
Design and Implementation of Efficient IoT Authentication Schemes for MQTT 5.0 665

*Corresponding Author: Hung-Yu Chien; E-mail: hychien@ncnu.edu.tw
DOI: 10.53106/160792642023052403012

Design and Implementation of Efficient IoT Authentication Schemes for MQTT 5.0

Hung-Yu Chien*, Pin-Ping Ciou

Department of Information Management, National Chi Nan University, Taiwan
hychien@ncnu.edu.tw, s107213055@mail1.ncnu.edu.tw

Abstract

MQTT (Message Queue Telemetry Transport) is one of
the most popular Internet of Things (IoT) communication
protocols, owing to its lightweight and easiness to use. The
previous MQTT standards (including version 3.1 and its
precedents) do not provide proper security functions; instead,
they assume the adoption of SSL/TLS in the underlying layer.
However, it not only incurs larger overhead but also hinders
the development of suitable authentication/confidentiality
protection to suit various MQTT deployment scenarios.
The newest MQTT standard called MQTT 5.0 responds to
these challenges by supporting the Enhanced Authentication
framework in which designers can design and implement any
secure authentication mechanisms within the framework.

This paper designs and implements two efficient
authentication protocols, using the MQTT 5.0 Enhanced
Authentication framework. One is simple challenge-response
authentication scheme, and the other is an anonymous
challenge-response authentication scheme. We extend
HiveMQ platform to implement the schemes and evaluate
the performance. The results show that the proposed schemes
demand only hundred few more milliseconds to achieve
much robust authentication, compared to the simple identity-
password authentication.

Keywords: Internet of Things, MQTT, Authentication,
Challenge and response, Anonymity

1 Introduction

The IoT technologies is a very promising area for
collecting and analyzing data from potential many IoT
devices. To facilitate the easy transmission of IoT data
and signals where IoT devices are usually resources-
batteries-limited, an IoT communication protocol is
expected to be more efficient, compared to conventional
networking protocols. Among many IoT communication
protocols, MQTT has become one of the most popular IoT
communication protocols, owing to its high efficiency and
simplicity to use.

Previous MQTT standards [1-3], focusing on being
lightweight, do not provide enough security protection like
authentication, integrity, and confidentiality; instead, the
security of the MQTT deployments are assumed be dependent
on the use of Secure Sockets Layer (SSL)/ Transport Layer
Security (TLS) [4] in the underlying layer, which demands

quite a few cryptographic computations and communication
overhead of the certificates [5] and lacks the feasibility of
supporting anonymity. Anonymity is crucial for some IoT
scenarios where the identities could be used to refer one’s
movement and possible locations. The weaknesses of the
previous MQTT standards and improper deployments have
exposed these MQTT systems to serious threats. Many mis-
configured MQTT servers and the security weakness have
been extensively reported or evaluated [6-7].

There exist many proposals (like [8-20]) to enhance
the security of MQTT systems. Some of these security-
enhancement proposals provide hardware/architecture
support for security protocols, some propose new symmetric-
key-based/asymmetric-key-based security protocols, and
some aim at designing authenticated key agreement schemes
that are compatible with the previous MQTT packet formats
and Application Interfaces (API). Chien [20-21] proposes
general and efficient client-server authentication and device-
to-device authentication.

In light of various security concerns and desirable
function extensions, the new MQTT standards called MQTT
5.0 have been ratified [23-24]. Regarding the security, MQTT
5.0 supports the Enhanced Authentication framework in
which new authentication API (called AUTH API) and new
parameters (like Authentication method and Authentication
data) could be used to design/implement authentication and
key agreement schemes within the MQTT 5.0 context. With
the new security framework and new functions, MQTT 5.0
is expected to greatly enhance the security functions and to
support new application use cases.

However, none of the previous MQTT enhancements
like [8-20] target on the MQTT 5.0 systems. In this paper,
we design and implement two efficient authenticated key
schemes using the MQTT 5.0 AUTH APIs. We implement
the two schemes using the HiveMQ’s MQTT platform [25].
The evaluation of the prototypes show that the proposed
schemes ensure much robust authentication security with
only insignificantly additional more authentication latency,
compared to the simplest identity-password authentication.

2 Related Work and Background

A MQTT system consists of a set of clients and a broker
who acts as an intermediary among the clients (publishers
and subscribers). The message exchange among clients, via
brokers, is based on the concept of “topic”. A broker would
forward the published data of a topic from a publisher to
those subscribers who subscribe the same topic.

666 Journal of Internet Technology Vol. 24 No. 3, May 2023

There exist many proposals and publications concerning
the security of MQTT systems. The works like [6-8] report
the security weaknesses and evaluate the security threats.
The MQTT-security-enhancement proposals could be
classified from several perspectives. From the architecture’s
perspective, Lesjak et al. [9] integrate an IoT device with a
TLS-capacity-embedded hardware to relieve the IoT device
from the burden of handling TLS connections; Rizzardi
et al. [10] and Neisse et al. [11] respectively focus on the
key management framework and the policy management
framework of MQTT systems so that the messages could be
flexibly and dynamically encrypted and accessed according
to the flexible policies; Niruntasukrat et al. [12] augment
MQTT authentication and authorization by integrating with
OAuth mechanism. For those customized authenticated key
agreement schemes for MQTT, the previous proposals could
be classified into two categories- public-key-based schemes
or symmetric-key-based schemes. In general, symmetric-
key-based schemes like [7, 10-18] might own the benefits of
lightweight computations and lightweight communication;
some public-key-based schemes like [19-20] might own the
benefits of better scalability in terms of key management;
Singh et al. [20] augmented existent MQTT protocols with
Key/Ciphertext Policy-Attribute Based Encryption the Key/
Ciphertext Policy-Attribute Based Encryption (KP/CP-
ABE) , which would demand high computational cost and
poor scalability, even for only a small number of attributes.
Chien et al.’s two-phase authenticated key agreement scheme
[16], via a side channel (for example a socket connection),
establishes an authenticated session key between a client
and a broker in the first phase; and it uses the hashed value
of the session key as the password field in the MQTT 3.1
CONNECT API in the second phase; this arrangement can
easily integrate any secure key agreement scheme with the
MQTT 3.1 API. Chien et al. [18] propose a hierarchical
MQTT architecture with edge computation to improve the
message latency. Chien et al.’s implementations are based on
the Mosca platform [26].

Most of the existent authenticated key agreement
schemes for MQTT concern the link security- the security
between a client (a publisher or a subscriber) and a broker,
and only very few works tackle the end-to-end security
(from a publisher to a subscriber). The end-to-end security
can provide some desirable benefits: (1) the broker could get
rid of the loading of decrypting a message from a publisher
and then re-encrypting the message several times for all the
subscribers; (2) the content of MQTT messages could be kept
secret from a curious broker. Mektoubi et al. [19] propose
a topic-centric key distribution in which the system assigns
a specific certificate for each topic, a publisher encrypts its
messages using the public key of the topic certificate, and a
legitimate subscriber who owns the corresponding private
key can decrypt the messages. Chien et al. [17] propose a
MQTT group communication scheme in which a broker
automatically generates a topic for topic-centric group
key updating for any specific topic, and all the legitimate
clients are automatically registered with this group-key
updating topic; a trusted daemon periodically updates the
group keys and securely delivers the newest group keys to
all legitimate publishers and subscribers, via the broker; a

publisher encrypts its messages using the group key, and the
subscribers of this topic decrypt the received messages using
the same group key.

Chien [21-22], based on hashing and hash composition,
propose an anonymous client-to-server authentication and
an anonymous device-to-device authentication. In this
paper, we modify and extend the anonymous client-to-
server authentication in [20-21] to design and implement
an anonymous client-to-broker authentication for MQTT
5.0. The differences between this work and several MQTT
precedents are summarized here. (1) The precedents [16-
18] are based on MQTT3.1 and the Mosca platform [25]
while this work being based on MQTT 5.0 and the HiveMQ
platform [26]. (2) The precedents handle the management
works (like user management, topic management, and
key management) and the challenge-and-response-
based authentication using the two-phase technique to be
compatible with MQTT 3.1 CONNECT APIs; but this work
designs and implements two hash-based authentication
schemes (one is anonymous and the other is not) within the
MQTT 5.0 Enhanced Authentication framework and APIs.

The contributions of this work are outlined as follows.
(1) We design and implement two hash-based cli-

ent-to-broker authentication schemes using the
MQTT 5.0 Enhanced Authentication framework and
APIs.

(2) We design and implement the first anonymous cli-
ent-to-broker authentication for MQTT 5.0 to meet
the identity privacy protection for many IoT applica-
tion scenarios.

(3) We specify the proposed schemes using the
High-Level Protocol Specification Language
(HLPSL) [28], and verify the key security properties
of the proposed schemes using the formal verification
tools- the Automated Validation of Internet Security
Protocols and Applications (AVISPA) [29].

(4) We analyze the performance of the protocols, and
evaluate the performance of the implementations.

3 Two Efficient Authentication Schemes
for MQTT 5.0

In this section, we introduce our two MQTT5.0-
compatible authentication schemes where one provides
identity privacy protection (anonymity) and the other does
not. Before describing the protocols, we first give a simple
review of MQTT 5.0 Enhanced Authentication framework in
Section 3.1.

3.1 MQTT 5.0 Enhanced Authentication Framework
The MQTT 5.0 Enhanced Authentication Framework

provides new AUTH APIs (and packets) and new
authentication-related fields called Authentication method
and Authentication data (they will be referred as Auth_
id and Auth_data for the rest of this paper for short). With
this framework, designer and implementors can design and
implement any secure authenticated key agreement schemes
within Mthe MQTT 5.0 context. A simplified protocol stack
with these APIs is shown in Figure 1.

Design and Implementation of Effi cient IoT Authentication Schemes for MQTT 5.0 667

TCP

IP

Data Link

Physical

CONNECT(Auth_ONNECT(Auth_
id,)

AUTH(Auth_id,) CONNACK(CONNACK(
Auth_id,)

MQTT 5.0

Figure 1. MQTT 5.0 enhanced authentication protocol stack

A client (a publisher or a subscriber) initiates its
connection by sending a CONNECT request in which
the Auth_id and Auth_data are specified to notify the
broker which authentication method is chosen. During the
authentication process, they might exchange several AUTH
messages which convey the Auth_data for the specified
AUTH_id. Finally, CONNACK is sent to notify the result
of the process. During the whole process, AUTH_id should
be included in each message to ensure the right method is
referred to.

3.2 The Proposed Schemes in the MQTT 5.0 Context
Based on the MQTT 5.0 Enhanced Authentication

framework, we introduce a hash-based Challenge-Response
authentication scheme in Section 3.2.1 and a hash-based
anonymous authentication in Section 3.2.2. The notations are
summarized in Table 1.
3.2.1 A Hash-based Challenge-Response Authentication

within MQTT 5.0 Context
In the initialization, a client Ci registers itself at a broker,

and gets two keys- a device_key and a topic_key; The
device_key is specifi c to each device; the topic_key is shared
among all legitimate clients of that topic. In the following
computations and protocol flow, the two keys would be
concatenated as one unifi ed key as :=device_key||topic_key.
This arrangement has the merits that (1) when a client is
authenticated using the unified key, both the device and its
authorization to access the specific topic are verified at the
same time.

The flow of the first scheme within the MQTT 5.0
context is depicted in Figure 2. In the fi rst step, a client sends
its CONNECT request in which the chosen authentication
AUTH_id=”CR” denoting the specifi c authentication method
we develop.

In the CONNECT message, the client also sends its
identity, the topic, and the first challenge denoted as C1.
When the broker receives the request, it first retrieves the
corresponding device_key and topic_key from its database
using the received identity, lets Ki: = device_key ||topic_key,
computes the response R1 = h1(Ki, C1), randomly chooses its
challenge C2, and sends back AUTH(Auth_id=” CR”, R1,
C2) in the second step.

Table 1. The notations
C, B.
IDi,; IDB

Client; Broker. IDi: IDB identities of a client and the
broker respectively.

h1(),
h2(),
Mac()

Two cryptographic hashing functions. Mac():
message authentication code function, which could be
implemented, using HMAC [27].

device_
key; topic_
key

The secret key between a device and the broker; the
secret key shared among all clients and the broker for
a specifi c topic.

Ci,; Ki
Ci: ith device; Ki: = device_key; topic_key the secret
key shared between Ci and B.

Ni

Ni: Ci′s seed (a random value) for generating the chain
of seed values. Each seed value is used to generate the
corresponding pseudonym PNi,k .

h1
j(Ni)

h1
j(Ni) = h1(h1(… h1(Ni))) means h1 being applied j

times.

PNi,0,
PNi,k

PNi,0 denotes iC s′ pseudonym PNi,0 = h2(Ni). PNi,k =
h2(h1

k(Ni)) denotes the kth pseudonym successor of
PNi,0

PV, PVi

PV: Pseudonym Vector; PVi = {PNi,0 , PNi,1 , …, PNi,k ,
PNi,w1} is the pseudonym vectors pre-calculated by B
for Ci.

w1
the window size of the precalculated pseudonym
vectors.

GECC, P, q

GECC is a cyclic multiplicative group of an order q,
where the Computational Diffi e–Hellman Problem
(CDHP) is hard; P is a generator of GECC. Here, we
let GECC be a group in the elliptic curve setting for the
short key size.

Auth_id,
Auth_data

The specifi ed authentication method in the AUTH API,
the authentication data within AUTH API.

Client Broker

1. CONNECT(Auth_id=” CR”, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑖𝑖,
topic, C1)

3. AUTH(Auth_id=” CR”, R2)

topic, topic,))
2. AUTH(Auth_id=” CR”,R1, C2)

4. CONNACK(Auth_id=” CR”,
True or False)

Figure 2. The protocol flow of a hash-based Challenge-
Response authentication within MQTT 5.0 context

The client verifies the received R1; if the verification
succeeds, then it responds AUTH(Auth_id=” CR”, R2) in
the 3rd step, where R2 = h1(R1, C2, Ki). Finally, the broker
verifies the received R2 and responds “True(Success)”
or “False(failure)” accordingly. The final session key is
defined as Ksess: = hash(Ki, C1, C2, IDi, topic). After the
authentication process, the client and the broker use the
session key to encrypt/decrypt messages.
3.2.2 An Anonymous Hash-based Challenge-Response

Authentication within MQTT 5.0 Context
Here, we aim at designing an anonymous client-broker

authentication within the MQTT 5.0 framework. The
channels between clients and brokers are susceptible to
various attacks. The brokers are trusted, but the clients might
be compromised. The scheme consists of two phases: the
registration–initialization phase and the authentication phase.

668 Journal of Internet Technology Vol. 24 No. 3, May 2023

3.2.2.1 The Registration-initialization Phase
The scheme is based on the composited hashing depicted

in Figure 3. Like the scheme in Section 3.2.1, each client
registers itself at a broker, and gets two keys- a device_
key and a topic_key, and the unified key as =device_
key||topic_key. Figure 3 shows Ci’s seed and pseudonyms; Ci

repetitively applies h1() on its seed Ni to update Ni , and each
active Ni is applied h2() to have the active pseudonym h2(Ni).

Figure 4 shows the three algorithms used by a client
and a broker, where the algorithm PN_Seed_Update(Ni) is
run by Ci to update the seed and to generate the current PN
in each session. The algorithm PV_Iinitialize(Ci, Ni) is run
by a broker to initialize a client’s pseudonym vector. When
a broker (say B) accepts Ci′s registration, it initializes the

client’s pseudonym vectors PVi = {PNi,0 , PNi,1 , …, PNi,k ,
…, PNi,w1}, where PNi,j = h2(h1

j(Ni)), j = 0~w1. This design of
the pseudonym vector consisting of the current pseudonym
and the future w1 pseudonyms could properly tackle the
possible out-of-synchronization issues caused either by the
unreliable connection or the possible DoS attacks. When
either the un-reliable connection or the DoS attacks happen,
a client’s requests might be blocked or be lost, and the client
would repetitively update its seed and pseudonym, and
retry its requests. In such situations, the sent pseudonym
would be still in the range of the broker-prepare additional
w1 pseudonyms. Of course, the size of the window w1 is
determined according to tradeoff between the cost of the
additional storage and the possibility of the threats.

𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖

<< Client’s seed chain & pseudonym vector>>

(𝐶𝐶𝐶𝐶𝑖𝑖𝑖𝑖 ,𝐾𝐾𝐾𝐾𝑖𝑖𝑖𝑖 ,𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖)

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖 𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
ℎ1()

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖𝑁𝑁𝑁𝑁
ℎ1() ℎ1()

ℎ2() ℎ2() ℎ2()

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,0 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,1

……
ℎ1()

𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖

ℎ2()

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,2 𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑤𝑤𝑤𝑤1…

Seed chain

Pseudonym vectorcurrent seed
current
pseudonym

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘 …

)
…

𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑖𝑖𝑖𝑖,𝑘𝑘𝑘𝑘+

Figure 3. Ci’s Seed and pseudonyms

𝐶𝐶𝑖𝑖

B

<The algorithms in a client and a broker>

PV_Iinitialize(𝐶𝐶𝑖𝑖 ,𝑁𝑁𝑖𝑖)[Initialize clients’ pseudonym vectors]
{For each 𝐶𝐶𝑖𝑖 and its active 𝑁𝑁𝑖𝑖
Compute 𝑃𝑃𝑁𝑁𝑖𝑖,𝑗𝑗 = ℎ2 �ℎ1

𝑗𝑗(𝑁𝑁𝑖𝑖)� , 𝑗𝑗 = 0~𝑤𝑤1,

where ℎ1
𝑗𝑗(𝑁𝑁𝑖𝑖) = ℎ1(ℎ1�…ℎ1(𝑁𝑁𝑖𝑖)�) means ℎ1 being applied j times.

Pseudonym Vector (PV) for 𝐶𝐶𝑖𝑖: 𝑃𝑃𝑃𝑃𝑖𝑖 = {𝑃𝑃𝑁𝑁𝑖𝑖,0,𝑃𝑃𝑁𝑁𝑖𝑖,1, … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘 , … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑤𝑤1}
}

PV_Update(PN, Req): [Update pseudonym vector when an incoming PN matches an entry]
Use the incoming PN to locate a matched entry and verify Req
Assume the incoming PN matches 𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘
Update 𝑃𝑃𝑃𝑃𝑖𝑖 as {𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘 ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘+1, … ,𝑃𝑃𝑁𝑁𝑖𝑖,𝑘𝑘+𝑤𝑤1}

[Client’s methods]

[𝐶𝐶𝑖𝑖′𝑠𝑠 Internal state]
(𝐶𝐶𝑖𝑖 ,𝐾𝐾𝑖𝑖 ,𝑁𝑁𝑖𝑖 ,).

PN_Seed_Update(𝑁𝑁𝑖𝑖) [𝐶𝐶𝑖𝑖′ internal state update when it launches a request.]PN_Seed_Update(𝑖𝑖) [𝑖𝑖 update
{Generate pseudonym 𝑃𝑃𝑁𝑁 = ℎ2(𝑁𝑁𝑖𝑖), Update 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝑁𝑁𝑖𝑖 = ℎ1(𝑁𝑁𝑖𝑖)}

Client_init(𝐶𝐶𝑖𝑖)[𝐶𝐶𝑖𝑖′𝑠𝑠 initialization]

𝐶𝐶′ Internal]

Client_initClient_initClient (𝑖𝑖)[𝑖𝑖
{(𝐶𝐶𝑖𝑖 ,𝐾𝐾𝑖𝑖 ,𝑁𝑁𝑖𝑖)}

Figure 4. The algorithms used by a client and a broker

Design and Implementation of Effi cient IoT Authentication Schemes for MQTT 5.0 669

3.2.2.2 The Anonymous Authentication Phase
Figure 5 shows the authentication fl ow of the anonymous

scheme within the MQTT 5.0 context. Basically, Ci sends
its current pseudonym PN = h2(Ni) for B (the broker) to
identify the client, and they use the secret key Ki to perform
a Challenge-Response authentication where the exchanged
Diffie-Hellman keys are used to generate the session keys.
The details are described as follows.

Step 1. Ci → B: CONNECT(AUTH_id = “anon”, PN,
IDB, X, mac1) Ci executes PN_Seed_Update(Ni) to generate
the pseudonym PN and to update Ni ; Ci chooses x∈

R
*
qZ , and calculates X = xP and mac1 = Mac(Ki, PN, X). Ci

sends the CONNECT(AUTH_id = “anon”, PN, IDB, X, mac),
where AUTH_id = “anon” denotes the anonymous
authentication method.

Step 2. B → Ci: AUTH(AUTH_id = “anon”, IDB, PN, Y,
mac2) B calls PV_Update(PN, mac1), which uses the
received PN to search a matched entry in its pseudonym
vectors to identify the client, and to update the client’s
pseudonym vectors. B chooses y∈ R

*
qZ , and calculates Y = yP

and its response mac2 = Mac(Ki, PN, IDB, X), which is a
response to Ci′s challenge PN and X). S wraps the messages
in AUTH API specifi ed in Step 2.

Step 3. Ci → B: AUTH(AUTH_id = “anon”, PN, IDB,
mac3) Ci verifies the received mac2, calculates mac3 =
Mac(Ki, PN, IDB, Y), and computes the session key Ksess =
h1(“KEY”, IDB, PN, Ki, xyP). It sends the AUTH packet
specified in Step 3. Upon receiving iC s′ response, B verifies
mac3, and sends back the verifi cation result in Step 4. If the
verifi cation succeeds, then it computes the session key.

Client Broker

1.CONNECT(Auth_id=” anon”, PN,
IDB, X, mac1)

3. AUTH(Auth_id=” anon”,
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐵𝐵 ,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚3)

2. AUTH(Auth_id=”
anon”, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐵𝐵𝐵𝐵 ,𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃,𝑌𝑌𝑌𝑌,𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚2)

4. CONNACK(Auth_id=” anon”,
True or False)

Figure 5. The protocol flow of an anonymous PN-based
authentication within MQTT 5.0 context

4 The Implementations and Performance

We implement our proposed schemes by extending
the opensource MQTT 5.0 platform provided by HiveMQ
[25]. In the implementation, when the broker initializes,
it loads the Enhanced Authentication Provider from the
AuthExtensionMain module; when the broker receives a
connection request, it retrieves the Authentication_method
field from the request, and it instantiates the corresponding
Authenticator from the Enhanced Authentication Provider to
handle the authentication process specifi ed in Section 3.2.1
and Section 3.2.2 respectively.

Figure 6 shows the network setting of the experiments
for evaluating the performance of the prototypes. We arrange

the broker and the clients locating in two subnetworks of
the same building; the arrangements let the communication
between a broker and a client to be two-hop. The clients are
running on a raspberry pi model 4. The brokers are running
on a notebook “HP Laptop 14s-cf0xxx” with Windows 10.

Figure 6. The network setting of the experiments

Table 2 lists the software of the clients and the
broker. To evaluate the proposed schemes, we set up
several authentication schemes in two different running
environments: one is the programs compiled into executable
commands, and the other is programs running in the
Integrated Development Environment (IDE).

Table 2. The software settings of several client-broker
authentications
Authentication
method

Broker Client

Simple identity-
password

hivemq-ce-2021.1
(execution command)

MQTT CLI
(execution command)

Simple identity-
password

hivemq-mqtt-
serverSimpleAuthentication
(application in IDE)

hivemq-matt-client-
SimpleAuthentication

Enhance
Authentication -
Challenge and
Response

hivemq-mqtt-
serverCRChallenge_
Anonymous
(application in IDE)

hivemq-mqtt-
clientPublisher&
Subscriber-
CRChallenge

Enhance
Anonymous -
Challenge and
Response

hivemq-mqtt-
serverCRChallenge_
Anonymous
(application in IDE)

hivemq-mqtt-
clientPublisher_
AnonymousAsync

In Table 2, the authentication method with “simple
identity-password” is the simplest authentication which uses
client’s identity and password to authenticate the client.
The method with “EnhanceAuthentication - Challenge and
Response” is the implementation of our first scheme- the
classic challenge-response authentication in the MQTT 5.0
context. The method with “EnhanceAnonymous - Challenge
and Response” is the implementation of our anonymous
challenge-response authentication in the MQTT 5.0 context.
The “MQTT CLI” is one MQTT client execution command
provided by HiveMQ team and it has been optimized to
get better running performance. The other clients are those
programs which we modify from the opensource. A program
running as an executable command demands much less time

670 Journal of Internet Technology Vol. 24 No. 3, May 2023

than the same program running in the IDE, as an executable
command has already bound and loaded the required
libraries.

Table 3. Average authentication latencies (in ms) for several
MQTT 5.0 authentication schemes
Authentication method Average auth. delay

(only normal cases)

Simple identity-password
in command mode

0.15375

Simple identity-password
in IDE mode

1.015

EnhanceAuthentication-Challenge-
Response in IDE

1.254

EnhanceAnonymous-Chal lenge-
Response in IDE

1.786

We use the simple identity-password authentication
as the baseline, and compare the proposed schemes with
this baseline. The reason for providing the latencies of the
simple identity-password authentication in the two different
running modes is because, even if we make the simple
identity-password authentication from the IDE into the
command-line version, our make version still cannot have
the same performance as that provided by the HiveMQ
team. We speculate that the command-line version provided
by the HiveMQ has been further fine-tuned to optimize
its performance. Therefore, we first compare the proposed
schemes with the baseline to get the rough ratio of the
comparison, and then further use the data to speculate the
possible latencies if they have been commercially optimized.

Table 3 lists the latencies from the experiments. From
the table, we can see that the same simple identity-password
authentication scheme demands quite different authentication
latencies in two different modes- the command mode and the
IDE mode. The command mode requires only 0.153 seconds
while the IDE mode requiring 1.015 seconds; that is, the IDE
mode latency is almost 6.6 times the latency in the command
mode for the simple identity-password authentication. We
would like to evaluate the latency of the proposed schemes,
compared to the simple identity-password scheme. In the
IDE mode, the simple identity-password scheme demands
1.015 seconds, the classic challenge-response scheme
requires 1.254 seconds, and the proposed anonymous
challenge-response scheme takes 1.786 seconds. Compared
to the simple identity-password scheme in the IDE mode, the
classic challenge-response scheme demands only extra 239
ms, and the anonymous challenge-response scheme requires
only extra 771 ms. Compared to the simple identity-password
scheme, the proposed schemes demand only few more
milliseconds, and it achieves much robust authentication
security. If we use the scale factor 6.6 to estimate the
latencies of the proposed schemes in the command mode,
then they will be 0.19 seconds and 0.27 seconds respectively.
Table 4. summarizes the security properties of the related
schemes.

Table 4. Summary of related work
Properties
Scheme

Target at MQTT
3.1 or 5.0

Goals & functions Anonymity

[6-8] 3.1 Security
weaknesses

No

[9] 3.1 TLS-embedded
hardware

No

[10] 3.1 Key management No

[11] 3.1 Policy management No

[7, 10-20] 3.1 Customized key
agreement

No

[21-22] 3.1 Customized key
agreement

YES

Ours 5.0 Customized key
agreement

YES

5 Security Analysis and Verification

This section examines the security of the proposed
schemes. The proposed first scheme is a classic challenge-
response authentication being implemented within the MQTT
5.0 Enhanced Authentication context; the session key of the
first scheme is defined as Ksess: = hash(Ki, C1, C2, deviceid,
topic), where the standard HMAC is suggested as the hash
function. Therefore, its security is ensured as the classic
challenge-response authentication and HMAC have been
well studied and proved.

We therefore focus on verifying and analyzing the
security of the second scheme. Here, we adopt two
approaches. First, we specify the second scheme using the
HLPSL specification/language, and then verify its mutual
authentication, session key privacy, and forward secrecy
using the AVISPA tool. Following that, we anlsyze the
anonymity and the unlinkability because AVISPA tool cannot
verify the two security properties.

We specify the second scheme using two HLPSL
instances, where two roles- “server” for the broker and
“device” for the client- are defined.

In the first specification, we specify one session in each
role- server and device. The goal of this instance is to verify
the properties of mutual authentication, session key privacy,
and forward secrecy. Mutual authentication can be modeled
using the predicate “authentication_on”, and session key
privacy can be modeled using the predicate “secrecy_of”.

In the second specification, we model the forward secrecy
property by specifying two successive sessions in both the
server role and the device role in their respective HLPSL
specifications to have two session keys. The specifications let
the intruder have the secrets of the second session, and then
verify whether the intruder can derive the secret keys of the
first session. The goal is to verify whether, even if the intruder
has the secrets of the 2nd session, the goals of authentication
and session key privacy of the 1st session are still achieved
in AVISPA verification. If the goals are satisfied, then it
achieves the forward secrecy property. In AVISPA, the
channel between the server and the device is modeled as
the Dolev-Yao channels, where the intruder may divert sent
messages and send new ones impersonating other agents. Figure

Design and Implementation of Effi cient IoT Authentication Schemes for MQTT 5.0 671

7 shows the message fl ows of the fi rst specifi cation where the
device and the server achieve 3-step authentication process.
Figure 8 shows the result of the OFMC verifier which is a
formal security property verifi cation tool in AVISPA; the OFMC

reports “SAFE”—no successful attacks can be plotted within the
protocol specifi cation. It means the protocol achieves its goals of
mutual authentication and session key privacy.

Figure 7. The message fl ow of the 1st HLSPL specifi cation of the 2nd scheme

Figure 8. The result of On-the-Fly-Model-Checker (OFMC) on the 1st specifi cation of the 2nd scheme

Figure 9. The message fl ows of two successive authentications accomplished by the server and the device

672 Journal of Internet Technology Vol. 24 No. 3, May 2023

Now we discuss the simulation of the 2nd specification
which concerns the forward secrecy. Figure 9 shows the
message fl ow, where “device d-3” and “server s-4” fi nish two
runs of authentications, which means that the scheme can
successfully complete two authentication sessions. Figure
10 shows that OFMC verifi er could not plot any successful
attacks on the 1st session, even if it lets the intruder gets the
secrets of the 1st session. The result was “SAFE” in Figure
10. This means it achieves the forward secrecy property.

In addition to the above formal verifications of some
security properties, we now analyze the security of the
schemes. The first challenge-response authentication is a
classic authentication scheme which has been well studied;
we, therefore, focus on the security properties of the second
anonymous authentication scheme in the following.

Mutual authentication between a client and the broker:
The rationale of the scheme is basically a classic challenge-
response authentication where the broker uses the pseudonym
PN to identify a client and its corresponding secret key. The
challenge from the client is the fresh PN and the X = xP,
and the challenge from the broker is Y = yP. As long as the
challenges are fresh and the secret key is secret, then the
two entities can achieve mutual authentication through the
challenge-response process.

Session key security and perfect forward secrecy: The
session key is defined as Ksess = h1(“KEY”, IDB, PN, Ki,
xyP), where xyP is the computational Diffi e-Hellman values
derived from the two Diffi e-Hellman values from the client
and the broker. Therefore, the security of the session key is
ensured owing to the secret key Ki, the forward secrecy is
achieved owing to the Diffi e-Hellman value xyP.

Anonymity of the clients: The second scheme always
use the updated pseudonyms PN in the communications to
achieve the anonymity.

Unlinkability among devices’ successful connections: A
client generates its pseudonym as PN = h2(Ni) and updates its
seed Ni = h1(Ni), where h1 and h2 are two independent one-
way hashing functions. The preimage resistance property of
the one-way hashes and the freshness of the seed Ni ensures
the unlinkability of the client.

Resistance to desynchronization-based DoS attacks: A
client (say Ci) keeps its current pseudonym with the past w1

pseudonyms while the broker keeping its recorded iC s′ active
pseudonyms and the future w1 pseudonyms. This facilitates
the two parties the capacity of coping with the situations of
w1 successive out-of-synchronization sessions, due to
possible attacks or unreliable connections. The robustness of
desynchronization-based-DoS-resistance depends on the
window size w1; the choice of the size should consider the
threat severity, the desirable robustness, and the storage
space.

6 Conclusions

MQTT 5.0 defines the Enhanced Authentication
Framework to suppor t the des ign o f cus tomized
authentication schemes. It is expected to greatly enhance
the security supports for various scenarios. In this paper, we
have proposed and implemented two effi cient authentication
schemes for MQTT 5.0. The first scheme is a classic
challenge-response authentication within the MQTT 5.0
context. The second scheme is a hash-based anonymous
authentication scheme which protects the client’s identity
privacy. The security of the proposed schemes has been
verified using the formal verification tool AVISPA. The
authentication latencies of the implementations have been
evaluated. The results show that the implementations with
much robust security only require, even in the IDE mode,
few hundred milliseconds, compared to the simple identity-
password authentication.

Acknowledgement

This project is partially supported by the Ministry of
Science and Technology, Taiwan, R.O.C. grant number
MOST 111-2221-E-260 -009 -MY3.

References

[1] ISO/IEC 20922:2016, Information technology --
Message Queuing Telemetry Transport (MQTT) v3.1.1,
https://www.iso.org/standard/69466.html, Accessed 25

Figure 10. OFMC reports “SAFE” on the 2nd specifi cation of the second scheme

Design and Implementation of Efficient IoT Authentication Schemes for MQTT 5.0 673

March 2022.
[2] OASIS, OASIS Message Queuing Telemetry Transport

(MQTT) TC, https://www.oasis-open.org/committees/
mqtt/, Accessed 7 March 2022.

[3] D. Locke, MQ Telemetry Transport (MQTT) V3.1
Protocol Speci f icat ion , IBM DeveloperWorks
Technical Library, August 2010. http://www.ibm.com/
developerworks /webservices/library/ws-mqtt/index.
html.

[4] Internet Engineering Task Force, The Transport Layer
Security (TLS) Protocol Version 1.3, RFC 8446, August,
2018.

[5] Narens, TLS and Mutual TLS handshake data overhead,
http://narendrasharma.blogspot.com/2018/01/tls-and-
mutual-tls-handshake-data.html, Accessed 1 March
2022.

[6] Avast, Avast research finds at least 32,000 smart homes
and businesses at risk of leaking data, https://press.
avast.com/avast-research-finds-at-least-32000-smart-
homes-and-businesses-at-risk-of-leaking-data, Accessed
7 March 2022.

[7] S. Andy, B. Rahardjo, B. Hanindhito, Attack Scenarios
and Security Analysis of MQTT Communication
Protocol in IoT System, 2017 4th International
Conference on Electrical Engineering, Computer
Science and Informatics (EECSI) , Yogyakarta,
Indonesia, 2017, pp. 1-5.

[8] S. N. Firdous, Z. Baig, C. Valli, A. Ibrahim, Modelling
and Evaluation of Malicious Attacks against the IoT
MQTT Protoco, 2017 IEEE International Conference
on Internet of Things (iThings) and IEEE Green
Computing and Communications (GreenCom) and
IEEE Cyber, Physical and Social Computing (CPSCom)
and IEEE Smart Data (SmartData), Exeter, UK, 2017,
pp. 748-755.

[9] C. Lesjak, D. Hein, M. Hofmann, M. Maritsch,
A. Aldrian, P. Priller, T. Ebner, T. Ruprechter, G.
Pregartner, 2015 IEEE 13th International Conference
on Industrial Informatics (INDIN), Cambridge, UK,
2015, pp. 1243-1250.

[10] A. Rizzardi, S. Sicari, D. Miorandi, A. Coen-Porisini,
AUPS: An Open Source Authenticated Publish/
Subscribe system for the Internet of Things, Information
Systems, Vol. 62, pp. 29-41, December, 2016.

[11] R. Neisse, G. Steri, G. Baldini, Enforcement of security
policy rules for the internet of things, 2014 IEEE 10th
International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob),
Larnaca, Cyprus, 2014, pp. 165-172.

[12] A. Niruntasukrat, C. Issariyapat, P. Pongpaibool, K.
Meesublak, P. Aiumsupucgul, A. Panya, Authorization
mechanism for MQTT-based Internet of Things, 2016
IEEE International Conference on Communications
Workshops (ICC), Kuala Lumpur, Malaysia, 2016, pp.
290-295.

[13] S. H. Shin, K. Kobara, C. C. Chuang, W. C. Huang, A
Security Framework for MQTT, 2016 IEEE Conference
on Communications and Network Security (CNS):
International Workshop on Cyber-Physical Systems
Security (CPS-Sec), Philadelphia, PA, USA, 2016, pp.

432-436.
[14] S. H. Shin, K. Kobara, Efficient Augmented Password-

Only Authentication and Key Exchange for IKEv2, IETF
RFC 6628, Experimental, June, 2012.

[15] A. Bhawiyuga, M. Data, A. Warda, Architectural Design
of Token based Authentication of MQTT Protocol
in Constrained IoT Device, 2017 11th International
Conference on Telecommunication Systems Services and
Applications (TSSA), Lombok, Indonesia, 2017, pp. 1-4.

[16] H. Y. Chien, Y. J. Chen, G. H. Qiu, J. F. Liao, R. W.
Hung, P. C. Lin, X. A. Kou, M. L. Chiang, C. H. Su,
A MQTT-API-Compatible IoT Security-Enhanced
Platform, International Journal of Sensor Networks,
Vol. 32, No. 1, pp. 54-68, 2020.

[17] H.-Y. Chien, P. C. Lin, M. L. Chiang, Efficient MQTT
Platform Facilitating Secure Group Communication,
Journal of Internet Technology, Vol. 21, No. 7, pp.
1929-1940, December, 2020.

[18] H. Y. Chien, G. H. Qiu, R. W. Hung, A. T. Shih, C. H.
Su, Hierarchical MQTT with Edge Computation, the
10th International Conference on Awareness Science
and Technology (iCAST 2019), Morioka, Japan, 2019,
pp. 1-5.

[19] A. Mektoubi, H. Lalaoui, H. Belhadaoui, M. Rifi, A.
Zakari, New approach for securing communication
over MQTT protocol A comparison between RSA and
Elliptic Curve, 2016 Third International Conference
on Systems of Collaboration (SysCo), Casablanca,
Morocco, 2016, pp. 1-6.

[20] M. Singh, M. A. Rajan, V. L. Shivraj, P. Balamuralidhar,
Secure mqtt for internet of things (iot), 2015 Fifth
International Conference on Communication Systems
and Network Technologies, Gwalior, India, 2015, pp.
746-751.

[21] H. Y. Chien, Highly Efficient Anonymous IoT
Authentication Using Composite Hashing, The
2021 IEEE Conference on Dependable and Secure
Computing, Aizuwakamatsu, Fukushima, Japan, 2021,
pp. 1-7.

[22] H. Y. Chien , Two-Leve l -Compos i te -Hash ing
Facilitating Highly Efficient Anonymous IoT and D2D
Authentication, MDPI Electronics, Vol. 10, No. 7,
Article No. 789, April, 2021.

[23] OASIS, MQTT Version 5.0, 07 March 2019. https://
docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[24] OASIS, MQTT 5 Specification, https://mqtt.org/mqtt-
specification/.

[25] G. Held, Enhanced Authentication, HiveMQ, 6 March
2020, https://www.hivemq.com/blog/mqtt5-essentials-
part11-enhanced-authentication/.

[26] Mosca, https://github.com/mcollina/mosca/, Accessed 7
November 2018.

[27] M. Bellare, R. Canetti, H. Krawczyk, Keying Hash
Functions for Message Authentication, in: N. Koblitz
(Eds.), Advances in Cryptolo-gy—CRYPTO ’96,
Springer, Berlin, Heidelberg, 1996, pp. 1-15.

[28] D. V. Oheimb, The high-level protocol Specification
language HLPSL developed in the EU project
AVISPA, Proceedings of the APPSEM 2005 Workshop,
Frauenchiemsee, Germany, 2005, pp. 1-17.

674 Journal of Internet Technology Vol. 24 No. 3, May 2023

[29] Avispa, A tool for Automated Validation of Internet
Security Protocols, http://www.avispa-project.org,
Accessed 20 February 2020.

Biographies

Hung-Yu Chien received the B.S. degree
from NCTU, Taiwan, 1988, the M.S. degree
from NTU, Taiwan, 1990, and the doctoral
degree in applied mathematics at NCHU
2002. He is a professor of National Chi
Nan University since 199808 His research
interests include cryptography, networking,
network security, ontology, and Internet-of-

Things.

Pin-Ping Ciou received her bachelor
degree in the Department of Information
Management at the National Chi Nan
University in Taiwan. Her research topic is
Message Queuing Telemetry Transport and
network security.

