
Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 565

*Corresponding Author: Yueh-Min Huang; E-mail: huang@mail.ncku.edu.tw
DOI: 10.53106/160792642023052403001

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning

Ya-Yu Huang, Zi-Wen Li, Chun-Hao Yang, Yueh-Min Huang*

Department of Engineering Science, National Cheng Kung University, Taiwan

n96084141@gs.ncku.edu.tw, n96101147@gs.ncku.edu.tw, n96091601@gs.ncku.edu.tw, huang@mail.ncku.edu.tw

Abstract

The reduction of the agricultural workforce due to the
rapid development of technology has resulted in labor
shortages. Agricultural mechanization, such as drone use
for pesticide spraying, can solve this problem. However, the
terrain, culture, and operational limitations in mountainous
orchards in Taiwan make pesticide spraying challenging. By
combining reinforcement learning with deep neural networks,
we propose to train drones to avoid obstacles and find
optimal paths for pesticide spraying that reduce operational
difficulties, pesticide costs, and battery consumption.
We experimented with different reward mechanisms,
neural network depths, flight direction granularities,
and environments to devise a plan suitable for sloping
orchards. Reinforcement learning is more effective than
traditional algorithms for solving path planning in complex
environments.

Keywords: Deep Q-Learning (DQN), Drone (UAV),
Reinforcement learning (RL), Path algorithm, Smart
agriculture

1 Introduction

The number of people employed in the technology
industry has increased rapidly in the past few years, resulting
in fewer people working in agriculture. In this situation,
smart agriculture is a critical technology for maintaining
the yield and quality of crops [1-5]. Spraying drones have
now been added to pesticide spraying technology [6-7]. This
technology reduces the burden of carrying pesticide tanks and
eliminates the need for farmers to be exposed to a pesticide-
filled environment, thus enhancing the effectiveness of pest
control.

The technology for spraying drones has many problems
yet to be solved. When using a crop spraying drone for
plant protection in orchards, operating environments include
complexities such as power equipment towers, nylon nets
for agricultural production management, buildings, and so
on [8-10]. Also, most orchards are located on hillsides with
different slopes and trees growing at different heights [11]. In
addition, many farmers plant a variety of crops on the slope
to reduce costs. At present, spraying drones are generally
still operated manually. These problems complicate the task
of drone pilots [12], and out-of-sight obstacles also make
it impossible for the pilot to make immediate judgments to

avoid the obstacles, resulting in aircraft accidents [13]. It is
also difficult to spray different pesticides on different crops
[14].

The above problems could be solved if the spraying
drones could automatically spray after flying to the
destination given the input position. In this paper we seek
to implement a drone path planning system to automatically
decide the best pesticide spraying route based on the current
environmental parameters of the orchard, accounting for
topography, tree density, pest prevalence, and so on by using
the proposed path algorithm. Since current route planning
requires human judgment on the necessary points to be taken,
route algorithms for the traveling salesman problem (TSP)
are suitable for shortest path planning [15]. Although the
system is cost-effective, dynamic decisions cannot account
for all the different environmental factors; the system
automatically determines the critical points and plans the best
path according to the different weights.

Reinforcement learning (RL) [16] is a type of machine
learning that takes the actions that optimize the benefits
based on the current environment [17-18]. A classic example
is the obstacle avoidance system used in robot vacuums [19].
In this paper we adopt the deep Q-learning (DQN) approach,
which combines deep learning with RL [20]. On slopes
with hilly terrain, we take into consideration the target crop
density, the slope height, and the location of pest infestations
to find the most efficient pesticide spraying path to reduce
pesticide use and UAV battery usage.

The rest of this study is organized as follows. In Section
2, we briefly survey research related to drone obstacle
avoidance and reinforcement learning. In Section 3, we
outline our actual observations in a sloping orchard and
introduce the test platform and environmental data used in the
experiments. Section 4 introduces the research methodology,
including the use of DQN in RL as a neural network
architecture, and the environmental parameter settings to
train the best neural network and output location for pesticide
spraying paths. In Section 5, we experiment with different
parameters and analyze the various results. Finally, in Section
6, we conclude with a discussion on the results of Section 5.

2 Related Work

This section covers recent research on UAV obstacle
avoidance applications, explains the basic solution of TSP
in path planning, introduces reinforcement learning. and
discusses related applied techniques.

566 Journal of Internet Technology Vol. 24 No. 3, May 2023

2.1 Applications of Drone Obstacle Avoidance
Much research has been conducted on RL-based drone

obstacle avoidance [21-26]. For example, Mnih et al. [27]
propose a drone path planning method based on deep
reinforcement learning (DRL) applied to an extensive task
scenario. Their study focuses on coverage path planning
(CPP), where the UAV investigates areas of interest for data
harvesting using distributed IoT sensor devices. Given the
information from these environments, two double DQNs
(DDQN) [28] of the same architecture are trained to enable
the UAVs to determine their flight paths in very different task
scenarios. To improve the efficiency of the path planning
method, Liu et al. [29] use DQN for goal tracking. They treat
the UAV as an agent that seeks a safe and efficient way to
fly. The authors approach this as a Markov decision process
(MDP) [30] problem. DQN is effective even in unknown
environments.

While the above is a static environment simulation,
drones are often used in dynamic environments with potential
threats. Yan et al. [31] use a DRL approach for drone path
planning, evaluating the survival probability of UAVs under
enemy radar detection and missile attack in a software
simulation. The study uses dueling double DQNs (D3QN)
[27, 32] to model a set of environment maps as input and
computes the corresponding candidate actions. They then
select an operation via the epsilon-greedy strategy and
heuristic search rule. This method yields good results on both
static and dynamic tasks.

2.2 Traveling Salesman Problem
TSP is a relatively complex non-deterministic polynomial

(NP) problem [33], mainly built in the context shown in
Figure 1. For a traveler who seeks to travel to seven cities and
knows the distance between each city and the other cities, the
computer calculates the shortest route from the starting city
to visit each city without visiting any more than once [34].

The traditional approach to solving the TSP problem is the
brute-force method, where all possible combinations of routes
are arranged to find the optimal solution [35]. However, this
significantly reduces the computational efficiency and incurs
high time complexity with an increased the number of points.
Thus path algorithms have been developed to solve the TSP
problem [36], for example, the ant colony optimization
(ACO) [37], particle swarm optimization (PSO) [38-39],
simulated annealing (SA) [40], genetic algorithms (GA) [41],
and so on. All of these use a path algorithm to calculate the
shortest path under the condition that each point is visited
only once.

Figure 1. Traveling salesman problem

2.3 Reinforcement Learning
Reinforcement learning [16] is a type of machine learning

concerned with how intelligent agents ought to take action
in a complex environment to maximize the cumulative
reward [42]. RL agents adopt a trial-and-error approach when
playing games, and the agent is rewarded or punished for
each action performed. Without any hints or advice about the
game, the agent decides how to perform the task to maximize
its reward. This trial-and-error learning approach is used to
achieve the desired end goal. The following is an introduction
to several important RL concepts, as well as their applications
and limitations.
2.3.1 Markov Decision Process (MDP)

A Markov decision process (MDP) [30] is an important
concept in RL which was originally used in probability
theory and statistics. MDPs can be used to learn how to
make decisions through mathematical algorithms when
faced with a situation that requires random choices. Current
MDP applications in optimization research include dynamic
planning [43] and RL [44].

An MDP can be described by the following mathematical
equation, with the basic requirements:

1. Environment states (each frame of the map)
2. Starting state (the agent’s starting position)
3. Actions that the agent can perform (up, down, left,

right)
4. Probability of selecting an action (probability of go-

ing to a different frame)
5. Reward for reaching a specific state (points are de-

ducted when encountering traps)
Given these settings, T (s, a, sꞌ) is used to denote the

probability of starting in state , taking action a , and ending
up in state sꞌ . This probability is multiplied by the reward for
state sꞌ and the expected benefit of the Q-state. The largest
value of Q (s, a) depends on which state sꞌ that Q (s, a) ends
up in, as in

(,) (, ,)[()].
s

Q s a T s a s R V sγ
′

′ ′= +∑ (1)

Despite their effectiveness, MDPs have their limitations.
For example, MDP training considers only rewards but
not the cost of the agent’s actions. It is however crucial to
consider the cost of the actions taken by the agent and be
cautious about the next step.
2.3.2 Q-Learning

Q-Learning [45] is a value-based RL algorithm that
updates the value function according to the Bellman
equation. The value of each state is estimated precisely, and
the cumulative reward of continuous behavior over time
is considered instead of only the reward from the current
action. This long-term reward is denoted as a Q-value, where
“Q” represents quality, which indicates the usefulness of the
action for obtaining future rewards; the Q-value for each state
and corresponding action is

()1 1(,) (,) (,) .t t t t t ta
Q maxs a Q s a r Q s aα γ+ +← + + ⋅ (2)

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 567

In the Q-learning process, the Q (st, at) value is randomly
initialized. The initial state s value in each iteration as well as
the reward r and value sꞌ of the following state are obtained
after each step is chosen according to the probability of Q
to perform action a. Then the Q-function is recalculated
using Equation (2) and the new values are updated in the
Q-table, and its Q-value is updated according to the selection
behaviors of each state. After the action is executed, the state
is current, and the above steps are repeated until the endpoint.
2.3.3 Deep Q Network (DQN)

In a Q-table implementation, a Q-table is a table that
stores Q values and is indexed by state and action. However,
this indexed table can be created only if the number of
states and actions is small enough. Deep Q-learning [46]
instead uses a deep neural network to extract features and
approximate the desired Q function.

In deep Q-learning, the neural network is fed with the
input-output pair to eventually approximate the function of
the input-output correspondence, which is transformed into
a more trainable form of the π(State) = Action policy. The
advantage of replacing the Q-table with a neural network is
that the neural network automatically extracts features from
the vast state space with different variants.

3 Experimental Environment

In this section, we introduce our team’s field observation
of the environmental conditions in Taiwan’s mountain
orchards to understand what obstacles drones will encounter
when flying in mountainous areas. Then we introduce the
system environment. In this study, as our main focus is on
real-world augmented learning combined with deep learning,
we use TensorFlow to build deep Q-learning training models.

3.1 Mountain Orchard Environment
Our research team observed fruit trees in the mountains of

Taiwan in the field, and in other research on precise pesticide
spraying by drones [47], we visited the sloping orchards of
Nanhua in Tainan, Taiwan. Figure 2 is an aerial photo of an
orchard in Nanhua, Taiwan: the orchard contains various
structures and buildings, and the height and size of the trees
vary widely, as well as the species of the trees. These factors
all complicate the task of drone pilots. Figure 3 is a side view
of the orchard in Nanhua, Taiwan, where we flew the drone.
We observe a hilly slope, which also constitutes a challenge
for drone pilots.

Figure 2. Aerial photo of orchard in Nanhua, Taiwan

Figure 3. Side view of orchard

3.2 Software Environment
TensorFlow [48], an open-source platform for building

machine learning applications, was developed by the Google
Brain team and first made public in late 2015 under the
Apache Open Source license. It is a symbolic mathematical
library that uses DataStream and differentiable programming
to perform training and inference tasks focused on deep
neural networks. Thus, TensorFlow sets up DataStream
graphs and structures as shown in the TensorFlow
architecture in Figure 4, where the inputs are treated as
multidimensional arrays called Tensors to define how the
data moves in the graph. The architecture is divided into
three main parts: data preprocessing, model building, and
model training and evaluation. Complex programming is not
required to build, configure, or program neural networks,
which makes it easier to research machine learning and
neural networks. TensorFlow also has an important feature
called TensorBoard, which monitors TensorFlow operations
graphically and visually.

Figure 4. TensorFlow architecture

3.3 Interface Environment
The environment interface is designed mainly using the

PyQt5 suite [49]. Qt is a cross-platform GUI framework that
supports Windows, MacOS, Linux, and other major operating
systems. The primary programming language used is C++,
which is relatively difficult to write and install. Therefore,
for this study we implemented the environment interface of
the map in PyQt5 and generated a spreadsheet with reward
values as RL training data, as shown in Figure 5.

568 Journal of Internet Technology Vol. 24 No. 3, May 2023

Figure 5. Use PyQt5 to create the environment map for this
study and generate the reward data file

4 System Design and Implementation

This section introduces the DQN implementation for the
RL drone application. After setting up the environment and
creating an environment map, we generated the reward data
as a training sample for DQN to decide the flight direction
of the drone, after which we processed the data and output a
drone flight path.

4.1 System Architecture
The system architecture here is divided into two parts:

First, we discuss the augmented learning in the UAV
automatic path planning system. Second, we describe the
experimentation steps.
4.1.1 System Architecture for UAV Path Planning

We developed an unmanned path intelligence system, as
shown in Figure 6. In the area to spray with pesticides, the
critical factors were the height of the tree tops, the density
of the target species, and the severity of the pest infestation.
After integrating these data, we planned a PyQt5-based
environment map interface. Finally, we generated the rewards
table needed for deep Q-learning. The reward table allows the
neural network to learn the suitability of each flight direction
during training. If a direction is not suitable, a penalty is
given; the more suitable the direction, the higher the reward.
The weights are stored after the whole training is completed.

Figure 6. Overall UAV automatic path planning system
architecture

4.1.2 DRL Model Training Steps
Traditional path algorithms require information about the

flight points before calculating the shortest path, but that is
not suitable for complex environments. In this study, DRL

is used for suitable path planning through the DQN neural
network architecture. Figure 7 describes the process of
training the neural network model. The drone is considered
an agent, and during the training of the DQN model, the
information about the flight direction (state) at each position
is obtained from the environment map in the yellow block on
the right, which is then input to the DQN model and used as
a training sample. The reward value is updated to reflect the
different conditions to determine which direction is the best
choice, and finally, an optimal path is obtained.

Figure 7. Nerve network model training steps

4.2 Environmental Data Sample
The computer uses environmental data to determine the

priority of spraying and sequencing flight paths to plan the
best paths for drones. The three main elements of this study
are the areas where the lychee giant stink bugs (Tessaratoma
papillosa) concentrate, the density of the lychee and longan
trees, and the height of the slope. Below, we present the
coordinates of these three elements.

Liu [29] uses a D3QN-based DRL approach to train
drones for IoT green mobility management to collect
environmental sensing data. To ensure immediate
transmission with minimum delay, each area is assigned a
different color based on the data constraint delay and energy
consumption to prioritize the data, as shown in Figure 8. We
follow this work in assigning different colors to different
grids to reflect the priority ranking when the environmental
map information is compiled.

Figure 8. Color-based area prioritization [29]

Figure 9 shows the environmental interface of this
study. We classify the environment and divide the spraying
area into a grid of 20x30 cells, and then manually input the
environmental information. The environmental messages are
divided into four colors. Red, orange, and yellow represent

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 569

the degree of pest infestation or the high-, medium-, and
low-density target tree species, respectively. During the
experiment, we observed that in areas with severe pest
infestation, the pests often fly to neighboring areas. Therefore,
orange and yellow areas are adjacent to red areas. In addition,
to prevent drone collisions, areas with high obstacles such as
high treetops or utility poles are marked green. After thus, we
input the final landing location and the reward file name and
generate a training sample.

Figure 9. Interface of study environment

4.3 Data Processing and Model Implementation
4.3.1 Reward Table Generation

The environmental interface shown in Figure 10
prioritizes the different cells in the target agricultural spraying
area with trial-and-error and suggestions from agricultural
experts. In this study, the drone moved in eight directions,
as shown in Figure 11, with a corresponding reward for
each direction. The program automatically generated reward
files for all grids containing each direction of movement.
Assuming the area was divided into 20x30 cells, there
were 600 cells, each with eight movement directions, thus
requiring the generation of 600x8 rewards, as shown in the
rewards table in Figure 11.

Figure 10. Eight numbered directions of drone movement

Figure 11. Reward table
(The horizontal “action” axis represents the movement
direction, and the vertical “state” axis represents each cell)

Different values of the reward value were experimented
with, resulting in the reward parameter configuration
shown in Table 1. As repeated paths increased the power
consumption of the aircraft, paths for such iterations were
zeroed and relearned. The reward values were set to 150, 120,
and 80 for areas requiring pesticide spraying, in decreasing
order of priority. The reward value was set to 50 for
directions towards the endpoint and 200 for the area adjacent
to the endpoint to ensure that the DQN model prioritized
the shortest path during training to reduce the power
consumption and avoid spraying pesticides on unnecessary
areas.

Table 1. Reward parameters (see Experiment 3 in Section
5.1)

Color Reward
Outside boundary -10

Higher terrain areas Green -10
Severe pest infestation Red 150

Moderate pest infestation Orange 120
Slight pest infestation Yellow 80

Endpoint 200
In direction of endpoint 50

4.3.2 Gradient Descent
In optimization theory, gradient descent [50] is a first-

order method for finding the best solution. Gradient descent
is used to find the local minimum of the objective function;
because the gradient points toward the local maximum,
gradient descent proceeds in the opposite direction of the
gradient.

570 Journal of Internet Technology Vol. 24 No. 3, May 2023

As gradient descent continually updates the parameters
to find the solution, a random set of solutions of the initial
parameters is first generated. Then, according to these
randomly generated solutions, the gradient direction of the
solution size is calculated and the solution is subtracted from
the gradient direction. Where x is the first update parameter, t
is the iteration number, and γ is the learning rate, the formula
is

(1) () ()().t t tx xs f x+ = − ∇ (3)

4.3.3 Experiment Replay
Experiment replay [51] refers to learning a random mini-

batch during training by storage-sampling, which prevents the
neural network from falling into an optimal local situation in
the case of sequential access. DQN uses Experience Replay
so that the agent does not need to be trained after each step.
In this paper, Experience Replay is used to accelerate the
training of DQN by performing small batch training every ten
steps. In this paper, we use Experience Replay to accelerate
the training of DQN by conducting small batch training every
10 steps, and the DQN is divided into the following steps
by the learning method of Experience Replay (as shown in
Figure 12):

1. Pre-process and provide the environment (state s) to
the DQN, which returns the Q values of all possible
actions in the state.

2. Select an action using the epsilon-greedy strategy.
With probability epsilon, select a random action a;
otherwise, select the action with the maximum Q
value, e.g., <s, a, r, sꞌ > a = argmax (Q (s, a, w)).

3. Perform the action in state , and then move to the
new state to collect the reward. State sꞌ is the image
preprocessing of the next screen. This data is con-
verted and stored in the replay buffer as <s, a, r, sꞌ >

4. Sample random batches of conversion records from
the replay buffer, which calculates the loss.

5. Calculate the squared difference between the target
and predicted Q as

2((, ;) (, ;)) . aLoss r max Q s a Q s aγ θ θ′ ′ ′= + − (4)

6. Minimize the loss by gradient descent on the network
parameters.

7. After each C iterations, copy the network weights to
the target network.

8. Repeat these steps for M levels.

Figure 12. DQN training

5 Experiment Results and Analysis

Here we implement path planning for the augmented
DQN algorithm and analyze the results.

5.1 Results for Different Rewards
RL [17] uses a reward mechanism to enable the agent

to analyze actions and generate feedback, training the agent
to learn independently. As the design of the rewards greatly
influences the training model, we attempted to determine the
best reward mechanism. The 15x20 simulation environment
of this experiment is shown in Figure 13. In the initial 2000
training iterations, the agent chose actions randomly from up,
down, left, and right, and the feedback value of each action
was recorded using the ER mechanism. With this experience
from the random learning, we proceeded with 28000 more
training iterations. The experimental trend is presented in
Table 2 with three different reward parameters, as shown
in Figure 14 to Figure 16, where the horizontal axis is the
number of iterations, and the vertical axis is the RL cost
parameter. Because the input data in DQN changes at every
step, the cost curve exhibits clear oscillation depending on
the learning situation. The resultant trend differs from that of
the loss function in deep learning, which decreases steadily,
but we still observe a gradual smoothing trend.

Figure 13. Simulation environment used for reward
experiment

Table 2. Reward parameters

Reward Experiment
1

Experiment
2

Experiment
3

Outside the boundary -10 -10 -10
Higher terrain areas -10 -10 -10

Severe area 15 80 150
Moderate area 12 40 120

Slight Area 8 20 80
Endpoint 20 100 200

Direction to the end point 4 10 50

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 571

Figure 14. Experiment 1 cost trend

Figure 15. Experiment 2 cost trend

Figure 16. Experiment 3 cost trend

The above results show that the clearer the reward and
punishment, the smoother the cost curve. Training time,
which is little affected by this, is about 400 seconds. If the
map is enlarged, the range of the rewards and penalties should
be increased accordingly to produce accurate experimental
results. Excessive differences between rewards and penalties
may be counterproductive and cause the model to ignore
slight or moderate areas of infestation. Thus the grid size
should also be considered when setting the reward value. For

example, the simulation environment in this experiment was
15x20, or 300 cells, and the reward value was set between
300 and -100.

5.2 Results for Different Network Levels
In this study, we used an RNN network as the DQN

architecture. The input layer reads the environmental
information, passes it to the hidden layer for training,
uses backpropagation to tune the internal parameters, and
produces the output probabilities for each action in the
output layer, from which the agent takes the action with the
maximum probability, that is, the UAV’s flight direction.

Here we compare the number of hidden layers in the
neural network to understand the influence of the layers.
We used a 20x30 grid for the simulation, and used the data
from Experiment 3 in Table 2 for the reward design after
changing the network layer structure. According to the
experimental results in Figure 17 and Figure 19, the two-
layer neural network considers more environmental factors,
whereas the three-layer neural network has a shorter path. In
terms of cost, the three-layer neural network in Figure 20 is
smoother than the two-layer network in Figure 18. This result
may be because the three-layer neural network has too many
parameters, resulting in overfitting. Therefore, we believe
that the two-layer neural network is more consistent with
optimal path planning, and the three-layer neural network is
more consistent with shortest path planning. Since our goal is
optimal path planning, the two-layer neural network is better.

Figure 17. Optimal path planning for two-layer neural
network (S: start; E: end)

Figure 18. Cost trend of two-layer neural network

572 Journal of Internet Technology Vol. 24 No. 3, May 2023

Figure 19. Optimal path planning for three-layer neural
network

Figure 20. Cost trend of three-layer neural network

5.3 Flight Direction Results
For the path planning of the spraying drone, to consider

cost issues such as battery and drug quantity, we investigated
whether eight directions (up, top left, left, bottom left,
bottom, bottom right, right, and top right) yields more
efficient paths and hence reduce costs compared with the
more simpler four directions (up, left, bottom, and right).

For this experiment, we used a 20x30 simulation and
adjusted the model’s output layer to compare the experimental
results. In Figure 21 and Figure 22, with four directions, the
surrounding area—the orange areas with medium infestation
and the yellow areas with slight infestation—is visited
and sprayed with higher point coverage. However, eight
directions predominantly cover the red areas with severe
infestations; they cover less of the orange and yellow areas
and focus more on generating shorter paths. Therefore, we
believe four directions is better than eight for large-area
applications.

Figure 21. Optimal path for four directions

Figure 22. Optimal path for eight directions

5.4 Results for Different Environments
In this study, the simulated environment was a sloping

orchard characterized by hilly terrain, with many obstacles to
flying drones. The tree species to be sprayed were scattered,
and pest tended to concentrate around the target tree species.
These are all factors to consider when planning a simulation
path. Here we compare different environmental factors. First,
we differentiate by the density of tree species alone. Red,
orange, and yellow correspond to areas with high, medium,
and low tree density. In this case, because tree density is
unrelated to the degree of pest infestation, these appear in
Figure 23 as single points of dispersion; the experimental
results show that the system ignores minor cells. We also find
that the cost is higher when using only four flight directions.
Therefore, when only the density of the tree species is
important, eight flight directions is more effective.

In Figure 24, we consider the level of pest infestation.
Although some non-red cells are ignored, the path is more
effective overall. In Figure 25, after adding the terrain height,
the system drops one or two red cells that should be sprayed.
These results show that in complex experimental sites such
as these, terrain and other factors block areas that the drones
should have visited, which further affects the path planning
results.

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 573

Figure 23. Optimal plan considering only tree density

Figure 24. Optimal plan considering tree species density and
pest-infestation locations

Figure 25. Optimal plan considering tree species density,
pest-infestation locations, and terrain height

6 Conclusion
We propose a deep reinforcement learning method

based on DQN for use in drone path planning. We seek to
significantly reduce the cost of pesticides and to leverage
smart agriculture by spraying pesticides on only a few target
species. By training the model with known environmental
factors, the drone flies automatically and avoids obstacles
in complex environments. To devise a plan that accounts for

an environment with fruit trees on a slope, we experimented
with different reward mechanisms, neural network depths,
flight direction granularities, and environments to train our
DQN model.

In highly complex environments, some target areas are
neglected. Sometimes, when the system bypasses higher
obstacles, it takes the long way around, causing it to diverge
from the optimal planned path and skipping areas that should
be sprayed, instead choosing the shortest path. The path
planning proposed in this study performs better in simple
environments.

Considering that the current training mechanism of
the DQN model cannot satisfy all complex situations, one
direction for future improvement is adjusting parameters.
In addition, our simulations were all two-dimensional:
transitioning to three-dimensional simulations would support
path planning that better reflects real-world field conditions,
as would integrating this study with the UAV flight control
system. Thus, after importing the path, the pilot could set
parameters such as the hover time at each point and adjust
the flight height according to the drone type and spray radius.
This would make the agricultural spraying operation more
convenient, and constitute truly smart agriculture.

References

[1] P. K. R. Maddikunta, S. Hakak, M. Alazab, S.
Bhattacharya, T. R. Gadekallu, W. Z. Khan, Q.-V.
Pham, Unmanned aerial vehicles in smart agriculture:
Applications, requirements, and challenges, IEEE
Sensors Journal, Vol. 21, No. 16, pp. 17608-17619,
August, 2021.

[2] A. Walter, R. Finger, R. Huber, N. Buchmann, Smart
farming is key to developing sustainable agriculture,
Proceedings of the National Academy of Sciences, Vol.
114, No. 24, pp. 6148-6150, June, 2017.

[3] R. Dagar, S. Som, S. K. Khatri, Smart farming–IoT in
agriculture, 2018 International Conference on Inventive
Research in Computing Applications (ICIRCA),
Coimbatore, India, 2018, pp. 1052-1056.

[4] O. Friha, M. A. Ferrag, L. Shu, L. Maglaras, X. Wang,
Internet of things for the future of smart agriculture: a
comprehensive survey of emerging technologies, IEEE/
CAA Journal of Automatica Sinica, Vol. 8, No. 4, pp.
718-752, April, 2021.

[5] X. Yang, L. Shu, J. Chen, M. A. Ferrag, J. Wu, E.
Nurellari, K. Huang, A survey on smart agriculture:
Development modes, technologies, and security and
privacy challenges, IEEE/CAA Journal of Automatica
Sinica, Vol. 8, No. 2, pp. 273-302, February, 2021.

[6] U. R. Mogili, B. Deepak, Review on application of
drone systems in precision agriculture, Procedia
Computer Science, Vol. 133, pp. 502-509, April, 2018.

[7] A. Hafeez, M. A. Husain, S. P. Singh, A. Chauhan,
M. T. Khan, N. Kumar, A. Chauhan, S. K. Soni,
Implementat ion of drone technology for farm
monitoring & pesticide spraying: A review, Information
Processing in Agriculture, Vol. 10, No. 2, pp. 192-203,
January, 2023.

574 Journal of Internet Technology Vol. 24 No. 3, May 2023

[8] S. Wang, S. Xu, C. Yu, H. Wu, Q. Liu, D. Liu, L. Jin, Y.
Zheng, J. Song, X. He, Obstacle Avoidance and Profile
Ground Flight Test and Analysis for Plant Protection
UAV, Drones, Vol. 6, No. 5, Article No. 125, May, 2022.

[9] S. Wolfert, L. Ge, C. Verdouw, M.-J. Bogaardt, Big data
in smart farming–a review, Agricultural Systems, Vol.
153, pp. 69-80, March, 2017.

[10] N. Nhamo, D. Chikoye, Smart Technologies for
Sustainable Smallholder Agriculture, Elsevier, 2017.

[11] K. Wu, X. Sun, J. Zhang, F. Chen, Terrain following
method of plant protection UAV based on height fusion,
Nongye Jixie Xuebao/Transactions of the Chinese
Society of Agricultural Machinery, Vol. 49, No. 6, pp.
17-23, June, 2018.

[12] G. Cao, Y. Li, F. Nan, D. Liu, C. Chen, J. Zhang,
Development and analysis of plant protection UAV
flight control system and route planning research,
Nongye Jixie Xuebao/Transactions of the Chinese
Society of Agricultural Machinery, Vol. 51, No. 8,
August, pp. 1-16, 2020.

[13] J. N. Yasin, S. A. Mohamed, M.-H. Haghbayan, J.
Heikkonen, H. Tenhunen, J. Plosila, Unmanned aerial
vehicles (UAVs): Collision avoidance systems and
approaches, IEEE Access, Vol. 8, pp. 105139-105155,
June, 2020.

[14] A. P. D. Corte, E. M. da C. Neto, F. E. Rex, D. Souza,
A. Behling, M. Mohan, M. N. I. Sanquetta, C. A. Silva,
C. Klauberg, C. R. Sanquetta, H. F. P. Veras, D. R.
A. de Almeida, G. Prata, A. M. A. Zambrano, J. W.
Trautenmüller, A. de Moraes, M. A. Karasinski, E. N.
Broadbent, High-Density UAV-LiDAR in an Integrated
Crop-Livestock-Forest System: Sampling Forest
Inventory or Forest Inventory Based on Individual Tree
Detection (ITD), Drones, Vol. 6, No. 2, Article No. 48,
February, 2022.

[15] Y. Xu, C. Che, A brief review of the intelligent
algorithm for traveling salesman problem in UAV route
planning, 2019 IEEE 9th international conference on
electronics information and emergency communication
(ICEIEC), Beijing, China, 2019, pp. 1-7.

[16] R. S. Sutton, A. G. Barto, Reinforcement learning: An
introduction, MIT press, 2018.

[17] L. P. Kaelbling, M. L. Littman, A. W. Moore,
Reinforcement learning: A survey, Journal of Artificial
Intelligence Research, Vol. 4, pp. 237-285, May, 1996.

[18] J. Elhachmi, Distributed reinforcement learning for
dynamic spectrum allocation in cognitive radio-based
internet of things, IET Networks, Vol. 11, No. 6, pp.
207-220, November, 2022.

[19] E. Prassler, A. Ritter, C. Schaeffer, P. Fiorini, A short
history of cleaning robots, Autonomous Robots, Vol. 9,
No. 3, pp. 211-226, December, 2000.

[20] K. Arulkumaran, M. P. Deisenroth, M. Brundage, A. A.
Bharath, Deep reinforcement learning: A brief survey,
IEEE Signal Processing Magazine, Vol. 34, No. 6, pp.
26-38, November, 2017.

[21] K. Wan, X. Gao, Z. Hu, G. Wu, Robust motion control
for UAV in dynamic uncertain environments using deep
reinforcement learning, Remote Sensing, Vol. 12, No. 4,
Article No. 640, February, 2020.

[22] J. L. Junell, E.-J. Van Kampen, C. C. de Visser, Q. P.
Chu, Reinforcement learning applied to a quadrotor
guidance law in autonomous flight, AIAA Guidance,
Navigation, and Control Conference, Kissimmee,
Florida, 2015, Article No. 1990.

[23] W. Luo, Q. Tang, C. Fu, P. Eberhard, Deep-sarsa based
multi-UAV path planning and obstacle avoidance in a
dynamic environment, in: Y. Tan, Y. Shi, Q. Tang (Eds.),
Advances in Swarm Intelligence. ICSI 2018. Lecture
Notes in Computer Science, Springer, 2018, pp. 102-
111.

[24] N. Imanberdiyev, C. Fu, E. Kayacan, I.-M. Chen,
Autonomous navigation of UAV by using real-time
model-based reinforcement learning, 2016 14th
international conference on control, automation,
robotics and vision (ICARCV), Phuket, Thailand, 2016,
pp. 1-6.

[25] L. Abouzaid, H. Elbiaze, E. Sabir, Agile roadmap for
application‐driven Multi‐UAV networks: The case of
COVID‐19, IET Networks, Vol. 11, No. 6, pp. 195-206,
November, 2022.

[26] F. Kiani, A. Seyyedabbasi, R. Aliyev, M. A. Shah, M.
U. Gulle, 3D path planning method for multi-UAVs
inspired by grey wolf algorithms, Journal of Internet
Technology, Vol. 22, No. 4, pp. 743-755, July, 2021.

[27] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J.
Veness, M. G. Bellemare, A. Graves, M. Riedmiller,
A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie,
A. Sadik, I. Antonoglou, H. King, D. Kumaran, D.
Wierstra, S. Legg, D. Hassabis, Human-level control
through deep reinforcement learning, Nature, Vol. 518,
No. 7540, pp. 529-533, February, 2015.

[28] H. Van Hasselt, A. Guez, D. Silver, Deep reinforcement
learning with double q-learning, Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 30, No.
1, pp. 1-7, March, 2016.

[29] W. Liu, P. Si, E. Sun, M. Li, C. Fang, Y. Zhang, Green
mobility management in UAV-assisted IoT based on
dueling DQN, ICC 2019-2019 IEEE International
Conference on Communications (ICC), Shanghai,
China, 2019, pp. 1-6.

[30] M. L. Puterman, Markov decision processes, in: D. P.
Heyman, M. J. Sobel (Eds.), Handbooks in Operations
Research and Management Science, Vol. 2, Elsevier,
1990, pp. 331-434.

[31] C. Yan, X. Xiang, C. Wang, Towards real-time path
planning through deep reinforcement learning for a
UAV in dynamic environments, Journal of Intelligent
& Robotic Systems, Vol. 98, No. 2, pp. 297-309, May,
2020.

[32] Z. Wang, T. Schaul, M. Hessel, H. Hasselt, M. Lanctot,
N. Freitas, Dueling network architectures for deep
Reinforcement Learning, International Conference on
Machine Learning, New York, USA, 2016, pp. 1995-
2003.

[33] M. M. Flood, The traveling-salesman problem,
Operations Research, Vol. 4, No. 1, pp. 61-75, February,
1956.

[34] J. D. Little, K. G. Murty, D. W. Sweeney, C. Karel,
An algorithm for the traveling salesman problem,

Automatic Path Planning for Spraying Drones Based on Deep Q-Learning 575

Operations Research, Vol. 11, No. 6, pp. 972-989,
November-December, 1963.

[35] X. Geng, Z. Chen, W. Yang, D. Shi, K. Zhao, Solving
the traveling salesman problem based on an adaptive
simulated annealing algorithm with greedy search,
Applied Soft Computing, Vol. 11, No. 4, pp. 3680-3689,
June, 2011.

[36] M. Bellmore, G. L. Nemhauser, The traveling salesman
problem: a survey, Operations Research, Vol. 16, No. 3,
pp. 538-558, May-June, 1968.

[37] W. Wang, G. Tong, Multi-path unequal clustering
protocol based on ant colony algorithm in wireless
sensor networks, IET Networks, Vol. 9, No. 2, pp. 56-
63, March, 2020.

[38] I. C. Trelea, The particle swarm optimization algorithm:
convergence analysis and parameter selection,
Information Processing Letters, Vol. 85, No. 6, pp. 317-
325, March, 2003.

[39] M. D. Phung, Q. P. Ha, Safety-enhanced UAV path
planning with spherical vector-based particle swarm
optimization, Applied Soft Computing, Vol. 107, Article
No. 107376, August, 2021.

[40] S. Kirkpatrick, C. D. Gelatt Jr, M. P. Vecchi,
Optimization by simulated annealing, Science, Vol. 220,
No. 4598, pp. 671-680, May, 1983.

[41] D. Whitley, A genetic algorithm tutorial, Statistics and
Computing, Vol. 4, No. 2, pp. 65-85, June, 1994.

[42] J. Hu, H. Niu, J. Carrasco, B. Lennox, F. Arvin,
Voronoi-based multi-robot autonomous exploration in
unknown environments via deep reinforcement learning,
IEEE Transactions on Vehicular Technology, Vol. 69,
No. 12, pp. 14413-14423, December, 2020.

[43] M. Giul ian i , S . Gale l l i , R . Soncin i -Sessa , A
dimensionality reduction approach for many-objective
Markov Decision Processes: Application to a water
reservoir operation problem, Environmental Modelling
& Software, Vol. 57, pp. 101-114, July, 2014.

[44] M. v. Otterlo, M. Wiering, Reinforcement Learning and
Markov Decision Processes, in: M. Wiering, M. Otterlo
(Eds.), Reinforcement Learning, Springer, 2012, pp.
3-42.

[45] C. J. Watkins, P. Dayan, Q-learning, Machine Learning,
Vol. 8, No. 3-4, pp. 279-292, May, 1992.

[46] J. Fan, Z. Wang, Y. Xie, Z. Yang, A theoretical analysis
of deep Q-learning, Learning for Dynamics and
Control, Online Event, Berkeley, CA, USA, 2020, pp.
486-489.

[47] C.-J. Chen, Y.-Y. Huang, Y.-S. Li, Y.-C. Chen, C.-Y.
Chang, Y.-M. Huang, Identification of fruit tree pests
with deep learning on embedded drone to achieve
accurate pesticide spraying, IEEE Access, Vol. 9, pp.
21986-21997, February, 2021.

[48] Google, TensorFlow, https://www.tensorflow.org/,
accessed July, 2021.

[49] J. Willman, Modern PyQt, Apress, 2021.
[50] S. Ruder, An overview of gradient descent optimization

algorithms, September, 2016, https://arxiv.org/
abs/1609.04747.

[51] L.-J. Lin, Reinforcement learning for robots using
neural networks, Carnegie Mellon University, 1992.

Biographies

Ya-Yu Huang worked as a research
assistant in the Knowledge, Information and
Database Systems Laboratory from 2018
to 2020. She obtained a Master’s degree in
Engineering Science from National Cheng
Kung University in 2021. Her research
interests include the application of remote
sensing in agriculture, machine learning

in satellite imagery, optical satellites and aerial images, and
image processing.

Zi-Wen Li received his bachelor’s degree
in Information Engineering from Feng
Chia University in 2021. He is currently
a master’s student in the Department of
Engineering Science at National Cheng
Kung University. His research topics include
applications in smart agriculture, drone path
planning, embedded systems, IoT, machine

learning, E-Learning, and web development.

Chun-Hao Yang received the B.S. degree
in Electrical Engineering from Tatung
University, Taiwan, in 2019. He is currently
a master student with the Department of
Engineering Science, National Cheng Kung
University, Taiwan. His research interests
include machine learning in aerial imagery,
remote sensing in agriculture, embedded

system and IoT.

Yueh-Min Huang is a Chair Professor in
Department of Engineering Science and
Institute of Education, National Cheng-
Kung University, Taiwan. His research
interests include e-Learning, multimedia
communications, and artificial intelligence.
He received his MS and Ph.D. degrees in
Electrical Engineering from the University

of Arizona in 1988 and 1991 respectively. He has co-authored
3 books and has published more than 280 refereed journal
research papers. Dr. Huang has received many research
awards, such as Taiwan’s National Outstanding Research
Award in 2011/2014, as well as 2017 Taiwan Outstanding IT
Elite Award. He has completed over 60 Ph.D. and 300 MS
thesis students. Dr. Huang is in the editorial board of several
international journals in the area of educational technology,
computer communications, and web intelligence. Dr.
Huang is also the funding chair of International Symposium
of Emerging Technologies for Education (SETE) and
International Conference of Innovative Technologies and
Learning (ICITL). Dr. Huang is a senior member of the IEEE
and became Fellow of British Computer Society in 2011.

