
TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   475

*Corresponding Author: Hanhua Chen; E-mail: chen@hust.edu.cn
DOI: 10.53106/160792642023032402024

TriJoin: A Time-Efficient and Scalable Three-Way 
Distributed Stream Join System

Shuiying Yu, Yinting Zheng, Fan Zhang, Hanhua Chen*, Hai Jin

School of Computer Science and Technology, Huazhong University of Science and Technology, China
{shuiying, zhengyinting, zhangf, chen, hjin}@hust.edu.cn

Abstract

Stream join is one of the most fundamental operations 
in data stream processing applications. Existing distribut-
ed stream join systems can support efficient two-way join, 
which is a join operation between two streams. Based the 
two-way join, implementing a three-way join require to be 
split into double two-way joins, where the second two-way 
join needs to wait for the join result transmitted from the 
first two-way join. We show through experiments that such a 
design raises prohibitively high processing latency. To solve 
this problem, we propose TriJoin, a time-efficient three-way 
distributed stream join system. We design a symmetric wait-
free structure by symmetrically partitioning tuples and reused 
join. TriJoin utilizes reused join to join each new tuple with 
the intermediate result of the other two streams and stored 
tuples locally. For a new tuple, TriJoin only joins it with the 
intermediate result to generate the final result without wait-
ing, greatly reducing the processing latency. In TriJoin, we 
design two partitioning and storage schemes according to 
two different forms of three-way stream join. We implement 
TriJoin and conduct comprehensive experiments to evaluate 
the performance using real-world traces. Results show that 
TriJoin significantly reduces the processing latency by up to 
68%, compared to existing designs.

Keywords: Distributed stream processing, Stream join, 
Three-way stream join

1  Introduction

Recently, an increasing number of applications process 
streaming data in real-time, such as on-demand ride-hailing, 
live stream e-commerce, and live video recommendation. 
Stream join is a fundamental operation in these applications. 
For example, an on-demand ride-hailing platform [1] dis-
patches taxi orders in real-time, which entails continuously 
joining the order stream of passengers and the driving steam 
of taxis. A time-efficient and high throughput stream join 
technique is crucial for meeting the real-time requirements of 
these applications.

Stream join applications commonly involve three-way 
join (i.e., joining three streams), which can be used to join 
multiple streams. For example, a live stream e-commerce 
platform [2] (such as Alibaba’s Taobao Live platform) has 

a tripartite relationship among streamers (i.e., the anchors 
employed by platform), users, and products. To enhance 
product recommendations, the platform obtains the influence 
of a streamer through the quantity of products purchased by 
users in real-time. This task can be performed by joining the 
user stream, the product (promoted by streamer) stream, and 
the product purchase stream. As another example, in a live 
streaming video recommendation system [3], users who click 
on the same live streaming video probably like similar live 
streaming videos, and rewarding a video means that the user 
likes the live streaming video. Since a live streaming video 
is time-limited, to accurately recommend videos to users 
in real-time, the system can discover which live streaming 
video has been rewarded by users reviewing the current live 
streaming video. This task can be performed by joining the 
click stream, review stream, and reward stream.

Since a stream join application usually processes continu-
ous data in real-time, it faces more challenges than traditional 
database join operations. The basic requirements for perform-
ing effective stream join include three aspects [4-5]: 1) low 
latency and high throughput, which are critical for time-ef-
ficient big data analysis systems; 2) memory efficiency and 
scalability. Since real applications require low processing 
latency, the system should store and join the data in memory. 
To deal with large-scale streaming data, a system requires 
memory efficiency and scalability. When the system repeat-
edly stores data, this will cause redundant memory, and poor 
scalability; 3) completeness, that is the final result cannot 
be repeated or omitted. More concretely, a new tuple should 
be joined with all the tuples or all the join results of other 
streams exactly once.

To meet these three requirements, many systems have 
been proposed based on parallel and distributed designs [6-7]. 
Among existing designs, BiStream [8] is one of the most pop-
ular stream join system. To avoid replicating data, BiStream 
adopts the join-biclique model, which stores tuples only once. 
The join-biclique organizes all the processing units as a com-
plete bipartite graph. When a tuple arrives, BiStream stores 
the tuple in one of the processing units to which it belongs, 
meanwhile broadcasts it to all the processing units on the oth-
er side to join. BiStream can join each new tuple with all the 
tuples of the other stream once to ensure completeness. Each 
new tuple that arrives at a processing unit performs a join 
operation with the stored tuples to generate the final result, 
ensuring the low processing latency. However, BiStream is a 
two-way join system (i.e., joining two streams), and cannot 



476  Journal of Internet Technology Vol. 24 No. 2, March 2023

support three-way join.
A naive design of three-way stream join can employ a 

tree architecture [9-10] to split the process into two two-
way joins. The tree architecture stores the intermediate result 
to reduce the join operations, and can be easily combined 
with the BiStream design. There is only one way to deploy 
BiStream+Tree (i.e., three-way stream join by BiStream and 
the tree architecture). BiStream+Tree first joins two of the 
streams to form a stream of intermediate result, and then 
joins the intermediate result stream and the third stream. 
Suppose the three streams are R, S, and T. Figure 1 illustrates 
three-way join by tree architecture. BiStream+Tree stores 
the tuples of three streams and intermediate result into four 
groups of processing units R, S, T, and I_RS. BiStream+Tree 
first joins R and S to generate the intermediate result stream 
I_RS, and then joins I_RS with T, which is the second stream 
join.

R S

I_RS T

The first join

The second join

Joins R S, generates I_RS

Transmits I_RS
Joins I_RS and T

Final 
result

Figure 1. Three-way join by tree architecture

400 600 800 1000 1200
0

40

80

120

160

200

Th
e p

ro
ce

ss
in

g 
lat

en
cy

 (m
s)

The flow rate of stream T (tuples/s)

 T-joining
 T-waiting

Figure 2. The latency break down of a tuple of T

BiStream+Tree cannot satisfy the low latency require-
ment of stream join. The processing latency of a tuple is the 
time from the arrival of the tuple to the generation of the final 
result. For BiStream+Tree, the processing latency of a tuple 
of stream R (or S) is the sum of the time to join the tuple with 
the tuples of S (or R), the transmission time of the interme-
diate result, and the time to join the intermediate result with 
the tuples of T. When a tuple of T arrives at processing unit 
I_RS, the tuples of R and S, which arrive at the same time 
as the tuple of T, are joining with the tuples of S and R. To 
ensure completeness, the tuple of T waits for the processing 
unit I_RS to receive all the intermediate results joining the tu-
ples of R and S before the tuple of T arrives. We examine the 
proportion of waiting time in the processing latency of BiS-
tream+Tree using GPS traces of the DiDi Chuxing GAIA Ini-
tiative [11]. In the experiment, we deploy BiStream+Tree on 
a cluster of 16 nodes, where each node is equipped with two 
8-core CPUs. We break down the latency of the tuple from 
T into waiting time and joining time, and show the result in 
Figure 2. The result shows that the waiting time contributes 

to most of the latency. If the system can alleviate the waiting 
time, it can effectively reduce the latency.

The essential reason for waiting is that the system trans-
mits the intermediate result between different processing 
units. To ensure the completeness of the join result, the sec-
ond join must wait for a period of time until the intermedi-
ate result arrive after transmission because the tuples in the 
streams are out-of-order. However, the existing structures 
cannot avoid this transmission of the intermediate result. 
Therefore, it is challenging to alleviate the waiting time to 
generate the final result after the tuple arrives.

To solve the problem, in this work, we propose a novel 
transmit-free and wait-free structure called TriJoin, which 
avoids transmiting a large number of intermediate results to 
alleviate the waiting time. Instead, TriJoin utilizes symmetri-
cally partitioning tuples and reused join. Specifically, TriJoin 
divides all the processing units into three groups according 
to the three streams. It combines the three groups into three 
different pairs, utilizes symmetrically partitioning to partition 
tuples into this three groups, and stores the tuples only in a 
processing unit. When a new tuple arrives in a processing 
unit to which it does not belong, the system utilizes reuse 
join to join the intermediate result and the stored tuple. Tri-
Join joins the new tuple with the stored tuple to generate the 
intermediate result and store it locally without transmission. 
TriJoin joins the new tuple with the intermediate result with-
out waiting to generate the final result.

In addition, since TriJoin joins each new tuple with the 
corresponding intermediate result. In practice, a tuple will 
find multiple tuples of another stream that meet the join con-
dition. The existing storage structure for intermediate result 
is tuple pair [12], which raises the repeated storage of tuples 
and join operations on the intermediate result. To reduce the 
cost of repeated storage and join, we design a TuplePacking 
structure for the intermediate result. TuplePacking consists of 
a tuple from one stream and many tuples from another stream 
that meet the join condition.

We implement TriJoin and conduct comprehensive ex-
periments with real-world traces to evaluate the design. The 
results show that compared to BiStream+Tree, TriJoin sig-
nificantly reduces the processing latency by 68%.

The rest of the paper is organized as follows. Section 2 
reviews the related work. Section 3 describes the design of 
TriJoin. Section 4 analyzes the processing latency, complete-
ness, and scalability of TriJoin. Section 5 presents the imple-
mentation of TriJoin. Section 6 evaluates this design. Section 
7 concludes the paper.

2  Related Work

In this section, we review the related work in both two-
way and multi-way stream joins.

2.1 Two-Way Stream Join
Based on the parallel stream join system, many stream 

join algorithms have been proposed. Existing designs [13- 
14] implement multi-core parallel processing stream join us-
ing the handshake join model. However, the handshake join 
model has the problems such as high communication cost 



TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   477

between processing cores, and complex synchronization and 
coordination.

To avoid frequent communication among cores in the 
low-latency handshake join model, Najafi et al. introduce 
SplitJoin [15], which abandons the linear sequential flow of 
tuples between different processing cores. SplitJoin adopts 
the method of simultaneously broadcasting tuples from two 
streams to all the processing cores in the same sequence, and 
then performs join operation. Some designs [16-17] utilize 
the field programmable gate array (FPGA) or multicore CPU 
to speed up the join operation. However, the parallel systems 
are difficult for a parallel stream join system to scale out for 
rapidly increasing workloads in practice.

Distributed stream join systems benefit from the high 
scalability of distributed clusters, and can potentially support 
the stream join operations of all historical data. The Join-Ma-
trix [18-19] inputs the two streams as the rows and columns 
of the matrix. Each matrix cell represents a potential join 
result. When the system scales out/in, it adds/deletes a fixed 
number of processing units in a row or column. This model 
limits the scalability of the system.

To avoid storing data repeatedly, Lin et al. propose a two-
way stream join system BiStream [8]. BiStream employs the 
join-biclique model, which organizes all the processing units 
into a bipartite graph, including two groups of storage cor-
responding to the two streams. Some studies [4-5] improve 
BiStream to dynamically deal with the load imbalance caused 
by a skewed distribution of real-world data. Yuan et al pro-
pose a novel ordered propagation model to eliminate abnor-
mal results [20]. However, the two-way stream join cannot 
directly process three-way join.

2.2 Multi-Way Stream Join
It is a challenge to deal with multiple streams with inputs 

arriving at highly variable and unpredictable rates. Gomes et 
al. present a dynamic programming algorithm, OptDP [10], 
which produces the optimal join tree architecture. The opti-
mal join tree architecture maximizes the throughput for slid-
ing window-based multi-join queries over continuous data 
streams.

The expensive join conditions of multi-way join lead to a 
great challenge for real-time stream processing. Wang et al. 
introduced a multi-way join distribution scheme named pipe-
lined state partitioning (PSP) [21], which transforms a macro 
join operator into a series of smaller sub-operators through 
time-slicing of the join states. However, PSP adopts a virtual 
computation ring, and a new tuple needs to be transmitted to 
several nodes. This results in high latency. Moreover, a large 
number of join operations are repeated because there is no 
intermediate result stored.

To trade off transmission consumption and the limited 
memory requirements for storing the intermediate results, 
CLASH [22-23] utilizes the features of the flat (i.e., ring) and 
tree architectures. However, CLASH still suffers from high 
latency due to the ring and tree architectures.

All in all, although distributed stream join systems have 
better scalability than parallel systems, the existing systems 
cannot meet the low latency requirement of three-way stream 
join. The two-way stream join method cannot directly realize 
three-way stream join while multi-way stream join. Utilizing 

a tree or ring architecture to realize three-way join will raises 
high latency due to the intermediate result transmission, the 
final result waiting for intermediate result, or the repeated 
joining. Therefore, our goal is to design a low latency stream 
join system.

3  TriJoin

In this section, we first briefly describe the system over-
view of TriJoin. Then, we present the two partitioning and 
storage schemes according to two forms of three-way join. 
Finally, we present the TuplePacking structure for storing the 
intermediate result.

3.1 Overview
TriJoin divides the processing units into three symmetric 

groups according to three streams, and utilizes symmetrically 
partitioning to partition tuples. The dispatcher partitions tuple 
in round-robin and broadcast manners. TriJoin stores the cor-
responding tuple and the intermediate result only once in the 
processing unit to ensure the scalability.

Figure 3 shows the overall architecture of TriJoin, which 
includes three components: routing, join, and postprocessing 
components.

Join component

Preprocessor

Routing component

Scheduler

Processing units R Processing units S Processing units T

Dispatcher

Round-robin / broadcast

Intermed-
iate result

Scheduler Scheduler

R tuple 
storage

S tuple 
storage

T tuples 
storage

⋈ ⋈ ⋈ ⋈ ⋈ ⋈

Stream R,S,T

Intermed-
iate result

Intermed-
iate result

Figure 3. The system architecture of TriJoin

In routing component, the preprocessor is responsible for 
preprocessing the tuples. After preprocessing, according to 
the partitioning scheme, the dispatcher partitions the received 
tuples to the corresponding processing units in the join com-
ponent. The join component consists of many processing 
units, which store and join the received tuples. When the pro-
cessing unit receives a tuple, the scheduler judges whether to 
store the tuple or join it with the stored tuple and intermedi-
ate result. The processing unit stores the intermediate results 
generated locally to reduce the processing latency. The pro-
cessing unit sends the final results to the postprocessing com-
ponent. The postprocessing component outputs and analyzes 
the final result.

The partitioning and storage of tuple and intermediate re-
sult are the core of TriJoin. The partitioning and storage 
schemes are related to the form of the three-way join. We 
clarify the possible forms of three-way join as follows. The 



478  Journal of Internet Technology Vol. 24 No. 2, March 2023

three streams can only make up two join graphs, which are 
cyclic join and chain join [24]. We assume that the three 
streams are R, S, and T, and use the notation ⋈  to represent 
theta-join. Therefore, we set the two forms of three-way join: 
R ⋈ S AND S ⋈  T AND T ⋈  R, and R ⋈  S AND S ⋈  T, 
which are the cyclic and chain joins, respectively. Table 1 
lists the notations in our design.

Table 1. Notations
Notation Description
R, S, T Three data streams for joining
r, s, t Tuples belonging to R, S, and T, respect-

tively
R ⋈ S The theta-join of R and S
Ri, Si, Ti The i-th processing unit of R, S, and T
KRi, KSi, KTi The sets of all the tuples stored in proce-

ssing unit Ri, Si, and Ti

|KRi|,|KSi|,|KTi| The numbers of tuples in set KRi, KSi, and
KTi

I_sKRi The intermediate result of s ⋈  KRi

|I_sKRi| The number of intermediate result I_sKRi

KR The set of all the tuples stored in the 
system for stream R

I_sKR The intermediate result of s ⋈  KR

|I_sKR| The number of intermediate result I_sKR

3.2 Partitioning and Storage Schemes
It is nontrivial to avoid the tuple waiting for intermediate 

result. Our schemes enable as many intermediate and final 
results as possible to be generated in one processing unit. For 
cyclic join, the scheme ensures that all the tuples perform 
only one process to generate the final results, and no tuples 
have a waiting process.

In the two schemes, the three groups of processing units 
are R, S, and T. We use the notations nr, ns, and nt to represent 
the number of processing units R, S, and T. We use Ri to de-
note the i-th processing unit R for i ∈  {1...nr}, Si to denote 
the i-th processing unit S for i ∈  {1...ns}, and Ti to represent 
the i-th processing unit T for i ∈  {1...nt}. We denote the set 
of all the tuples stored in processing units Ri, Si and Ti using 
KRi, KSi, and KTi. We denote the tuple of R, S, and T using r, s, 
and t. We use I_sKTi to denote the intermediate result of s ⋈  
KTi. The two different partitioning schemes are described as 
follows.
3.2.1 The symmetric partitioning scheme of the cyclic join

For the cyclic join, in order to join a new tuple with 
the intermediate result without transmission, we design a 
symmetric partitioning scheme, as shown in Figure 4. The 
symmetric partitioning scheme combines the three groups 
of processing units into three different pairs of processing 
units. While storing the tuple only once, these three pairs of 
processing units form three join-biclique models by sharing 
the stored tuples. The three join-biclique models can generate 
all the intermediate results and store them locally without 
transmission. Therefore, when a tuple arrives, TriJoin joins 
the tuple with the intermediate result without waiting and 
generates the final result. When a new tuple arrives at the 
dispatcher, the dispatcher partitions the tuple into one of 

the processing units of the group to which it belongs in a 
round-robin manner. Meanwhile, it broadcasts the new tuple 
to all the processing units of the other two groups. Each pro-
cessing unit joins the broadcasted tuple with the intermediate 
result to generate the final result. Then each processing unit 
joins the broadcasted tuple with the locally stored tuples to 
generate the intermediate result, and stores the intermediate 
result locally. Subsequently, the processing unit discards the 
broadcasted tuple.

r s t r s t r s t

Dispatch the tuple to a unit in round-robin
Broadcast the tuple to the processing unit group
Store or join in the processing unit

KR1 
storage

Scheduler
r s/t t s

I_sKR1
storage

Processing units R

I_tKR1
storage

KS1 
storage

Scheduler
s r/t r t

I_tKS1
storage

Processing units S

I_rKS1
storage

KT1 
storage

Scheduler
t r/s r s

I_sKT1
storage

Processing units T

I_rKT1
storage

⋈ ⋈ ⋈ ⋈ ⋈ ⋈ ⋈⋈ ⋈

Figure 4. The symmetric partitioning scheme of the cyclic 
join

We describe the operations of the symmetric partition-
ing scheme with examples. Whenever a new tuple r (or s, t) 
arrives, the dispatcher partitions the tuple in a round-robin 
manner to one of the processing units R (or S, T) for storage, 
and broadcasts the tuple r (or s, t) to the other two processing 
units S and T (or R and T, R and S). Each processing unit Si 
and Ti joins r with the intermediate result I_sKSi and I_tKTi 
stored locally to generate the final result and outputs. Then 
each processing unit Si and Ti joins r with the tuples KSi and 
KTi to generate intermediate result I_rKSi and I_rKTi, and 
stores the intermediate result locally. Similarly, each process-
ing unit Ri and Ti (or Ri and S i) joins the broadcasted s (or t) 
with intermediate result I_tKRi and I_rKTi (or I_sKRi and I_
rKSi) to generate the final result. Each processing unit Ri and 
Ti (or Ri and Si) joins the broadcasted s (or t) with the tuples 
stored locally to generate intermediate result I_sKRi and I_
sKTi (or I_tKRi and I_tKSi). Then the processing unit discards 
the broadcasted tuple.

The symmetric partitioning scheme can guarantee the 
three requirements. Since any pair of processing unit groups 
conforms to the join-biclique model, this scheme generates 
the complete intermediate result. When a tuple arrives, it 
can join with all the complete intermediate result generated 
before it arrived. The symmetric partitioning scheme ensures 
completeness. When a tuple reaches the processing unit, the 
system can immediately join the tuple with the corresponding 
intermediate result, and perform only one process to generate 
the final result. The symmetric partitioning scheme achieves 
low latency in generating the final result of each tuple. Tri-
Join stores each tuple and intermediate result only once, en-
sureing the scalability of the system.
3.2.2 The semi-symmetric partitioning scheme of the 

chain join
For the chain join, to obtain low latency, the partition-ing 

and storage scheme faces a greater challenge than the cyclic 
join, since the chain join lacks the join condition R ⋈  T. If 
TriJoin partitions tuples according to the symmetric partition-



TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   479

ing scheme, the system will omit many final results, which 
cannot guarantee the completeness of the join result. For ex-
ample, when t arrives, the processing unit Ri does not gener-
ate an intermediate result. Instead, it joins t and I_sKRi and 
then discards t. Therefore, when s arrives, the processing unit 
Ri does not generate the final result. The processing unit Ri 
omits the final result of joining the new tuple s with KRi and 
the tuples of T. The processing units T perform similarly.

It is a challenge to solve the problem that processing unit 
Ri omits the final result of the new tuple s. We assume that 
processing unit Ri stores all the tuples KT (denoted as the set 
of all the tuples stored in processing unit T) to ensure the 
completeness of join result. The processing unit Ri allows s 
to join with KRi and KT when s arrives. However, storing KT 
in one processing unit will result in an unacceptable memory 
cost.

To eliminate the cost of storing all the tuples KT in the 
processing units R and ensure the completeness of join 
results, we design a semi-symmetric partitioning scheme 
(shown in Figure 5). When s arrives, each processing unit 
Ri generates the intermediate result I_sKRi, stores it locally. 
Meanwhile, it broadcasts I_sKRi to all the processing units 
T. Each processing unit Ti joins I_sKRi with the tuples KTi to 
generate the final result, and then dicards I_sKRi. This avoids 
storing KT in one processing unit. In the same way, if the pro-
cessing unit Ti generates I_sKTi, it broadcasts I_sKTi to all the 
processing units R. Then, each processing unit Ri joins I_sKTi 
with KRi to generate the final result.

KS1  
storage

Scheduler
s r/t r t

I_tKS1  
storage

Processing units S

I_rKS1  
storage

I_sT

KR1 
storage

Scheduler
r s t

I_sKR1
storage

Processing units R

KT1 
storage

Scheduler
t s r

I_sKT1 
storage

Processing units T

Dispatch the tuple to a unit in round-robin
Broadcast the tuple to the processing unit group
Store or join in the processing unit

r s t r s ttr s

⋈⋈ ⋈⋈ ⋈ ⋈⋈I_sR

Figure 5. The semi-symmetric partitioning scheme of the 
chain join

The semi-symmetric partitioning scheme joins each tu-
ple without waiting. The processing latencies of the tuples r 
and t are the time to generate the final result after the tuple 
arrives. When s arrives, each processing unit Ri joins s and 
KRi to generate I_sKRi, and then sends I_sKRi to the processing 
unit T. When the processing unit Ti receives I_sKRi, it has re-
ceived the tuple t that arrived at the join component before s. 
Each processing unit Ti can immediately join I_sKRi with KTi. 
The semi-symmetric partitioning scheme processes s without 
waiting. The semi-symmetric partitioning scheme achieves a 
low processing latency for each tuple.

3.3 Storage of Intermediate Result
Existing stream join systems use the form of a tuple pair 

(i.e., the structure of binding two tuples) to store the join 
results of two streams [11-12]. This pair is composed of two 
tuples that satisfy the join condition. According to the ac-
tual requirement, the fields of the tuple include “relation”, 

“timestamp”, “seq”, “keya”, “keyb”, and “value”. The field 
“relation” indicates the stream to which the tuple belongs. 
The field “timestamp” denotes the timestamp when the tuple 
reaches the dispatcher. The fields “keya” and “keyb” are join 
attributes. The field “value” is the specific content of the 
tuple. As shown in Figure 6, the tuple pair structure of the in-
termediate result consisting of tuple1 and tuple2 that meet the 
join condition. The fields of tuple pair include “key”, “time-
stamp”, tuple1, and tuple2. The field “key” is the same as the 
field “keya” or “keyb” of tuple1 (denoted as “key1a” or “key1b”), 
which has a join condition with the new tuple from the third 
stream. The field “timestamp” is the maximum value among 
the timestamps of tuple1 and tuple2. The “relation” fields of 
the two tuples are different.

timestampkey1a/key1bheader

tuple1

tuple2

relation1 seq1timestamp1 key1a key1b value1

seq1timestamp2 key2a key2b value2relation2

Figure 6. The tuple pair structure for storing intermediate 
Result

Since a processing unit joins a new broadcasted tuple 
with all the tuples stored locally, it may generate several in-
termediate results related to this new tuple. For storing the 
intermediate result, the processing unit will store the new 
tuple continuously and repeatedly with several tuple pair 
structures. Moreover, when another new tuple of the third 
stream arrives, the processing unit needs to perform several 
join operations on the new tuple and the repeated stored tu-
ple. Regardless of whether the symmetric or semi-symmetric 
partitioning scheme, TriJoin needs to store the intermediate 
results and perform multiple join operations with the inter-
mediate results. Therefore, the tuple pair structure leads to a 
large amount of unnecessary computation and memory costs 
for intermediate results.

To address this issue, we design a TuplePacking structure, 
which is a readable and writable packing structure, to store 
the intermediate results. TuplePacking is in a one-to-many 
form, which consists of a tuple of one stream (named a hub 
tuple) and several tuples of another stream. In the structure, 
the hub tuple and any tuple of another stream meet the join 
condition. The stream to which the hub tuple belongs has a 
join condition with the third stream. As shown in Figure 7, 
the TuplePacking structure of the intermediate result consist-
ing of one join tuple and k stored tuples that meet the join 
condition. The fields of TuplePacking include “key”, “time-
stamp”, and k tuples. The hub tuple is tuple1. The “key” field 
is the fields “key1a” or “key1b”. The “timestamp” field is the 
maximum value among the timestamps of the k tuples, which 
is the same as the timestamp of tuple1. The “relation” field 
of tuple1 is different from the other tuples, and the “relation” 
fields of all the tuples except tuple1 are the same. In the fol-
lowing, we describe the storage and join operations for inter-
mediate result in the two different partitioning schemes.



480  Journal of Internet Technology Vol. 24 No. 2, March 2023

...

timestampkey1a/key1bheader

tuple2

relation1 seq1timestamp1 key1a key1b value1

seq2timestamp2 key2a key2b value2relation2

relation2tuple3 seq3timestamp3 key3a key3b value3

relation2 seqk keyka keykbtimestampk valuektuplek

hub tuple
(tuple1)

...

Figure 7. The TuplePacking structure for storing intermediate 
Result

For the symmetric partitioning scheme, the TuplePack-
ing structure reduces the memory cost and the number of 
joins between the new tuple and the intermediate result. We 
take the processing unit R as an example. If TriJoin adopts 
a tuple pair to store the intermediate result, the processing 
unit Ri joins a new tuple s and the tuples TRi. Then the pro-
cessing unit Ri generates the intermediate results {(s, r1), (s, 
r2), (s, r3), (s, r4)}, which are four tuple pair structures. The 
processing unit Ri needs to store s four times. When a tuple t 
arrives, processing unit Ri joins the “key” field of t and these 
intermediate results to generate the final result. The join op-
eration cost is four. If TriJoin stores the intermediate result I_
sKRi with the TuplePacking structure, the intermediate result 
is composed of tuples {(s, r1, r2, r3, r4)}, which has one “key” 
field to be joined. When the new tuple t arrives, the process-
ing unit needs only one join comparison of the “key” fields 
of t and TuplePacking {(s, r1, r2, r3, r4)}. For TuplePacking as 
the storage structure, the join operation cost is one.

For the semi-symmetric partitioning scheme, the Tuple-
Packing structure not only reduces the memory cost but also 
reduces the communication cost. If TriJoin adopts tuple pair 
to store the intermediate result, the processing unit Ri joins a 
new tuple s and the tuples KRi, and generates the intermediate 
results {(s, r1), (s, r2), (s, r3)}. The processing unit Ri needs to 
store three tuple pair structures, and s is stored three times. 
At the same time, the processing unit Ri broadcasts three 
intermediate results to all the processing units T. The com-
munication cost is 3×nt. In each processing unit Ti, the join 
operation cost for joining the “key” fields of the intermediate 
results and KTi is 3×|KTi|. If TriJoin adopts the TuplePacking 
structure, the TuplePacking I_sKRi is composed of tuples {(s, 
r1, r2, r3)}, which has a “key” field. The system needs to store 
s once; the communication cost is nt; and the join operation 
cost is |KTi|. If TriJoin adopts the TuplePacking structure, the 
memory cost, the computation cost for the join operation, and 
the communication cost are all lower than those of the tuple 
pair structure.

4  Analysis of Processing Latency

The processing latency of a tuple is from the time when 
the tuple reaches the dispatcher to the time when the final 
result is generated. Tuples of BiStream+Tree and TriJoin 
require a very short queue waiting time in the dispatcher and 
the processing unit. Therefore, we use the time of the join 
operation and the network transmission as the processing 
latency. Since the time to send each tuple from the dispatcher 
to the processing unit is the same in the three schemes, we 

ignore this time in this section.
In the symmetric partitioning scheme, TriJoin adopts the 

TuplePacking structure to store the intermediate result. We 
denote the intermediate result I_KSKTi stored in TuplePack-
ing as Io_KSKTi. The processing latency of the tuple r is that 
needed to join r with Io_KSKTi in the processing unit Ti, or to 
join r with Io_KTKSi in the processing unit Si. The processing 
latency of tuple r is computed by Equation (1), where τ rep-
resents the processing time of a join comparison.

     Lsym−r =|Io_KSKTi| × τ (or |Io_KTKSi| × τ)
     Lsym−s =|Io_KTKRi| × τ (or |Io_KRKTi| × τ) (1)
     Lsym−t =|Io_KRKSi| × τ (or |Io_KSKRi| × τ).

The number of new tuple join with the intermediate result 
is |Io_KSKTi| or |Io_KTKSi|, which is the number of tuples less 
than KS or KT. The process of generating the final result of 
each tuple is only join operation, and has no transmission.

In the semi-symmetric partitioning scheme, the process-
ing latencies of tuples r and t are the same as in the symmet-
ric partitioning scheme. The latency of tuple s is computed 
by Eq. (2), where Tnet denotes the transmission time of the 
intermediate result.

        Lsemi-s = (|KRi| + |KTi|) × τ + Tnet .   (2)

From the Equation (2), there is no waiting in the process-
ing latency of s.

To ascertain the difference between the processing laten-
cies of TriJoin and BiStream+Tree, we analyze the process-
ing latency of BiStream+Tree. In BiStream+Tree, since the 
processing latencies of the cyclic join and chain join are very 
similar, we only discuss the latency of the chain join. We 
use Twait to represent the time that t waits for all the interme-
diate results of r and s that arrive before t. We maintain that 
BiStream+Tree adopts the tuple pair structure to store the 
intermediate result, and represent the intermediate result as 
Ip_KRKSi. The latencies of tuples r, s, and t are computed by 
Equation (3).

        Lbis-r =(|KSi| + |Ip_rKSi| × |KTi|) × τ + Tnet  
              Lbis-s =(|KRi| + |Ip_sKRi| × |KTi|) × τ + Tnet

 
              (3)

        Lbis-t =|Ip_KRKSi| × τ + Twait, or |Ip_KSKRi| × τ + Twait .

Each processing latency of the symmetric partitioning 
scheme is lower than that of BiStream+Tree. The value of τ is 
the time of the join operation, so τ is small. If the number of 
intermediate result is very large, TriJoin and BiStream+Tree 
can add processing units to reduce the number of interme-
diate result. Moreover, |Io_KRKSi| ≤ |Ip_KRKSi|, |Io_KSKRi| ≤ 
|Ip_KSKRi|, |KSi| × τ + Tnet ≤ Twait, and |KRi| × τ + Tnet ≤ Twait. 
Obviously, each processing latency of the symmetric parti-
tioning scheme is lower than that of BiStream+Tree.

In the semi-symmetric partitioning scheme, since the 
latencies of tuples r and t are the same as those in the sym-
metric partitioning scheme, the latencies of tuples r and t in 
the semi-symmetric partitioning scheme are lower than those 
in BiStream+Tree. Since BiStream+Tree adopts the tuple pair 
to store the intermediate result, |Ip_sKRi| ≥ 1. The latency of 
tuple s is smaller than that in BiStream+Tree.



TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   481

In summary, the latencies of the symmetric and 
semi-symmetric partitioning schemes are lower than that of 
BiStream+Tree.

1 https://github.com/CGCL-codes/TriJoin

5. Implementation

We implement TriJoin on top of Apache Storm, and 
make the source code publicly available1. In this section, we 
describe the implementations of TriJoin based on the Storm 
topology and the order-consistent protocol.

5.1 System Structure
TriJoin implements four main functional components: 

DataSpout, DispatchBolt, JoinBolt, and PostProcessBolt. The 
functions of DataSpout and DispatchBolt correspond to those 
of preprocessor and dispatcher in the routing component. The 
functions of JoinBolt and PostProcessBolt correspond to that 
of processing unit in the join and postprocessing component, 
respectively.

We condigurate the topology according to the different 
partitioning schemes. Figure 8 shows the topology for the 
symmetric partitioning scheme of the cyclic join. Figure 
9 shows the topology for the semi-symmetric partitioning 
scheme of the chain join. DispatchBolt emits tuple by shuffle 
grouping and all grouping. We implement the shuffle group-
ing and all grouping methods in round-robin and broadcast 
manners [25-27], respectively.

R, S, T

S, T

S

R, T

T

R, S

Shuffle GroupingInstance All Grouping

JoinBolt R

JoinBolt S

JoinBolt T

D
at

aS
po

ut

D
is

pa
tc

hB
ol

t

Po
stP

ro
ce

ss
B

ol
tR Final 

result

IJ2IJ1 IJ3 IJ4

IJ2IJ1 IJ3 IJ4

IJ2IJ1 IJ3 IJ4

IH1

IH2
ID1

IP1

IP2

I

Figure 8. Topology of the symmetric partitioning scheme

R, S, T

S, T

T

R, S

S

R, T

Shuffle GroupingInstance All Grouping

JoinBolt R

JoinBolt T

JoinBolt S

D
at

aS
po

ut

D
is

pa
tc

hB
ol

t

Po
stP

ro
ce

ss
B

ol
t

R
Final 
result

IJ2IJ1 IJ3 IJ4

IJ2IJ1 IJ3 IJ4

IJ2IJ1 IJ3 IJ4

IH1

IH2
ID1

IP1

IP2

I

I_sTI_sR

Figure 9. Topology for the semi-symmetric partitioning 
schem

5.2 Order Consistency
To guarantee the completeness of the join result, the join 

processing must have a chronological order. TriJoin does not 
store the tuples broadcasted to the units for join processing. It 
discards these tuples immediately after the join operation will 
cause an incomplete join result, due to out-of-order tuples. 

Therefore, it is necessary to ensure the order consistency of 
tuples [8, 28]. We implement order consistency in this paper.

To achieve order consistency of tuples, TriJoin first orders 
all the tuples. Specifically, the dispatcher maintains a logical 
timestamp, which is a monotonically increasing counter. The 
logical timestamp starts from zero and increases sequentially. 
Whenever the dispatcher receives a tuple from DataSpout, it 
The dispatcher will append the logical timestamp to the “seq” 
field of the tuple.

Each dispatcher periodically broadcasts a logical time-
stamp tuple to all the processing units as a signal. Since 
the message transmission and processing in each pair of a 
dispatcher instance and processing unit are first-in-first-out 
signals, they indicate that the processing unit has received 
all the tuples before the logical timestamp tuple. If the time-
stamp tuples of a certain value of all the dispatchers reach a 
processing unit, the processing unit must have received all 
the tuples before this timestamp tuple.

Each processing unit uses a priority queue to buffer each 
received tuple, stores or joins tuples whose timestamps are 
less than the smallest current latest signal timestamp. Each 
JoinBolt utilizes the priority queue to sort the received tuples 
according to the timestamps. Each JoinBolt maintains a table 
of the latest signal timestamps, which records the latest signal 
timestamp tuple sent by each DispatchBolt. When JoinBolt 
receives a stream tuple, it adds the tuple to the priority queue 
temporarily. When JoinBolt receives a timestamp tuple, it up-
dates the latest signal timestamp table, and determines wheth-
er it has received all the timestamp tuples with the same 
sequence number sent by the dispatcher. If JoinBolt has re-
ceived all the timestamp tuples, it updates the current small-
est latest signal timestamp. Then, it sequentially processes 
the tuples in the priority queue whose logical timestamps are 
less than the current smallest latest signal timestamp.

6. Evaluation

6.1 Setup
We conduct experiments to compare the performance of 

TriJoin and BiStream+Tree. The experiments run on a cluster 
of 16 nodes, one works as the Nimbus node, and the remain-
ing 15 work as Supervisor nodes. Each node in the cluster is 
equipped with 8-core Intel Xeon E5-2670@2.60GHz CPUs, 
64 GB memory, 1 TB hard disk, and 1,000 Mbps network. 
We use real-world datasets collected from the DiDi Chuxing 
GAIA Initiative [11] and the network traffic traces [29] to 
evaluate the performance. Each dataset has three subsets. 
Each subset has 15,000,000 tuples. We use the DiDi Chuxing 
GAIA Initiative for the comprehensive evaluation, and use 
the network packet data to evaluate the processing latency 
[30].

There are six fields “rS, rD, rL, rI, rInt, and rStr” in each tuple 
r, and the corresponding field types are String, Double, Long, 
Integer, Integer, and String. Tuples s and t have six fields “sS, 
sD, sL, sI, sInt, and sStr”, and “tS, tD, tL, tI, tInt, and tStr”, respec-
tively. Tuples s and t have the same field types as the tuple r. 
The size of each tuple stored in memory is approximately 80 
bytes. We set the cyclic join as |rI - sI| < ϵ AND |sInt - tInt| < ϵ 
AND |rInt - tI| < ϵ, where ϵ is a small value according to the 



482  Journal of Internet Technology Vol. 24 No. 2, March 2023

actual situation. We set the chain join as |rI - sI| < ϵ AND |sInt 
- tInt| < ϵ.

6.2 Results
We examine the performance of TriJoin and BiS-

tream+Tree for the cyclic join and the chain join. To avoid 
system initialization and resource configuration from impact-
ing the performance, we record the test results when the sys-
tem is relatively stable [31]. The following experiments use 
the dataset of DiDi Chuxing by default. 

Figure 10 plots the real-time processing latency over time 
when the two systems perform a cyclic join. The results show 
that TriJoin reduces the average latency by 63% compared to 
BiStream+Tree. Figure 11 presents the real-time throughput 
over time when the two systems perform a cyclic join. The 
results show that TriJoin improves the average throughput by 
7% compared to BiStream+Tree.

Figure 12 plots the real-time processing latency over time 
when the systems perform a chain join. The results show 
that TriJoin reduces the average processing latency by 45% 
compared to BiStream+Tree. Figure 13 presents the real-time 
throughput over time when the systems perform a chain join. 
The results show that TriJoin increases the average through-
put by 15% compared to BiStream+Tree.

To examine the impact of system parallelism on latency 
and throughput, we configureate different numbers of Join-
Bolt instances in the experiments. Figure 14 presents the 
latency of two systems with different parallelisms. For the 
cyclic join, TriJoin reduces the average latency by 51% com-
pared to BiStream+Tree. For the chain join, TriJoin reduces 
the average latency by 26% compared to BiStream+Tree. 
When the number of instances is 180, for the cyclic join, Tri-
Join reduces the latency by 65% compared to BiStream+Tree, 
while for the chain join, TriJoin reduces the latency by 47%.

Figure 15 plots the throughput of the systems with differ-
ent parallelisms. For the cyclic join, TriJoin increases the av-
erage throughput by 8% compared to BiStream+Tree. For the 
chain join, TriJoin increases the average throughput by 14%.

To ensure the order consistency of the tuples, each dis-
patcher needs to broadcast a signal to all the processing units 
periodically. We set different signal periods. If the dispatcher 
sends a timestamp signal with a longer signal period, the 
order consistency is better. However, a longer signal period 
will result in a higher processing latency. Figure 16 presents 
the processing latency of the systems under different signal 
periods. The results show that, for the cyclic join, TriJoin re-
duces the latency by 68% compared to BiStream+Tree, while 
for the chain join, TriJoin reduces the latency by 31%. Figure 
17 presents the throughput of the two systems under differ-
ent signal periods. For the cyclic join, TriJoin increases the 
throughput by 14% compared to BiStream+Tree, while for 
the chain join, TriJoin increases the throughput by 18%.

To examine the reduced memory cost and computation 
cost of the join operations of the TuplePacking structure 
compared to the tuple pair structure, we use DiDi Chuxing to 
count the number of intermediate results every five minutes. 
We deploy both the tuple pair and the TuplePacking structure 
in TriJoin, and denote the tuple pair in TriJoin as TriJoin-pair. 
TriJoin adopts the TuplePacking structure by default.

Figure 18 plots the number of intermediate results of Tri-

Join and TriJoin-pair generated by the symmetric partitioning 
scheme. The results show that TriJoin reduces the number of 
intermediate results by 71% compared to TriJoin-pair. Figure 
19 presents the number of intermediate results of TriJoin and 
TriJoin-pair generated by the semi-symmetric partitioning 
scheme. The results show that TriJoin reduces the number of 
intermediate results by 66% compared to TriJoin-pair.

Figure 20 shows the processing latency of the two sys-
tems running under different window lengths. The results 
show that, for the cyclic join, the average latency of TriJoin 
is 65% lower than that of BiStream+Tree, while for the chain 
join, the latency of TriJoin is 44% lower than that of BiS-
tream+Tree.

Figure 21 examines the latency with different parallel-
isms using the network traffic traces. For the cyclic join, 
TriJoin reduces the average latency by 51% compared to 
BiStream+Tree, while for the chain join, TriJoin reduces the 
latency by 29%. When the number of instances is 180, for the 
cyclic join, TriJoin reduces the latency by 60% compared to 
BiStream+Tree, while for the chain join, TriJoin reduces the 
latency by 44%.

0 100 200 300 4000.0

0.4

0.8

1.2

1.6

Pr
oc

es
sin

g 
la

te
nc

y 
(s

)  BiStream-cyc
 TriJoin-cyc

 

 

Time (s)
0 20 40 60 80 1000

1

2

3

4

5

 TriJoin-cyc
 BiStream-cyc

 

 

Th
ro

ug
hp

ut
 (1

03 tu
pl

es
/s)
Time (s)

Figure 10. The real-time 
processing latency of the 
cyclic join

Figure 11. The real-time 
system throughput of the 
cyclic join

0 100 200 300 4000.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6

Pr
oc

es
sin

g 
la

te
nc

y 
(s

)  BiStream-cha
 TriJoin-cha

 

 

Time (s)
0 20 40 60 80 1000

1
2
3
4
5
6

 TriJoin-cha
 BiStream-cha

 

 

Th
ro

ug
hp

ut
 (1

03 tu
pl

es
/s)

Time (s)

Figure 12. The real-time 
processing latency of the 
chain join

Figure 13. The real-time 
system throughput of the 
chain join

0 30 60 90 120 150 1800
40
80

120
160
200
240

 BiStream-cyc
 TriJoin-cha
 TriJoin-cyc

 

 

Pr
oc

es
sin

g 
la

te
nc

y 
(m

s)

Number of join instances
0 30 60 90 120 150 1800

1

2

3

4

5

 TriJoin-cha
 TriJoin-cyc
 BiStream-cyc

 

 

Th
ro

ug
hp

ut
 (1

03 tu
pl

es
/s

)

Number of join instances

Figure 14. Processing latency 
with different parallelisms

Figure 15. Throughput with 
different parallelisms



TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   483

0 10 20 30 40 50 60 700

100

200

300

400  BiStream-cyc
 TriJoin-cha
 TriJoin-cyc

 

 

Pr
oc

es
sin

g 
la

te
nc

y 
(m

s)

Barrier period (ms)
0 10 20 30 40 50 60 700

1

2

3

4

5

 TriJoin-cha
 TriJoin-cyc
 BiStream-cyc

 

 

Th
ro

ug
hp

ut
 (1

03 tu
pl

es
/s

)

Barrier period (ms)

Figure 16. Processing latency 
with different signal periods

Figure 17. Throughput with 
different signal periods

0 10 20 30 40 500
1
2
3
4
5
6
7
8

# 
of

 in
te

rm
ed

ia
te

 re
su

lt 
(1

04 )

 TriJoin-pair-cyc
 TriJoin-cyc

 

 

Time (s)
0 10 20 30 40 500

1

2

3

# 
of

 in
te

rm
ed

ia
te

 re
su

lt 
(1

04 )

 TriJoin-pair-cha
 TriJoin-cha

 

 

Time (s)
Figure 18. The number of 
intermediate results generated 
by the symmetric partitioning 
scheme

Figure 19. The number of 
intermediate results gener- 
ated by the semi-symmetric 
partitioning scheme

0 1 2 3 4 5 6 70

100

200

300

400

Pr
oc

es
sin

g 
la

te
nc

y 
(m

s)  BiStream-cyc
 TriJoin-cha
 TriJoin-cyc

 

 

The length of the window (s)
0 30 60 90 120 150 1800

40
80

120
160
200
240

 BiStream-cyc
 TriJoin-cha
 TriJoin-cyc

 

 

Pr
oc

es
sin

g 
la

te
nc

y 
(m

s)

Number of join instances

F i g u re  2 0 .  P r o c e s s i n g 
latency with the length of the 
window

Figure 21. Processing latency 
with different parallelisms 
using network traffic trace

7  Conclusion

In this paper, we propose TriJoin, a time efficient and 
scalable three-way stream join system. We show through 
experiments that splitting three-way join results in double 
two-way joins yields a costly waiting relationship. To solve 
the problem, we design the symmetric and semi-symmet-
ric partitioning schemes according to two forms of three-
way join. The two schemes utilize symmetric partitioning 
and reused join to decouple the waiting relationship. We use 
the symmetric partitioning to generate all the intermediate 
result, and utilize reused join to join the new tuple with the 
intermediate result and stored tuple in a processing unit. The 
schemes avoid the waiting in generating the final reslut. The 
two schemes store the tuples and intermediate results only 
once, ensuring the scalability of the system. We implement 
TriJoin on Apache Storm. The experiment results show that 
TriJoin greatly outperforms the existing designs in terms of 
processing latency.

Acknowledgements

This research is supported in part by the National Key 
Research and Development Program of China under grant 
No. 2018YFB1004602 and NSFC under grant No. 61972446.

References

[1] L. Zhang, T. Hu, Y. Min, G. Wu, J. Zhang, P. Feng, 
P. Gong, J. Ye, A taxi order dispatch model based on 
combinatorial optimization, Proceedings of ACM 
SIGKDD Conference on Knowledge Discovery and 
Data Mining (SIGKDD), Halifax, NS, Canada, 2017, 
pp. 2151-2159.

[2] S. Yu, Z. Jiang, D. Chen, S. Feng, D. Li, Q. Liu, J. 
Yi, Leveraging tripartite interaction information 
from live stream e-commerce for improving product 
recommendation, Proceedings of ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining 
(SIGKDD), Virtual Event, Singapore, 2021, pp. 3886-
3894.

[3] Y. Huang, B. Cui, J. Jiang, K. Hong, W. Zhang, Y. 
Xie, Real-time video recommendation exploration, 
Proceedings  o f  In terna t ional  Conference  on 
Management of Data (SIGMOD), San Francisco, CA, 
USA, 2016, pp. 35-46.

[4] S. Zhou, F. Zhang, H. Chen, H. Jin, B. B. Zhou, 
Fastjoin: A skewness-aware distributed stream join 
system, Proceedings of International Parallel and 
Distributed Processing Symposium (IPDPS), Rio de 
Janeiro, Brazil, 2019, pp. 1042-1052.

[5] F. Zhang, H. Chen, H. Jin, Simois: A scalable distributed 
stream join system with skewed workloads, Proceedings 
of International Conference on Distributed Computing 
Systems (ICDCS), Dallas, TX, USA, 2019, pp. 176-185.

[6] M. Elseidy, A. Elguindy, A. Vitorovic, C. Koch, Scalable 
and adaptive online joins, Proceedings of the VLDB 
Endowment, Vol. 7, No. 6. pp. 441-452, February, 2014.

[7] A. Shahvarani, H. Jacobsen, Parallel index-based stream 
join on a multicore CPU, Proceedings of International 
Conference on Management of Data (SIGMOD), online 
conference, Portland, OR, USA, 2020, pp. 2523-2537.

[8] Q. Lin, B. C. Ooi, Z. Wang, C. Yu, Scalable distributed 
stream join processing, Proceedings of International 
Conference on Management of Data (SIGMOD), 
Melbourne, Victoria, Australia, 2015, pp. 811-825.

[9] M. Najafi, M. Sadoghi, H. Jacobsen, Scalable multiway 
stream joins in hardware, IEEE Transactions on 
Knowledge and Data Engineering, Vol. 32, No. 12, pp. 
2438-2452, December, 2020.

[10] J. S. Gomes, H. Choi, Adaptive optimization of join 
trees for multi-join queries over sensor streams, 
Information Fusion, Vol. 9, No. 3, pp. 412-424, 2008.

[11] Didi chuxing gaia initiative, 2021, https://outreach. 
didichuxing.com/research/opendata/

[12] X. Zhu, H. Gupta, B. Tang, Join of multiple data streams 
in sensor networks, IEEE Transactions on Knowledge 
and Data Engineering, Vol. 21, No. 12, pp. 1722-1736, 
December, 2009.



484  Journal of Internet Technology Vol. 24 No. 2, March 2023

[13] P. Roy, J. Teubner, R. Gemulla, Low-latency handshake 
join, Proceedings of the VLDB Endowment, Vol. 7, No. 
9, pp. 709-720, May, 2014.

[14] J. Teubner, R. Müller, How soccer players would do 
stream joins, Proceedings of International Conference 
on Management of Data (SIGMOD), Athens, Greece, 
2011, pp. 625-636.

[15] M. Najafi, M. Sadoghi, H. Jacobsen, Splitjoin: A 
scalable, low-latency stream join architecture with 
adjustable ordering precision, Proceedings of USENIX 
Annual Technical Conference (ATC), Denver, CO, USA, 
2016, pp. 493-505.

[16] L. Lin, H. Chen, H. Jin, Fjoin: An fpga-based parallel 
accelerator for stream join, Scietia Sinica Informationis, 
Vol. 52, No. 2, pp. 314-333, 2022.

[17] Y. Qiu, S. Papadias, and K. Yi, Streaming hypercube: A 
massively parallel stream join algorithm, Proceedings 
of International Conference on Extending Database 
Technology (EDBT), Lisbon, Portugal, 2019, pp. 642-
645.

[18] B. Gedik, Partitioning functions for stateful data 
parallelism in stream processing, The VLDB Journal, 
Vol. 23, No. 4, pp. 517-539, August, 2014.

[19] C. Balkesen, N. Tatbul, M. T. Ozsu, Adaptive input 
admission and management for parallel stream 
processing, Processings of ACM International 
Conference on Distributed Event-Based Systems 
(DEBS), Arlington, TX, USA, 2013, pp. 15-26.

[20] J. Yuan, Y. Wang, H. Chen, H. Jin, H. Liu, Eunomia: 
Efficiently eliminating abnormal results in distributed 
stream join systems, Proceedings of International 
Workshop on Quality of Service (IWQoS), Tokyo, Japan, 
2021, pp. 1-11.

[21] S. Wang, E. A. Rundensteiner, Scalable stream join 
processing with expensive predicates: Workload 
distribution and adaptation by time-slicing, Proceedings 
of International Conference on Extending Database 
Technology (EDBT), Saint Petersburg, Russia, 2009, pp. 
299-310.

[22] M. Dossinger, S. Michel, Scaling out multi-way stream 
joins using optimized, iterative probing, Proceedings 
of IEEE International Conference on Big Data (IEEE 
BigData), Los Angeles, CA, USA, 2019, pp. 449-456.

[23] M. Dossinger, S. Michel, Optimizing multiple multi-
way stream joins, Proceedings of IEEE International 
Conference on Data Engineering (ICDE), Chania, 
Greece, 2021, pp. 1985-1990.

[24] F. Li, B. Wu, K. Yi, and Z. Zhao, Wander join: Online 
aggregation via random walks, Proceedings of the 2016 
International Conference on Management of Data 
(SIGMOD), San Francisco, CA, USA, 2016, pp. 615-
629.

[25] H. Dai, X. Peng, X. Shi, L. He, Q. Xiong, H. Jin, Reveal 
training performance mystery between tensorflow and 
pytorch in the single GPU environment, Science China 
Information Sciences, Vol. 65, No. 1, pp. 1-17, January, 
2022.

[26] C. Dai, H. Cheng, X. Liu. A Tucker, Decomposition 
Based on Adaptive Genetic Algorithm for Efficient Deep 
Model Compression. Processings of IEEE International 

Conference on High Performance Computing and 
Communications (HPCC), Yanuca Island, Cuvu, Fiji, 
2020, pp. 507-512.

[27] C. Dai, X. Liu, H. Cheng, L. T. Yang, M. J. Deen, 
Compressing Deep Model with Pruning and Tucker 
Decomposition for Smart Embedded Systems, IEEE 
Internet of Things Journal, Vol. 9, No. 16, pp. 14490-
14500, July, 2022.

[28] B. Ji, Y. Wang, K. Song, C. Li, H. Wen, V. G. Menon, 
S. Mumtaz, A survey of computational intelligence for 
6g: Key technologies, applications and trends, IEEE 
Transactions on Industrial Informatics, Vol. 17, No. 10, 
pp. 7145-7154, October, 2021.

[29] WIDE project, 2020, http://mawi.wide.ad.jp/mawi/.
[30] H. Chen, H. Jin, S. Wu, Minimizing inter-server 

communications by exploiting self-similarity in online 
social networks, IEEE Transactions on Parallel and 
Distributed Systems, Vol. 27, No. 4, pp. 1116-1130, 
April, 2016.

[31] Y. Bao, H. Zheng, Q. Zhao, Development and practice 
of mobile internet experimental platform system, 
Journal of Internet Technology, Vol. 23, No. 2, pp. 407-
414, March, 2022.

Biographies

Shuiying Yu is currently working toward 
the PhD degree with the School of Computer 
Science  and Technology,  Huazhong 
University of Science and Technology, 
China. Her research interests include stream 
data processing and distributed algorithms. 

Yinting Zheng received the master degree 
with computer science and engineering 
from Huazhong University of Science and 
Technology, China. Her research interests 
include data query and analysis technology.

Fan Zhang is currently working toward the 
PhD degree with the School of Computer 
Science  and Technology,  Huazhong 
University of Science and Technology, 
China. His research interests include big 
data processing systems.

Hanhua Chen is a professor with the School 
of Computer Science and Technology, 
Huazhong University of Science and 
Technology, China. His research interests 
include big data processing systems and 
distributed computing systems.



TriJoin: A Time-Efficient and Scalable Three-Way Distributed Stream Join System   485

Hai Jin is a Chair Professor of computer 
science and engineering at Huazhong 
University of Science and Technology 
(HUST)  in  China .  He  was  awarded 
Excellent Youth Award from the National 
Science Foundation of China in 2001.  He is 
a Fellow of IEEE, Fellow of CCF, and a life 
member of ACM.


