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Abstract

Single Nucleotide Polymorphism (SNP) is the variant 
on a single nucleotide in the genome. Functional SNP, as 
one of the most important molecular markers in disease 
research, has been widely used in various research fields, 
such as tumor pathogenesis, disease diagnosis and treatment, 
prognostic evaluation, drug development, etc. The number 
of functional SNPs in noncoding genome regions is much 
more than that in coding regions, and their detection is 
more difficult. In this work, a multi-feature mining based 
computational method is proposed to predict the functional 
SNPs in human noncoding genomes. We first analyzed the 
sequence properties, evolutionary conservation properties 
and epigenetic modification signal properties of the sample 
SNPs. Statistical methods together with multiple annotation 
data from genomes and epigenetics were used to mine 
high-dimensional discriminative features subsequently. 
In particular, the allele-specific features were designed to 
distinguish the function of SNPs with close locations. The 
random forest method was used to conduct feature dimension 
reduction and classification. The 10-fold cross-validation 
result showed the Area Under the Receiver Operating 
Characteristic Curve (AUC) of our method improved by 
16.9% and 43.4% over existing methods GWAVA and 
CADD, respectively, illustrating that the allele-specific based 
features can help to distinguish functional and netural SNPs 
with near locations.

Keywords: Feature mining, Evolutionary conservation, 
Epigenetic modification, Feature selection

1  Introduction

Though the human populat ions vary widely in 
phenotypes, differences in genomes are very small and they 
are called genetic variants. The presence of genetic variants 
causes differences of the human population and individuals 
in body constitution, athletic ability, disease susceptibility, 
in te l l igence ,  and  psychology.  S ing le  Nuc leo t ide 
Polymorphism (SNP) is one of the most common types of 
genetic variants. The SNP has a high density and stability, 
and it’s easy to be genotyped, automated, and launched for 
large-scale analysis [1]. Therefore, it has become the third-
generation genetic marker and is widely used in research 

areas such as population genetics, pharmaceutical industry, 
forensic medicine, tumor pathogenesis, and diagnosis and 
treatment of complex genetic diseases [2].

The SNP distributes evenly across the whole genome. 
It’s estimated that there are about 10 million SNPs in the 
human genome, with about one in every 290 bases. Among 
the massive SNPs, only a few can affect gene expression and 
they are called functional SNPs. When performing large-scale 
association analyses of complex diseases, the use of reliable 
functional SNPs instead of genome-wide SNPs as genetic 
markers can reduce the workload of sequencing and analysis, 
thus accelerating the study of pathogenic gene localization. 
Functional SNPs located in coding regions can effectively 
change the amino acids, thus affecting the structure and 
function of the encoded protein, so their detection is much 
easier. However, studies have shown that more functional 
SNPs are located in non-coding genome regions [3], which 
can affect gene expression by influencing gene splicing, 
transcription factors (TFs) bindings, mRNA degradation, and 
non-coding RNA sequences [4-5]. Because functional SNPs 
in non-coding regions don’t alter the amino acids of encoded 
proteins, and the way they affect gene expression has still not 
been fully understood, their detection is more difficult.

It’s very necessary to establish prediction models of non-
coding functional SNPs via computer-aided approaches. The 
establishment of computational models can help biological 
researchers to quickly access candidate SNPs from massive 
background SNPs for further analysis, thus speeding up the 
search for pathogenic genes. Current prediction and analysis 
methods of non-coding functional SNPs can be roughly 
divided into two categories: functional elements based 
methods and machine learning based methods. 

Functional elements based methods mainly rely on 
functional elements data annotated by experiments, and they 
judge the functionality of an SNP by analyzing its association 
(mainly the location relationship) with those functional 
elements. GenomeRunner [6] determines the function of 
SNPs based on the position relationships between SNPs and 
the enriched regions of epigenomic features. HaploReg [7] 
annotates the effect of SNPs on gene modules based on the 
ChIP-Seq data of TFs. 

Machine learning based methods collect functional and 
control SNP samples and then train classifiers to predict 
their functions. DANN [8] compares variants that survive 
natural selection with the simulated mutations, and then uses 
the deep learning method to predict the function of SNPs by 
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combining multiple genome-related annotation data. GWAVA 
(Genome-Wide Annotation of Variants) [9] uses a range 
of variant-related annotation data of different types and at 
different genome scales to investigate whether the effective 
combination of functional elements, gene backgrounds, and 
genome-wide properties can be used to identify possible 
functional variants. CADD (Combined Annotation–
Dependent Depletion) [10] predicts the pathogenicity of 
genetic variants in human genome by integrating multiple 
annotation data from the Ensembl Variant Effect Predictor 
(VEP) [11], ENCODE program [12], and UCSC Genome 
Browser tracks [13] into one metric - C-score, which has 
been normalized to the range 1-99, and CADD has provided 
pre-computed C-scores for 860 million human single 
nucleotide variants. CERENKOV3 [14] introduces the 
clustering features and molecular network features of the 
SNP clusters to predict functional SNPs by using the gradient 
boost framework based decision tree. Ramsey et al. use a 
naive Bayes-like framework to combining three quantities for 
SNPs, thus prioritizing candidate noncoding functional SNPs 
[15].

This paper addresses the prediction problem of functional 
SNPs in noncoding regions of the human genome. We 
proposed a sequence recognition optimization algorithm 
for functional SNPs based on the sequence statistical 
and biological properties of sample SNPs, and then built 
a prediction model based on multiple features fusion to 
discriminate functional SNPs from the neutral ones. The 
most important part of our method was the establishment 
of feature engineering, and numerous features of different 
categories were extracted,  including evolutionary 
conservation scores, histone modification signals, DNase 
signals, DNA conformational features, etc. In particular, 
the allele-specific features were designed to distinguish 
the function of the SNPs with close locations, and it was 
the existence of these features made our method perform 
better on data that had been collected through the most strict 
method thought by Ritchie et al. [9]. We think that our work 
could provide theoretical support for further understanding 
of the pathogenic mechanism of functional variants. And we 
also hope such a method could help geneticists to rapidly 
assess likely functional SNPs from a flood of genetic 
polymorphisms for further studies in pathogenic gene 
mapping and drug development.

2  Materials and Methods

2.1 Data Collection
Functional SNPs were obtained from the Genome-Wide 

Association Study (GWAS) Catalog database [16]. GWAS 
Catalog is a publicly available database of fine published 
GWAS findings by artificial selection. The disease/trait-
associated SNPs in GWAS Catalog refer to the high 
association SNPs with GWAS p-values less than 510− . All the 
24,263 disease/trait-associated SNPs contained in GWAS 
Catalog (up to July, 2019) were downloaded first. Then we 
mapped all these functional SNPs to dbSNP database (dbSNP 
146, the human genome build 38) to ensure the data validity, 
and then SNPs located in noncoding regions were picked. 
Finally, 17,700 SNPs were left as the positive samples, and 
most of them located within the intronic and intergenic 
regions (see Figure 1). 

For the control set, following the most stringent method 
of constructing negative samples described by Ritchie et al. 
[9], all common SNPs, that were SNPs with minor allele 
frequency (MAF) greater than 0.5, within 2kb upstream 
and downstream of the collected functional SNPs were 
downloaded. Then, according to the quality control method 
we proposed which was shown in Figure 2, all potential 
functional SNPs were removed through the 5-steps “remove” 
operation. Finally, the remaining 157,057 neutral SNPs 
constituted our negative dataset.

2.2 Feature Extraction
2.2.1 Sequence Context based Features

To examine the differences in nucleotide compositions 
between functional and neutral SNP sequences, we counted 
the position-specific nucleotide distributions of SNP 
sequences from 20bp upstream to 20bp downstream of the 
SNP sites. As the results shown in Figure 3, the distribution 
content of bases A and T at both upstream and downstream 
positions of functional SNP sequences are higher than 
that of the neutral ones, while bases C and G perform the 
opposite situation. The commonly used statistical methods 
for extracting biological sequence properties, including GC 
content [19], k-mers position weight matrix (PWM) scores 
[20], and k-mers statistical discrete increment [21], were 
used to characterize the differences of nucleotides between 
positive and negative samples.

Figure 1. The distribution of genomic locations of noncoding functional SNPs in GWAS Catalog
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dbSNP database

1. Remove SNPs which are also stored in our  functional SNP dataset

2. Remove SNPs with MAF<0.05

3. Remove SNPs in strong linkage disequilibrium 
（LD              ）with the functional SNPs

4. Remove SNPs which have been annotated functional 
(phenotype-associated or clinically-associated) in Ensembl 

database

5. Remove SNPs with GWAS p-value<0.01

Control SNPs dataset

2 0.8γ ≥

Download all other SNPs within the 2kb upstream and downstream 
of the collected functional SNPs

Figure 2. The collection steps of the control set. Linkage 
disequilibrium data were from HapMap (HapMap rel27, 
phases I+II+II) [17], GWAS association p-values were from 
GWAS central [18]

2.2.2 Biological Properties based Features
Biological properties based features were divided into 

two main categories: position based features and allele-
specific based features. Position based features investigate the 
properties of the genome regions where SNPs locate, while 
allele-specific based features study the properties of impacts 
caused by SNPs.

Position based features
Evolutionary conservation. Conserved regions in 

sequences are generally considered as functional sites, 
because noncoding functional elements have higher 
conservation than their surrounding nonfunctional sequences 
[22]. Therefore, the evolutionary conservation score of the 
SNP location can be considered as a feature to discriminate 
the functional SNP. The phastCons and phyloP scores [23] 
together with the GERP [24] score were used to characterize 
the conservative features. The phastCons and phyloP scores 
at the single nucleotide resolution in the UCSC database 
[13] are given in BigWig [25] format. Using the format 
transformation function “bigWigAverageOverBed” provided 
in UCSC, the BigWig format phastCons and phyloP values 
can be converted to different conservation metrics of 
sequences at any length, including the maximum, minimum, 
mean, and total conservation scores. In our work, the total 
phastCons and phyloP scores of sequences with length of 
41bp (20bp upstream and downstream of SNP sites) were 
used to represent the degree of conservation of the regions 
where SNPs locate.
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Figure 3. Position-specific distribution profiles of nucleotides for both functional and neutral SNPs, X-axis represents the 
nucleotide position with 0 being the SNP site
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The GERP scores were retrieved from GERP++ software 
[26]. GERP++ provides GERP scores corresponding to each 
nucleotide position on the 24 chromosomes of the human 
genome build 19 (hg19). There are two scores per nucleotide 
position in GERP++, namely, the neutral evolutionary rate 
(gerpN) and the rejected substitution rate (gerpS). The 
gerpN and gerpS scores of all collected SNPs were got by 
mapping their positions to hg19. The Mann–Whitney U 
test showed that the two scores of functional and neutral 
SNP show significant statistical differences (gerpN: p=0.0, 
gerpS: p=6.72×10-4), so these two scores also served as the 
discriminative features of our prediction method.

Epigene t i c  mod i f i ca t ion  f ea tures .  Ep igene t i c 
modifications include DNA methylation and histone 
modifications. Methylation and histone modifications are 
found to play regulatory roles by affecting the affinities of 
TFs and the promoters of structural genes [27]. Specific 
gene regions, such as enhancers, promoters, as well as some 
genetic antibodies, have different histone modification 
signals [28]. Thus, the histone modification signal has been 
widely used in the prediction of cis-acting elements such as 
enhancers and TFs.

The three important methylation and histone modification 
signals, namely H3k4me1, H3k4me3, and H3k27ac, for six 
human cell lines (Gm12878, Nh1f, Hsmm, Huvec, K562, and 
Nhek) were downloaded from UCSC database. The format 
and computing method of the three modification signals were 
the same as phastCons and phyloP scores. We selected the 
maximum and total expression levels of histone modification 
singals in a certain range of length to characterize the 
difference between functional and neutral SNPs, and here 
both the maximum and total expression levels were the 
corresponding maximum of the six cell lines. Figure 4 shows 
the statistical differences in modification signals between 
functional and neutral SNPs using the Mann-Whitney U 
test. We can see that the expression levels of H3k4me1, 
H3k4me3, and H3k27ac perform significant differences 
(1.0×10-62<p<1.0×10-50) within the survey regions. 
Because all three modification signals showed significant 
differences within the survey regions, we chose a window 
with length 41bp to calculate the histone modification feature 
to keep concordance with the choice we made in computing 
evolutionary conservations. Finally, the maximum and total 
expression levels of the three histones in a region of length 
41bp (SNP site+/- 20bp) were extracted as features to identify 
functional SNPs. 

DNase singal. Deoxyribonuclease I (DNaseI) is an 
endonuclease that can digest DNA and produce mono-or 
oligodeoxynucleotides. Studies have found that functional 
DNA fragments or protein binding regions on chromatin 
are overlapped with DNase hypersensitive sites (DHSs) 
[29]. Therefore, the localizations of DHSs have become 
effective means to accurately identify regulatory elements on 
chromatin and determine the binding regions of regulatory 
proteins [30]. The UCSC database also provides DNase 
signal profiles, and the maximum and total DNase expression 
levels within a certain region can be obtained by the same 
method of computing conservation scores.

The Mann-Whitney U test was used to select the 
appropriate statistical length for the DNase signal. Figure 5 
shows that the significant difference in total DNase expression 
level increases significantly with sequence length, while 
the maximum DNase expression level decreases, but both 
of them show very good statistical significance (p<1.0×10-
170). The same as above, we selected the maximum and total 
expression levels of DNase within a region of length 41bp 
(SNP site+/- 20bp) as discriminative features to distinguish 
functional SNPs.

Another position based feature is regulatory elements hit, 
which is an index of enrichment levels of functional elements 
around the SNP site. In our previous work, we found this 
feature is very effective for predicting regulatory SNPs [31]. 
So, the regulatory elements hit was also used here as the 
discriminative feature, and it can be computed following our 
previous work [31].

 Allele-specific based features
Allele-specific based features mainly examine the 

influences of SNP variants on DNA structure and energy, etc.
The DNAshape structure properties. DNAshape [32] is 

an online prediction tool for four structural features of DNA, 
including minor groove width (MGW), roll, propeller twist 
(ProT), and helix twist (HelT). The four structural properties 
of DNA fragments with arbitrary length can be calculated 
from the online DNAshape tool (https://rohslab.usc.edu/
DNAshape/). Totally, 5bp nucleotide positions were under 
the influence of the SNP variant, that is 2 bp upstream and 2 
bp downstream of the SNP site. 

The total effect of an SNP variant on sequence structure 
was adopted as the discriminative feature, and it’s measured 
by the Euclidean distance [33-34] between the two vectors as 
follows:

         ( )( ) .r r

T
a asumDs Ds Ds Ds Ds∆ = − −

   

                (1) 

where rDs


 is the nucleotide structure feature vector of the 

reference sequence with length 5 got by DNAshape, and aDs


 
is the structure feature vector of the alternative sequence, the 
symbol T  represent the transpose of a vector.

In addition to the abovementioned DNAshape structure 
properties, the two types of features we previously used 
in regulatory SNPs detection [20], that are differences in 
conformational and thermodynamic properties and differences 
in hydroxyl radical cleavage patterns, were also used here. 
The methods of computing these two feature categories can 
be found in our previous publication [20]. In this work, the 
original property values of DNA conformation based on 
dinucleotides were from Goni et al. [35], and property values 
of DNA thermodynamics were from SantaLucia et al. [36]. 

To sum up, the final feature set we extracted was shown 
in Table 1.
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Figure 4. Statistical difference of epigenetic modification signals between functional and neutral SNPs, X-axis represents the 
sequence length centered on the SNP site
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2.3 Feature Selection and Classification
Random forest is a statistics-based machine learning 

method proposed by Breiman in 2001 on the base of decision 
tree. Random forest gets forest by constructing a certain 
number of mutually independent CART decision trees. So, 
when a new sample comes, each decision tree in the forest 
will predict the sample label, and the final classification result 
is determined according to the voting rule.

In addition to classification, random forest can also be 
used to prioritize features. The Bagging [37] algorithm is 
used in random forest when sampling. The main idea of 
Bagging is that only part of the training samples is selected 
using the put-back sampling method for training each 
decision tree. Therefore, there are some samples in the initial 
training set that can never be drawn, and they are called Out-
Of-Bag (OOB) data. The OOB data can be used to evaluate 
the generalization error of the performance of random forest 
and to prioritize features. The OOB data prioritizes features 
by adding random noise to a feature, and the greater the OOB 
error is, the higher the feature importance will be. Thus, the 
feature causes a greater influence on classification result. 

Assuming that Ntree subsets of the original sample set 
are obtained through bootstrap sampling, in other words, 
Ntree decision trees are established. Then the importance 
measurement (denoted as Dj) of feature xj (1≤ j ≤K, K is the 
total number of features) can be calculated as follows:

(1) For No. b=1 subset, denote its OOB data as oob
bL ;

(2) Build a CART decision tree Tb to classify oob
bL , and 

record the number of samples that have been correctly 
classified as oob

bR ;
(3) For feature xj (1≤ j ≤K), do
a) Assign random noise to all components of xj in oob

bL , 

and denote it as oob
bjL ;

b) Use Tb to classify oob
bjL , and record the number of 

samples that have been correctly classified as oob
bjR ;

(4) For b = 2, ..., Ntree, repeat steps (1) to (3);

(5) Calculate Dj: ( )1 oob oob
j b bj

b
D Ntree R R= −∑ .

2.4 Performance Evaluation
Sensitivity (Sn) and specificity (Sp) are commonly 

used evaluation indexes for unbalanced data classification 
problems. Sensitivity is the identification rate of the model 
on positive samples, while specificity is the classification 
accuracy rate of the model on negative samples. In addition, 
the Receiver Operating Characteristic curve (ROC curve), 
a comprehensive indicator of the continuous changes in 
sensitivity and specificity, is also used to evaluate the 
performance of our algorithm. The Area Under the ROC 
Curve (AUC) is a quantitative evaluation of the ROC curve, 
and the larger the AUC value is, the better the classification 
performance will be.

3  Result

3.1 Performance and Analysis
The dataset we established was unbalanced with many 

more neutral SNPs than functional SNPs. The random split 
based ensemble learning method proposed by Sun et al. [38] 
was used to deal with the unbalanced data classification 
problem. Then, for each balanced subset, random forest 
was adopted to classify functional SNPs. The Dempster-
Shafer (DS) evidence theory [39] was used to fuse the results 
of decision layer to obtain the final classification results 
subsequently. When using the random split based ensemble 
learning method to deal with unbalanced data, the samples 
of the majority class in training dataset were randomly split 
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Figure 5. Statistical difference of DNase expression levels between functional and neutral SNPs, X-axis represents the 
sequence length centered on the SNP site 
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into 9 (157,057/17,700=8.87) portions, and then each portion 
was combined with functional SNPs data in training dataset. 
So, there are nine balanced training subsets, and nine random 
forest classifiers were needed. The random forest classifier 
is not very sensitive to the model parameters, so we set 
the number of trees in random forest at ntree=500, and the 
number of features selected for each decision tree was set at 

 (D is the feature dimension). In order to obtain 
more objective results, 10-fold cross-validation was used, 
and to avoid the deviation error caused by the fixed data 
split pattern in data balancing, the 10-fold cross-validation 
procedures were repeated five times to average the results. 
We selected the sequence with length of 201bp that centered 
on SNP site (SNP site +/- 100bp) to build the prediction 
model. The 2-mers PWM scores were calculated by sliding 
windows of length 10 and overlap 5. So, the number of PWM 
score features was 4 × ((100 − 10) / (10 − 5) + 1) = 76. The 
total dimension of the feature vector corresponding to Table 
1 is 106.

The random forest dimensional reduction method was 
used to investigate the prediction accuracy of the model 
under different feature dimensions (from 1 to 106), and the 
result was shown in Figure 6. In summary, when the feature 

dimension is less than 20, the overall recognition accuracy 
(corresponding to the evaluation index AUC) increases with 
the feature dimension increases. While after the feature 
dimension greater than 20, the overall recognition accuracy 
fluctuates slightly and evenly. The specificity and sensitivity 
of our method fluctuate widely with the feature dimension 
increases. When the feature dimension is 85, the method gets 
the largest AUC with 0.762, and the highest sensitivity with 
71.32%, and the corresponding specificity is 72.34% at this 
time.

3.2 Comparisons Against Other Methods
We compared the prediction effects of our proposed 

model with GWAVA and CADD. The web server of GWAVA 
has provided pre-calculated scores from 0 to 1 for all single 
nucleotide variants in the Ensembl database [40] (release 
70), and a higher score indicates a greaterlikelihood of the 
variant being functional. For each SNP, GWAVA provides 
three different scores corresponding to three different control 
sets, which are denoted as “unmatched score”, “TSS score” 
and “region score”, while CADD provides the normalized 
C-score.

Table 1. The final feature set we extracted for building the prediction model

Feature category Feature name Description Feature 
dimension

Sequence context based 
feature

GC content Contents of bases G and C in DNA sequences 1

k-mers PWM
2-mers PWM scores calculated using the sliding 
window with length 10 and overlap 5 for weights 
from both positive and negative samples

4×(L/5-1) a

k-mers discrete 
increment

Discrete increment values calculated by 1-mers and 
2-mers. 2

Biological 
properties 
based 
feature

Position based 
feature

Regulatory 
elements hits

Enrichment levels of functional elements around the 
SNP site. 1

Evolutionary 
conservation score

Conservation score calculated from phastCons, 
phyloP and GERP++. 4

Epigenetic 
modification 
features

The maximum and total expression levels of 
methylation and histone modification singal within 
the region(SNP site+/- 20bp).

8

Allele-specific 
based feature

DNAshape Changes caused by the SNP variant on 4 DNA 
structures. 4

DNA 
conformational 
feature

Changes caused by the SNP variant on DNA 
structural properties. 6

DNA 
thermodynamic 
features

Changes caused by the SNP variant on DNA energy 
properties. 3

Hydroxyl radical 
cleavage pattern

Changes caused by the SNP variant on hydroxyl 
radical cleavage patterns. 1

a L here is the length of flanking sequences around the SNP site.
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Figure 6.  The performance of our proposed method

We obtained all pre-calculated scores for the 17,700 
functional SNPs and 157,057 neutral SNPs in our dataset 
from the web servers of GWAVA and CADD. The three 
scores of GWAVA are the probabilities of random forest 
classifiers predicting an SNP being functional, and scores 
range from 0 to 1. So, if a threshold is given, GWAVA can 
determine directly whether an SNP is functional or not. While 
CADD gives C-scores from 1-99 that are highly associated 
with various types of single nucleotide variants or small 
insertion/deletion variants. These C-scores can’t be directly 
used to determine the potential function of an SNP, but rather 
discriminate between pathogenic and benign variants by 
training support vector machine (SVM) with linear kernel. 
We used the same method as that used in CADD publication 
to handle C-scores, meaning linear kernel SVM will be 
built to convert C-scores to prediction results. As the same 
with our method, the result of 10-fold cross-validation is 
considered as the final prediction result for CADD.

The final comparison results of GWAVA, CADD and our 
proposed method are shown in Figure 7, where the prediction 
result of our method is the result of random forest with the 
feature dimension being 85. For GWAVA, the «region score» 
has the best prediction accuracy and the corresponding AUC 
is 0.65. CADD achieves prediction accuracy of AUC of 0.53. 
While the AUC of our proposed method is 0.76, improved 
by 16.9% and 43.4% over GWAVA and CADD respectively. 
Considering reasons for this phenomenon, GWAVA and 
CADD methods obtain numerous features from genome 
annotation data, ENCODE program, and many other high-
throughput sequencing data, but these features are mostly 
positioning attributes, such as DNase-seq peak data, RNA 
polymerase binding profiles, TFs binding profiles etc. These 
features are more effective for finding SNPs associated 
with genomic functional elements or SNPs located within 
genome functional regions. However, SNPs located within 
the functional regions do not necessarily exhibit function 
due to the degenerative effects of the genes. For this reason, 
the features GWAVA and CADD used are not so effective 
to discriminate between functional and neutral SNPs 
that both located within functional genome regions. The 
negative samples we used to establish the dataset are SNP 
samples picked from 2kb upstream and downstream of the 
collected functional SNPs sites. So, our negative dataset will 
unavoidably contain a lot of SNPs that locate within genome 

functional elements but have not been found to have any trait 
or disease associations yet, and the presence of these SNPs 
makes GWAVA and CADD with poor prediction power for 
our dataset. 

In our method, sequence context based features and 
position based features are drawn to find the characteristics 
of the SNPs location, which has the same thought as CADD 
and GWAVA. In addition, the allele specific based features 
are designed to distinguish functional SNPs from near neutral 
SNPs, thus making our method more effective than GWAVA 
and CADD.
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Figure 7. The ROC curves of GWAVA, CADD and our 
method

4  Conclusion

The number of functional SNPs in noncoding regions of 
the human genome is much more than that in coding regions. 
And their detection is more difficult, as the functions of 
most of the genome noncoding regions haven’t been fully 
understood. Therefore, computational methods with rapid 
and large-scale prediction capabilities are in urgent demand. 
With the help of many publicly available databases and 
tools, lots of biological or statistical features associated with 
SNPs function are mined, and on the basis of these features, 
a prediction model for identifying functional SNPs is built. 
The result shows that our prediction method is more effective 
than other methods on a very strict dataset.

Considering that the occurrence and development of 
diseases involve complex regulatory mechanisms at multiple 
levels and multiple omics, such as genomic, transcriptome, 
proteome, metabolome, etc. So, the further work is to 
introduce more omics data into the establishment of feature 
engineering. We think the joint analysis of multi-level and 
multi-omics data can contribute to a more systematic and 
comprehensive understanding of the biological behavior 
of phenotypes and diseases, and further provide new clues 
for finding valuable disease markers and exploring disease-
related mechanisms.
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