
G-DCS: GCN-Based Deep Code Summary Generation Model 965

*Corresponding Author: Yong Li; E-mail: liyong@live.com
DOI: 10.53106/160792642023072404014

G-DCS: GCN-Based Deep Code Summary Generation Model

Changsheng Du1,2, Yong Li1,2*, Ming Wen2

1 College of Computer Science and Technology, Xinjiang Normal University, China
 2 Xinjiang Electronics Research Institute, China

xiaodukuko@outlook.com, liyong@live.com, wmconet@126.com

Abstract

In software engineering, software personnel faced many
large-scale software and complex systems, these need
programmers to quickly and accurately read and understand
the code, and efficiently complete the tasks of software
change or maintenance tasks. Code-NN is the first model to
use deep learning to accomplish the task of code summary
generation, but it is not used the structural information in the
code itself. In the past five years, researchers have designed
different code summarization systems based on neural
networks. They generally use the end-to-end neural machine
translation framework, but many current research methods do
not make full use of the structural information of the code.
This paper raises a new model called G-DCS to automatically
generate a summary of java code; the generated summary
is designed to help programmers quickly comprehend
the effect of java methods. G-DCS uses natural language
processing technology, and training the model uses a code
corpus. This model could generate code summaries directly
from the code files in the coded corpus. Compared with the
traditional method, it uses the information of structural on
the code. Through Graph Convolutional Neural Network
(GCN) extracts the structural information on the code to
generate the code sequence, which makes the generated code
summary more accurate. The corpus used for training was
obtained from GitHub. Evaluation criteria using BLEU-n.
Experimental results show that our approach outperforms
models that do not utilize code structure information.

Keywords: GCN, Summary generation, Deep learning

1 Introduction

In the design or maintenance of software, developers need
to expend 59% of their time understanding the meaning of
the program. A good summary is very important for program
understanding [1]. Previous studies have shown that for most
programmers, the quality of code summaries is positively
correlated with the speed of understanding code. Developers
can quickly understand the meaning of code through
natural language description [2]. But code summaries often
do not match or are missing due to various factors in the
programming process. Automatic code summary generation
can quickly generate summary information when only code

is available, helping developers faster comprehend the idea
of the code and shorten the program development cycle.

Deep learning-based code summary generation techniques
are mostly based on the assumption of the naturalness of
the code [3]. This category consists of two principal forms
of approaches, one based on the classical encoder-decoder
model, and the other is a combination of learning algorithms
using other types of techniques, such as graph neural
networks, reinforcement learning, etc. In 2016 Iyer [4] et al.
introduced deep neural networks into the study of automatic
code abstract generation. LSTM and attention mechanisms
in a seq-to-seq neural machine translation framework to
automatically generate summaries for code, thereafter,
deep neural network techniques have gradually become the
dominant technique in code summarization. Their model is
called Code-NN.

A common problem with models based only on
traditional encoder-decoder is that they do not make effective
use of the structural information on the code itself. In this
paper, we present the GCN-based model for deep code digest
generation. In contrast to Code-NN, this technique uses a
GCN [5] to deal with the structural information on the code
and combines it with the semantic information on the code
itself to generate a sequence of representations of the code,
relying on neural machine translation technology (NMT) [6]
to generate a summary of the code.

This paper is divided into six chapters. Chapter 1
introduces the background of code digest generation. Chapter
2 reviews the research results in the field of source code
summary generation, and analyzes some problems existing
in the existing work. In Chapter 3, aiming at the problems
raised in Chapter 2, we propose the G-DCS model and
introduce the structure and implementation details of the
model. Chapter 4 introduces the data used in the experiment
and some parameter settings of the model. Chapter 5
analyzes the experimental data and some factors affecting the
experimental results. Chapter 6 summarizes our work and
points out the next research direction.

2 Related Work

Chen, et al. proposed a deep learning approach for
reliability assessment [7], Yu, et al. proposed a Tree-LSTM
to solve the code semantic cloning problem [8], Wang, et
al. used GNN to measure the similarity of code pairs [9],

966 Journal of Internet Technology Vol. 24 No. 4, July 2023

Wei, et al. used a deep end-to-end model for code cloning
detection [10], Qu, et al. used pre-trained models for software
defect detection [11], Li, et al. proposed a neural machine
translation-based approach to automatically fix errors in code
programs [12], Tran, et al. evaluated the performance of
imbalance on machine learning for network intrusion [13].
However, it is necessary to develop a direction for using the
deep learning method to solve the problem of the automatic
generation of code summaries.

The vector features of the source code need though
carefully collect various types of data to construct a corpus
of relevant domains and update the neural network model
variables by supervised or unsupervised training to improve
the model’s accuracy. Compared with traditional source
code encoders based on information extraction techniques or
classical machine learning techniques, deep neural network
encoders can extract structural and semantic features of the
code more accurately.

2.1 Code-based Keyword Extraction Method
Many methods have been invented to generate code

summaries over the past ten years. Automatic code
summarization research started in 2010, and the initial
research mainly used information retrieval techniques [14],
for example, VSM [15], LDA [16] and LSI [17]. While
there is still room for this technology to grow, there are
two limitations that cannot be ignored. First, it is difficult
to extract valid keyword information if the code segment is
poorly named, and second, such methods are too dependent
on the ability to retrieve similar code segments. Since
2016, deep neural networks have developed rapidly, based
on deep learning techniques that have gradually replaced
based information retrieval techniques as the mainstream
techniques for automatic code abstract generation research.

2.2 Deep Learning-based Approach
Iyer [4] et al. first introduced NMT techniques into the

research area of code summarization. They combined LSTM
neural network and attention mechanism to design a summary
generation model based on the encoder-decoder structure.
In the data pre-processing stage, they view the source code
as plain text and transform it into a collection of lexical
vectors using common NLP techniques. The lexical vectors

are sequentially fed into the model’s encoder, and the final
vector representation of the source code is obtained through
the LSTM neural network. In the summary generation stage,
the decoder of the model uses the vector representation of
the source code to output each word of the corresponding
summary in turn.

In contrast to traditional natural languages, programming
languages contained artificially designed complex structures.
To get the structural and semantic features hidden inside the
code only using classical information extraction algorithms
is laborious. In recent years, researchers have tried to analyze
source code fragments with coding algorithms based on
lexical features, syntactic structures, and semantic structures
to generate relevant abstractions and annotations. Hu [18] et
al. introduced DeepCom, a well-known abstract generation
model based on an encoder-decoder architecture, which uses
a special traversal algorithm of an abstract syntax tree to
obtain a structure-rich code vector, and then decodes it into
natural language using a decoder based on LSTM neural
networks.

2.3 Graph Convolutional Neural Network
Convolutional neural networks [19-20] have grown

rapidly and attracted a lot of attention due to their powerful
modelling capabilities in the past few years. The introduction
of convolutional neural networks has brought greater
improvements than traditional methods in areas such as
processing images and processing natural languages, such
as machine translation, image recognition and speech
recognition. Convolutional neural networks are good, but
they are still limited to data in Euclidean domains. However,
there is a lot of data in our real life that does not have a
regular spatial structure, called non-euclidean data, such as
recommendation systems, computational geometry, brain
signals, molecular structures, etc. Graph Convolutional
Network is a method that can perform deep learning on graph
data, and this method has been shown to largely outperform
other related methods of citation networks and knowledge
graph datasets [5]. GCN is a natural generalization of
convolutional neural networks in the graph domain. It can
perform end-to-end learning of both node feature information
and structure information and is currently one of the best
choices for graph data learning tasks.

EmbeddingPre-treatedCode summary

Code file

Code snippet

AST

G
C
N

Em
bedding

Decoder

Encoder

s1 s2 snę ę

s1 s2 ę ę sn

y0 y1 yn-1

Attention

x1 x2 xn

y1 y2 ynę ę

ę ę

ę ę

Model

Java code

Code summary

Train

Y

X

Data
Corpus

Figure 1. Overall model architecture

G-DCS: GCN-Based Deep Code Summary Generation Model 967

3 G-DCS Model

The model processing process of data is divided into
three main phases: the data processing phase, the model
training phase, and the model testing phase. The abstract
syntax tree (AST) is used for the processing of the code in
the data processing phase, and the GCN is used to process the
AST and abstract the structural information in the code. The
overall architecture of the model uses an end-to-end encoder-
decoder architecture, in which the encoder and decoder
use GRU, which simplifies the parameters of forwarding
propagation compared to LSTM, and can achieve comparable
results compared to LSTM and is easier to train compared
to LSTM, which can largely improve the training efficiency.
The general framework of the model is shown in “Figure 1”.

3.1 Code Representation

GCN:
Since the code itself is very structured and includes a

large number of structural information on itself, to extract
such structural information, we use a graph convolutional
neural network to process it. The forward propagation of the
graph neural network is as follows:

1 1

() ()2 2(1) ().l lH l D AD H Wσ
− −

+ =  
 (1)

Suppose a sequence of code has n tokens, the number of
features of each token is d, these the nodes features form a
feature matrix is X∈Rn×d. The relationships between nodes
can also create the adjacency matrix A∈Rn×n.

.A A I= + (2)

I is the unit matrix, D is the degree matrix of A , σ is a
nonlinear activation function, and W is the parameter for
which the model is to be trained. For the input layer, H equals
X.

AST:
In this model, different methods are used to handle the

source code and abstraction in the dataset separately. Firstly,
the code fragments are processed accordingly, i.e., a runnable
program code is constructed with its abstract syntax tree
(AST), then the source code vocabulary is constructed by
traversing the syntax tree, and then the embedding (code
embedding) is represented as a vector, while the edge and
node information of the syntax tree is The adjacency matrix
is constructed, and the sequence information and structure
information of the source code fragments are combined using
GCN, the process is shown in “Figure 2”.

 function add(a, b) {

　 return a + b

 }

function declaration

Id: add Parama: [a, b] Body: {...}

Identifier: {
type: Identifier,
name: add
}

Identifier: {
type: Identifier,
name: a
}

Identifier: {
type: Identifier,
name: b
}

Blockstatement: {
return a+b
}

Body: return a+b

ReturnStatement: a+b

argument: +

operator: + rightleft

Identifier: {type: Identifier, name: a} Identifier: {type: Identifier, name: b}

Code snippet

AST
Adjacency matrix

Node sequence

G
C
N

Code
Squence

Figure 2. Code processing

Next is the processing of the summary, extracting the
text summary of the source code file, and performing text
pre-processing (word separation, adding <‘bos’>, <‘eos’>,
<‘pad’>, <‘unk’> et. special characters) to construct the
summary vocabulary, and representing the summary
sequence as a summary vector through the embedding layer.

3.2 End-to-End Architecture
End-to-end models have been widely used in machine

translation, text summarization, dialogue systems [21], etc.
We also use end-to-end models to learn the source code
to generate code summaries of this article, and the end-to-
end model of G-DCS consists of three parts: an encoder, a
decoder and an attention part, where both the encoder and

decoder use GRU. The encoder and decoder framework in
this model is shown in “Figure 3”.

x1 x2 x3 xnę ę

y0 y1 y2 yn-1ę ę

y1 y2 y3 ynę ę

Decoder

Encoder

<eos>

<bos> c

Figure 3. Encoder and decoder architecture

968 Journal of Internet Technology Vol. 24 No. 4, July 2023

Encoder:
The encoder is responsible for transforming a variable-

length input sequence into a constant-length background
variable c, which contains the sequence information about
the encoded input. The special symbol “<eos>” after each
sequence indicates the termination of the sequence. In
decoder models without attention-based mechanisms, the
hidden state of the encoder at the final time step is generally
used as the encoding information on the sentence.

Suppose the input sequence (x1, x2, …, xt), xi is the i-th
word is in the input sequence at time step t.

1(,).t t th f x h −= (3)

Where ht is the hidden state of the current time step, ht−1
is the hidden state of the previous time step xt is the input of
the current time step. Assume that the hidden states of each
time step are (h1, h2, …, hT).

1 2(, ,...,).Tc f h h h= (4)

Decoder:
For the given sequence (x1, x2, …, xT), the background

variable c encodes the information about the entire sequence.
In the decoder, the output of a certain time steps yt′.

' ' 1 ' 1() (,..., ,).t t tP y P y y y c−= (5)

The hidden state st′ of the current time step of the decoder
can be calculated using the input yt′−1 of the previous time
step of the decoder and the background vector c.

' ' 1 ' 1(, ,).t t ts g y c s− −= (6)

After the hidden state of the decoder is obtained, the
softmax function can be used to calculate P(yt′).

Attention mechanism:
The attention mechanism, in a broad sense, contains

query terms and the one-to-one corresponding key terms K
and value terms V, where the value terms are the set of terms
to be weighted and averaged. In the weighted average, the
weights of the value terms are derived from the query term
Q.

(, ,) () .TA Sofo tmK axttenti n Q V QK V= (7)

For encoders with attention mechanisms, the hidden state
of time step t′ is calculated by functioning according to the
hidden state of the decoder at the previous time step t’−1,
and the input of the Softmax operation is obtained, and the
encoder hidden variable on each step is obtained by Softmax
calculation, and then a weighted average is done to obtain the
background vector c. As shown in “Figure 4”.

Softmax

aaaa

+

Encoder Decoder

Background variables: C

Figure 4. Attention mechanism

The background variable of the decoder at time step t′ is
the weighted average of all hidden states of the encoder.

' '1
.T

t t t tt
c hα

=
= ∑ (8)

t′ denotes the time step of the decoder, and t denotes
the time step of the encoder. At a given time step t′, the
probability distribution of the weights αt′t at t = 1, …, T.

'
'

'1

exp()
, 1,..., .

exp()
t t

t t T
t kk

e
t T

e
α

=

= =
∑ (9)

et′t depends on both the decoder’s time step t′ and the
encoder’s time step t. We denote the hidden state of the
decoder by s and the hidden state of the encoder by h.

Loss function:
In this article, the loss function of model training is

defined using minimized cross-entropy.

()
1

1() log().N L i
ji j

H y y
N =

= − ∑ ∑ (10)

The N denotes the number of training samples, L denotes
the size of the target summary, and ()i

jy denotes the j-th word
in the i-th summary generated. Optimization using the Adam
algorithm.

4 Experimental Analysis

4.1 Dataset Description
Since the tag data available in the field of code summary

generation is very sparse, this paper uses java function
segments with summaries collected on Github and uses the
first bureau of the function summary as the summary tag
for the relevant code segment. The details of the dataset are
shown in “Table 1” and “Table 2”.

Table 1. Statistics for code snippets
Methods All

tokens
All

identifiers
Training

set
Test
set

Validation
set

1,200 101,460 11,207 1,000 100 100

G-DCS: GCN-Based Deep Code Summary Generation Model 969

Table 2. Statistics for code lengths and comments lengths
Code lengths

Avg Median <100 <150 <200
80 40 79.9% 88.5% 92.5%

Summary lengths

Avg Median <20 <30 <50
17.95 12 74.2% 86.1% 94.0%

4.2 Contrast Model
To evaluate the performance of the G-DCS model, we

select several representative summary generation models for
comparison experiments, including the Code-NN model, and
the seq2seq using the attention mechanism.

Code-NN:
We replicate the Code-NN model for the task of summary

generation of java code, which uses recurrent neural
networks to build an end-to-end summary generation system
that generates relevant summaries based on the word vectors
of the source code. Since the architecture of the Code-NN
model is very similar to seq2seq, so we replicated the Code-
NN model that does not incorporate the attention mechanism
to verify its effectiveness of the attention mechanism.

Seq2Seq:
The model is a code summary generation model

implemented based on sequence-to-sequence learning
algorithms. The model’s encoder and decoder are also
designed using independent LSTM neural networks, this
network can extract the lexical features of the source code
to generate Abstracts. The model inputs focused on lexical
sequences of source code functions and output English
summaries associated with these functions.

4.3 Pre-processing and Parameter Setting
In the process of data pre-processing, the Javalang tool

was used for AST tree extraction of java code, and the NLTK
splitting tool was used for java digest processing. Considering
that the length of the code segment varies greatly, we set up
the size of the code token sequence to 300 and truncate the
sequence for more than 300 tokens. The node relationships in
the AST of the code are represented by the adjacency matrix,
and the length of the edges of the adjacency matrix is also set
to 300.

The G-DCS model was built using the machine learning
framework Pytorch, and the word vector and GRU hidden
layer states were set to 300 dimensions. The model variable
was optimized into the supervised training Adam algorithm,
using the Adam optimizer and setting the learning rate to
0.001. To prevent overfitting of the model parameters, the
dropout value was set to 0.5

4.4 Evaluation Measure
The evaluation criteria for the experiments used the

BLEU [22] metric, which is common in the field of natural
language processing, to evaluate the similarity between the
summaries generated by various models and the reference
summaries.

The general idea of the BLEU evaluation metric is
the accuracy rate. Adding the given standard translation
reference, the neural network generates the sentence as a
candidate. The n-gram expresses the number of consecutive
words is n.

' ' '

()
.

(')
clipc candidates n gram c

n
c candidates n gram c

Count n gram
BLEU

Count n gram
∈ − ∈

∈ − ∈

−
=

−
∑ ∑
∑ ∑

 (11)

The main task of the BLEU programming implementation
is to compare the n-tuples of candidate and reference
translations and to calculate the number of matches. The
number of matches is independent of the position of the
words. The higher the number of matches, the better the
quality of the candidate translation. We consider the code
summary auto-generation task as a machine translation task,
and the generated content and the reference content are
also both natural language sequences, so the BLEU metric
is also very suitable as an evaluation criterion for the code
annotation auto-generation task.

BLEU-n judges the division of the sequence into phrases
of length 1 word, length 2 is a two-word phrase, and so
on, and in general, the maximum phrase length is set to 4.
BLEU-1 judges the word-level accuracy, and BLEU-4 can
measure the fluency of sentences. In this experiment, we use
BLEU2, BLEU3, and BLEU4 as the evaluation metrics for
the experiment, respectively.

In the code summary generation task, it is much easier
to generate summaries for short sequences than for longer
sequences. In order to make the evaluation results fairer, we
add a penalty factor term to the evaluation metrics, giving a
lower weight to the shorter sequences generated by the model
and a higher weight to the longer sequences generated by the
idea.

exp min 0,1 .label

pred

len
PF

len

  
 = −     

 (12)

Where lenlabel is the length of the summary in the corpus
and lenpred is the length of the summary formed by the model.

5 Results

In this section, we focus on evaluating the quality of
different methods in generating java code summaries. The
experiments have two main concerns.

RQ1: Is there any significant improvement in the quality
of generated code summaries in our model versus the
traditional automatic code summary generation model?

RQ2: The impact of adding structural information to
the code summary generation model on the quality of code
summary generation.

5.1 RQ1: G-DCS vs. Baseline
In the comparison experiments, we compared the G-DCS

model with the Code-NN model and the Seq2Seq model on
the BLEU-2, BLEU-3, and BLEU-4 metrics, respectively,
and the obtained experimental results are shown in “Table 3”.

970 Journal of Internet Technology Vol. 24 No. 4, July 2023

Table 3. Evaluation results on Java methods
Approaches BLEU-2 BLEU-3 BLEU-4
Code-NN 9.32% 3.71% 0.63%
Seq2Seq 11.48% 6.83% 3.17%
G-DCS 17.21% 14.18% 9.38%

We did not take the IR method as the baseline model,
because in previous studies, the Code-NN method was
significantly better than IR. The Code-NN model does not
use a language model but generates relevant summaries by
extracting lexical information directly from the source code
across an end-to-end recurrent neural network system.

In the original Code-NN model, the processing language
is c#. In order to make Code-NN applicable to Java code, we
have made some changes to the original Code-NN to make it
applicable to the Java code summary generation task. This is
based on the fact that the architecture of the Code-NN model
is very similar to that of the Seq2Seq model. The rewritten
Code-NN model does not use an attention mechanism, which
is to compare with the attention-based Seq2Seq model to
verify that attention improves the task of code summary
generation.

In the seq2seq model, both encoder and decoder adopt
RNN series models, specifically GRU. The calculation
method of the attention mechanism in seq2seq is to obtain
a probability distribution, that is, the weight of attention,
through dot product operation according to the hidden state
of each sequence time step in the decoder, and then through
softmax. Then the vector corresponding to each word in the
encoder sequence is weighted and the final result is obtained.

Among all the models participating in the experiments,
the CODE-NN model produced the worst quality summaries.
The Seq2Seq model ignored the structural properties of the
code and generated summaries of unsatisfactory quality.
Unlike the Seq2Seq model, the Code-NN model directly
embeds the token of the source code to generate summaries
but does not learn the semantic information of the source
code. The seq2seq language model built by GRU makes
effective use of the semantic information in Java code, test
results show that the scores on Blue2, 3 and 4 are better
than the Code-NN model. The G-DCS model can not only
use the semantic information of the code, but also use the
code structure information in the code representation stage,
and fuse the structure information through GCN. Compared
with the Code-NN model, the scores of the G-DCS model
in blue-2, 3 and 4 increased by 7.89%, 10.47% and 8.75%
respectively. Compared with the Seq2Seq model, the G-DCS
model improved the scores of blue-2, 3 and 4 by 5.73%,
7.35% and 6.21% respectively.

It can be seen from the experimental results that our
model has a significant improvement compared with
other baseline models. The experiment verifies that the
structure information plays an important role in the quality
of code digest generation. By enriching the code structure
information, this method can be applied in the subsequent
research, no matter what training model is used.

5.2 RQ2: The Impact of Structural Information
When we further analyze Table 3, we will find more.

Comparing the experimental results of G-DCS and Seq2Seq,

we can find that when the code summary model introduces
structural information, the BLEU scores of all levels of the
model have been improved to a certain extent. This is because
the seq2seq model only uses code semantic information and
lacks structural information. The G-DCS model uses GCN
to encode the token and AST of the code and combines
the encoding information of the two to finally generate the
embedded representation of the code sequence.

Such experimental results illustrate two points of
information. First, during the training of the G-DCS
model, the structure information of the code is fully
learned. Secondly, the use of structured information plays an
important role in the code summary generation task.

Some experimental results of the code summary
generated by the G-DCS model are shown in “Table 4”.
Due to space limitations, the examples are limited to short
methods. The AST structure is not shown in the table because
the AST is much longer than the source code, similar to the
conversion process from code to AST shown in “Figure 2”,
one very simple code may generate a very complex AST.

5.3 Influencing Factors of Experiment
5.3.1 Decoder Based on Attention Mechanism

Compared wi th Code-NN, the Seq2Seq model
incorporates an attention mechanism in the encoder stage,
and the corresponding weights are assigned for each step
of the input sequence. From the experimental results,
the addition of the attention mechanism leads to a more
significant improvement in the generated summary in the
bleu-2, bleu-3, and bleu-4 metrics, respectively.
5.3.2 Utilization of Code Structure Information

Compared with Code-NN and Seq2Seq, the G-DCS
model not only adds the attention mechanism in the decoder
but also uses the code structural information at the code
representation stage and mixes the structural and semantic
information of the code through GCN. Experimentally, the
model outperforms the model that does not utilize structural
information in the BLEU-2, BLEU-3 and BLEU-4 metrics.
5.3.3 Other Factors

The lack of unified and standard datasets is a major
obstacle to the rapid development of code summarization
research [23]. The unification of test datasets plays a positive
role in promoting neural code summarization research. Test
datasets will directly affect the evaluation of summarization
algorithms, and some neural code summarization systems get
better evaluation results on their own selected and processed
datasets, but when switching to other datasets for testing,
the evaluation results will be more different. The Code-NN
model was tested on the java dataset of Zhang [24] et al.,
and the BLEU-4 was 6.4%, while the BLEU-4 on another
java dataset C2CGit, was 13.48%, with a result difference of
7.18%, which shows that the same code abstraction model
was tested on different test datasets and different evaluation
results were obtained, causing this phenomenon to The main
reason for this phenomenon is that different studies use their
own different methods to parse and process the dataset, so
there is a great difference between the items, thus making
the evaluation results difficult to compare, and the lack of a
unified and standard test dataset makes the progress of code
summary research slow.

G-DCS: GCN-Based Deep Code Summary Generation Model 971

Table 4. Examples of generated summary by G-DCS

 Case ID Java method Summary

1
public JsonArray(){
 value = new

ArrayList<JsonValue>();
}

Pred:
Creates a new dataset with the given database connection.

Value:
Creates a new empty JsonArray.

2
StackFrame(AsmMethodSource){
 This.src=src;
}

Pred:
Constructs a new word from the current server version running.

Value:
Constructs a new stack frame.

3

public Object clone(){
 try{
 return super.clone();

}
catch

(CloneNotSupportedException e){
 throw new InternalError();
}

}

Pred:
Returns a copy of this deque.

Value:
Returns a shallow copy of this list

4

Static <T>T checkNotNull(T
reference){

 if (reference == null){
 throw new NullPointerException();
}
return reference;

}

Pred:
Ensures that an object reference passed as a parameter to the calling
method is not a method.

Value:
Ensures that an object reference passed as a parameter to the calling
method is not a null.

5
public Boolean is PrimaryKey(){
 return isPrimaryKey(false);
}

Pred:
Returns true if this contour path is closed.

Value:
Returns true if the entity contains all of the primary key fields, but
NO others.

6 Conclusion

In this article, a GCN-based deep code summary
generation model G-DCS is proposed for the source code
summary generation task. The model is built based on the
neural machine translation (NMT) framework to transform
the input source code into a code summary described in
natural language. Compared with other baseline models,
the structural features of the programming language are
exploited, and the source code features are extracted more
comprehensively using GCN to fuse code structure and
semantic information.

This method enr iches the informat ion of code
representation, improves the quality of code digest
generation, provides a clear idea for subsequent experiments,
and also provides a new method for natural language
processing of token representation in other fields

The model uses “graph convolution” to represent the
code, and makes full use of the structure information of the
code. The existing experimental results are more in line with
expectations. In future work, we will start from the following
three directions.

6.1 Getting More Structural Information from AST
Our early processing of the code is to generate an AST,

and then we will get structure information from the AST. AST
is a tree structure, which can better represent the structural
information of the code, but it can not well represent the
pre and post-dependencies of variables in the code. In the
next work, we start with expanding the variable dependency
of AST. By analyzing the before and after dependency of
variables in the code, we increase the number of edges of
AST nodes and expand AST into a graph structure, to extract
more structure information.

6.2 Improve the Possible Gradient Disappearance
Problem in the Training Model
Our model adopts the popular end-to-end architecture,

including an encoder and decoder using GRU. Because the
neural network model such as RNN is still used, the model
gradient may disappear when training a long sequence,
resulting in the generated code summary not reaching the
desired effect. In the next work, we refer to the encoder and
decoder model based on the transformer. By using the multi-
headed self-attention mechanism and adding the position-
coding information of the sequence, we can improve the

972 Journal of Internet Technology Vol. 24 No. 4, July 2023

gradient disappearance problem in the process of long
sequence training.

6.3 Use the Pre-training Model to Further Improve the
Effectiveness of the Model
The pre-training model has performed well in many

natural language processing tasks. In previous studies, the
use of a pre-training model can improve the training effect of
the original model by multiple orders of magnitude. In future
research, we will also use the pre-training model to enhance
the learning ability of the model and further improve the
effectiveness of the code summary generation model.

Acknowledgment

This work is supported by the Xinjiang Key Research and
Development Program (2022B01007-1), the National Natural
Science Foundation of China (62241209) and the Xinjiang
Tianshan Youth Project of China (2020Q019).

References

[1] X. Xia, L.-F. Bao, D. Lo, Z.-C. Xing, A. E. Hassan, S.-
P. Li, Measuring program comprehension: A large-scale
field study with professionals, IEEE Transactions on
Software Engineering, Vol. 44, No. 10, pp. 951-976,
October, 2018.

[2] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, K.
Vijay-Shanker, Towards automatically generating
summary comments for java methods, Proceedings of
the IEEE/ACM international conference on Automated
software engineering, Antwerp, Belgium, 2010, pp. 43-
52.

[3] A. Hindle, E. T. Barr, M. Gabel, Z.-D. Su, P. Devanbu,
On the naturalness of software, Communications of the
ACM, Vol. 59, No. 5, pp. 122-131, May, 2016.

[4] S. Iyer, I. Konstas, A. Cheung, L. Zettlemoyer,
Summarizing source code using a neural attention
model, Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers), Berlin, Germany, 2016, pp. 2073-2083.

[5] T. N. Kipf, M. Welling, Semi-supervised classification
with graph convolutional networks, International
Conference on Learning Representations (ICLR 2017),
Toulon, France, 2017, pp. 1-14.

[6] Z. Ghahramani M. Welling, C. Cortes, N. Lawrence,
K. Q. Weinberger, Advances in Neural Information
Processing Systems 27 (NIPS 2014), Curran Red Hook,
NY, 2015.

[7] Y.-F. Chen, Y.-K. Lin, C.-F. Huang, Using Deep
Neural Networks to Evaluate the System Reliability
of Manufacturing Networks, International Journal of
Performability Engineering, Vol. 17, No. 7, pp. 600-
608, July, 2021.

[8] H. Yu, W. Lam, L. Chen, G. Li, T. Xie, Q. Wang,
Neural detection of semantic code clones via tree-
based convolution, 2019 IEEE/ACM 27th International
Conference on Program Comprehension (ICPC),
Montreal, QC, Canada, 2019, pp. 70-80.

[9] W. Wang, G. Li, B. Ma, X. Xia, Z. Jin, Detecting code
clones with graph neural network and flow-augmented
abstract syntax tree, 2020 IEEE 27th International
Conference on Software Analysis, Evolution and
Reengineering (SANER), London, ON, Canada, 2020,
pp. 261-271.

[10] H. H. Wei, M. Li, Supervised Deep Features for
Software Functional Clone Detection by Exploiting
Lexical and Syntactical Information in Source Code,
Proceedings of the 26th International Joint Conference
on Artificial Intelligence, Melbourne, Australia, 2017,
pp. 3034-3040.

[11] Y.-B. Qu, W. E. Wong, D.-C. Li, Empirical Research
for Self-admitted Technical Debt Detection in
Blockchain Software Projects, International Journal
of Performability Engineering, Vol. 18, No. 3, pp. 149-
157, March, 2022.

[12] D.-C. Li, W. E. Wong, M.-Y. Jian, Y. Geng, M. Chau,
Improving Search-based Automatic Program Repair
with Neural Machine Translation, IEEE Access, Vol. 10,
pp. 51167-51175, April 2022.

[13] N. Tran, H.-H. Chen, J. Jiang, J. Bhuyan, J.-H. Ding,
Effect of Class Imbalance on the Performance of
Machine Learning-based Network Intrusion Detection,
International Journal of Performability Engineering,
Vol. 17, No. 9, pp. 741-755, September, 2021.

[14] S. Haiduc, J. Aponte, A. Marcus, Supporting program
comprehension with source code summarization, 2010
ACM/IEEE 32nd International Conference on Software
Engineering, Cape Town, South Africa, 2010, pp. 223-
226.

[15] G. Salton, A. Wong, C.-S. Yang, A vector space model
for automatic indexing, Communications of the ACM,
Vol. 18, No. 11, pp. 613-620, November, 1975.

[16] D. Blei, A. Ng, M. Jordan, Latent dirichlet allocation,
The Journal of Machine Learning Research, Vol. 3, pp.
993-1022, January, 2003.

[17] T. K. Landauer, P. W. Foltz, D. Laham, An introduction
to latent semantic analysis, Discourse processes, Vol.
25, No. 2-3, pp. 259-284, 1998.

[18] X. Hu, G. Li, X. Xia D. Lo, Z. Jin, Deep code comment
generation, 2018 IEEE/ACM 26th International
Conference on Program Comprehension (ICPC),
Gothenburg, Sweden, 2018, pp. 200-210.

[19] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-
based learning applied to document recognition,
Proceedings of the IEEE, Vol 86, No. 11, pp. 2278-
2324, November, 1998.

[20] A. Ajit , K. Acharya, A. Samanta, A review of
convolutional neural networks, 2020 International
Conference on Emerging Trends in Information
Technology and Engineering (ic-ETITE), Vellore, India,
2020, pp. 1-5.

[21] W. Chan, N. Jaitly, Q. Le, O. Vinyals, Listen, attend
and spell: A neural network for large vocabulary
conversational speech recognition, 2016 IEEE
International Conference on Acoustics, Speech and
Signal Processing (ICASSP), Shanghai, China, 2016,
pp. 4960-4964.

[22] K. Papineni, S. Roukos, T. Ward, W.-J. Zhu, Bleu:

G-DCS: GCN-Based Deep Code Summary Generation Model 973

a method for automatic evaluation of machine
translation, Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics (ACL),
Philadelphia, Pennsylvania, United States, 2002, pp.
311-318.

[23] A. LeClair, C. McMillan, Recommendations for
Datasets for Source Code Summarization, Proceedings
of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies , Minneapolis ,
Minnesota, USA, 2019, pp. 3931-3937.

[24] J. Zhang, X. Wang, H.-Y. Zhang, H.-L. Sun, X.-D. Liu,
Retrieval-based Neural Source Code Summarization,
2020 IEEE/ACM 42nd International Conference on
Software Engineering (ICSE), Seoul, Korea, 2020, pp.
1385-1397.

Biographies

Changsheng Du received the B.S. degree
in Software Engineering from Nanyang
Institute of Technology. He is a graduate
student at Xinjiang Normal University,
China. His current research interests include
Machine Learning and Software Reliability
Engineering.

Yong Li received the Ph.D. degree in
Computer Science from Nanjing University
of Aeronautics and Astronautics in 2018.
He is currently an Associate Professor
of Xinjiang Normal University and a
Postdoctoral Fellow of Xinjiang Electronic
Research Institute. His research interests
include Machine Learning and Intelligent

Software Engineering.

M i n g We n g r a d u a t e d f r o m X i ’ a n
University of Technology in 1988 with
a major in automatic control. Now he is
the director and researcher of software
development and testing center of Xinjiang
Electronic Research Institute. His research
interests include Software Engineering and
Artificial Intelligence.

