
Five Phases Algorithm: A Novel Meta-heuristic Algorithm and Its Application on Economic Load Dispatch Problem   837

*Corresponding Author: Jeng-Shyang Pan; E-mail: jengshyangpan@gmail.com
DOI: 10.53106/160792642023072404002

Five Phases Algorithm: A Novel Meta-heuristic Algorithm and Its
Application on Economic Load Dispatch Problem

Xiaopeng Wang1,2, Shu-Chuan Chu1, Václav Snášel2, Hisham A. Shehadeh3, Jeng-Shyang Pan1,4*

1 College of Computer Science and Engineering, Shandong University of Science and Technology, China 
2 Faculty of Electrical Engineering and Computer Science, VŠB-Technical University of Ostrava, Czech Republic 

3 Departments of Computer Information System and Technology and Computer Science, Amman Arab University, Jordan
4 Department of Information Management, Chaoyang University of Technology, Taiwan

wangxp1993@163.com, scchu0803@gmail.com, vaclav.snasel@vsb.cz, h.shehadeh@aau.edu.jo, jengshyangpan@gmail.com 

Abstract

A new meta-heuristic algorithm named the five phases 
algorithm (FPA) is presented in this paper. The proposed 
method is inspired by the five phases theory in traditional 
Chinese thought. FPA updates agents based on the generating 
and overcoming strategy as well as learning strategy from 
the agent with the same label. FPA has a simple structure but 
excellent performance. It also does not have any predefined 
control parameters, only two general parameters including 
population size and terminal condition are required. This 
provides flexibility to users to solve different optimization 
problems. For global optimization, 10 test functions from the 
CEC2019 test suite are used to evaluate the performance of 
FPA. The experimental results confirm that FPA is better than 
the 6 state-of-the-art algorithms including particle swarm 
optimization (PSO), grey wolf optimizer (GWO), multi-verse 
optimizer (MVO), differential evolution (DE), backtracking 
search algorithm (BSA), and slime mould algorithm (SMA). 
Furthermore, FPA is applied to solve the Economic Load 
Dispatch (ELD) from the real power system problem. The 
experiments give that the minimum cost of power system 
operation obtained by the proposed FPA is more competitive 
than the 14 counterparts. The source codes of this algorithm 
can be found in https://ww2.mathworks.cn/matlabcentral/
fileexchange/118215-five-phases-algorithm-fpa.

Keywords: Meta-heuristic algorithm, Optimization problem, 
Five phases algorithm, Economic load dispatch

1  Introduction

Optimization problems are very general in academic 
and engineering fields. Thus, researchers need to develop 
optimization techniques and apply them to practical 
applications. Deterministic algorithms and meta-heuristic 
algorithms are two effective ways to solve optimization 
problems. Deterministic algorithms are also called 
conventional algorithms, which are limited by gradient 
descent, impose differentiability and convexity restrictions. 
For simple unimodal optimization problems, deterministic 
algorithms can obtain reliable accuracy and significant 

convergence speed while they lack randomness and easily 
fall into local optima for complex multimodal optimization 
problems. Different from deterministic algorithms, meta-
heuristic algorithms as random optimization strategies do 
not impose any additional restrictions, which makes them 
more flexible to solve real-world optimization problems [1-
2]. The meta-heuristic algorithms randomly generate agents 
in the search space to begin the optimization process. In 
each iteration, the agents are guided to move based on the 
cooperation of the agents. When the termination condition 
is met, the global optimal solution or approximate solution 
is output. In the last two decades, scholars’ interest in meta-
heuristic algorithms has been growing. At present, many 
meta-heuristic algorithms have been used successfully to 
solve the engineering optimization problems, such as image 
segmentation [3-5], parameter extraction of solar photovoltaic 
models [6-9], feature selection [10-11], and wireless sensor 
networks [12-13]. Meta-heuristic algorithms can be divided 
into four categories: evolution-based algorithms, swarm-
based algorithms, physics-based algorithms, and human-
based algorithms. They are mainly inspired by principles of 
natural evolution, social behavior of animal groups, physical 
principles, and human social behavior. Evolution-based 
algorithms include genetic algorithm (GA) [14], genetic 
programming (GP) [15], differential evolution (DE) [16], 
QUasi-Affine Transformation Evolutionary (QUATRE) 
[17] and backtracking search optimization algorithm 
(BSA) [18]. Swarm-based algorithm includes particle 
swarm optimization (PSO) [19], ant colony optimization 
(ACO) [20], cat swarm optimization (CSO) [21], grey wolf 
optimizer (GWO) [22] and slime mould algorithm (SMA) 
[23]. Physics-based algorithms include multi-verse optimizer 
(MVO) [24], gravitational search algorithm (GSA) [25], ray 
optimization (RO) [26], black hole (BH) [27] and central 
force optimization (CFO) [28]. Human-based algorithms 
include teaching-learning-based optimization (TLBO) [29], 
soccer league competition (SLC) [30], league championship 
algorithm (LCA) [31], seeker optimization algorithm (SOA) 
[32] and preaching optimization algorithm (POA) [33].

It is imperative to highlight the no free lunch (NFL) [34] 
theorem proposed by Wolpert and Macready in 1997. The 
NFL theory opens up the field of meta-heuristic algorithms 
for researchers. It logically verifies that there is no algorithm 
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for solving all optimization problems. This indicates that 
a meta-heuristic algorithm can obtain accurate results on a 
specific set of problems, but the same algorithm may also 
show poor performance on optimization problems of different 
types and natures. Therefore, proposing novel meta-heuristic 
algorithms or improving existing algorithms are essential to 
solve optimization problems in different fields. Moreover, the 
adjustable parameters in meta-heuristic algorithms usually 
are divided into two classes: general parameters and special 
parameters. General parameters refer to the population size 
and terminal conditions (the maximum number of function 
evaluations or the maximum number of iterations) required 
by each meta-heuristic algorithm. Special parameters are also 
called control parameters, which reflect the features of each 
meta-heuristic algorithm. For example, the crossover rate of 
the differential evolution algorithm is a predefined constant 
in the range (0, 1), which controls the fraction of parameter 
values copied from the mutation vector. The difficulty is how 
to set special parameter values to solve different optimization 
problems. Proper parameter settings will give promising 
results, and vice versa. Therefore, when we contribute a new 
or improved algorithm, special parameters should be avoided 
as much as possible to achieve a parameter-free model. 
However, most current meta-heuristic algorithms still contain 
special parameters.

In recent years, human life’s demand for electricity has 
increased, but the existing resources are limited. How to 
use electric energy effectively and rationally is a challenge 
to human development. Many scholars have paid attention 
to solving the urgent optimization problems of modern 
power systems. Economic load dispatch (ELD) is one of the 
important optimization problems in power system operation 
and planning. It solves how to reasonably distribute the power 
supply of distributed generations. Minimizing operating costs 
is the target of the economic load dispatch problem. How to 
properly plan the power output of the generating units to meet 
the load demand is to solve the optimization problem, but 
also must meet certain power system equality and inequality 
constraints. Today, many meta-heuristic optimization 
algorithms have been used to solve load economic dispatch, 
such as genetic algorithm (GA) [35], differential evolution 
(DE) [36-37], particle swarm optimization (PSO) [38-39], 
harmony search (HS) [40], grey wolf optimization (GWO) 
[41], firefly algorithm (FA) [42], grasshopper optimization 
algorithm (GOA) [43], search and rescue (SAR) [44], slime 
mould algorithm (SMA) [45], Arithmetic optimization 
algorithm (AOA) [46]. The above algorithms are useful 
for load economic dispatch, but the optimization operation 
cost is still very high, so it is necessary to propose a new 
competitive meta-heuristic algorithm in this field.

The above three reasons motivated this work to propose 
a novel evolution algorithm named five phases algorithm 
(FPA). The most notable feature is the simple structure 
of the proposed five phases algorithm, which is modeled 
based on generating and overcoming strategy and learning 
strategy from the agent with the same label. In addition, five 
phases algorithm does not include any special parameters, 
only population size and terminal condition parameters 
are required. This provides flexibility for people in solving 
different types of optimization problems. Furthermore, the 

performance of five phases algorithm is evaluated under 
the CEC2019 test suite. The experimental results verify 
the effectiveness of the proposed algorithm. Finally, the 
five phases algorithm is applied to solve the economic load 
dispatch problem, and the simulation results confirm that it 
can find more competitive results than its counterparts. 

The main contributions included in this work are as 
follows:

(1) We propose a new meta-heuristic algorithm named 
five phases algorithm (FPA). FPA is modeled based on the 
generating and overcoming strategy as well as learning 
strategy from the agent with the same label.

(2) The CEC2019 test suite is used to evaluate the 
performance of FPA. The experimental results confirm that 
FPA is better than the 6 state-of-the-art algorithms.

(3) FPA is also applied to solve the economic load 
dispatch problem in the power system. The experiments give 
that the minimum cost of power system operation obtained 
by the proposed FPA is more competitive than the 14 
counterparts.

The remainder of this paper is organized as follows: 
Section 2 introduces the proposed five phases algorithm 

including inspiration and mathematical model. Section 3 
presents the mathematical models to solve the economic 
load dispatch problem. In Section 4, the experimental results 
are given under the CEC2019 test suite and economic load 
dispatch problem. Finally, Section 5 concludes this paper.

2  Five Phases Algorithm

In this section, we will present the inspiration and 
mathematical model of five phases algorithm.

2.1 Inspiration
The five phases theory is a philosophical thought created 

by the ancient Chinese people. The ancient Chinese used 
metal, wood, water, fire, and earth five elements as the 
basis for the formation of all things in the universe and the 
changes in various natural phenomena. They relied on five 
phases theory to understand the world and believed in the 
unity of heaven and human. The five phases theory has been 
widely applied to account for existences and happenings in 
the conceptual domains of nature, human, and society. Its 
influence can still be felt in all walks of life in modern China 
[47-48]. 

Shangshu is a collection of documentary materials written 
in the Zhou dynasty. It is the earliest record found about the 
five phases theory. Wood, fire, earth, metal, and water are five 
basic concepts in the five phases theory. The ancient Chinese 
believed that the relationship between five phases was not 
isolated from each other, but closely intertwined. According 
to observations in daily life, the ancient Chinese found that, 
on the one hand, metal becomes liquid once melted, water is 
a necessary condition for the growth of trees, boring wood 
can create fire, burnt wood becomes ashes, and metallic ore 
exists in earth. On the other hand, metal-made tools can cut 
trees, wood-made tools can plow earth, earth-made dams can 
stop water, water can extinguish fire, and fire can melt metal. 
Therefore, ancient thinkers integrated five phases into a 
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system and contributed to five phases theory. Wood generates 
fire, fire generates earth, and earth generates metal, metal 
generates water, and water generates wood. Wood overcomes 
earth, earth overcomes water, water overcomes fire, and 
fire overcomes metal, metal overcomes wood. The mutual 
generation and overcome interaction of five phases theory is 
drawn in Figure 1.

 

Figure 1. The mutual generation and overcome interaction of 
five phases theory

2.2 Mathematical Model  
This subsection presents the two mathematical models 

based on the generating and overcoming strategy and learning 
strategy from the agent with the same label. The details are as 
follows.
2.2.1 Generating and Overcoming Strategy

Inspired by the five phases theory, the proposed 
generating and overcoming strategy updates the position of 
agents and completes the information exchange among agents 
in different phase labels. The specific operation is shown in 
Eq. (1).

( ) ( ), , , , , , , , , ,
1 1 2 ,l i d l i d g d l i d o d l i d

G G G G G GX X r X X r X X+ = + × − + × −  (1)

where , ,l i d
GX and , ,

1
l i d
GX + denote the dth dimension of ith agent 

at the Gth and (G + 1)th generations and the label of ith agent 
is l. ,g d

GX  and ,o d
GX mean the dth dimension of generating 

and overcoming agents of the ith agent with label l at the Gth 
generation, respectively. The parameters r1 and r2 denote 
random numbers in [0, 1]. For solving the minimization 
problem, assuming that the label of , ,l i d

GX  is wood, then 
,g d

GX represents the dth dimension of the generating agent, 
and the generating agent is the agent with the smallest fitness 
value in the water label. ,o d

GX is the dth dimension of the 
overcoming agent, and the overcoming agent is the agent 
with the largest fitness value in the metal label. For solving 
the maximization problem, the ,g d

GX and ,o d
GX are respectively 

selected as the agent with the largest fitness and the agent 
with the smallest fitness value under the corresponding label. 
The agents with other labels are also updated based on the 

mutual generation and overcome relationship in the five 
phases theory. 
2.2.2 Learning Strategy

The learning strategy presents the mutual communication 
mechanism between agents in the same label. The updated 
method of guiding agents is to learn from better agents with 
the same label. For the minimization problem, the updated 
method for the agent is as Eq. (2).

( ) ( ) ( )
( )

, , , , , , , ,

, ,
1 , , , , , ,

3 ,  if  
,

4 ,   otherwise                  

l i d l j d l i d l j l i
G G G G Gl i d

G l i d l j d l i d
G G G

X r X X f X f X
X

X r X X
+

 + × − <= 
− × −

 (2)

where ,l j
GX  represents the randomly selected jth agent with 

label l. ( ),l i
Gf X  and ( ),l j

Gf X are the fitness values of ,l i
GX  

and ,l j
GX . The parameters r3 and r4 are two random numbers 

in [0, 1]. If the fitness value of jth agent is less than ith agent, 
it indicates that the jth agent is superior to the ith agent, and 
ith agent will move towards the selected jth agent. Otherwise, 
the ith agent moves in the reverse direction. 

Figure 2 shows the flowchart of five phases algorithm. 
First, initialize the optimization process: set two general 
parameters including the population size and the maximum 
number of iterations, then evaluate the fitness values of 
the agents, and select the current optimal agent. Further, 
randomly separate the agents into five phases. For wood, 
fire, earth, and metal, the subpopulation size is set to floor 
(population size/5), and the number of remaining agents is set 
to water. Eq. (1) and Eq. (2) are executed to evolve the agents 
based on the parameters p and q, where p and q are random 
numbers from 0 to 1. If p is less than q, then Eq. (1) is 
executed, otherwise, Eq. (2) is executed. Moreover, evaluate 
the fitness values of all agents and update the global optima. 
Finally, all agents are merged. If the current iteration number 
meets the termination condition, the global optima will be 
output. Otherwise, the agents will continue to be randomly 
separated to search the optima. Algorithm 1 gives the pseudo-
code of five phases algorithm.

Output the global optima

Separate agents

G ≤ M axIteration

Evolve the agents based on 
Eq.(1) or Eq.(2) 

Evaluate the fitness values 
of all agents and update

the global optima

Initialization

Yes

No

Wood Fire Earth Metal Water

Merge agents

Figure 2. The flowchart of five phases algorithm
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Algorithm 1. The pseudo-code of FPA algorithm
1: Initialization: population size ps, MaxIteration, evaluate 
the fitness values of all agents X, and calculate Xgbest.
2: While G ≤ MaxIteration
3:    Randomly separate the agents into five phases, and their 
labels are wood, fire, earth, metal, and water. For wood, 
fire, earth, and metal, the size is set to floor(ps/5), and the 
number of remaining agents is water.
4:     For i = 1 : 5
5:         Update agents by Eq. (1) or Eq. (2), and evaluate the 
fitness values of all agents

6:        If 
, ,

1( ) ( )l i l i
G Gf X f X+ <  // For the minimization problem

7:                 , ,
1 1

l i l i
G GX X+ +=

8:        Else  , ,
1

l i l i
G GX X+ =

9:        End if
10:   End for
11: Merge all the agents X
12: Xgbest = opt{X}
13: G = G + 1
14: End while
15: Output: The global optima Xgbest and f (Xgbest)

3  Mathematical Model of Economic 
Load Dispatch

Economic load dispatch is a mathematical optimization 
problem to solve the output of generating units. The main 
purpose is to save the fuel cost consumed by the generating 
units, and it is subject to the equality and inequality 
constraints of the actual power system.

3.1 Objective Function
There are two generally used versions of the objective 

function for the economic load dispatch problem. The first 
version is that the objective function is modeled as a single 
quadratic function, which is shown in Eq.(3). The second 
version takes into account the valve point effect (VPE). Due 
to the sudden opening of the turbine intake valve, a wire 
drawing will occur, and a pulsation effect will be added to 
the consumption characteristic curve of the unit. Compared 
with the first version of the quadratic objective function, 
the second objective function adds a sinusoidal function 
with VPE to model the fuel cost of the generating units. The 
objective function of the second version is shown in Eq.(4).

( )2

1
 ,

N

total i i i i i
i

Min F a b P c P
=

= + +∑                        (3)

( )( )( )2 min

1
 | sin | ,

N

total i i i i i i i i i
i

Min F a b P c P e f P P
=

= + + + −∑  (4) 

where Ftotal represents the total fuel cost of the generating 
units, N is the number of generators, Pi is the electrical output 
power of ith generator, min

iP  is the lower limit of ith generator 
output power, ai , bi and ci mean the fuel cost coefficients of 
ith generator, ei and fi are the loading coefficients of the valve 
points for ith generator.

3.2  Constraints
The economic load dispatch problem is subject to two 

constraints: generator output limits and power balance 
constraints. The constraints are as follows.
3.2.1 Generator Output Limits

The actual output power of each generator has upper and 
lower limits. When optimizing the objective function for fuel 
cost, the output power of each generator should be within the 
constrained interval.

min max ,i i iP P P≤ ≤                                   (5)

where min
iP and max

iP  are the lower and upper limits of ith 
generator output power. 
3.2.2 Power Balance Constraint

The power balance constraint of the system is that the 
output power of the generating units should be equal to the 
power demand plus the power loss on the transmission line 
network. 

     
1

,
N

i D L
i

P P P
=

= +∑                                    (6)

where Pi is the electrical output power of ith generator. PD  
and PL denote the total power demand and the power loss on 
the transmission line network, respectively. Furthermore, PL 
can be calculated approximately by Kron’s loss formula as 
follows.

0 00
1 1 1

,
N N N

L i ij j i i
i j i

P PB P B PB
= = =

= +∑∑ ∑                        (7)

where Bij,  B 0 i and B 00 denote the transmission loss 
coefficients.

4  Experimental Analysis 

In this section, the CEC2019 test suite is firstly used 
to evaluate the performance of five phases algorithm, and 
then the proposed five phases algorithm is used to solve the 
economic load dispatch problem. The algorithms are coded 
in MATLAB. The experiments are tested on a personal laptop 
with Windows 10 OS, CPU of Intel(R) Core (TM) i7-8750H 
CPU @ 2.20 GHz 2.21 GHz, and 16 GB RAM.

4.1 Global Optimization
The CEC2019 test suite includes 10 benchmark functions 

is used to evaluate the proposed algorithm in this subsection. 
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The detailed benchmarks’ definitions are given in [49]. 
We have shifted all the benchmark functions to the global 
minimum of “0’’ in the simulation. The proposed five phases 
algorithm is compared with the 6 outstanding algorithms 
including particle swarm optimization, grey wolf optimizer, 
multi-verse optimizer, differential evolution, backtracking 
search algorithm, and slime mould algorithm.

Considering the randomness of the meta-heuristic 
algorithm, many tests are performed. Each algorithm is 
independently run 51 times and the test results are recorded. 
Set the initial population size to 50, and the maximum of 
function evaluations is 5000 × dimension. Table 1 presents 
the special parameters of each comparison algorithm, which 

refer to the values of the corresponding references. The 
simulation results are evaluated under Tied rank [50] and 
Wilcoxon signed-rank [51] test statistics.

Table 1. Parameter settings of counterparts
Algorithm Parameters settings
PSO Vmin = −10, Vmax = 10, w = [0.9,0.4], c1, c2 = 2
GWO a = [2,0]
MVO WEPmin = 0.2, WEPmax = 1, p = 0.6
DE F = 0.7, Cr = 0.1
BSA Mixrate = 1.00
SMA z = 0.03

Table 2. Experimental simulations of 7 meta-heuristic algorithms under the CEC2019 test suite
Function PSO GWO MVO DE BSA SMA FPA

F1

Mean 2.972E+07 8.068E+03 8.486E+05 1.631E+06 1.039E+05 0.000E+00 7.495E+04
Std 4.003E+07 2.533E+04 6.348E+05 9.132E+05 7.560E+04 0.000E+00 6.915E+04
TR 7 2 5 6 4 1 3
Mark - + - - - + /

F2

Mean 7.497E+03 2.690E+02 3.982E+02 9.876E+02 2.096E+02 3.882E+00 1.862E+02
Std 3.239E+03 1.789E+02 1.239E+02 2.237E+02 7.199E+01 2.599E-01 7.931E+01
TR 7 4 5 6 3 1 2
Mark - - - - = + /

F3

Mean 6.520E+00 8.053E-01 6.095E+00 1.681E+00 1.646E+00 2.881E+00 6.762E-01
Std 2.108E+00 7.376E-01 2.361E+00 4.048E-01 5.140E-01 2.594E+00 5.288E-01
TR 7 2 6 4 3 5 1
Mark - = - - - - /

F4

Mean 3.293E+01 1.264E+01 1.723E+01 5.626E+00 8.659E+00 1.436E+01 5.396E+00
Std 1.314E+01 7.063E+00 8.412E+00 1.313E+00 2.249E+00 5.408E+00 3.248E+00
TR 7 4 6 2 3 5 1
Mark - - - - - - /

F5

Mean 1.402E-01 5.041E-01 3.058E-01 6.938E-02 5.563E-02 2.545E-01 1.232E-02
Std 6.587E-02 4.078E-01 1.299E-01 3.087E-02 2.770E-02 9.375E-02 1.101E-02
TR 4 7 6 3 2 5 1
Mark - - - - - - /

F6

Mean 3.385E+00 1.502E+00 1.718E+00 2.046E-02 1.058E+00 3.335E+00 1.259E-01
Std 1.483E+00 1.078E+00 1.382E+00 7.987E-02 5.223E-01 1.570E+00 2.454E-01
TR 7 4 5 1 3 6 2
Mark - - - + + - /

F7

Mean 1.137E+03 6.426E+02 7.376E+02 2.378E+02 4.503E+02 6.679E+02 8.498E+02
Std 2.976E+02 2.542E+02 3.055E+02 1.685E+02 9.931E+01 2.402E+02 3.109E+02
TR 7 3 5 1 2 4 6
Mark - + + + - + /

F8

Mean 3.128E+00 2.552E+00 2.687E+00 2.182E+00 2.673E+00 2.660E+00 2.564E+00
Std 4.741E-01 4.404E-01 5.749E-01 2.952E-01 2.387E-01 4.887E-01 2.710E-01
TR 7 2 6 1 5 4 3
Mark - = = + - = /

F9

Mean 1.850E-01 1.432E-01 2.116E-01 2.022E-01 2.132E-01 2.014E-01 1.294E-01
Std 1.004E-01 5.393E-02 6.649E-02 3.411E-02 4.453E-02 6.354E-02 3.055E-02
TR 3 2 6 5 7 4 1
Mark - = - - - - /

F10

Mean 1.930E+01 1.996E+01 2.003E+01 1.992E+01 2.008E+01 1.970E+01 2.038E+01
Std 3.508E+00 2.295E+00 4.108E-02 1.154E+00 4.250E-02 2.802E+00 9.412E-02
TR 1 4 5 3 6 2 7
Mark + = + + + + /

Over-Rank 7 3 6 2 5 4 1
-/=/+ 9/0/1 4/4/2 7/1/2 6/0/4 7/1/2 5/1/4 compared
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Table 2 presents the experimental results of the 7 meta-
heuristic algorithms under the CEC2019 test suite. The mean 
value and standard deviation obtained by each algorithm 
are denoted as “Mean’’ and “Std’’, respectively. The best 
mean and standard deviation have been shown in bold. “TR’’ 
indicates the tied rank of the test algorithms, and “Mark’’ 
means the wilcoxon signed-rank test. The mark “–’’ denotes 
that the proposed FPA is better than the compared algorithm. 
The mark “=’’ denotes that the proposed FPA is similar to the 
compared algorithm. The mark “+’’ denotes that the proposed 
FPA is worse than the compared algorithm. For wilcoxon 
signed-rank test, the level of significance α is set to 0.05 in 
the simulation.

For example, when the benchamark function F5 is solved, 
the proposed FPA algorithm can search for the smallest 
mean value 1.232E-02 and standard deviation 1.101E-02 
among the 7 algorithms. Tired rank statistic give the rank of 
7 algorithm, the proposed FPA is first, BSA is second, DE is 
third, PSO is fourth, SMA is fifth, MVO is sixth, and GWO 
is seventh. Wilcoxon signed-rank test statistic indicates that 
the proposed FPA can obtan better performance than the 6 
compared algorithms under the F5 benchmark function. For 
the 10 test functions, the ranking of FPA is third, second, 
first, first, first, second, sixth, third, first, and seventh. The 
overall performance under the CEC2019 test suite is the 
proposed FPA is ranked first, DE is ranked second, GWO 

is ranked third, SMA is ranked fourth, BSA is ranked fifth, 
MVO is ranked sixth, and PSO is ranked seventh. Compared 
to PSO, FPA achieves 9 better performances, 0 similar 
performances, and 1 worse performance. Compared to GWO, 
FPA achieves 4 better performances, 4 similar performances, 
and 2 worse performances. Similarly, the comparison results 
with MVO, DE, BSA and SMA can be found in Table 2. 
The average time of the proposed FPA algorithm and the 
comparison algorithms are shown in Table 3. Figure. 3 plots 
the convergence curves of mean value for 7 algorithms. As 
shown in the figure, the proposed FPA outperforms the 6 
compared algorithms under functions F3, F4, F5 and F9. 
Therefore, the proposed FPA algorithm is competitive and 
is superior to the PSO, GWO, MVO, DE, BSA and SMA 
algorithms under the CEC2019 test suite. 

Table 3. Average time under the CEC2019 test suite
Algorithm Average time (s)
PSO 0.198
GWO 0.503
MVO 0.575
DE 0.363
BSA 0.296
SMA 1.816
FPA 0.834
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Figure 3. The convergence curves obtained by FPA and 6 compared algorithms for the selected functions
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4.2 Economic Load Dispatch Problem
In this subsection, the proposed FPA is applied to solve 

the economic load dispatch problem in practical application.
For solving the economic load dispatch problem, we 

tested two cases including 20-unit with transmission line loss, 
DP   = 2500 MW and 40-unit with valve point effect, DP   = 

10500 MW. The first case is 20 generating units, considering 
the line loss, the power demand is 2500MW. The second case 
is 40 generating units, considering the valve point effect, the 
power demand is 10500MW. The detailed data of the 
simulation are shown in the appendix. The parameters of the 
two test models refer to the reference [52] and [53]. The 
initial parameters are as follows: the population size is set 50, 
the maximum of function evaluations is set to 15000 for 20-
unit with transmission line loss and 50000 for 40-unit with 
valve point effect refer to the corresponding references, 
respectively. To fairly compare the experimental results, each 
algorithm is set to run 31 times.

For the 20-unit with transmission line loss, Table 4 shows 
the best results searched by the 7 algorithms and the solved 
output power for 20 generators. The minimal electrical 
power loss and minimal fuel cost have been highlighted 
in bold. The proposed FPA obtains the smallest electrical 
power loss 89.9054 MW and obtains the smallest fuel cost 
62443.9509 $/h. To evaluate the performance of the proposed 
FPA algorithm, we compare the minimum fuel cost results 
obtained by the other 9 counterparts. Figure 4 shows the 
minimal cost obtained by 10 algorithms. The cost value of 
PSO is 62448.252 $/h, the cost value of GWO is 62443.4563 
$/h, the cost value of MVO is 62438.1534 $/h, the cost 
value of DE is 62469.2092 $/h, the cost value of BSA is 

62473.7261 $/h, the cost value of SMA is 62446.4223 $/h, 
the cost value of BBO is 62456.7793 $/h, the cost value of 
LI is 62456.6391 $/h, the cost value of HM is 62443.6341 
$/h, the cost value of ALO is 62456.6331 $/h. Therefore, 
the experimental result obtained by FPA outperforms other 
comparison algorithms under the 20-unit with transmission 
line loss.

For the 40-unit with valve point effect, Table 5 shows 
the best results obtained by the 7 algorithms and the solved 
output power of the 40 generators. The minimal fuel cost 
has been highlighted in bold. The proposed FPA obtains 
the smallest fuel cost at 121474.4714 $/h. To evaluate the 
performance of the proposed FPA algorithm, we compare 
the minimum fuel cost results obtained by the other 9 
counterparts. Figure 5 gives the minimal cost obtained by 
10 algorithms. The cost value of PSO is 126541.0877 $/
h, the cost value of GWO is 123522.7778 $/h, the cost 
value of MVO is 122395.227 $/h, the cost value of DE is 
122577.6866 $/h, the cost value of BSA is 125758.8805 $/h, 
the cost value of SMA is 121872.2817 $/h, the cost value of 
PPSO is 125503.09 $/h, the cost value of SSA is 123565.75 
$/h, the cost value of MPA is 123180.98 $/h, the cost value of 
MGMPA is 122634.69 $/h. Therefore, the experimental result 
obtained by FPA outperforms other comparison algorithms 
under the 40-unit with valve point effect. Table 6 shows the 
detailed results (Best, Mean, Median, Worst, Std, Average 
time) of FPA in two cases. The simulation experiment proves 
that the proposed FPA is an effective algorithm to solve the 
economic load dispatch problem and it is superior to the 14 
algorithms, including PSO, GWO, MVO, DE, BSA, SMA, 
BBO, LI, HM, ALO, PPSO, SSA, MPA and MGMPA.

Table 4. The experimental results of 7 algorithms for the 20-unit with transmission line loss, PD = 2500 MW
Unit PSO GWO MVO DE BSA SMA FPA
1 545.442 492.693 482.109 541.7115 467.7405 466.17 490.2405
2 200 161.888 171.506 140.0765 159.413 136.8815 155.1275
3 138.551 122.879 115.841 118.07 120.257 117.011 111.9605
4 91.5305 98.8235 104.4515 72.59 136.0445 117.863 84.158
5 106.2705 122.9795 96.8545 100.732 110.2239 107.9964 117.8799
6 77.0568 58.2624 94.128 79.2872 56.4176 55.9616 80.3176
7 96.993 85.851 117.406 97.153 83.439 96.542 104.138
8 125.195 102.747 113.373 100.477 110.464 104.263 130.182
9 72.6065 116.78 108.911 114.0815 123.0245 120.2945 110.486
10 75.0144 106.8564 92.0736 79.5264 86.0304 85.8132 110.0604
11 156.144 165.084 148.494 140.998 172.24 159.118 141.87
12 276.1785 294.27 298.148 262.574 297.938 303.125 289.58
13 128.3752 126.862 98.8888 146.4256 105.0916 128.5732 117.5608
14 38.909 65.397 60.3326 54.6863 91.9169 63.406 67.0558
15 138.1136 177.008 164.832 181.2384 146.7792 181.0496 165.7216
16 42.8336 35.6528 38.9342 40.2752 34.9946 36.8426 38.4338
17 65.9513 43.2264 51.6128 75.5862 76.16205 55.1119 65.6059
18 89.7726 91.1712 76.0989 50.2698 74.1162 75.3789 58.7289
19 72.7608 93.8264 83.5768 115.208 87.4272 96.7128 86.9648
20 52.4294 31.21751 72.8008 80.1599 52.9502 82.6904 63.4334
PL 90.1277 93.47511 90.3725 91.1265 92.67035 90.8046 89.5054
Cost 62448.252 62443.4563 62438.1534 62469.2092 62473.7261 62446.4223 62433.9509
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Figure 4. The minimal cost obtained by FPA and the compared algorithms for the 20 units

Table 5. The experimental results of 7 algorithms for 40-unit with valve point effect, PD = 10500 MW
Unit PSO GWO MVO DE BSA SMA FPA
1 72.93924 111.0851 113.1989 110.8894 65.08464 112.0461 112.26996
2 100.4686 83.30154 112.7192 112.883 57.90864 111.8612 111.52506
3 71.1984 68.2158 99.3432 100.7388 77.8788 99.3618 97.392
4 141.9916 136.8117 137.6818 181.5212 146.6281 178.3906 179.7854
5 94.04 93.7255 93.7945 90.8175 83.801 88.436 91.8315
6 116.8736 68.61109 136.6311 105.6574 107.137 105.4832 139.99928
7 300 299.2666 272.2923 259.815 296.2228 299.9696 260.5389
8 281.4788 285.9222 287.7867 290.1644 261.1871 288.1085 284.70945
9 284.9207 289.242 294.8388 287.2373 222.3395 284.9817 284.7738
10 130.0212 130 132.234 197.8113 205.1553 130 130.1285659
11 375 170.8114 168.7601 170.4404 296.9017 167.7063 94
12 315.8888 98.25827 170.3674 94.45983 232.2351 167.8524 169.04386
13 394.31 394.5913 215.6525 218.0563 299.4613 125.0117 125.054585
14 214.7188 305.495 304.6438 395.57 309.5938 304.5163 394.34
15 394.28 394.1338 394.3138 396.3913 389.6788 304.55 394.28
16 471.62 394.2763 394.6213 387.5975 393.0838 483.41 394.29875
17 500 489.6652 489.9368 495.9176 489.094 489.4356 489.4132
18 500 493.252 491.9248 490.1076 491.6056 489.318 489.346
19 518.698 516.622 512.5472 513.9702 510.3666 511.1766 511.27516
20 421.5394 511.8758 514.4476 509.8245 514.4876 513.0924 511.4076
21 550 547.4041 527.2494 518.0971 536.5468 523.3541 523.45472
22 523.3926 532.8646 523.7685 528.0871 532.909 523.3718 523.41032
23 523.2801 531.7486 525.8494 523.4932 530.8044 523.3126 523.33928
24 521.6906 531.2099 524.917 523.9994 510.6942 523.2238 523.42808
25 435.1964 524.8696 527.3294 519.1538 517.8485 523.2209 523.53168
26 550 525.0827 532.3643 525.953 521.5929 523.0788 523.29784
27 10 10.40449 10.59227 11.89518 10.06959 10 10.0602028
28 10 15.89918 11.39658 10.5409 10.67547 10.00002 10.0177548
29 10 10.00342 11.11933 13.23288 10.16806 10.01565 10.00728
30 82.0235 88.6845 74.222 96.571 83.617 92.6425 87.823
31 151.6071 189.9155 189.7491 168.6228 188.9899 189.9974 190
32 160.4081 190 189.9805 167.0225 190 189.9961 189.9259
33 172.7737 190 190 186.7474 188.2424 189.9935 189.9714
34 127.5573 166.549 170.894 167.5049 181.9721 199.3829 199.978
35 150.137 182.6541 164.7978 164.9815 162.3052 199.9912 165.5161
36 200 170.3748 167.913 172.5792 136.1802 193.9665 199.9637
37 89.02455 25.01844 104.7521 99.14465 57.35185 90.26045 109.6158
38 91.09005 109.4254 105.4423 91.7488 104.628 109.9465 109.9864
39 110 109.7518 97.1276 91.5873 57.5601 108.2932 109.99575
40 331.8344 513.0154 512.8028 509.5565 518.5255 511.3368 511.29672
Cost 126541.0877 123522.8 122395.2 122577.7 125758.9 121872.3 121474.4714
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5  Conclusion 

This paper proposes a new five phases algorithm (FPA) 
inspired by the five phases theory. FPA updates agents based 
on two models: generating and overcoming strategy, and 
learning strategy from the agent with the same label. The 
CEC2019 test suite and economic load dispatch problem are 
used to evaluate the proposed FPA. For the CEC2019 test 

suite, the tied rank and wilcoxon signed-rank test statistics 
prove that FPA outperforms the outstanding PSO, GWO, 
MVO, DE, BSA, and SMA algorithms. For solving the 
economic load dispatch problem, FPA is also superior to the 
14 state-of-the-art algorithms. The simulation results indicate 
that the proposed FPA is a competitive algorithm for solving 
optimization problems.

In the next work, the proposed FPA will be used to solve 
more actual optimization problems.
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Figure 5. The minimal cost obtained by FPA and the compared algorithms for the 40 units

Table 6. The cost simulation results of FPA for 20 units and 40 units
Case Best Mean Median Worst Std Average time (s)
20 units 62433.9509 62467.3967 62466.2986 62506.1205 15.7884 0.4196
40 units 121474.4714 121962.16 121866.8977 123250.2606 390.1537 1.5481

Appendix

See Tables A.1–A.3.

Table A.1. B loss matrix values for 20-unit with transmission line loss, PD = 2500 MW
B  20-unit
B = 8.7 0.43 -4.61 0.36 0.32 -0.66 0.96 -1.6 0.8 -0.1 3.6 0.64 0.79 2.1 1.7 0.8 -3.2 0.7 0.48 -0.7
(1e – 5) 0.43 8.3 -0.97 0.22 0.75 -0.28 5.04 1.7 0.54 7.2 -0.28 0.98 -0.46 1.3 0.8 -0.2 0.52 -1.7 0.8 0.2

-4.61 -0.97 9 -2 0.63 3 1.7 -4.3 3.1 -2 0.7 -0.77 0.93 4.6 -0.3 4.2 0.38 0.7 -2 3.6
0.36 0.22 -2 5.3 0.47 2.62 -1.96 2.1 0.67 1.8 -0.45 0.92 2.4 7.6 -0.2 0.7 -1 0.86 1.6 0.87
0.32 0.75 0.63 0.47 8.6 -0.8 0.37 0.72 -0.9 0.69 1.8 4.3 -2.8 -0.7 2.3 3.6 0.8 0.2 -3 0.5
-0.66 -0.28 3 2.62 -0.8 11.8 -4.9 0.3 3 -3 0.4 0.78 6.4 2.6 -0.2 2.1 -0.4 2.3 1.6 -2.1
0.96 5.04 1.7 -1.96 0.37 -4.9 8.24 -0.9 5.9 -0.6 8.5 -0.83 7.2 4.8 -0.9 -0.1 1.3 0.7 1.9 1.3
-1.6 1.7 -4.3 2.1 0.72 0.3 -0.9 1.2 -0.96 0.56 1.6 0.8 -0.4 0.23 0.75 -0.56 0.8 -0.3 5.3 0.8
0.8 0.54 3.1 0.67 -0.9 3 5.9 -0.96 0.93 -0.3 6.5 2.3 2.6 0.58 -0.1 0.23 -0.3 1.5 0.74 0.7
-0.1 7.2 -2 1.8 0.69 -3 -0.6 0.56 -0.3 0.99 -6.6 3.9 2.3 -0.3 2.8 -0.8 0.38 1.9 0.47 -0.26
3.6 -0.28 0.7 -0.45 1.8 0.4 8.5 1.6 6.5 -6.6 10.7 5.3 -0.6 0.7 1.9 -2.6 0.93 -0.6 3.8 -1.5
0.64 0.98 -0.77 0.92 4.3 0.78 -0.83 0.8 2.3 3.9 5.3 8 0.9 2.1 -0.7 5.7 5.4 1.5 0.7 0.1
0.79 -0.46 0.93 2.4 -2.8 6.4 7.2 -0.4 2.6 2.3 -0.6 0.9 11 0.87 -1 3.6 0.46 -0.9 0.6 1.5
2.1 1.3 4.6 7.6 -0.7 2.6 4.8 0.23 0.58 -0.3 0.7 2.1 0.87 3.8 0.5 -0.7 1.9 2.3 -0.97 0.9
1.7 0.8 -0.3 -0.2 2.3 -0.2 -0.9 0.75 -0.1 2.8 1.9 -0.7 -1 0.5 11 1.9 -0.8 2.6 2.3 -0.1
0.8 -0.2 4.2 0.7 3.6 2.1 -0.1 -0.56 0.23 -0.8 -2.6 5.7 3.6 -0.7 1.9 10.8 2.5 -1.8 0.9 -2.6
-3.2 0.52 0.38 -1 0.8 -0.4 1.3 0.8 -0.3 0.38 0.93 5.4 0.46 1.9 -0.8 2.5 8.7 4.2 -0.3 0.68
0.7 -1.7 0.7 0.86 0.2 2.3 0.76 -0.3 1.5 1.9 -0.6 1.5 -0.9 2.3 2.6 -1.8 4.2 2.2 0.16 -0.3
0.48 0.8 -2 1.6 -3 1.6 1.9 5.3 0.74 0.47 3.8 0.7 0.6 -0.97 2.3 0.9 -0.3 0.16 7.6 0.69
-0.7 0.2 3.6 0.87 0.5 -2.1 1.3 0.8 0.7 -0.26 -1.5 0.1 1.5 0.9 -0.1 -2.6 0.68 -0.3 0.69 7

B0 = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
B00 =
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Table A.2. Data of 20-unit with transmission line loss, PD = 2500 MW

Unit ia  ib ic minP  maxP Unit ia  ib ic minP  maxP
1 0.00068 18.2 1000 150 600 11 0.005 16.69 800 100 300
2 0.00071 19.3 970 50 200 12 0.003 16.76 970 150 500
3 0.0065 19.8 600 50 200 13 0.009 17.36 900 40 160
4 0.005 19.1 700 50 200 14 0.005 18.7 700 20 130
5 0.00738 18.1 420 50 160 15 0.004 18.7 450 25 185
6 0.00612 19.3 360 20 100 16 0.071 14.26 370 20 80
7 0.0079 17.1 490 25 125 17 0.009 19.14 480 30 85
8 0.00813 18.9 660 50 150 18 0.007 18.92 680 30 120
9 0.00522 18.3 765 50 200 19 0.006 18.47 700 40 120
10 0.00573 18.9 770 30 150 20 0.008 19.79 850 30 100

Table A.3. Data of 40-unit with valve point effect, PD = 10500 MW

Unit ia ib ic ie if minP maxP Unit ia ib ic ie if minP maxP
1 0.0069 6.73 94.705 100 0.084 36 114 21 0.00298 6.63 785.96 300 0.035 254 550
2 0.0069 6.73 94.705 100 0.084 36 114 22 0.00298 6.63 785.96 300 0.035 254 550
3 0.02028 7.07 309.54 100 0.084 60 120 23 0.00284 6.66 794.53 300 0.035 254 550
4 0.00942 8.18 369.03 150 0.063 80 190 24 0.00284 6.66 794.53 300 0.035 254 550
5 0.0114 5.35 148.89 120 0.077 47 97 25 0.00277 7.1 801.32 300 0.035 254 550
6 0.01142 8.05 222.33 100 0.084 68 140 26 0.00277 7.1 801.32 300 0.035 254 550
7 0.00357 8.03 278.71 200 0.042 110 300 27 0.52124 3.33 1055.1 120 0.077 10 150
8 0.00492 6.99 391.98 200 0.042 135 300 28 0.52124 3.33 1055.1 120 0.077 10 150

9 0.00573 6.6 455.76 200 0.042 135 300 29 0.52124 3.33 1055.1 120 0.077 10 150

10 0.00605 12.9 722.82 200 0.042 130 300 30 0.0114 5.35 148.89 120 0.077 47 97
11 0.00515 12.9 635.2 200 0.042 94 375 31 0.0016 6.43 222.92 150 0.063 60 190
12 0.00569 12.8 654.69 200 0.042 94 375 32 0.0016 6.43 222.92 150 0.063 60 190
13 0.00421 12.5 913.4 300 0.035 125 500 33 0.0016 6.43 222.92 150 0.063 60 190
14 0.00752 8.84 1760.4 300 0.035 125 500 34 0.0001 8.95 107.87 200 0.042 90 200
15 0.00708 9.15 1728.3 300 0.035 125 500 35 0.0001 8.62 116.58 200 0.042 90 200
16 0.00708 9.15 1728.3 300 0.035 125 500 36 0.0001 8.62 116.58 200 0.042 90 200
17 0.00313 7.97 647.85 300 0.035 220 500 37 0.0161 5.88 307.45 80 0.098 25 110
18 0.00313 7.95 649.69 300 0.035 220 500 38 0.0161 5.88 307.45 80 0.098 25 110
19 0.00313 7.97 647.83 300 0.035 242 550 39 0.0161 5.88 307.45 80 0.098 25 110
20 0.00313 7.97 647.81 300 0.035 242 550 40 0.00313 7.97 647.83 300 0.035 242 550

Acknowledgments

This work is supported by the National Natural Science 
Foundation of China (61872085), the Natural Science 
Foundation of Fujian Province (2018J01638) and the 
Fujian Provincial Department of Science and Technology 
(2018Y3001).

References

[1] S. Ruder, An overview of gradient descent optimization 
algorithms, June, 2017. https://arxiv.org/abs/1609.04747

[2] S. C. Chu, H. C. Huang, J. F. Roddick, J. S. Pan, 
Overview of algorithms for swarm intelligence, 
International Conference on Computational Collective 
Intelligence, Gdynia, Poland, 2011, pp. 28-41.

[3] P. Mesejo, O. Ibáñez, O. Cordón, S. Cagnoni, A survey 

on image segmentation using metaheuristic-based 
deformable models: state of the art and critical analysis, 
Applied Soft Computing, Vol. 44, pp. 1-29, July, 2016.

[4] X. Wang, J. S. Pan, S. C. Chu, A parallel multi-
verse optimizer for application in multilevel image 
segmentation, IEEE Access, Vol. 8, pp. 32018-32030, 
February, 2020.

[5] S. Sarkar, S. Das, S. S. Chaudhuri, A multilevel color 
image thresholding scheme based on minimum cross 
entropy and differential evolution, Pattern Recognition 
Letters, Vol. 54, pp. 27-35, March, 2015.

[6] Y. Liu, A. A. Heidari, X. Ye, G. Liang, H. Chen, C. 
He, Boosting slime mould algorithm for parameter 
identification of photovoltaic models, Energy, Vol. 234, 
Article No. 121164, November, 2021.

[7] S. Jiao, G. Chong, C. Huang, H. Hu, M. Wang, A. 
A. Heidari, H. Chen, X. Zhao, Orthogonally adapted 
harris hawks optimization for parameter estimation 



Five Phases Algorithm: A Novel Meta-heuristic Algorithm and Its Application on Economic Load Dispatch Problem   847

of photovoltaic models, Energy, Vol. 203, Article No. 
117804, July, 2020.

[8] X. Chen, K. Yu, W. Du, W. Zhao, G. Liu, Parameters 
identification of solar cell models using generalized 
oppositional teaching learning based optimization, 
Energy, Vol. 99, pp. 170-180, March, 2016.

[9] X. Wang, S. C. Chu, V. Snášel, L. Kong, J. S. Pan, H. 
A. Shehadeh, A two-phase quasi-affine transformation 
evolution with feedback for parameter identification of 
photovoltaic models, Applied Soft Computing, Vol. 113, 
Article No. 107978, December, 2021.

[10] P. Hu, J. S. Pan, S. C. Chu, Improved binary grey wolf 
optimizer and its application for feature selection, 
Knowledge-Based Systems, Vol. 195, Article No. 
105746, May, 2020.

[11] G. I. Sayed, A. Tharwat, A. E. Hassanien, Chaotic 
dragonfly algorithm: An improved metaheuristic 
algorithm for feature selection, Applied Intelligence, 
Vol. 49, No. 1, pp. 188-205, January, 2019.

[12] J. S. Pan, L. Kong, T. W. Sung, P. W. Tsai, V. Snášel, A 
clustering scheme for wireless sensor networks based 
on genetic algorithm and dominating set, Journal of 
Internet Technology, Vol. 19, No. 4, pp. 1111-1118, July, 
2018.

[13] T. T. Nguyen, J. S. Pan, T. K. Dao, An improved flower 
pollination algorithm for optimizing layouts of nodes 
in wireless sensor network, IEEE Access, Vol. 7, pp. 
75985-75998, June, 2019.

[14] J. Holland, Adaptation in natural and artificial systems, 
Ann Arbor, MI: University of Michigan Press, 1975.

[15] J. Koza, J. Rice, Automatic programming of robots 
using genetic programming, Proceedings of the tenth 
national conference on artificial intelligence, San Jose, 
California, America, 1992, pp. 194-207.

[16] K. Price, R. M. Storn, J. A. Lampinen, Differential 
evolution: a practical approach to global optimization, 
Springer Science & Business Media, 2006.

[17] Z. Meng, J. S. Pan, H. Xu, Quasi-affine transformation 
evolutionary (quatre) algorithm: a cooperative swarm 
based algorithm for global optimization, Knowledge-
Based Systems, Vol. 109, pp. 104-121, October, 2016.

[18] P. Civicioglu, Backtracking search optimization 
algorithm for numerical optimization problems, Applied 
Mathematics and Computation, Vol. 219, No. 15, pp. 
8121-8144, April, 2013.

[19] J. Kennedy, R. Eberhart, Particle swarm optimization, 
Proceedings of ICNN’95-International Conference on 
Neural Networks, Perth, WA, Australia, 1995, pp. 1942-
1948.

[20] M. Dorigo, M. Birattari, T. Stutzle, Ant colony 
optimization, IEEE Computational Intelligence 
Magazine, Vol. 1, No. 4, pp. 28-39,  November, 2006.

[21] S. C. Chu, P. W. Tsai, J. S. Pan, Cat swarm optimization, 
Pacific Rim international conference on artificial 
intelligence, Guilin China, 2006, pp. 854-858.

[22] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf 
optimizer, Advances in Engineering Software, Vol. 69, 
pp. 46-61, March, 2014.

[23] S. Li, H. Chen, M. Wang, A. A. Heidari, S. Mirjalili, 
Slime mould algorithm: A new method for stochastic 

optimization, Future Generation Computer Systems, 
Vol. 111, pp. 300-323, October, 2022.

[24] S. Mirjalili, S. M. Mirjalili, A. Hatamlou, Multi-
verse optimizer: a nature-inspired algorithm for global 
optimization, Neural Computing and Applications, Vol. 
27, No. 2, pp. 495-531, February, 2016. 

[25] E. Rashedi, H. Nezamabadi-Pour, S. Saryazdi, GSA: a 
gravitational search algorithm, Information Sciences, 
Vol. 179, No. 13, pp. 2232-2248, June, 2009.

[26] A. Kaveh, M. Khayatazad, A new meta-heuristic 
method: ray optimization, Computers & structures, Vol. 
112-113, pp. 283-294, December, 2012.

[27] A. Hatamlou, Black hole: A new heuristic optimization 
approach for data clustering, Information sciences, Vol. 
222, pp. 175-184, February, 2013.

[28] R. A. Formato, Central force optimization, Prog 
Electromagn Res, Vol. 777, No. 1, pp. 425-491, 2007.

[29] R. V. Rao, V. J. Savsani, D. P. Vakharia, Teaching-
learning-based optimization: an optimization method for 
continuous non-linear large scale problems, Information 
sciences, Vol. 183, No. 1, pp. 1-15, January, 2012.

[30] N. Moosavian, B. K. Roodsari ,  Soccer league 
competition algorithm: A novel meta-heuristic algorithm 
for optimal design of water distribution networks, 
Swarm and Evolutionary Computation, Vol. 17, pp. 14-
24, August, 2014.

[31] A. H. Kashan, League championship algorithm: a new 
algorithm for numerical function optimization, 2009 
International Conference of Soft Computing and Pattern 
Recognition, Malacca, Malaysia, 2009, pp. 43-48.

[32] C. Dai, Y. Zhu, W. Chen, Seeker optimization algorithm, 
International Conference on Computational and 
Information Science, Guangzhou, China, 2006, pp. 167-
176.

[33] D. Wei, Z. Wang, L. Si, C. Tan, Preaching-inspired 
swarm intelligence algorithm and its applications, 
Knowledge-Based Systems, Vol. 211, Article No. 
106552, January, 2021.

[34] D. H. Wolpert, W. G. Macready, No free lunch theorems 
for optimization, IEEE Transactions on Evolutionary 
Computation, Vol. 1, No. 1, pp. 67-82, April, 1997.

[35] C. L. Chiang, Improved genetic algorithm for power 
economic dispatch of units with valve-point effects and 
multiple fuels, IEEE Transactions on Power Systems, 
Vol. 20, No. 4, pp. 1690-1699, November, 2005.

[36] L. S. Coelho, V. C. Mariani, Combining of chaotic 
differential evolution and quadratic programming for 
economic dispatch optimization with valve-point effect, 
IEEE Transactions on Power Systems, Vol. 21, No. 2, 
pp. 989-996, May, 2006.

[37] Q. Zhang, D. Zou, N. Duan, X. Shen, An adaptive 
differential evolutionary algorithm incorporating 
multiple mutation strategies for the economic load 
dispatch problem, Applied Soft Computing, Vol. 78 pp. 
641-669, May, 2019.

[38] J. B. Park, K. S. Lee, J. R. Shin, K. Y. Lee, A particle 
swarm optimization for economic dispatch with 
nonsmooth cost functions, IEEE Transactions on Power 
Systems, Vol. 20, No. 1, pp. 34-42, February, 2005.

[39] M. Gholamghasemi, E. Akbari, M. B. Asadpoor, M. 



848  Journal of Internet Technology Vol. 24 No. 4, July 2023

Ghasemi, A new solution to the non-convex economic 
load dispatch problems using phasor particle swarm 
optimization, Applied Soft Computing, Vol. 79, pp. 111-
124, June, 2019.

[40] B. Y. Qu, J. J. Liang, Y. S. Zhu, Z. Y. Wang, P. N. 
Suganthan, Economic emission dispatch problems with 
stochastic wind power using summation based multi-
objective evolutionary algorithm, Information Sciences, 
Vol. 351, pp. 48-66, July, 2016.

[41] D. Singh, J. S. Dhillon, Ameliorated grey wolf 
optimization for economic load dispatch problem, 
Energy, Vol. 169, pp. 398-419, February, 2019.

[42] X. S. Yang, S. S. S. Hosseini, A. H. Gandomi, Firefly 
algorithm for solving non-convex economic dispatch 
problems with valve loading effect, Applied Soft 
Computing, Vol. 12, No. 3, pp. 1180-1186, March, 2012.

[43] M. Sulaiman, Masihullah, Z. Hussain, S. Ahmad, W. K. 
Mashwani, M. A. Jan, R. A. Khanum, Implementation 
of improved grasshopper optimization algorithm to 
solve economic load dispatch problems, Hacettepe 
Journal of Mathematics and Statistics, Vol. 48, No. 5, 
1570-1589, May, 2019.

[44] M. Said, E. H. Houssein, S. Deb, R. M. Ghoniem, A. 
G. Elsayed, Economic load dispatch problem based on 
search and rescue optimization algorithm, IEEE Access, 
Vol. 10, pp. 47109-47123, April, 2022.

[45] T. Singh, Chaotic slime mould algorithm for economic 
load dispatch problems, Applied Intelligence, Vol. 52, 
No. 13, pp. 15325-15344, October, 2022.

[46] W. K. Hao, J. S. Wang, X. D. Li, M. Wang, M. Zhang, 
Arithmetic optimization algorithm based on elementary 
function disturbance for solving economic load dispatch 
problem in power system, Applied Intelligence, Vol. 52, 
No. 10, pp. 11846-11872, August, 2022.

[47] C. Lan, D. Jia, Conceptual metonymies and metaphors 
behind the five phases: A case study of mu (wood), 
tu (earth) and jin (metal), Chinese Language and 
Discourse, Vol. 7, No. 1, pp. 66-104, September, 2016.

[48] C. Lan, D. Jia, Conceptual metonymies and metaphors 
behind shui (water) and huo (fire) in ancient and modern 
chinese, Applied Linguistics Review, Vol. 11, No. 2, pp. 
281-310, May, 2020.

[49] K. V. Price, N. H. Awad, M. Z. Ali, P. N. Suganthan, 
Problem definitions and evaluation criteria for the 
100-digit challenge special session and competition 
on single objective numerical optimization, Technical 
Report, November, 2018.

[50] H. Rakhshani, A. Rahati, Snap-drift cuckoo search: A 
novel cuckoo search optimization algorithm, Applied 
Soft Computing, Vol. 52, pp. 771-794, March, 2017.

[51] R. F. Woolson, Wilcoxon signed-rank test, Wiley 
Encyclopedia of Clinical Trials, John Wiley & Sons, 
2007, pp. 1-3.

[52] M. M. Nischal, S. Mehta, Optimal load dispatch 
using ant lion optimization, International Journal of 
Engineering Research and Applications, Vol. 5, No. 8, 
pp. 10-19, August, 2015.

[53] J. S. Pan, J. Shan, S. C. Chu, S. J. Jiang, S. G. Zheng, 
L. Liao, A multigroup marine predator algorithm and 
its application for the power system economic load 

dispatch, Energy Science & Engineering, Vol. 10, No. 6, 
pp. 1840-1854, June, 2022.

Biographies

Xiaopeng Wang is currently pursuing the 
Ph.D. degree with the Faculty of Electrical 
Engineering and Computer Science, VŠB 
– Technical University of Ostrava, Czech 
Republic. His research interests are mainly 
in meta-heuristic algorithms and intelligent 
computing.

Shu-Chuan Chu received the Ph.D. degree 
in 2004 from the School of Computer 
Science, Engineering and Mathematics, 
Flinders University of South Australia. 
She is currently the Research Fellow 
in Shandong University of Science and 
Technology. Her research interests are 
mainly in swarm intelligence, intelligent 

computing and data mining.

Václav Snášel received the Ph.D. degree 
from Masaryk University, Czech Republic, 
in 1991. He is currently a Full Professor 
with the VŠB - Technical University of 
Ostrava. His research interests include 
artificial intelligence, social networks, 
conceptual lattice, information retrieval, 
semantic web, knowledge management, 

data compression, machine intelligence, and intelligent 
computing.

Hisham A. Shehadeh received the Ph.D. 
degree from the Department of Computer 
System and Technology,  Universi ty 
of Malaya, in 2018. He is currently an 
Assistant Professor of  Amman Arab 
University, Jordan. His research interests 
are intelligent computing, meta-heuristic 
algorithms and algorithmic engineering 

applications of wireless networks.

Jeng-Shyang Pan received the Ph.D. 
degree in electrical engineering from the 
University of Edinburgh, U.K., in 1996. 
He is currently the Professor of Shandong 
University of Science and Technology. 
His current research interests include the 
information hiding, artificial intelligence 
and wireless sensor networks.


