5), or large (d = 0.8).

Results. The results of 10 projects are shown in Table 9.
Our approach is compared in terms of precision, recall, and
F1-measure with Ren’s weighted loss approach. Overall, our
approach has greatly improved in all performance metrics.
The results of the Wilcoxon Signed-rank test show that our
method has a strong generalisation capability and is highly
robust. For Fl-measure, our approach increases by 16.70%
on average. Cohen’s d effect size in F1-measure is 0.857,
which shows that there is a large difference between the two
approaches. For recall, our approach increases by 5.61% on
average. Cohen’s d effect size in the recall value is 0.475,
which shows that there is a big difference between the two
approaches. A higher recall rate means that more minority
classes with SATD are correctly classified. Therefore, our
proposed approach can improve the classifier performance
between different individual projects.

Next, we want to make a separate and specific analysis
of the performance changes of each project. The project

with the highest performance improvement in terms of the
F1 measure is Ant. the Fl-measure increases by 67.50%, the
recall value increases by 15.87%, and the precision value
increases by 137.86%. In terms of F1-measure growth rate,
the second-ranked project is the JEdit project, which has
a performance increase of 36.60%. The precision value
increases by 35.45%. The recall value increases by 5.32%. In
terms of F1-measure growth rate, the third-ranked project is
EMF. Its F1-measure value has increased by 15%. Similar to
the previous two projects, we can see that the performance of
the precision and the recall value has been greatly improved.
In terms of F1-measure growth rate, the fourth-ranked project
is SQuirrel. Its performance increases by 9.30%. From the
Table 2, in the JEdit project, the Ant project, the EMF project
and the SQuirrel project, the ratio of SATD is 4.73%, 3.17%,
2.36% and 3.94% respectively. Therefore, we believe that
our proposed approach can better solve the problem of class
imbalance, thereby improving the classification performance
of the CNN-based classifier. For the remaining other projects,
the performance has been slightly improved. It shows that
our proposed approach still has a strong generalization ability
for different application fields.

Table 9. Within-project precision, recall, and F1-measure of our approach and weighted loss approach (WL)
Precision Recall F1-measure

Project WL Our Improv. WL Our Improv. WL Our Improv.
Ant 0.42 0.999 137.86% 0.63 0.73 15.87% 0.504 0.844 67.50%
ArgoUml 0.84 0.91 8.33% 0.95 0.97 2.11% 0.892 0.939 5.30%
Columba 0.71 0.81 14.08% 0.945 0.97 2.65% 0.811 0.883 8.90%
EMF 0.38 0.45 18.42% 0.75 0.81 8% 0.504 0.579 15%
Hibernate 0.8 0.88 10% 0.93 0.98 5.38% 0.86 0.927 7.80%
JEdit 0.55 0.91 65.45% 0.94 0.99 5.32% 0.694 0.948 36.60%
JFreeChart 0.69 0.74 7.25% 0.87 0.91 4.60% 0.77 0.816 6.00%
JMeter 0.84 0.855 1.79% 0.93 0.95 2.15% 0.883 0.9 1.90%
JRuby 0.85 0.928 9.18% 0.91 0.98 7.69% 0.879 0.953 8.40%
SQuirrel 0.79 0.92 16.46% 0.87 0.89 2.30% 0.828 0.905 9.30%
Average 0.687 0.8402 28.88% 0.8725 0.918 5.61% 0.763 0.869 16.70%

6 Threats to Validity

In this section, we explore the factors that may have
an impact on the classification performance of our model.
Threats to construct validity refer to the hyperparameters
of different neural networks and loss functions. Threats to
internal validity relate to personal bias in data labeling [2].
The 10 open-source projects are labeled by the author and
other independent people. The external threat mainly comes
from the application area of the dataset. Although we have
used a large number of datasets to cover as many application
areas as possible, there are still a large number of application
scenarios where our approach cannot be validated. To ensure
a sufficient number of samples in this study, we conducted
model training on a total of 62,566 samples from 10 open-
source projects. These open-source projects cover multiple
application areas. We have not validated our model on
commercial source projects.

7 Conclusion

SATD is a workaround for current gains and subsequent
software quality in software engineering, such as describing
potential code defects in software comments. Previous
research has adopted pattern recognition, natural language
processing, text processing, and other technologies to
study SATD detection. In this research, we put forward our
consideration from the view point of the class imbalance
that exists in the dataset and classifying difficulty for
different instances. We propose a new loss function based on
information entropy. Then we conduct empirical research on
10 JAVA software projects. The results of empirical studies
on data sets from multiple domains show that: (1) The CNN-
based classifier using our improved focal loss can outperform
the NLP-based classifier for different technical debt types;
(2) Our proposed approach can deal with the class imbalance
problem; (3) For within-project classification, the CNN-
based classifier using our improved focal loss achieves better

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 985

performance. In future studies, we will continue to focus
on class imbalance in SATD research. Moreover, we will
continue to conduct in-depth research on other classification
models and other data sets.

Acknowledgments

The authors are particularly grateful to the reviewers
who provided review comments. This work was partially
supported by Nantong Science and Technology Project
(JC2021124), Guangxi Key Laboratory of Trusted Software
(kx202046). The Fifth Research Project on Teaching Reform
of Vocational Education in Jiangsu Province (ZYB685),
Special Foundation for Excellent Young Teachers, Principals
Program of Jiangsu Province, and the Qing Lan Project of
Jiangsu province.

References

[1] W. Cunningham, The wycash portfolio management
system, ACM SIGPLAN OOPS Messenger, Vol. 4, No.
2, pp. 29-30, April, 1993.

[2] E. da Silva Maldonado, E. Shihab, N. Tsantalis, Using
natural language processing to automatically detect
self-admitted technical debt, IEEE Transactions on
Software Engineering, Vol. 43, No. 11, pp. 1044-1062,
November, 2017.

[3] E. Lim, N. Taksande, C. Seaman, A balancing act: What
software practitioners have to say about technical debt,
IEEE software, Vol. 29, No. 6, pp. 22-27, November-
December, 2012.

[4] N. Zazworka, M. A. Shaw, F. Shull, C. Seaman,
Investigating the impact of design debt on software
quality, Proceedings of the 2nd Workshop on Managing
Technical Debt, Waikiki, Honolulu, Hawaii, USA, 2011,
pp. 17-23.

[5] A. Potdar, E. Shihab, An exploratory study on self-
admitted technical debt, 2014 IEEE International
Conference on Software Maintenance and Evolution,
Victoria, British Columbia, Canada, 2014, pp. 91-100.

[6] S. Wehaibi, E. Shihab, L. Guerrouj, Examining the
impact of self-admitted technical debt on software
quality, 2016 IEEE 23rd international conference
on software analysis, evolution, and reengineering
(SANER), Vol. 1, Suita, Osaka, Japan, 2016, pp. 179-
188.

[7] G. Bavota, B. Russo, A large-scale empirical study
on self-admitted technical debt, Proceedings of the
13th international conference on mining software
repositories, Austin, Texas, USA, 2016, pp. 315-326.

[8] Q. Huang, E. Shihab, X. Xia, D. Lo, S. Li, Identifying
self-admitted technical debt in open source projects
using text mining, Empirical Software Engineering, Vol.
23, No. 1, pp. 418-451, February, 2018.

[9] Y. Kim, Convolutional neural networks for sentence
classification, Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing,
Doha, Qatar, 2014, pp. 1746-1751.

[10] X. Ren, Z. Xing, X. Xia, D. Lo, X. Wang, J. Grundy,

Neural network-based detection of self-admitted
technical debt: From performance to explainability,
ACM transactions on software engineering and
methodology (TOSEM), Vol. 28, No. 3, pp. 1-45, July,
2019.

[11] N. Tran, H. Chen, J. Jiang, J. Bhuyan, J. Ding,
Effect of class imbalance on the performance of
machine learning-based network intrusion detection,
International Journal of Performability Engineering,
Vol. 17, No. 9, pp. 741-755, September, 2021.

[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, P. Dollár, Focal
loss for dense object detection, Proceedings of the IEEE
international conference on computer vision, Venice,
Italy, 2017, pp. 2980-2988.

[13] Y. Cui, M. Jia, T.-Y. Lin, Y. Song, S. Belongie, Class-
balanced loss based on effective number of samples, in
Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Long Beach, CA, USA,
2019, pp. 9268-9277.

[14] K. Dwivedi, R. Lakshmanan, R. Regunathan, K-means
under-sampling for hypertension prediction using
NHANES DATASET, International Journal of
Performability Engineering, Vol. 17, No. 8, pp. 733-
740, August, 2021.

[15] X. Wang, J. Liu, L. Li, X. Chen, X. Liu, H. Wu,
Detecting and explaining self-admitted technical debts
with attention-based neural networks, 35th IEEE/
ACM International Conference on Automated Software
Engineering (ASE), Australia, 2020, pp. 871-882.

[16] G. E. Hinton, S. Osindero, Y.-W. Teh, A fast learning
algorithm for deep belief nets, Neural computation, Vol.
18, No. 7, pp. 1527-1554, July, 2006.

[17] W. E. Wong, Y. Shi, Y. Qi, R. Golden, Using an RBF
neural network to locate program bugs, Proceedings
of the 19th International Symposium on Software
Reliability Engineering, Seattle, Washington, USA,
2008, pp. 27-36.

[18] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet
classification with deep convolutional neural networks,
Advances in neural information processing systems 25,
Lake Tahoe, Nevada, USA, 2012, pp. 1-9.

[19] S. Hochreiter, J. Schmidhuber, Long short-term
memory, Neural computation, Vol. 9, No. 8, pp. 1735-
1780, November, 1997.

[20] S. Wang, J. Jiang, Learning natural language inference
with LSTM , December, 2015, https://arxiv.org/
abs/1512.08849.

[21] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, I. Polosukhin,
Attention is all you need, June, 2017, https://arxiv.org/
abs/1706.03762.

[22] J. Devlin, M.-W. Chang, K. Lee, K. Toutanova, Bert:
Pre-training of deep bidirectional transformers for
language understanding, October, 2018, https://arxiv.
org/abs/1810.04805 .

[23] A. Al-Hroob, A. T. Imam, R. Al-Heisa, The use of
artificial neural networks for extracting actions and
actors from requirements document, Information and
Software Technology, Vol. 101, pp. 1-15, September,
2018.

986 Journal of Internet Technology Vol. 24 No. 4, July 2023

[24] K. Wiegers, J. Beatty, Software requirements, Pearson
Education, 2013

[25] F. Pudlitz, F. Brokhausen, A. Vogelsang, Extraction
of system states from natural language requirements,
IEEE 27th International Requirements Engineering
Conference (RE), Jeju Island, South Korea, 2019, pp.
211-222.

[26] H. Thaller, L. Linsbauer, A. Egyed, Feature maps: A
comprehensible software representation for design
pattern detection, 2019 IEEE 26th international
conference on software analysis, evolution and
reengineering, Hangzhou, China, 2019, pp. 207-217.

[27] A. Mahadi, K. Tongay, N. A. Ernst, Cross-dataset design
discussion mining, IEEE 27th International Conference
on Software Analysis, Evolution and Reengineering,
London, ON, Canada, 2020, pp. 149-160.

[28] M. Bisi, N. K. Goyal, Software development efforts
prediction using artificial neural network, IET Software,
Vol. 10, No. 3, pp. 63-71, June, 2016.

[29] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, S.-W.
Lin, A neural model for method name generation
from functional description, IEEE 26th International
Conference on Software Analysis, Evolution and
Reengineering, Hangzhou, China, 2019, pp. 414-421.

[30] K. W. Nafi, T. S. Kar, B. Roy, C. K. Roy, K. A.
Schneider, Clcdsa: cross language code clone detection
using syntactical features and api documentation, 34th
IEEE/ACM International Conference on Automated
Software Engineering (ASE), San Diego California,
USA, 2019, pp. 1026-1037.

[31] S. Wang, T. Liu, L. Tan, Automatically learning
semant ic features for defect predict ion, 38th
International Conference on Software Engineering
(ICSE), Austin, Texas, USA, 2016, pp. 297-308.

[32] Y. Qu, X. Chen, L. Li, Cross-version software defect
prediction method for relieving class overlap problem,
Journal of Jilin University (Science Edition), Vol. 59,
No. 2, pp. 372-378, March, 2021.

[33] Y. Yang, X. Xia, D. Lo, J. Grundy, A survey on deep
learning for software engineering, November, 2020,
https://arxiv.org/abs/2011.14597.

[34] J. Flisar, V. Podgorelec, Identification of self-admitted
technical debt using enhanced feature selection based
on word embedding, IEEE Access, Vol. 7, pp. 106475-
106494, August, 2019.

[35] H. He, E. A. Garcia, Learning from imbalanced data,
IEEE Transactions on knowledge and data engineering,
Vol. 21, No. 9, pp. 1263-1284, September, 2009.

[36] M. Kukar, I. Kononenko, Cost-sensitive learning with
neural networks, 13th European Conference on Artificial
Intelligence, Brighton, UK, 1998, pp. 445-449.

[37] R. Marinescu, Detection strategies: Metrics-based rules
for detecting design flaws, 20th IEEE International
Conference on Software Maintenance, Chicago, IL,
USA, 2004, pp. 350-359.

[38] R . Mar inescu , G . Ganea , I . Ve reb i , I ncode :
Continuous quality assessment and improvement, 14th
European Conference on Software Maintenance and
Reengineering, Madrid, Spain, 2010, pp. 274-275.

[39] G. Sierra, E. Shihab, and Y. Kamei, A survey of self-

admitted technical debt, Journal of Systems and
Software, Vol. 152, pp. 70-82, June, 2019.

[40] J. Pennington, R. Socher, C. D. Manning, Glove:
Global vectors for word representation, Proceedings of
the 2014 conference on empirical methods in natural
language processing (EMNLP), Doha, Qatar, 2014, pp.
1532-1543.

[41] R. Rubinstein , The cross-entropy method for
combina to r i a l and con t inuous op t imiza t ion ,
Methodology and computing in applied probability, Vol.
1, No. 2, pp. 127-190, September, 1999.

[42] H. Shaziya, R. Zaheer, Impact of hyperparameters on
model development in deep learning, Proceedings of
International Conference on Computational Intelligence
and Data Engineering, Hyderabad, India, 2021, pp. 57-
67.

[43] B. Settles, Active learning literature survey, 2009,
https://burrsettles.com/pub/settles.activelearning.pdf.

[44] D. D. Lewis, W. A. Gale, A sequential algorithm
for training text classifiers, SIGIR’94 Proceedings
of the Seventeenth Annual International ACM-
SIGIR Conference on Research and Development in
Information Retrieval, Dublin, Ireland, 1994, pp. 3-12.

[45] C . E . S h a n n o n , A m a t h e m a t i c a l t h e o r y o f
communication, ACM SIGMOBILE mobile computing
and communications review, Vol. 5, No. 1, pp. 3-55,
January, 2001.

[46] Y. Qu, X. Chen, R. Chen, X. Ju, J. Guo, Active learning
using uncertainty sampling and query-by-committee
for software defect prediction, International Journal of
Performability Engineering, Vol. 15, No. 10, pp. 2701-
2708, October, 2019.

[47] F. Li, Y. Qu, X. Chen, L. Li, F. Yang, A sentiment
analysis method based on class imbalance learning,
Journal of Jilin University (Science Edition), Vol. 59,
No. 4, pp. 929-935, July, 2021.

Biographies

Yubin Qu was born in Nanyang, China
in 1981 . He rece ived the B .S . and
M.S. degrees in Computer Science and
Technology from Henan Polytechnic
University in China in 2004 and 2008.
His research interests include software
maintenance, software testing, and machine
learning.

Tie Bao was born in 1978. He received
the Ph.D. degree from Jilin University in
2007. He is now a professor in College
of Computer Science and Technology,
Jilin University. His research area covers
software quality analysis, data analysis, etc.

Deep Learning-Based Self-Admitted Technical Debt Detection Empirical Research 987

Meng Yuan is currently a master student
in the School of Computer Science and
Technology of Jilin University. Her main
interest is the application of deep learning
and the interpretability of deep learning.

Long Li received his Ph.D. degree from
Guilin University of Electronic Technology,
Guilin, China in 2018. He is now a lecturer
at the School of Computer Science and
Information Security, Guilin University of
Electronic Technology, Guilin, China. His
research interests include cryptographic
protocols, privacy-preserving technologies

in big data and IoT.

