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Abstract

The reduction of the agricultural workforce due to the 
rapid development of technology has resulted in labor 
shortages. Agricultural mechanization, such as drone use 
for pesticide spraying, can solve this problem. However, the 
terrain, culture, and operational limitations in mountainous 
orchards in Taiwan make pesticide spraying challenging. By 
combining reinforcement learning with deep neural networks, 
we propose to train drones to avoid obstacles and find 
optimal paths for pesticide spraying that reduce operational 
difficulties, pesticide costs, and battery consumption. 
We experimented with different reward mechanisms, 
neural network depths, flight direction granularities, 
and environments to devise a plan suitable for sloping 
orchards. Reinforcement learning is more effective than 
traditional algorithms for solving path planning in complex 
environments.

Keywords: Deep Q-Learning (DQN), Drone (UAV), 
Reinforcement learning (RL), Path algorithm, Smart 
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1  Introduction

The number of people employed in the technology 
industry has increased rapidly in the past few years, resulting 
in fewer people working in agriculture. In this situation, 
smart agriculture is a critical technology for maintaining 
the yield and quality of crops [1-5]. Spraying drones have 
now been added to pesticide spraying technology [6-7]. This 
technology reduces the burden of carrying pesticide tanks and 
eliminates the need for farmers to be exposed to a pesticide-
filled environment, thus enhancing the effectiveness of pest 
control.

The technology for spraying drones has many problems 
yet to be solved. When using a crop spraying drone for 
plant protection in orchards, operating environments include 
complexities such as power equipment towers, nylon nets 
for agricultural production management, buildings, and so 
on [8-10]. Also, most orchards are located on hillsides with 
different slopes and trees growing at different heights [11]. In 
addition, many farmers plant a variety of crops on the slope 
to reduce costs. At present, spraying drones are generally 
still operated manually. These problems complicate the task 
of drone pilots [12], and out-of-sight obstacles also make 
it impossible for the pilot to make immediate judgments to 

avoid the obstacles, resulting in aircraft accidents [13]. It is 
also difficult to spray different pesticides on different crops 
[14].

The above problems could be solved if the spraying 
drones could automatically spray after flying to the 
destination given the input position. In this paper we seek 
to implement a drone path planning system to automatically 
decide the best pesticide spraying route based on the current 
environmental parameters of the orchard, accounting for 
topography, tree density, pest prevalence, and so on by using 
the proposed path algorithm. Since current route planning 
requires human judgment on the necessary points to be taken, 
route algorithms for the traveling salesman problem (TSP) 
are suitable for shortest path planning [15]. Although the 
system is cost-effective, dynamic decisions cannot account 
for all the different environmental factors; the system 
automatically determines the critical points and plans the best 
path according to the different weights.

Reinforcement learning (RL) [16] is a type of machine 
learning that takes the actions that optimize the benefits 
based on the current environment [17-18]. A classic example 
is the obstacle avoidance system used in robot vacuums [19]. 
In this paper we adopt the deep Q-learning (DQN) approach, 
which combines deep learning with RL [20]. On slopes 
with hilly terrain, we take into consideration the target crop 
density, the slope height, and the location of pest infestations 
to find the most efficient pesticide spraying path to reduce 
pesticide use and UAV battery usage.

The rest of this study is organized as follows. In Section 
2, we briefly survey research related to drone obstacle 
avoidance and reinforcement learning. In Section 3, we 
outline our actual observations in a sloping orchard and 
introduce the test platform and environmental data used in the 
experiments. Section 4 introduces the research methodology, 
including the use of DQN in RL as a neural network 
architecture, and the environmental parameter settings to 
train the best neural network and output location for pesticide 
spraying paths. In Section 5, we experiment with different 
parameters and analyze the various results. Finally, in Section 
6, we conclude with a discussion on the results of Section 5.

2  Related Work

This section covers recent research on UAV obstacle 
avoidance applications, explains the basic solution of TSP 
in path planning, introduces reinforcement learning. and 
discusses related applied techniques.
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2.1 Applications of Drone Obstacle Avoidance
Much research has been conducted on RL-based drone 

obstacle avoidance [21-26]. For example, Mnih et al. [27] 
propose a drone path planning method based on deep 
reinforcement learning (DRL) applied to an extensive task 
scenario. Their study focuses on coverage path planning 
(CPP), where the UAV investigates areas of interest for data 
harvesting using distributed IoT sensor devices. Given the 
information from these environments, two double DQNs 
(DDQN) [28] of the same architecture are trained to enable 
the UAVs to determine their flight paths in very different task 
scenarios. To improve the efficiency of the path planning 
method, Liu et al. [29] use DQN for goal tracking. They treat 
the UAV as an agent that seeks a safe and efficient way to 
fly. The authors approach this as a Markov decision process 
(MDP) [30] problem. DQN is effective even in unknown 
environments.

While the above is a static environment simulation, 
drones are often used in dynamic environments with potential 
threats. Yan et al. [31] use a DRL approach for drone path 
planning, evaluating the survival probability of UAVs under 
enemy radar detection and missile attack in a software 
simulation. The study uses dueling double DQNs (D3QN) 
[27, 32] to model a set of environment maps as input and 
computes the corresponding candidate actions. They then 
select an operation via the epsilon-greedy strategy and 
heuristic search rule. This method yields good results on both 
static and dynamic tasks.

2.2 Traveling Salesman Problem
TSP is a relatively complex non-deterministic polynomial 

(NP) problem [33], mainly built in the context shown in 
Figure 1. For a traveler who seeks to travel to seven cities and 
knows the distance between each city and the other cities, the 
computer calculates the shortest route from the starting city 
to visit each city without visiting any more than once [34]. 

The traditional approach to solving the TSP problem is the 
brute-force method, where all possible combinations of routes 
are arranged to find the optimal solution [35]. However, this 
significantly reduces the computational efficiency and incurs 
high time complexity with an increased the number of points. 
Thus path algorithms have been developed to solve the TSP 
problem [36], for example, the ant colony optimization 
(ACO) [37], particle swarm optimization (PSO) [38-39], 
simulated annealing (SA) [40], genetic algorithms (GA) [41], 
and so on. All of these use a path algorithm to calculate the 
shortest path under the condition that each point is visited 
only once.

Figure 1. Traveling salesman problem

2.3 Reinforcement Learning
Reinforcement learning [16] is a type of machine learning 

concerned with how intelligent agents ought to take action 
in a complex environment to maximize the cumulative 
reward [42]. RL agents adopt a trial-and-error approach when 
playing games, and the agent is rewarded or punished for 
each action performed. Without any hints or advice about the 
game, the agent decides how to perform the task to maximize 
its reward. This trial-and-error learning approach is used to 
achieve the desired end goal. The following is an introduction 
to several important RL concepts, as well as their applications 
and limitations.
2.3.1 Markov Decision Process (MDP)

A Markov decision process (MDP) [30] is an important 
concept in RL which was originally used in probability 
theory and statistics. MDPs can be used to learn how to 
make decisions through mathematical algorithms when 
faced with a situation that requires random choices. Current 
MDP applications in optimization research include dynamic 
planning [43] and RL [44].

An MDP can be described by the following mathematical 
equation, with the basic requirements:

1. Environment states (each frame of the map)
2. Starting state (the agent’s starting position)
3. Actions that the agent can perform (up, down, left, 

right)
4. Probability of selecting an action (probability of go-

ing to a different frame)
5. Reward for reaching a specific state (points are de-

ducted when encountering traps)
Given these settings, T (s, a, sꞌ ) is used to denote the 

probability of starting in state , taking action a , and ending 
up in state sꞌ . This probability is multiplied by the reward for 
state sꞌ and the expected benefit of the Q-state. The largest 
value of Q (s, a)  depends on which state sꞌ that Q (s, a) ends 
up in, as in

( , ) ( , , )[ ( )].
s

Q s a T s a s R V sγ
′

′ ′= +∑                     (1)

Despite their effectiveness, MDPs have their limitations. 
For example, MDP training considers only rewards but 
not the cost of the agent’s actions. It is however crucial to 
consider the cost of the actions taken by the agent and be 
cautious about the next step.
2.3.2 Q-Learning

Q-Learning [45] is a value-based RL algorithm that 
updates the value function according to the Bellman 
equation. The value of each state is estimated precisely, and 
the cumulative reward of continuous behavior over time 
is considered instead of only the reward from the current 
action. This long-term reward is denoted as a Q-value, where 
“Q” represents quality, which indicates the usefulness of the 
action for obtaining future rewards; the Q-value for each state 
and corresponding action is

( )1 1( , ) ( , ) ( , ) .t t t t t ta
Q maxs a Q s a r Q s aα γ+ +← + + ⋅       (2)
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In the Q-learning process, the Q (st, at) value is randomly 
initialized. The initial state s value in each iteration as well as 
the reward r and value sꞌ  of the following state are obtained 
after each step is chosen according to the probability of Q 
to perform action a. Then the Q-function is recalculated 
using Equation (2) and the new values are updated in the 
Q-table, and its Q-value is updated according to the selection 
behaviors of each state. After the action is executed, the state 
is current, and the above steps are repeated until the endpoint.
2.3.3 Deep Q Network (DQN)

In a Q-table implementation, a Q-table is a table that 
stores Q values and is indexed by state and action. However, 
this indexed table can be created only if the number of 
states and actions is small enough. Deep Q-learning [46] 
instead uses a deep neural network to extract features and 
approximate the desired Q function.

In deep Q-learning, the neural network is fed with the 
input-output pair to eventually approximate the function of 
the input-output correspondence, which is transformed into 
a more trainable form of the π(State) = Action policy. The 
advantage of replacing the Q-table with a neural network is 
that the neural network automatically extracts features from 
the vast state space with different variants.

3  Experimental Environment

In this section, we introduce our team’s field observation 
of the environmental conditions in Taiwan’s mountain 
orchards to understand what obstacles drones will encounter 
when flying in mountainous areas. Then we introduce the 
system environment. In this study, as our main focus is on 
real-world augmented learning combined with deep learning, 
we use TensorFlow to build deep Q-learning training models.

3.1 Mountain Orchard Environment
Our research team observed fruit trees in the mountains of 

Taiwan in the field, and in other research on precise pesticide 
spraying by drones [47], we visited the sloping orchards of 
Nanhua in Tainan, Taiwan. Figure 2 is an aerial photo of an 
orchard in Nanhua, Taiwan: the orchard contains various 
structures and buildings, and the height and size of the trees 
vary widely, as well as the species of the trees. These factors 
all complicate the task of drone pilots. Figure 3 is a side view 
of the orchard in Nanhua, Taiwan, where we flew the drone. 
We observe a hilly slope, which also constitutes a challenge 
for drone pilots.

 

Figure 2. Aerial photo of orchard in Nanhua, Taiwan

 

Figure 3. Side view of orchard

3.2 Software Environment
TensorFlow [48], an open-source platform for building 

machine learning applications, was developed by the Google 
Brain team and first made public in late 2015 under the 
Apache Open Source license. It is a symbolic mathematical 
library that uses DataStream and differentiable programming 
to perform training and inference tasks focused on deep 
neural networks. Thus, TensorFlow sets up DataStream 
graphs and structures as shown in the TensorFlow 
architecture in Figure 4, where the inputs are treated as 
multidimensional arrays called Tensors to define how the 
data moves in the graph. The architecture is divided into 
three main parts: data preprocessing, model building, and 
model training and evaluation. Complex programming is not 
required to build, configure, or program neural networks, 
which makes it easier to research machine learning and 
neural networks. TensorFlow also has an important feature 
called TensorBoard, which monitors TensorFlow operations 
graphically and visually.

 

Figure 4. TensorFlow architecture

3.3 Interface Environment
The environment interface is designed mainly using the 

PyQt5 suite [49]. Qt is a cross-platform GUI framework that 
supports Windows, MacOS, Linux, and other major operating 
systems. The primary programming language used is C++, 
which is relatively difficult to write and install. Therefore, 
for this study we implemented the environment interface of 
the map in PyQt5 and generated a spreadsheet with reward 
values as RL training data, as shown in Figure 5.



568  Journal of Internet Technology Vol. 24 No. 3, May 2023

 

Figure 5. Use PyQt5 to create the environment map for this 
study and generate the reward data file

4  System Design and Implementation

This section introduces the DQN implementation for the 
RL drone application. After setting up the environment and 
creating an environment map, we generated the reward data 
as a training sample for DQN to decide the flight direction 
of the drone, after which we processed the data and output a 
drone flight path.

4.1 System Architecture
The system architecture here is divided into two parts: 

First, we discuss the augmented learning in the UAV 
automatic path planning system. Second, we describe the 
experimentation steps.
4.1.1 System Architecture for UAV Path Planning

We developed an unmanned path intelligence system, as 
shown in Figure 6. In the area to spray with pesticides, the 
critical factors were the height of the tree tops, the density 
of the target species, and the severity of the pest infestation. 
After integrating these data, we planned a PyQt5-based 
environment map interface. Finally, we generated the rewards 
table needed for deep Q-learning. The reward table allows the 
neural network to learn the suitability of each flight direction 
during training. If a direction is not suitable, a penalty is 
given; the more suitable the direction, the higher the reward. 
The weights are stored after the whole training is completed.

 

Figure 6. Overall UAV automatic path planning system 
architecture

4.1.2 DRL Model Training Steps
Traditional path algorithms require information about the 

flight points before calculating the shortest path, but that is 
not suitable for complex environments. In this study, DRL 

is used for suitable path planning through the DQN neural 
network architecture. Figure 7 describes the process of 
training the neural network model. The drone is considered 
an agent, and during the training of the DQN model, the 
information about the flight direction (state ) at each position 
is obtained from the environment map in the yellow block on 
the right, which is then input to the DQN model and used as 
a training sample. The reward value is updated to reflect the 
different conditions to determine which direction is the best 
choice, and finally, an optimal path is obtained.

 

Figure 7. Nerve network model training steps

4.2 Environmental Data Sample
The computer uses environmental data to determine the 

priority of spraying and sequencing flight paths to plan the 
best paths for drones. The three main elements of this study 
are the areas where the lychee giant stink bugs (Tessaratoma 
papillosa) concentrate, the density of the lychee and longan 
trees, and the height of the slope. Below, we present the 
coordinates of these three elements.

Liu [29] uses a D3QN-based DRL approach to train 
drones for IoT green mobility management to collect 
environmental  sensing data.  To ensure immediate 
transmission with minimum delay, each area is assigned a 
different color based on the data constraint delay and energy 
consumption to prioritize the data, as shown in Figure 8. We 
follow this work in assigning different colors to different 
grids to reflect the priority ranking when the environmental 
map information is compiled.

Figure 8. Color-based area prioritization [29]

Figure 9 shows the environmental interface of this 
study. We classify the environment and divide the spraying 
area into a grid of 20x30 cells, and then manually input the 
environmental information. The environmental messages are 
divided into four colors. Red, orange, and yellow represent 
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the degree of pest infestation or the high-, medium-, and 
low-density target tree species, respectively. During the 
experiment, we observed that in areas with severe pest 
infestation, the pests often fly to neighboring areas. Therefore, 
orange and yellow areas are adjacent to red areas. In addition, 
to prevent drone collisions, areas with high obstacles such as 
high treetops or utility poles are marked green. After thus, we 
input the final landing location and the reward file name and 
generate a training sample.

 

Figure 9. Interface of study environment

4.3 Data Processing and Model Implementation
4.3.1 Reward Table Generation

The environmental interface shown in Figure 10 
prioritizes the different cells in the target agricultural spraying 
area with trial-and-error and suggestions from agricultural 
experts. In this study, the drone moved in eight directions, 
as shown in Figure 11, with a corresponding reward for 
each direction. The program automatically generated reward 
files for all grids containing each direction of movement. 
Assuming the area was divided into 20x30 cells, there 
were 600 cells, each with eight movement directions, thus 
requiring the generation of 600x8 rewards, as shown in the 
rewards table in Figure 11.

Figure 10. Eight numbered directions of drone movement

 

Figure 11. Reward table
(The horizontal “action” axis represents the movement 
direction, and the vertical “state” axis represents each cell)

Different values of the reward value were experimented 
with, resulting in the reward parameter configuration 
shown in Table 1. As repeated paths increased the power 
consumption of the aircraft, paths for such iterations were 
zeroed and relearned. The reward values were set to 150, 120, 
and 80 for areas requiring pesticide spraying, in decreasing 
order of priority. The reward value was set to 50 for 
directions towards the endpoint and 200 for the area adjacent 
to the endpoint to ensure that the DQN model prioritized 
the shortest path during training to reduce the power 
consumption and avoid spraying pesticides on unnecessary 
areas.

Table 1. Reward parameters (see Experiment 3 in Section 
5.1) 

Color Reward
Outside boundary -10

Higher terrain areas Green -10
Severe pest infestation Red 150

Moderate pest infestation Orange 120
Slight pest infestation Yellow 80

Endpoint 200
In direction of endpoint 50

4.3.2 Gradient Descent
In optimization theory, gradient descent [50] is a first-

order method for finding the best solution. Gradient descent 
is used to find the local minimum of the objective function; 
because the gradient points toward the local maximum, 
gradient descent proceeds in the opposite direction of the 
gradient.
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As gradient descent continually updates the parameters 
to find the solution, a random set of solutions of the initial 
parameters is first generated. Then, according to these 
randomly generated solutions, the gradient direction of the 
solution size is calculated and the solution is subtracted from 
the gradient direction. Where x is the first update parameter, t 
is the iteration number, and γ is the learning rate, the formula 
is

( 1) ( ) ( )( ).t t tx xs f x+ = − ∇                             (3)

4.3.3 Experiment Replay
Experiment replay [51] refers to learning a random mini-

batch during training by storage-sampling, which prevents the 
neural network from falling into an optimal local situation in 
the case of sequential access. DQN uses Experience Replay 
so that the agent does not need to be trained after each step. 
In this paper, Experience Replay is used to accelerate the 
training of DQN by performing small batch training every ten 
steps. In this paper, we use Experience Replay to accelerate 
the training of DQN by conducting small batch training every 
10 steps, and the DQN is divided into the following steps 
by the learning method of Experience Replay (as shown in 
Figure 12):

1. Pre-process and provide the environment (state s) to 
the DQN, which returns the Q values of all possible 
actions in the state.

2. Select an action using the epsilon-greedy strategy. 
With probability epsilon, select a random action a; 
otherwise, select the action with the maximum Q 
value, e.g., <s, a, r, sꞌ > a = argmax (Q (s, a, w)).

3. Perform the action in state , and then move to the 
new state  to collect the reward. State sꞌ is the image 
preprocessing of the next screen. This data is con-
verted and stored in the replay buffer as <s, a, r, sꞌ >

4. Sample random batches of conversion records from 
the replay buffer, which calculates the loss.

5. Calculate the squared difference between the target 
and predicted Q as 

2( ( , ; ) ( , ; )) .   aLoss r max Q s a Q s aγ θ θ′ ′ ′= + −                 (4)

6. Minimize the loss by gradient descent on the network 
parameters.

7. After each C iterations, copy the network weights to 
the target network.

8. Repeat these steps for M levels.

Figure 12. DQN training

5  Experiment Results and Analysis

Here we implement path planning for the augmented 
DQN algorithm and analyze the results.

5.1 Results for Different Rewards
RL [17] uses a reward mechanism to enable the agent 

to analyze actions and generate feedback, training the agent 
to learn independently. As the design of the rewards greatly 
influences the training model, we attempted to determine the 
best reward mechanism. The 15x20 simulation environment 
of this experiment is shown in Figure 13. In the initial 2000 
training iterations, the agent chose actions randomly from up, 
down, left, and right, and the feedback value of each action 
was recorded using the ER mechanism. With this experience 
from the random learning, we proceeded with 28000 more 
training iterations. The experimental trend is presented in 
Table 2 with three different reward parameters, as shown 
in Figure 14 to Figure 16, where the horizontal axis is the 
number of iterations, and the vertical axis is the RL cost 
parameter. Because the input data in DQN changes at every 
step, the cost curve exhibits clear oscillation depending on 
the learning situation. The resultant trend differs from that of 
the loss function in deep learning, which decreases steadily, 
but we still observe a gradual smoothing trend.

Figure 13. Simulation environment used for reward 
experiment

Table 2. Reward parameters

Reward Experiment 
1

Experiment 
2

Experiment 
3

Outside the boundary -10 -10 -10
Higher terrain areas -10 -10 -10

Severe area 15 80 150
Moderate area 12 40 120

Slight Area 8 20 80
Endpoint 20 100 200

Direction to the end point 4 10 50
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Figure 14. Experiment 1 cost trend

Figure 15. Experiment 2 cost trend

Figure 16. Experiment 3 cost trend

The above results show that the clearer the reward and 
punishment, the smoother the cost curve. Training time, 
which is little affected by this, is about 400 seconds. If the 
map is enlarged, the range of the rewards and penalties should 
be increased accordingly to produce accurate experimental 
results. Excessive differences between rewards and penalties 
may be counterproductive and cause the model to ignore 
slight or moderate areas of infestation. Thus the grid size 
should also be considered when setting the reward value. For 

example, the simulation environment in this experiment was 
15x20, or 300 cells, and the reward value was set between 
300 and -100.

5.2 Results for Different Network Levels
In this study, we used an RNN network as the DQN 

architecture. The input layer reads the environmental 
information, passes it to the hidden layer for training, 
uses backpropagation to tune the internal parameters, and 
produces the output probabilities for each action in the 
output layer, from which the agent takes the action with the 
maximum probability, that is, the UAV’s flight direction.

Here we compare the number of hidden layers in the 
neural network to understand the influence of the layers. 
We used a 20x30 grid for the simulation, and used the data 
from Experiment 3 in Table 2 for the reward design after 
changing the network layer structure. According to the 
experimental results in Figure 17 and Figure 19, the two-
layer neural network considers more environmental factors, 
whereas the three-layer neural network has a shorter path. In 
terms of cost, the three-layer neural network in Figure 20 is 
smoother than the two-layer network in Figure 18. This result 
may be because the three-layer neural network has too many 
parameters, resulting in overfitting. Therefore, we believe 
that the two-layer neural network is more consistent with 
optimal path planning, and the three-layer neural network is 
more consistent with shortest path planning. Since our goal is 
optimal path planning, the two-layer neural network is better.

Figure 17. Optimal path planning for two-layer neural 
network (S: start; E: end)

Figure 18. Cost trend of two-layer neural network
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Figure 19. Optimal path planning for three-layer neural 
network  

Figure 20. Cost trend of three-layer neural network

5.3 Flight Direction Results
For the path planning of the spraying drone, to consider 

cost issues such as battery and drug quantity, we investigated 
whether eight directions (up, top left, left, bottom left, 
bottom, bottom right, right, and top right) yields more 
efficient paths and hence reduce costs compared with the 
more simpler four directions (up, left, bottom, and right).

For this experiment, we used a 20x30 simulation and 
adjusted the model’s output layer to compare the experimental 
results. In Figure 21 and Figure 22, with four directions, the 
surrounding area—the orange areas with medium infestation 
and the yellow areas with slight infestation—is visited 
and sprayed with higher point coverage. However, eight 
directions predominantly cover the red areas with severe 
infestations; they cover less of the orange and yellow areas 
and focus more on generating shorter paths. Therefore, we 
believe four directions is better than eight for large-area 
applications.

Figure 21. Optimal path for four directions

Figure 22. Optimal path for eight directions

5.4 Results for Different Environments
In this study, the simulated environment was a sloping 

orchard characterized by hilly terrain, with many obstacles to 
flying drones. The tree species to be sprayed were scattered, 
and pest tended to concentrate around the target tree species. 
These are all factors to consider when planning a simulation 
path. Here we compare different environmental factors. First, 
we differentiate by the density of tree species alone. Red, 
orange, and yellow correspond to areas with high, medium, 
and low tree density. In this case, because tree density is 
unrelated to the degree of pest infestation, these appear in 
Figure 23 as single points of dispersion; the experimental 
results show that the system ignores minor cells. We also find 
that the cost is higher when using only four flight directions. 
Therefore, when only the density of the tree species is 
important, eight flight directions is more effective.

In Figure 24, we consider the level of pest infestation. 
Although some non-red cells are ignored, the path is more 
effective overall. In Figure 25, after adding the terrain height, 
the system drops one or two red cells that should be sprayed. 
These results show that in complex experimental sites such 
as these, terrain and other factors block areas that the drones 
should have visited, which further affects the path planning 
results.
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Figure 23. Optimal plan considering only tree density

Figure 24. Optimal plan considering tree species density and 
pest-infestation locations

Figure 25. Optimal plan considering tree species density, 
pest-infestation locations, and terrain height

6  Conclusion
We propose a deep reinforcement learning method 

based on DQN for use in drone path planning. We seek to 
significantly reduce the cost of pesticides and to leverage 
smart agriculture by spraying pesticides on only a few target 
species. By training the model with known environmental 
factors, the drone flies automatically and avoids obstacles 
in complex environments. To devise a plan that accounts for 

an environment with fruit trees on a slope, we experimented 
with different reward mechanisms, neural network depths, 
flight direction granularities, and environments to train our 
DQN model.

In highly complex environments, some target areas are 
neglected. Sometimes, when the system bypasses higher 
obstacles, it takes the long way around, causing it to diverge 
from the optimal planned path and skipping areas that should 
be sprayed, instead choosing the shortest path. The path 
planning proposed in this study performs better in simple 
environments.

Considering that the current training mechanism of 
the DQN model cannot satisfy all complex situations, one 
direction for future improvement is adjusting parameters. 
In addition, our simulations were all two-dimensional: 
transitioning to three-dimensional simulations would support 
path planning that better reflects real-world field conditions, 
as would integrating this study with the UAV flight control 
system. Thus, after importing the path, the pilot could set 
parameters such as the hover time at each point and adjust 
the flight height according to the drone type and spray radius. 
This would make the agricultural spraying operation more 
convenient, and constitute truly smart agriculture.
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