
IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 519

*Corresponding Author: Yi Luo; E-mail: luoyi_csg@outlook.com
DOI: 10.53106/160792642023032402027

IoETTS: A Decentralized Blockchain-based Trusted
Time-stamping Scheme for Internet of Energy

Bin Qian1,2, Yi Luo1,2*, Jiaxiang Ou3, Yong Xiao1,2, Houpeng Hu3

1 Institute of Metrology Technology, Electric Power Research Institute, China
2 Guangdong Provincial Key Laboratory of Intelligent Measurement and Advanced Metering of Power Grid, China

3 Guizhou Power Grid Co., LTD, China
qianbin@csg.cn, luoyi_csg@outlook.com, oujx@gzsyy.csg.cn, xiaoyong@csg.cn, huhp@gzsyy.csg.cn

Abstract

As a new-style smart grid, Internet of Energy (IoE) is
important and how to provide its trusted time-stamping
service becomes a hit. For example, an energy provider needs
to prove he/she transferred some energy to a consumer at
some time. Nevertheless, traditional trusted time-stamping
scheme with a central service provider is not suitable for IoE.
Some researchers try to solve this problem via blockchain,
due to its decentralization, traceability and tamper-proof.
However, there are still chal lenges when using blockchain.
Some have to introduce another kind of central participant.
Some have to face the problem of accuracy and availability
when using the Bitcoin blockchain. Some have to generate
too many extra transactions. To address the aforementioned
problems, we propose a fully decentralized trusted time-
stamping scheme without any central participant and
fulfill six design goals. Compared with the state-of-the-art
blockchain-based time-stamping scheme named Chronos, our
scheme enjoys less cryptographic operations. We then tested
our scheme in the development (local) network and two live
networks of the Ethereum. The experiment shows that we
have implemented a simple, effective, accurate and low-cost
decentralized trusted time-stamping scheme.

Keywords: Trusted time-stamping, Smart grid, Internet of
energy, Blockchain

1 Introduction

Due to the rising price of energy and the negative envi-
ronmental impacts of fossil fuels, many countries are trying
to introduce distributed energy such as renewable energy to
build modern power systems [1]. This kind of energy system
is usually called the Internet of Energy (IoE) or smart grid 2.0
[2]. The IoE is an extended concept of the smart grid. While
smart grids make advances in sensing, communication and
control, the new concept IoE is thought to be an internet-style
way for energy issues. There are some key features in such a
system [3]: (1) Mutual untrusted participants, such as large-
scale distributed energy generation systems, storage systems
and consumers must interact with each other for secure and
reliable delivery of energy. (2) Energy and information are

exchanged between a wide variety of participants via the
internet. (3) Allowing peer-to-peer energy exchanges, the
IoE should provide a new business model for a more open
market. For example, it may provide peer-to-peer billing
between the energy generator and consumer.

Consequently, the decentralized untrusted participants,
the information flow on the internet and the open business
market flourish a new research challenge called Forensic
Science [4]. The essence is to provide evidence for the
activities that occur in this kind of system. For instance,
an energy generator may have to prove he/she transferred
some energy to a consumer at some time for a reasonable
income. Evidence should be agreed by different participants
unanimously to execute a penalty when electricity theft
activities occur. Indeed, there is a basic service called secure
digital timestamps or Trusted time-stamping [5] which
addresses these needs. A trusted timestamp is used to prove
the existence of certain data before a certain point without the
possibility that the owner can backdate or postdate it. Thus
trusted time-stamping can become an approach in the IoE
to prove an event occurs among the participants. However,
traditional trusted time-stamping schemes like the RFC
3161 standard [6] and the Digital Time Stamp [7] usually
need a Trusted Third Party (TTP) acting as a time-stamping
authority (TSA). Because of the decentralized untrusted
participants in the IoE, a centralized solution may not fit this
scenario well. Then, in 2015 a decentralized time-stamping
scheme [8] was proposed by using the famous cryptocurrency
Bitcoin [9]. Bitcoin is a peer-to-peer electronic cash system
and its underlying technology called blockchain has become
a hit due to its key features of decentralization, traceability
and tamper-proof.

Since then, finding a decentralized time-stamping
solution via blockchain has drawn great interest from
researchers. Thomas Hepp et al. proposed a blockchain-
backed system called OriginStamp [10]. They gave insights
into the im plementation of a decentralized timestamp and
presented a time-stamping approach also using the Bitcoin
blockchain. The difference is the core of their scheme is
implemented independently of the Bitcoin protocol to avoid
the scaling problem [11]. In 2019, Yuan Zhang et al. [12]
used the Ethereum blockchain to realize a trusted time-
stamping service called Chronos for a long delay may occur
when the systems are designed via Bitcoin. In order to let a

520 Journal of Internet Technology Vol. 24 No. 2, March 2023

file’s timestamp be formed by a more accurate time, Chronos
proves the existence of a file corresponding to a time interval
by embedding the information of a sufficient number of
consecutive confirmed blocks into the file. In 2021, Gabriel
Estevam et al. [13] showed that some trusted time-stamping
schemes given by sending transactions containing the time-
stamped data to the blockchain might not be accurate. They
used smart contracts on the Ethereum blockchain instead of
the block-based timestamps and took the cost of the time-
stamping service into account.

Generally, all these techniques have given a kind of
de centralized time-stamping solution via blockchain and
may fit different use cases with distinguishing features.
Nevertheless, there are still limitations when they are used
in the IoE system: Firstly, a well-designed solution should
prevent malicious users from tampering with a timestamp,
forging a proved timestamp, or denying a time-stamping
service. However, some of them are constructed on Bitcoin
and may suffer from a long delay and up to two-hour
errors [12]. Secondly, some of these techniques still have a
service provider which seems to be a kind of trusted third
party. Because the IoE includes a variety of users who have
different interests, a fully decentralized scheme is needed. An
ideal time-stamping solution should not involve any kind of
the third party. Finally, as a basic service, the trusted time-
stamping service should be as simple as possible and easy
to integrate into the IoE. Many of the solutions are trying
to pack the record into a block directly. These block-based
timestamps will increase the complexity of the IoE system
and are hard to be used in a real system. To eliminate these
limitations, we try to propose a novel IoE trusted time-
stamping solution that is fully decentralized, secure, robust,
and easy to invoke by the IoE system. Specifically, our
contributions are summarized as follows:

1) We propose a blockchain-based decentralized time-
statmping scheme for internet of energy. To the best of our
knowledge, our IoE trusted time-stamping called IoETTS is
the first work to take the key features of the IoE into account
and eliminate any kind of trusted third party (TTP).

2) We address six design goals according to the above
discussion and provide two threat models for the de-
centralized time-stamping scheme. Theoretical analysis is
given to show that our proposed scheme fulfills the design
goals and approaches to resist all the attacks in the threat
models.

3) Compared with the state-of-the-art blockchain-based
time-stamping scheme named Chronos, our scheme enjoys
less cryptographic operations, thereafter we conduct ex-
periments both in the development network and testnet of
the Ethereum blockchain and the experiment shows that we
have implemented a simple, effective, accurate and low-cost
decentralized trusted time-stamping scheme.

The rest of this paper is arranged as follows. In Section
2 we give the related work of time-stamping service. In
Section 3 we introduce the necessary preliminary knowledge.
In Section 4 and 5 we give our system model and security
analysis. In Section 6 we provide an evaluation in the
development (local) network and testnet (Ropsten and
Rinkeby networks) of the Ethereum blockchain. Finally, in
Section 7 we draw a brief conclusion.

2 Related Work

In this section, we review the related works on the
techniques which provide trusted time-stamping services.

The time-stamping technique was first proposed by Haber
et al. [14] for addressing the problem of time-stamping digital
files. In the scheme, a hashchain is used to link a sequence of
digital files by a cryptographic hash function and a Trusted
Third Party (TTP) is needed to give the time-stamping
service. There is an assumption that the time-stamping
request se quence cannot be known in advance and a new
chain should be reformed if an adversary compromises the
TTP. Following this scheme, [15] and [16] tried to provide
a more efficient technique. Later, a trusted time-stamping
service is standardized in RFC 3161 [6] as a basic service.

However, the techniques mentioned above are not fit IoE
very well since they all need a Trusted Third Party (TTP).
An IoE system usually contains mutual untrusted participants
and provides a more open market. A decentralized trusted
time-stamping service is needed in this kind of system. It
means we should find a TTP-free time-stamping service for
IoE. Since blockchain has become a powerful technology
with characters of decentralization, tamper-proof and
traceability, several techniques were proposed to give a
decentralized service based on blockchain [17]. [8, 10]
present their trusted time-stamping schemes which are based
on the decentralized Bitcoin blockchain to store anonymous,
tamper-proof timestamps for digital content. They showed
that cryptocurrencies can be used as a decentralized trusted
time-stamping ledger. However, a transaction cannot be
confirmed by the Bitcoin blockchain network immediately for
the limit of the Bitcoin [18]. In [19], Wang et al. proposed a
repute-based consensus protocol for blockchain-enabled IoT
systems to reach a consensus rapidly and safely. [20] tried
to design more application protocols (i.e., key agreement)
based on blockchain. Except for logging transactions into the
blockchain directly, the Ethereum blockchain also provides
a more high-level way by smart contracts [21]. And [13]
created trusted timestamps by using smart contracts on the
Ethereum blockchain with higher accuracy of milliseconds.
But they still do not fit IoE very well because they may
increase the complexity of the system or introduce a service
provider which seems to be a kind of trusted third party.

3 Preliminaries

3.1 Trusted Time-Stamping Service
One of the current challenges in the IoE is creating a

verifiable timestamp. Activities that occur in the system
should be accepted by mutual untrusted participants.
For example, an energy provider needs to prove he/she
transferred some energy to a consumer at some time. The
energy exchange activities will be recorded by sensors or
smart meters in the IoE. And these records rely on accurate
clocks on devices. Incorrectly times-tamped records may
mislead the participants in the IoE and further challenge
the security of the system. A trusted time-stamping service
should contain two basic functionalities [22].

IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 521

• Creating a timestamp: Any systems and devices
in the IoE could use the trusted time-stamping service to
create a timestamp for a record. Anyone could use this for
auditing and supervising purposes. Businesses and indi-
viduals would no longer be able to backdate or postdate the
records, whether relating to taxes or other duties, allowing
the supervisors to ensure they are created on time without the
need to collect them. It allows preventing records from being
hidden, withheld or destroyed without detection.

• Verifying a timestamp: The ability to independently
verify timestamps could also be highly desirable in the IoE,
where each participant may require a confirmation from its
own business activities. By using the trusted time-stamping
service, a single timestamp may be verifiable and accepted by
all participants without the need to trust any third parties.

Accordingly, we formally define four algorithms for a
trusted time-stamping scheme: InitialParams, AddStamp,
UnlockStamp and VerifyStamp.

• InitialParams: On inputting a user’s account identity
accountld, the algorithm generates a corresponding pair of
keys (PK, SK) and then make the tuple (accountld, PK, SK)
public.

• AddStamp: On inputting a user’s record for certain
behavior and its secret key (Record, SK), the algorithm
creates a time stamp for the current user and output the tuple
(H, C, Sig). H is a one-way hash of the Record. C is the
record encrypted by an one-time secret key sk. And Sig is the
signature on H by the asymmetric key SK.

• UnlockStamp: On inputting a user’s one-time secret
key and one of its timestamp (sk, H), the algorithm can reveal
a time stamp. Note that the user’s one-time secret key sk is
logged into the corresponding record and then can be used to
decrypt the encrypted record.

• VerifyStamp: On inputting a user’s time stamp, the
record for certain behaviour and its public key (Record, H,
PK), the algorithm outputs True if the time stamp is valid.
otherwise, it outputs False.

3.2 Cryptographic Functions
Cryptography is an indispensable tool used to protect

the information in computing systems. In our scheme, we
also used some cryptographic functions to provide data
confidentiality, data integrity and data deniability. All
these make the trusted time-stamping service suffice to the
design goals in Section 3.5. Cryptographic functions are
used everywhere and by billions of people worldwide on a
daily basis. They are used to protect data at rest and data in
motion. There are different schemes or functions for different
applications. Here we introduce those we used in our scheme.

• Collision resistant hashing: In our scheme, we use
SHA256 [23] which is a function that hashes long messages
into 256-bit digests. It is believed that finding collisions for
SHA256 is difficult.

• Digital Signatures: In our scheme, we use the Elliptic
Curve Digital Signature Algorithm (ECDSA) [24] as a digital
signature scheme which uses elliptic curve cryptography.

• Encryption: In our scheme, we use the Advanced
Encryption Standard (AES) [25] as an encryption scheme.
The Advanced Encryption Standard (AES) is a specification
for the encryption of electronic data estab lished by the U.S.

National Institute of Standards and Technology (NIST) in
2001.

3.3 Blockchain
The concept of Blockchain was originated from the

famous cryptocurrency Bitcoin [1]. In the past decade, we
have witnessed a rapid evolution in blockchain technologies
due to its characteristics of decentralization, immutability,
and self-organization.

• Classification: There are four main types of blockchain
networks: public blockchains , private blockchains ,
consortium blockchains and hybrid blockchains. Different
use cases require different types of blockchain. Public
blockchain is non-restrictive and permissionless, anyone
with internet access can sign on to a blockchain platform
to become an authorized node. This user can access current
and past records and conduct mining activities, the complex
computations used to verify transactions and add them to the
ledger. Private blockchain works in a restrictive environment
like a closed network, or that is under the control of a single
entity. Instead of just anyone being able to join and provide
computing power, private blockchains typically are operated
as a small network inside a company or organization. Hybrid
blockchain lets organizations set up a private, permission-
based system alongside a public permissionless system,
allowing them to control who can access specific data stored
in the blockchain, and what data will be opened up publicly.
While Consortium blockchain also known as a federated
blockchain, is similar to a hybrid blockchain in that it has
private and public blockchain features. But it’s different
in that multiple organizational members collaborate on a
decentralized network.

• Smart Contract: Smart contracts are simply programs
stored on a blockchain that run when predetermined
conditions are met. Smart contracts are a type of Ethereum
account. This means they have a balance, and they can
send transactions over the network. However, they’re not
controlled by a user, instead they are deployed to the network
and run as programmed. User accounts can then interact
with a smart contract by submitting transactions that execute
a function defined on the smart contract. Smart contracts
can define rules, like a regular contract, and automatically
enforce them via the code. Smart contracts cannot be deleted
by default, and interactions with them are irreversible. The
core function is written in a smart contract in our scheme to
provide the trusted time-stamping service.

3.4 Threat Models
Here we present two threat models specially for a trusted

timestamp service.
1) Record Owner Model: Business activities that

occurred in IoE are thought to be arguable and untrustable.
And users who are related to a specific business sometimes
need to stamp a record of activity. For example, an energy
provider needs to prove he/she transferred some energy
to a consumer at some time. The energy provider will use
the trusted time-statmping service to set a record on the
blockchain. Everyone can verify the validation of this record.
Here the energy provider who used the trusted service to
stamp a record is called the record owner. We assume that a

522 Journal of Internet Technology Vol. 24 No. 2, March 2023

record owner is a rational one. It means he/she will generate
a valid time-statmping record in order to pass the verification
later and get some profits. For example, the consumer will
pay the bill only after he/she verifies that the energy exchange
activity record is valid and time-stamped correctly. However,
a record owner may attempt to backdate or postdate existing
records to increase his profits after he/she gets paid by the
consumer. For example, a malicious record creator may
attempt to tamper with existing timestamps of records to
avoid his/her taxes. We stress that the record owner would
not be misbehaviour when she/he requests the timestamp of a
record since an invalid record will cause charge failure.

2) Adversary Model: An adversary is a valid user in the
system. He/She may attempt to forge a record time-stamped
earlier than the record created by the real record owner yet
with the same content as the original one. Still, we take the
energy exchange business as an instance. When a user (record
owner) uploads a record to be time-stamped, a malicious
user (adversary) can stop the record from being stamped on
the blockchain for a while and forge the record to change the
ownership and timestamp of the record. An adversary can
get paid by the consumer after doing this. Actually, there is a
possibility for an adversary to forge a record and time stamp
it earlier. Since trusted time-stamping services provided
by a smart contract are actually composed of transactions
executed and confirmed by the blockchain, a miner/node in
the blockchain can get the data of a transaction before it is
confirmed by the blockchain. Therefore, any miner/node can
be considered as an adversary.

3.5 Design Goals
In order to ensure the sustainability and resiliency of the

ecosystem, a trusted time-stamping service in an IoE must
fulfil numerous requirements. Thus, here we describe the
main design goals, and we introduce the criteria needed to
evaluate the suitability for IoE use cases.

Availability: the availability implies that services must
be accessible to legitimate users on demand. Thus, a system
must be resilient against denial of service attacks especially
those who target the time-stamping service. The scheme
should prove that a record or data was generated during a
time interval. The accuracy of timestamp should be ensured
and the range of time interval should be kept as short as
possible.

Efficiency: The time-stamping service should not
introduce heavy computation and communication costs on
both the blockchain system and users in IoE. The blockchain
system should be able to handle multiple tasks from different
users simultaneously. The time interval for a timestamp to be
securely recorded should be as short as possible.

Integrity: Maintaining integrity is the crucial requirement
that each record to be proved must ensure. In our context,
integrity is a record or data integrity which can be divided
into two parts: 1) Transactions integrity: an exchanged record
must not be altered or modified when it is sent to be written
on the blockchain by the smart contract. 2) Storage integrity:
a stamped record on the blockchain must not be altered or
modified.

Scalability: In our context, scalability represents the
ability to ensure that the system size has no impact on its

performance. For example, if the number of the used things
explodes, the time needed for a time stamping service, must
not be affected.

Undeniability: It refers to the ability to ensure that an
entity cannot deny having performed a given action, e.g. a
device cannot deny having stamped a record.

Identification: The identification represents the main
re quirement in the majority of IoE use cases. It represents
the contrary of anonymity which ensures that any entity can
make use of the system all within ensuring being anonymous
to all systems entities. For example, in energy monitoring
where a sensor monitors the level of a district. When this
sensor sends information to the monitoring platform, the
latter must know exactly which sensor is communicating in
order to decide about the actions to provide.

4 Proposed Scheme

4.1 System Overview
In this subsection, we will describe a general time-

stamping scheme to provide decentralized trusted time-
stamping service via blockchain.

As is shown in Figure 1, the time-stamping scheme is
con sisted with two processes: creating a timestamp and
verifying a timestamp.

Figure 1. System overview

1) Creating a timestamp
In this process, a user generates his identity key pair

(PK/SK) and a single-use secret key sk. The key pair (PK/
SK) is used to generate a digital signature of a record to
be timestamped. And the secret key sk is used to encrypt
the record. The key pair (PK/SK) will not change/update
frequently whilst the secret key sk will regenerate when
someone tries to create a new timestamp. To create a
timestamp for a record, a user should follow two steps:
Add a timestamp: Firstly, a user calculates the hash value
of the record to be timestamped H(Record). Then he/
she generate a digital signature using createSign (H, SK)
with the asymmetric secret key SK and encrypt the record
(Record, sk) with the single-use symmetric key sk. Finally,
he/she can invoke the smart contract to add a timestamp into
the Ethereum blockchain with a Web3 smart contract we
provided AddS(H, C, Sig). Unlock a timestamp: Once the
operation AddS(H, C, Sig) is confirmed by the Ethereum
blockchain, the user publishes the secret key sk into the

IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 523

blockchain by the operation UnlockS(H, sk). After this,
anyone who tries to verify this timestamp can decrypt the
encrypted record in the first step with the secret key sk. Note
that the information of a time-stamped record is stored as a
key-value map table in the blockchain where the key of the
map is the digest of the record. We will give more details in
the Section 4.3.

2) Verifying a timestamp
Anyone can verify a time-stamped record in the

blockchain. For instance, when an energy provider has
created a timestamp for a record about transferring some
energy to a consumer, he/she will give the digest of this
record to the consumer to verify. If the timestamp is valid,
the consumer will pay the bill. Here the consumer plays as an
auditor in Figure 1.

When an auditor wants to verify a time-stamped record,
he/she firstly invokes the smart contract to get the information
of the record by CheckS(H). The operation CheckS(H) will
return a tuple value (R, Sig, C, T, sk). Where R is an error
code where a non-zero value indicates there is some kind of
errors that hap pened such as the record doesn’t exist. Sig is
the digital signature of the record. C is the ciphertext of the
record. T is the block time when the record is time-stamped.
sk is the symmetric key to encrypt/decrypt the record. The
value of (sig, C, T, sk) will be none if errors are found. After
getting the tuple value (R, Sig, C, T, sk), the auditor can
decrypt the ciphertext by D(C, sk) and see the plaintext of
the record. Finally, he/she can verify the validity of the time-
stamped record by V(PK, Sig, H(D)). The operation V(PK,
Sig, H(D)) will calculate verify(PK, Sig) to get a H(D)’ and
then compare it with H(D). The time-stamped record is valid
if H(D)’ equals H(D).

4.2 Algorithms Design
In this subsection, we will describe the design of the four

algorithms defined in Section 3.1 in detail. In order to make
the trusted time-stamping service as simple as possible to
be integrated into an IoE system, we assume anyone who
tries to use the trusted time-stamping service can ignore the
underlying design in smart contracts of the blockchain. The
details are as follows:

InitialParams: Anyone who wants to use the trusted
time-stamping service should have a pair of asymmetric
secret key (PK, SK). As is shown in Algorithm 1, we
provide the function InitialParams for a user to generate a
pair of keys and then make his/her PK public. The method
GenerateKeyPair is an interface of an open source javascript
cryptographic library to generate keys. We use the Elliptic
Curves Digital Signature Algorithm (ECDSA) on the
“secp256k1” [26] curve.

Algorithm 1. InitialParams
Input (accountld)
Output (PK, SK)

1: (PK, SK) =
GenerateKeyPair(‘eccurve’, ‘secp256k1’)
2: Publish (accountId, PK);
3: Return (PK, SK)

AddStamp: As is shown in Algorithm 2, we provide
the function AddStamp for a user to create a time stamp for
a record. Firstly, we generate a single-use secret key “sk”
and encrypt the record with Advanced Encryption Standard
(AES) on “aes-256-cbc”. The method Encrypt is an interface
of an open source javascript cryptographic library to encrypt
data. The parameter “iv” is an initialization vector used to
ensure that the same value encrypted multiple times, even
with the same secret key, will not always result in the same
encrypted value. If you use each key only a single time, not
using an “iv” is fine. Then we calculate the hash of the record
and create the digital signature of it. Finally, we invoke an
interface of the smart contract to add (H, C, Sig) into the
blockchain. Note that in this algorithm, the final function
AddS in the last line is a smart contract function which will
be described in the next subsection.

Algorithm 2. AddStamp
Input (Record, SK)

1: sk = randomBytes(32);
2: iv = randomBytes(16);
3: C = Encrypt(aes-256-cbc, Record, sk || iv);
4: H = SHA256(Record);
5: Sig = ECDSA.createSign(H, SK);

 6: await AddS(H, C, Sig);

UnlockStamp: As is shown in Algorithm 3, this part
is just to patch a sk into the timestamp in the blockchain.
Actually, we divided the process of creating a timestamp
into two parts AddStamp and UnlockStamp. We make
sure that the plaintext of the record is unknown except the
owner until the information (H, C, Sig) is confirmed by the
blockchain. The reason for this design will give in Section
5. Also note that in this algorithm, the function UnlockS is a
smart contract function which will be described in the next
subsection.

Algorithm 3. UnlockStamp
Input (sk, H)

1: await UnlockS(H, sk);
 2: Return

VerifyStamp: An auditor who wants to verify a
time- stamped record can use this function. The owner
should provide the original record and his/her public key
(Record, PK). Firstly, we invoke the smart contract to get
the information of the record in Line 1. According to the
information, we can decrypt the ciphertext of the record and
then verify the validity of the signature. Again, the function
CheckS in Line 1 is a smart contract function which will be
described in the next subsection.

524 Journal of Internet Technology Vol. 24 No. 2, March 2023

Algorithm 4. VerifyStamp
Input (H, Record, PK)
Output Ture or False

1: [R,Sig,C,T,sk || iv] = await
CheckS(H);

2: if R ≠ 0 then
3: Return False
4: else
5: P = Decrypt(C, sk || iv);
6: if P ≠ Record or

H ≠ SHA256(Record) then
7: return False
8: end if
9: Return ECDSA.verify(PK, Sig, H)

 10: end if

To get a close view of the mentioned data we mentioned
in the algorithm design, we give the instances of the data as
is shown in Table 1. Note that we didn’t give an instance of
the items (PK, SK) due to the limit of the paper space. An
original record may contain some key information such as
a record identity. The length of the hash, encrypted record,
signature and secret key are 256 bit, 512 bit, 560 bit and
256 bit separately. The value of the timestamp is a block
timestamp which stands for the record is stamped at Tue, 21
Dec 2021 06:28:32 GMT.

Table 1. Instances of the mentioned data
Item name Description
Record RecordId:01111; EventId:000111; Sender:

Alice; Recv:Bob; Amount:1000

Hash 0x175842f8ad5d9d0e924e62ef44cf91b404
20cfbe8e36133c7402fbcedf5c7118

Encrypted
record

0x2016c29b4198fa6bf6023e569696dc8b730b4bc7c
6b599948e9d3e0e6c7dd2bafb2abd0bd304cc4063d552
6422de869c2e80be5a878f9eae02d327b5f751ee33

Signature 0x304402206e145ea4ae7ef16b6e505d0a19
f3e2c2bd2c5d1a44cee55d0630b87c5a24d7e902200
252ab5bc9ac76d64a1556b32762cbfde2f
19a20adf3c233d062e66bb4fa582d

Timestamp 0x1640058930

sk 0xe10d387a7fc28aaaab4127b0e3261413f1667101b
cdc454d613251ab71dfccd6

4.3 Smart Contracts Design
Finally, we present the design of the smart contract in

this sub-section. The functions of the smart contract are
corresponding to those in the design of the above algorithms.
Similarly, there are three primary functions, namely
“AddS”, “UnlockS”, and “CheckS”. Before describing
these functions, we firstly have a look at the data structure
in the smart contract. As is shown in Table 2, a trusted time-
stamping record in a smart contract contains all the necessary
information.

Table 2. The structure of a record
Data type Description
address owner
string digest
string cipher
string signature
uint timestamp
string sk

Next we will give the three functions in detail as follows:
• AddS: As is shown in Algorithm 5, the function AddS

is a basic operation for a user to add the information of a
record into the blockchain. Note that records in Line 1 is a
key-value map in the smart contract where the key is the hash
value of a record and the value is a data structure in Table
2. Line 1-3 ensures that anyone cannot add a record that has
already been in the blockchain. The notation msg.sender is
an address of the transaction caller in the Ethereum network.
It means there should not be two records with the same
information. And we can also find that the information of the
secret key sk doesn’t add into the blockchain in this step. An
example transaction of this operation is shown below. Note
that we don’t give all items and the whole data structure of
the input as the paper space is limited.

{
Transaction Hash: 0xd6fa1d19f6674562d26c7eac7175f8f5
d3dd514846f9917bc55192676c47f25a,
From: 0x9eb810fd4bcc3f69cdeea333de1110257e6c91bb
To: Contract 0x9cd00b1320d0cfdbf15bb9a24199351bfdaf54df
Transaction Fee: 0.000384516003076128 Ether
Gas Price: 0.000000001000000008 Ether
Input Data: 0x842e73350000000000000000000000000000
}

Algorithm 5. AddS
Input (H, C, Sig)
Output Ture or False

1: if records[H].timestamp ≠ 0 then
2: Return False
3: else
4: records[H].owner = msg.sender;
5: records[H].digest = H;
6: records[H].signature = Sig;
7: records[H].cipher = C;
8: records[H].timestamp = block.timestamp;
9: end if

 10: Return Ture

• UnlockS: As is shown in Algorithm 6, the function
UnlockS is a patch operation for a user to patch the secret
key sk of a record into the blockchain. Line 1-2 ensures that
only the owner can add the sk to his/her record. Once the sk
is written into the record and confirmed by the blockchain,
it cannot be changed again. An example transaction of this
operation is shown below. Note that we don’t give all items

IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 525

and the whole data structure of the input as the paper space is
limited.

{
Transaction Hash: 0x1e3b0b7860c933f42ef12e53afcb523d1126
437ec09cc7385a4eaa6cae560078,
From: 0x9eb810fd4bcc3f69cdeea333de1110257e6c91bb
To: Contract 0x9cd00b1320d0cfdbf15bb9a24199351bfdaf54df

Transaction Fee: 0.004693 Ether
Gas Price: 0.00000005 Ether
Input Data: 0xe2d68ad3000000000000000000000
}

Algorithm 6. UnlockS
Input (H, sk)
Output Ture or False

1: if records[H].owner ≠ msg.sender or records[H].sk ≠
0 or records[H] = 0 then
2: Return False
3: else
4: records[H].sk = sk;
5: end if

 6: Return Ture

• CheckS: As is shown in Algorithm 7, the function
CheckS is a query operation for a user to get the information
of a record from the blockchain. And then the user can verify
its validity in the Algorithm VerifyStamp. Since it is a query
operation, it doesn’t need any transaction or gas fee.

Algorithm 7. CheckS
Input (H)
Output (R, Sig, C, T, sk)

1: if records [digest] .timestamp = 0 then
2: Return (100, 0, 0, 0, 0)
3: else
4: R = 0;
5: Sig = records[H].signature;
6: C = records[H].cipher;
7: T = records[H].timestamp;
8: sk = records[H].sk;
9: end if

10: Return (R, Sig, C, T, sk)

5 Security Analysis

In this section, we will discuss why our scheme can resist
the potential attacks in the threat models in Section 3.4.

5.1 Resistance Against Record Owner
A record owner may attempt to backdate or postdate his/

her own records in the blockchain. Tampering an existed
record, a record owner can resist the audit and avoid his/her
duties like paying tax. However, it is difficult to backdate or
post-date records in our IoE trusted time-stamping (IoETTS).
The reasons are as follow:

Firstly, a rational owner has to add a timestamp by

following our scheme. It means he/she should perform
the AddStamp and UnlockStamp correctly to pass the
verification. Then he/she may try to backdate or postdate his/
her own records. Since the smart contract automatically takes
the current block timestamp as the timestamp of a record, it
is impossible for the owner to backdate a timestamp of the
record. It is guaranteed by the chain growth property of the
blockchain. However, since the owner has the original record,
he/she may try to add a repeated record into the blockchain
to postdate the timestamp. As we described in iV-C, records
in the smart contract are stored as a key-value hash map.
Thus, it is also infeasible to add a repeated record into the
blockchain.

5.2 Resistance Against Adversary
Anyone could be an adversary and try to attack the

scheme. For an adversary in the system, we first focus on the
attack of forging a record and adding it into the blockchain
earlier than the owner. Because of the transparency of the
blockchain, any transaction could be seen by anyone. When
an owner performs the AddStamp to add a timestamp of
his/her record, an adversary can get the information of this
record from the transaction. We assume that the adversary
is a node/miner in the blockchain. We also assume that the
transaction broadcast by the owner to the blockchain will
be firstly received by the adversary. Then he/she can try to
delay the transaction being confirmed by the blockchain by
not broadcasting the transaction. And he/she will try to forge
the original record by changing its ownership. He/She will
broadcast a forged record to the blockchain network. And
if the forged record is confirmed by the blockchain network
earlier than the real one, the adversary will win in this trick.

However, it is hard for an adversary to forge a record
unless the original record has been confirmed by the
blockchain network. it is because the content of the record
is encrypted by AES in the operation AddStamp. And the
secret key sk will not be revealed by the owner until the
transaction of this operation is confirmed by the blockchain
network. An adversary should get the decryption of the record
before the next block packing the transaction is generated by
the blockchain network. In the Ethereum blockchain network,
the average time for generating a block is in seconds. Thus,
the adversary should break the AES in seconds. Now let’s
have a look at the security of the AES and then we will know
that this attack is infeasible.

The first key-recovery attacks on full AES were by
Andrey Bogdanov et al. in 2011 [27]. The attack is a bi-clique
attack and is faster than brute force by a factor of about four.
It requires 2126-2 operations to recover an AES-128 key. For
AES-192 and AES-256, 2190-2 and 2254-6 operations are
needed, respectively. This result has been further improved
to 2126-0 for AES-128, 2189-9 for AES-192 and 2254-3 for
AES-256, which are the current best results in key recovery
attack against AES. This is a small gain, as a 126-bit key
(instead of 128-bits) would still take billions of years to brute
force on current and foreseeable hardware. And we use AES-
256 in our scheme.

Another attack by an adversary is to tamper with the
record after it is confirmed by the blockchain network. We
can find that this attack model is just the same as the record

526 Journal of Internet Technology Vol. 24 No. 2, March 2023

owner attack model. And it is infeasible too. Therefore, our
scheme can also resist attacks from an adversary.

5.3 Analysis for Other Design Goals
In this subsection, we will introduce how our scheme

addresses the main design goals in Section 3.5.
Availability: To avoid the considerably long delay caused

by uploading the transaction to the Bitcoin blockchain, we
built our scheme on Ethereum, since the handling capacity
of Ethereum is stronger than those of Bitcoin. This reduces
the delay of uploading transactions significantly. And the
fully decentralized architecture is resilient against denial of
service attacks, especially those who target the time-stamping
service.

Efficiency: Our time-stamping service doesn’t introduce
heavy computation and communication costs on both
the blockchain system and users in IoE. We will give the
detail of costs in Section 6. And Ethereum can ensure the
blockchain system handle multiple tasks from different users
simultaneously.

Integrity: In our scheme, all records are preprocessed by
cryptographic functions such as SHA256, digital signature
and encryption. Anyone who tries to modify a record on the
blockchain will be detected.

Scalability: Our scheme is constructed based on the
Ethereum blockchain, which in fact is a peer-to-peer network.
A peer-to-peer network can efficiently solve the scalability
problem at large sale.

Undeniability: In our scheme, the record is signed by a
secret key, which is only known to its owner entity, also it is
the only entity who can use it. Therefore, it cannot deny the
fact that it signs the message and the undeniability is satisfied
by this crytographic signature scheme.

Identification: Each entity in the IoE has an identity.
More precisely, each user has its identity bound by a public
key associated with it. Therefore, the system can easily
recognize it.

6 Implementation and Performance

6.1 Implementation Description
Our implementation contains two parts: Web APIs and

smart contracts. The Web APIs are written in JavaScript
which is a programming language that adds interactivity
to your website. We used the Ethereum library “ethers.js”
to interact with the Ethereum blockchain in a simple way.
To implement the Cryptographic functions in the scheme,
we used “Crypto.js” which is a JavaScript library of crypto
standards. The smart contract is written in Solidity which is
an object-oriented programming language for writing smart
contracts. It can be used for implementing smart contracts on
various blockchain platforms, most notably, Ethereum.

We used a PC with the OS of Ubuntu Desktop 18.04 64x
to run our tests. The CPU of this computer is dual-core with
intel(R) Core(TM) i7-10510U CPU @ 1.80GHz 2.30GHz
on each. The memory is 4G. The symmetric encryption
algorithm is AES- 256. The hash algorithm is SHA256. We
use “secp256k1” as the asymmetric encryption elliptic to
perform the digital signature.

6.2 Cost Comparison
In Chronos, basic cryptographic operations are also

introduced. Now we will give the count of these operations
in Chronos [12] and our scheme for comparison. Since we
can choose the same cryptographic algorithms and standards
in the two schemes, here we just give a comparison of the
number of these operations in totally. As is shown in Table 3,
our scheme IoETTS is at a lower cost.

Table 3. Count of the cryptographic operations
Scheme Hash

operations
Digital signature
operations

Encryption
operations

IoETTS 2 2 2
Chronos 3 3 2

6.3 Performance Analysis
In our decentralized trusted time-stamping services, we

focus on three basic applications, namely creating, unlocking
and verifying a timestamp. We run 100 test cases for every
application to get the average results. The results on different
blockchain networks are given in Table 4 to Table 5. We can
find that the time for performing the cryptographic functions
are costless in comparison to the operations for interacting
with the blockchain. In the tables, the cryptographic functions
are a digital signature, encryption and decryption. The time
for each cryptographic function is about one millisecond.

Table 4. Time of creating a timestamp
Network Total time

(MS)
Digital
Signature
(MS)

Enc
(MS)

Transaction
(MS)

Local 35.87 0.71 0.02 35.14
Rinkeby 4572.06 0.66 0.02 4571.38
Ropsten 5611.40 0.68 0.02 5610.78

Table 5. Time of unlocking a timestamp
Network Total time (MS) Transaction (MS)
Local 23.05 23.05
Rinkeby 4817.18 4817.18
Ropsten 5149.37 5149.37

“Transaction” stands for performing a transaction on
the blockchain while “Query” is just a query operation on
the blockchain. Although the operations relevant to the
blockchain have a more large cost than the cryptographic
functions, they are still efficient and can be finished in
seconds. The cost of the operations in the local Hardhat
network is less than the other two test networks due to the
free of network communication in the local network. Thus,
we can approximately estimate the cost for the consensus
mechanism in PoW and PoA.

Furthermore, we used multiple test cases to see the
stability of the service in different networks. The results on
different blockchain networks are given in Figure 2 to Figure
4. As we can see from the figures, the performances are quite
stable in all three networks.

IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 527

Figure 2. Time of creating a timestamp

Figure 3. Time of unlocking a timestamp

Figure 4. Time of verifying a timestamp

7 Conclusion

In this paper, we propose a fully decentralized trusted
time-stamping scheme for loE based on blockchain
technology. Our scheme is a novel way to provide a trusted
time-stamping service that is fit for IoE. In addition, it
can reduce the security risk brought by centralization.
We show in detail that how to construct the scheme and
analyze the security. To avoid the long delay to confirm a
transaction in Bitcoin, we construct the scheme on a more
expressive blockchain system Ethereum. Finally, we give the
deployment in three networks. Experiment results show the
efficiency and stability of our scheme. We also give a simple

comparison with another trusted time-stamping scheme. Our
scheme is at a lower cost.

Recently the blockchain technology is evolving rapidly.
Except for realizing trusted time-stamping services on
the Ethereum blockchain, we plan to extend trusted time-
stamping services to more blockchain platforms that have
great new features. We will also focus on the development of
IoE and improve our scheme timely to fit it.

Acknowledgement

This research was partially supported by National
Key Research and Development Program of China (Grant
Nos. 2019YFE0118700), Science and Technology Project
of China Southern Power Grid Corporation (Grant No.
066600KK52200016).

References

[1] Internet of energy for electric mobility home page,
http://www. artemis-ioe.eUioe_project.htm, Accessed:
2021-09-30.

[2] M. Guo, M. Xia, Q. Chen, A review of regional energy
internet in smart city from the perspective of energy
community, Energy Reports, Vol. 8, pp. 161-182,
November, 2022.

[3] Y. R. Kaf le , K. Mahmud, S . Morsal in , G. E.
Town, Towards an internet of energy, 2016 IEEE
International Conference on Power System Technology
(POWERCON), Wollongong, NSW, Australia, 2016, pp.
1-6.

[4] M. Erol-Kantarci, H. T. Mouftah, Smart grid forensic
science: applications, challenges, and open issues, IEEE
Communications Magazine, Vol. 51, No. 1, pp. 68-74,
January, 2013.

[5] H. Massias, X. S. Avila, J.-J. Quisquater, Timestamps:
Main issues on their use and implementation, IEEE 8th
International Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WET
ICE'99), Stanford, CA, USA, 1999, pp. 178-183.

[6] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, Internet
X.509 Public Key Infrastructure Time-Stamp Protocol
(TSP), RFC3161, August, 2001.

[7] P.-Y. Ting, F.-D. Chu, Enhancing the security promise
of a digital time-stamp, 22nd International Conference
on Advanced Information Networking and Applications
(aina 2008), Gino-wan, Japan, 2008, pp. 342-347.

[8] B. Gipp, N. Meuschke, A. Gernandt, Decentralized
trusted time-statmping using the crypto currency
bitcoin, iConference 2015, Newport Beach, California,
USA, 2015, pp. 1-5.

[9] S. Nakamoto, Bitcoin: A peer-to-peer electronic cash
system, Decentralized Business Review, pp. 1-8,
October, 2008.

[10] T. Hepp, A. Schoenhals, C. Gondek, B. Gipp,
Originstamp: A blockchain-backed system for
decentralized trusted timestamping, IT Information
Technology, Vol. 60, No. 5-6, pp. 273-281, October,
2018.

528 Journal of Internet Technology Vol. 24 No. 2, March 2023

[11] K. Croman, C. Decker, I. Eyal, A. E. Gencer, A. Juels,
A. Kosba, A. Miller, P. Saxena, E. Shi, E. G. Sirer,
D. Song, R. Wattenhofer, On scaling decentralized
blockchains, International Conference on Financial
Cryptography and Data Security, Christ Church,
Barbados, 2016, pp. 106-125.

[12] Y. Zhang, C. Xu, N. Cheng, H. Li, H. Yang, X. Shen,
Chronos+: An accurate blockchain-based time-
stamping scheme for cloud storage, IEEE Transactions
on Services Computing, Vol. 13, No. 2, pp. 216-229,
March-April, 2020.

[13] G. Estevam, L. M. Palma, L. R. Silva, J. E. Martina, M.
Vigil, Accurate and decentralized timestamping using
smart contracts on the ethereum blockchain, Information
Processing & Management, Vol. 58, No. 3, Article No.
102471, May, 2021.

[14] S. Haber, W. S. Stornetta, How to time-stamp a digital
document, Conference on the Theory and Application of
Cryptography, Santa Barbara, California, USA, 1990,
pp. 437-455.

[15] A. Buldas, H. Lipmaa, B. Schoenmakers, Optimally
efficient accountable time-stamping, International
Workshop on Public Key Cryptography 2000 ,
Melbourne, Victoria, Australia, 2000, pp. 293-305.

[16] D. Bayer, S. Haber, W. S. Stornetta, Improving the
efficiency and reliability of digital time-stamping,
Sequences II: Methods in Communication, Security, and
Computer Science, Positano, ltaly, 1991, pp. 329-334.

[17] S Shamshad, Minahil, K. Mahmood, S. Kumari, C.
M. Chen, A secure blockchain-based e-health records
storage and sharing scheme, Journal of Information
Security and Applications, Vol. 55, Article No. 102590,
December, 2020.

[18] J. Chen, W. Gan, M. Hu, C. Chen, On the construction
of a post-quantum blockchain for smart city, Journal of
Information Security and Applications, 2021, Vol. 58,
Article No. 102780, May, 2021.

[19] E. K. Wang, R. P. Sun, C. M. Chen, Z. Liang, S.
Kumari, M. K. Khan, Proof of X-repute blockchain
consensus protocol for IoT systems, Computers &
Security, Vol. 95, Article No. 101871, August, 2020.

[20] C. M. Chen, X. Deng, W. Gan, J. Chen, S. K. Islam, A
secure blockchain-based group key agreement protocol
for IoT, The Journal of Supercomputing, Vol. 77, No. 8,
pp. 9046-9068, August, 2021.

[21] G. Wood, Ethereum: A secure decentralised generalised
transaction ledger, Ethereum project yellow paper, EIP-
150 REVISION, January, 2014.

[22] A. Bonnecaze, P. Liardet, A. Gabillon, K. Blibech,
Secure time-stamping schemes: A distributed point of
view, Annales des telecommunications, Vol. 61, No. 5-6,
pp. 662-681, June, 2006.

[23] D. Rachmawati, J. Tarigan, A. Ginting, A comparative
study of message digest 5 (MD5) and SHA256
algorithm, 2nd International Conference on Computing
and Applied Informatics 2017, Medan, Indonesia, 2017,
Article No. 012116.

[24] D. Johnson, A. Menezes, S. Vanstone, The elliptic curve
digital signature algorithm (ECDSA), International
journal of information security, Vol. 1, No. 1, pp. 36-63,

August, 2001.
[25] S. Heron, Advanced Encryption Standard (AES),

Network Security, Vol. 2009, No. 12, pp. 8-12,
December, 2009.

[26] J. R. Shaikh, M. Nenova, G. Iliev, Z. Valkova-
Jarvis, Analysis of standard elliptic curves for the
implementation of elliptic curve cryptography in
resource-constrained e-commerce applications, IEEE
International Conference on Microwaves, Antennas,
Communications and Electronic Systems (COMCAS),
Tel-Aviv, Israel, 2017, pp. 1-4.

[27] A. Bogdanov, D. Khovratovich, C. Rechberger, Biclique
cryptanalysis of the full AES, International Conference
on the Theory and Application of Cryptology and
Information Security (ASIACRYPT 2011), Seoul, South
Korea, 2011, pp. 344-371.

Biographies

Bin Qian received a master’s degree in
electrical engineering from Huazhong
University of Science and Technology. He
is currently the head of the measurement
equipment and test laboratory, Institute
of Metrology Technology, Electric Power
Research Institute, CSG, Guangzhou,
China. His research interests include include

electrical measurement and intelligent equipment testing
technology research.

Yi Luo received the B.E. degree and the
Ph.D. degree in electrical engineering
from Huazhong University of Science
and Technology, Wuhan, China, in 2013
and 2018, respectively. He is currently a
Researcher with the Electric Power Research
Institute, China Southern Power Grid,
Guangzhou, China. His research interests

include Electric energy metering and advanced measuring
technology.

Jiaxiang Ou rece ived the Master ’s
degree in electrical engineering from
GuiZhou University, Guiyang, China, in
2010. He is currently a Researcher with
the Electric Power Research Institute,
Guizhou Power Grid Co.,LTD, Guiyang,
China. His research interests include Electric
energy metering and advanced measuring

technology.

Yong Xiao received the Ph.D. degree
in electrical engineering from Wuhan
University, Wuhan, China, in 2016. He
is currently the head of the Institute of
Metrology Technology, Electric Power
Research Institute, CSG, Guangzhou, China.
His research interests include electrical
measurement and advanced measuring

technology.

IoETTS: A Decentralized Blockchain-based Trusted Time-stamping Scheme for Internet of Energy 529

Houpeng Hu received the Master's degree
in electrical engineering from Guizhou
University, Guiyang, China, in 2018. He
is currently a Researcher with the Electric
Power Research Institute, Guizhou Power
Grid Co. ,LTD, Guiyang, China. His
research interests include online monitoring
t echno logy and In t e rne t o f Th ings

technology.

