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Abstract

Accurate vehicle feature recognition is an important 
element in traffic intelligence systems. To address the 
problems of slow convergence and weak generalization 
ability in using convolutional neural networks to improve 
vehicle feature recognition, we propose an improved bird 
swarm algorithm to optimize convolutional neural networks 
(IBSA-CNNs) for vehicle recognition strategies. First, we 
use the center of gravity backward learning strategy and 
similarity- and aggregation-based optimization strategy in 
population initialization and foraging behavior, respectively, 
to improve the algorithm performance and avoid falling into 
a local optimum. Second, the improved bird swarm algorithm 
is used to optimize the weights of the convolutional and 
pooling layers of the convolutional neural network to 
improve the neural network performance. Finally, we tested 
the performance of the improved bird swarm algorithm in 
simulation experiments using benchmark functions. The 
recognition performance of IBSA-CNN was tested by the 
UCI dataset, and in the traffic vehicle dataset BIT-Vehicle, it 
improved 4.9% and 6.8% compared with R-CNN and CNN, 
respectively, indicating that IBSA-CNN has better vehicle 
feature recognition.

Keywords: Bird swarm algorithm, Convolutional neural 
network, Feature recognition

1  Introduction

Intelligent transportation systems [1] (ITSs) have become 
an important part of traffic information management in various 
countries, and accurate vehicle identification can help the 
traffic portion of vehicle management. Vehicle recognition 
refers to vehicle image information that contains the relevant 
characteristic information of the vehicle by means of efficient 
acquisition equipment. The vehicle image processing 
technology locates and extracts the characteristics of the 
image vehicle target. Traditional image feature recognition 
techniques such as laser detection, infrared detection, radar 
detection, etc., have been unable to adapt to the current 
vehicle detection requirements [2], and neural network 
models with low cost and obvious performance advantages 
have been widely used in vehicle recognition. Convolutional 
neural network (CNN) [3] is an effective recognition 

model, which has the advantages of simple structure and 
superior performance. However, the setting of the weight 
values of the convolutional and pooling layers composing 
this network leads to problems leading to local optimum, 
slow convergence and weak generalization ability of this 
model, so the reasonable optimization of the weights of the 
convolutional neural network becomes a direction for solving 
the convolutional neural network. Because the metaheuristic 
optimization algorithm does not require gradient information, 
the number of parameters to be adjusted is small, and its own 
convergence speed is fast in low-dimensional conditions, 
we propose to optimize the convolutional neural network 
strategy by the metaheuristic optimization algorithm. The 
bird swarm algorithm [4] (BSA) is a swarm intelligence 
algorithm based on bird swarm behavior proposed by Xian-
Bing Meng in 2015. The algorithm was inspired by the study 
of bird swarm behavior, and it was constructed by imitating 
the foraging, alerting and flying behaviors that occur in bird 
swarm predation. It obtains the optimal solution based on 
the information sharing mechanism and search strategy. To 
address the drawbacks of slow convergence and the tendency 
to fall into a local optimum when solving high-dimensional 
problems, we optimize the bird swarm algorithm in the 
following two aspects: in the initialization of the population, 
we use the center of gravity reverse learning strategy to 
improve the diversity of individuals in the population and 
enrich the number of understandings; and in the foraging 
behavior, we use the optimization strategy based on similarity 
and aggregation to improve the search ability of the swarm 
individuals and avoid the algorithm falling into a local 
optimum. We use the improved bird swarm algorithm for 
weight optimization of CNN. The simulation experimental 
process tests the performance of IBSA algorithm and the 
recognition performance of IBSA-CNN in UCI dataset. 
Finally, we compare the recognition effect of this model with 
RNN and regional convolutional neural network (R-CNN) 
in the vehicle feature database BIT-Vehicle dataset, and the 
results show that this model has good recognition effect.

To further elaborate the implementation strategy, we 
structure the paper as follows: Section 2 describes the current 
research on vehicle recognition, Section 3 illustrates the 
principles of the bird swarm algorithm and convolutional 
neural network, Section 4 illustrates the convolutional neural 
network model based on the improved bird swarm algorithm, 
Section 5 illustrates the simulation experimental process to 
verify the effectiveness of the proposed model, and Section 6 
presents to conclusions of the paper.
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2  Related Knowledge

Vehicle feature recognition has received major attention 
from scholars’ in various countries, mainly including feature 
recognition based on a priori knowledge recognition, feature 
training recognition based on features and feature recognition 
based on artificial intelligence techniques.

In prior knowledge-based recognition, the candidate 
regions of the target are generated based on the prior 
knowledge of the target to be recognized, such as symmetric 
features [5], grayscale features [6] and other information 
inherent to the vehicle’s own feature attributes. Otsu [7] uses 
the threshold value automatically calculated by the maximum 
interclass variance method to filter out the possible location 
regions of vehicle taillights and then uses the HSV space to 
filter the nontaillight regions to complete the vehicle target 
recognition. Tan et al. [8] decides the pose and category of 
the target vehicle in the form of one-dimension with voting 
for the image gradient information in the traffic scene, which 
improves the effectiveness and robustness of recognition. 
Fung et al. [9] proposed estimating the 3D data of the target 
using monocular image sequences and the morphology of the 
vehicle using a four-stage state approximation method. The 
results illustrate that the vehicle area obtained by this method 
is almost the same as the actual size.

In feature-based training recognition methods, machine 
learning strategies are used because they can extract the 
implicit features and patterns in the input data, such as 
histograms of oriented gradients [10], Gabor features [11], 
support vector machines [12], the Waldboost method [13] 
and the AdaBoost method [14]. Leyrit et al. [15] proposed 
using target contour and texture instead of class Haar features 
to obtain deep-level feature information of samples by simple 
information description. Khammari et al. [16] proposed 
a gradient-based method and AdaBoost classification for 
vehicle detection and experimentally verified that it has better 
results when tested under different traffic scenarios. Broggi 
et al. [17] proposed an AdaBoost method with Haar feature 
decision tree stump composition of AdaBoost classifier in 
vehicle detection, and experiments illustrate that the strategy 
has better results in vehicle recognition on urban roads and 
high-speed roads. Sun et al. [18] uses a set of Gabor filters 
optimized specifically for vehicle detection tasks to improve 
the performance of road vehicle detection. Their experiments 
illustrate that the method has better results.

In artificial intelligence techniques, Collins et al. [19] 
used neural networks in the field of vehicle recognition. 
Dewangan et al .  [20] used vehicle images to train 
unsupervised neural networks to achieve better results in 
classifying vehicles. Maity et al. [21] proposed a better guide 
to use the R-CNN model on vehicle recognition. Charouh 
et al. [22] proposed a framework to reduce the complexity 
of CNN-based vehicle recognition methods by optimizing 
the number of convolutional operations of CNN through 
Background Subtraction, and simulation experiments 
illustrated that it can effectively reduce the computation of 
CNN models in scale vehicle dataset testing. Luo et al. [23] 
proposed a faster R-CNN based model, which combines NAS 
optimization and feature enrichment to achieve effective 

detection of multiscale vehicle targets in traffic scenes. Hu 
et al. [24] proposed a cascaded vehicle detection method 
with a multifeature fusion convolutional neural network, 
which extracts the features of local binary pattern of front 
vehicle, Haarlike and directional gradient histogram, and 
then performs principal component analysis downscaling and 
serial fusion on the input image, and simulation experiments 
illustrate the good robustness of the method. Ghosh et al. [25] 
used faster R-CNN with multiple region proposal networks 
(RPN) to detect and track road vehicles under different 
weather conditions. The ROI in this method is generated 
using several RPNs of different sizes, so it is able to detect 
vehicles of different sizes, and simulation experiments 
illustrate that this algorithm has advantages. Karungaru 
et al. [26] combines CNN with SVM and normalizes the 
features in SVM to improve the generalization ability of 
the model, and achieves better results in vehicle detection 
and classification in real road environments. Anandhalli 
et al. [27] proposes a method using TensorFlow fusion for 
vehicle detection and tracking. Their simulation experiments 
illustrate that the proposed algorithm has results of 90.88% 
detection accuracy. Soon et al. [28] proposed a strategy to 
optimize CNN parameters using particle swarm algorithm 
to minimize the variability in vehicle recognition training. 
Simulation experiments illustrated that the method has a good 
effect and the recognition rate reached 99.1%. Fu et al. [29] 
proposed a multiscale integrated feature fusion convolutional 
neural network (MCFF-CNN) based on residual learning for 
vehicle feature recognition. Their simulation experiments 
illustrate the good effect of the MCFF-CNN for vehicle color 
recognition in real traffic scenarios. Hsu et al. [30] proposes 
a simplified fast region-based convolutional neural network 
for vehicle detection; the neural network demonstrates 
good recognition effect in VTTI database. Kukreja et al. 
[31] proposes the use of a generative adversarial network 
algorithm to correct the problem of low accuracy of CNN 
and RNN in recognizing license plate numbers under noise 
interference. The simulation experiments illustrate that the 
algorithm achieves 99.39% accuracy in the recognition 
of license plates. Tourani et al. [32] proposes a method 
for vehicle detection based on CNN for video frames. 
The experimental results show that it takes only 74 ms on 
average to detect vehicles in real data, which has a good 
detection effect in terms of accuracy and execution time. 
Huang et al. [33] proposes a method for the recognition of 
vehicle manufacturer criteria using convolutional neural 
networks. Their simulation experiments illustrate that the 
method obtains a relatively high recognition rate. Kaur 
et al. [34] proposes an efficient system for license plate 
character recognition using CNN, and experiments illustrate 
that this proposed technique achieves an overall accuracy 
of 98.13%. Zhang et al. [35] proposes a new multiview 
convolutional neural network model (MV-CNN) method for 
vehicle driving behavior recognition, which is used in the 
behavior recognition of vehicle driving with six-axis motion 
sensors. Their experiments show that the method has a high 
recognition rate. There also exist some works about the 
neural architecture research in order to figure out the neural 
networks with the best performance [36-38]
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Reviewing these research results, we found that the 
use of various machine learning neural network algorithms 
has become the current research direction of scholars, so 
maximizing the function of neural networks for vehicle 
feature recognition has become an important direction of 
current research in the field of traffic intelligence. We start 
our research based on this direction.

3  Basic Algorithm

3.1 Bird Swarm Algorithm
Xian-Bing Meng’s algorithm is divided into the three 

components of foraging behavior, vigilance behavior and 
flight behavior according to the behavioral characteristics of 
the swarm. Therefore, we set the population size of the 
swarm algorithm in this paper as N  and the search space as 
the D  dimension,  so the posit ion of the i th bird 
( [1,2,..., ]i N∈ ) individual in the E dimension space is 

denoted as 1 2( , ,..., )D
i i i iX X X X= .

(1) Foraging behavior
Each bird foraged with its own experience and that of the 

whole population, and individual positions were updated as 
follows.

1
, , , , ,( ) ( ) .t t t t

i j i j i j i j j i jx x p x C rand g x S rand+ = + − × × + − × ×  (1)

where 1
,

t
i jx +  and ,

t
i jx  denote the position of the individual in 

the 1t +  and t  iterations of the i th bird in the j th 
dimension, respectively rand  denotes a random number 
between (0,1), C  and S  are the perceptual and social 
driving coefficients, respectively ,i jp  denotes the best 

position of the i th bird in the j th dimension, and jg  

denotes the best position of the whole population in the j th 
dimension.

(2) Vigilance behavior
In the process of flight, each individual bird is trying to 

move to the center of the whole population. In the process of 
moving, there will be inevitable competition and hindrance 
between individuals, so we set this behavior as alert behavior, 
and the individual position update formula under this 
behavior is as follows:

1
, , 1 ,

2 , ,

( )

( ) ,

t t t
i j i j j i j

t
k j i j

x x A mean x rand

A p x rand

+ = + × − ×

+ × − ×
                        (2)

1 1 exp( ),ipFit
A a N

sumFit ε
= × − ×

+
                                (3)

2 2 exp(( ) ),
| |

i k k

k i

pFit pFit N pFit
A a

pFit pFit sumFitε ε
− ×

= ×
− + +

       (4)

where jmean  denotes the mean position in dimension j , 

,k jp  denotes the position of the k th bird in dimension j , 

and k is a random positive integer between [1, ]N  and k i≠ . 

1a  and 2a  are constants between [0,2], ipFit  and kpFit  
denote the best fit values of the i th and k th birds, 
respectively sumFit  denotes the sum of the best fit values of 
the whole population, and ε  is a small constant with the 
denominator avoiding zero. 1A  denotes the indirect effect 
caused by the surrounding environment when the bird moves 
toward the population center, and 2A  denotes the direct effect 
caused by the specific disturbance when the bird moves 
toward the population center. When the fitness of individual 
k  is better than the fitness of individual i , it means that 
individual i  suffers from greater disturbance than individual 
k , and therefore individual k  may also move toward the 
population center.

(3) Flight behavior
During the flight, the swarm will fly to other places due 

to predation or other disturbances from outside, and when 
looking for food again, some individual birds will play the 
role of producers to find food, while others may play the role 
of beggars to follow the producers. Therefore, producers and 
beggars are defined as follows:

1
, , ,(0,1) ,t t t

i j i j i jx x randn x+ = + ×                                  (5)

1
, , , ,( ) ,t t t t

i j i j k j i jx x x x FL rand+ = + − × ×                       (6)

where (0,1)randn  is a Gaussian distribution with mean 0 and 

standard deviation 1. [1, ]k N∈ , k i≠ , and (0, 2]FL∈  are 
used to indicate that the beggar follows the producer in need 
of food, and the frequency of birds flying to other places is 
set to FL  and is a positive integer.

In Equation (5), we use the Gaussian distribution to 
express the characteristics of the flight behavior of the 
swarm; that is, (0,1)randn  denotes the Gaussian distribution 

with mean 0 and standard deviation 1, [1, ]k N∈ , and k i≠ . 
In Equation (6), FL  denotes the set value of the identity of 
the individual bird playing the role of a beggar, and 

(0, 2]FL∈ , while setting the frequency of the swarm flying 
to other places as rand .

3.2 Convolutional Neural Network
A convolutional neural network is a feedforward neural 

network that includes convolutional computation and has a 
deep structure. It is a multilayer neural network that consists 
of an input layer, convolutional layer, pooling layer, fully 
connected layer and output layer. In a convolutional neural 
network, the neurons in the latter layer take the local results 
of the previous layer as input so that some basic feature 
information can be obtained. These underlying features are 
used by the neurons in the higher layers, and the weights of 
each basic feature extractor are shared globally. When the 
original image is input to the network, the convolutional layer 
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is operated to obtain the feature map of the convolutional 
layer, the sampling layer reduces the resolution of the feature 
image by local averaging and sampling operations, and 
the semantic information is obtained by the convolutional 
pooling layer.

(1) Convolution layer
The convolution layer is the most important structure 

in the convolutional neural network, mainly for feature 
extraction of the original data input to the network, and 
multiple convolutional kernels are generally set in the 
convolutional layer, while the convolutional kernels are 
window sliding on the original image to provide more 
adequate features. In the neural network, discrete convolution 
is used, as shown in Equation (7):

 
0 0

( , ) ( , ) ( , ),
M N

i j
r m n f i j k m i n j

= =

= − −∑∑                     (7)

where ( , )r m n  denotes the new sequence of the convolution 

operation, ( , )f m n  denotes the sequence of the convolved 

signal, and ( , )k m n  denotes the convolution kernel matrix. 
The convolution operation in the image still follows the 
discrete convolution formula, and the neurons in each 
implicit layer share the weights and offset values of the 
convolution kernel, so the convolution operation formula of 
the convolution layer is as follows:

( ),
j

m m m m
j ij i j

i M
x f w x b

∈

= × +∑                                     (8)

where m
jx  denotes the j  feature maps of the output, f  

denotes the activation functions of the neurons in the hidden 
layer, jM  denotes the set of feature maps input to the 
convolutional layer m , w  denotes the shared weight matrix 
of the convolutional kernel, and b  denotes the bias term.

(2) Pooling layer
After the extraction of features in the convolutional layer, 

feature selection and filtering must be performed, which is 
the role of the pooling layer (Pooling layer), through the 
pooling operation to reduce the dimensionality of the feature 
map output from the convolutional layer. The role of the 
pooling layer is to keep the features unchanged, perform 
feature downscaling and prevent network model overfitting. 
The general expression of the output function of the pooling 
layer is as follows:

1 1 1( ( ) ),l l l l
j j j jX f w down X b+ + += × +                          (9)

where 1l
jX +  denotes the output after the pooling operation, 

( )down •  denotes the pooling type selected by the operation, 
l
jX  denotes the input feature mapping, and 1l

jw +  and 1l
jb +  

denote the weights and offsets selected by the pooling 
operation.

(3) Fully connected layer
The fully connected layer (FC) is the last part of the 

convolutional neural network, which aims to remap the 
convolutional neural network to the original image’s labeled 
space by a nonlinear combination of the implicit feature 
maps obtained through convolution and pooling operations. 
This is because all neuron nodes in the fully connected layer 
need to be connected with all the nodes in the previous layer 
so that the parameters in the layer are redundant to any of 
the previous layers, thus producing the phenomenon of 
network overfitting, which ensures that the fully connected 
layer can integrate the features obtained from the previous 
convolutional and pooling layers. Then, the learning process 
can be freely adjusted according to the damage function to 
achieve the purpose of classifying the target to complete the 
prediction.

4 Build A Convolutional Neural Network 
Based on An Improved Bird Swarm 
Algorithm

4.1 Improved Bird Swarm Algorithm
Similar to most metaheuristic algorithms, the bird 

swarm algorithm also has the tendency to fall into a local 
optimum, leading to premature convergence of the algorithm. 
If the bird swarm algorithm is directly used to optimize the 
parameters of convolutional neural networks, this cannot 
bring out the performance of convolutional neural networks, 
resulting in better results. Therefore, in this paper, the bird 
swarm algorithm is optimized in two aspects to improve 
the performance of the algorithm, and the following 
improvements are made to the bird swarm algorithm.

(1) Center  of  gravity-based reverse populat ion 
initialization

Initialization is very important for every metaheuristic 
algorithm, and it directly affects the quality of the solution 
to some extent. This is because the quality of the solution 
in the population comes from the qualification of both the 
search range and the starting position. When the initialized 
search range is set in a small range, it will limit the whole 
algorithm’s ability to find the best result, while when the 
initial position of the algorithm is located near the global 
optimal solution, it can ensure that the population finds 
more effective individual position information in a more 
high-quality solution space. The bird swarm algorithm uses 
the ordinary random method for population initialization, 
which cannot satisfy the above two requirements. To solve 
this problem, some scholars have used backward learning 
strategies for population initialization with some success, 
but backward learning has the disadvantage that the fitness 
value of the current solution is the same as the fitness value 
of its inverse solution when facing optimization problems 
containing “symmetric peaks” [39]. Therefore, to overcome 
this drawback, we use a discrete uniform center of gravity-
based backward learning strategy for population initialization. 
The expression is as follows:
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1
,

N

ij
i

C x N
=

= ∑                                                      (10)

,i ix C x= −                                                           (11)

where N  denotes the individual of the population, C  denotes 
the population center of gravity based on discrete uniformity, 
and ix  is the inverse of the center of gravity of ix . j  
denotes dimensionality.

(2) Optimization of foraging behavior based on similarity 
and aggregation

In the bird swarm algorithm in the late optimization 
process, the bird individuals in the swarm will gradually 
gather together, resulting in a certain similarity in the position 
of the swarm, which causes the bird swarm algorithm to 
easily fall into the local optimum in the late stage. To be 
able to effectively identify the position of the bird swarm 
individuals, we construct the similarity and aggregation 
degree, use the aggregation degree as an indicator to judge 
the diversity of the population in the process of foraging, and 
according to the diversity of the swarm the foraging position 
is automatically adjusted, which can allow the swarm 
individuals to successfully escape from the local optimum 
at a later stage and avoid falling into the local optimum. We 
use the distance between the positions of each bird in the 
swarm as an indicator to represent the similarity between the 
individuals of the swarm, and a larger difference in distance 
represents a higher degree of dispersion of the swarm, leading 
to a higher diversity, so that the similarity of individuals will 
be lower. The mathematical expression of similarity is as 
follows:

, , ,1 ( ) max | |.g u g d u dS x x ub lb= − − −                   (12)

In Equation. (12), ,g uS  denotes the distance between 

individual birds g  and u , ,g dx  and ,u dx  denote the location 
of the g th individual bird and the u th individual bird under 
the d -dimensional space, respectively, while ub  and lb , 
respectively. When the result of the ,g uS  value tends to 1, it 
indicates that the distance between individuals of the swarm 
is closer and thus the similarity is higher, while when the 
result of ,g uS  tends to 0, it indicates that the distance between 
individuals is farther and the similarity is lower, thus making 
the location distribution of individual birds in the search 
space wider.

In the optimization process of the swarming algorithm, 
the birds will gradually aggregate until they converge next to 
the optimal bird individuals, and we define the aggregation 
degree expression as shown in Equation (13):

,
1

( ) ,
N

i i pbest
i

c t S N
=

= ∑                                            (13)

where N  denotes the swarm size, t  is the number of current 
iterations, i  denotes the swarm individuals, and Pbest  
denotes the optimal individuals. Therefore, when the swarm 
is foraging collectively, each individual bird will gradually 
gather under the guidance of the local optimum and the 
whole group optimum, which tends to make the search 
interval where the algorithm is located gradually shrink, and 
once an individual bird finds the optimal food, this will result 
in a stagnant state; therefore, we optimize the foraging 
position by setting the aggregation threshold. Setting the 
threshold value as,  the expression of the location 
corresponding to foraging is shown in Equation (14):

, , ,

,1
,

, , ,

,

( )

     ( ) ( ( ) (1))
,

( )

     ( ) ( ( ) (1))

t t
i j i j i j

t
j i j i it

i j t t
i j i j i j

t
j i j i i

x p x C rand

g x S rand if c t c
x

x p x C rand

g x S rand if c t c

γ

γ

+

 + − × ×


+ − × × <= 
+ − × ×

 − − × × ≥

  (14)

4.2 Improved Bird Swarm Algorithm for Convolutional 
Neural Networks
Since the initial weights in convolutional neural 

networks are not sensitive enough, different parameters 
also lead to different performances of neural networks, 
which may lead to network oscillation without convergence 
or slow convergence, thus making the training time too 
long. Therefore, optimizing the weights becomes a reason 
for improvement. Since the metaheuristic optimization 
algorithm does not require gradient information, the 
number of parameters to be adjusted is small and it has a 
fast convergence speed, we propose a strategy based on the 
improved bird swarm algorithm for convolutional neural 
networks (IBSA-CNN), whose core idea is that when 
using the IBSA algorithm to train and adjust the weights of 
convolutional neural networks, the weights waiting to be 
trained need to be vector coded in a way that starts from the 
characteristics of the structured analysis parameters, input to 
the convolutional and pooling layers of the model, as shown 
in Figure 1 (assuming 4 convolutional layers and 2 pooling 
layers). In the vector coding approach, each individual bird 
swarm is viewed as a vector, and each vector represents a set 
of weights to be trained and adjusted by the convolutional 
neural network in the following way:

1 1 1 1 2
11 12 13 14 21

1 1 1
11 21 32

( ) [ , , , , ,..., ,

... , , ,... ].

c c c c c cn
KL

p p p pn
KL

Bird i ω ω ω ω ω ω

ω ω ω ω

=
             (15)

In Equation (15), i  denotes each individual bird swarm, 
and cn

KLω  and pn
KLω  denote the weights of the convolution 

kernel connecting the K th input neuron to the Gth output 
neuron in the n th convolutional layer and the n th pooling 
layer, respectively.
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Figure 1. Convolutional layer and pooling layer weights of 
the convolutional neural network

We treat each bird swarm individual encoding as an N
-dimensional vector, N  as the dimension representing the 
problem waiting to be processed, and N  size equal to the 
number of parameters of the whole convolutional neural 
network waiting to be trained for optimization. Finally, after 
determining the entire bird population size M , the encoding 
rule corresponding to the entire bird swarm algorithm is 
therefore the M N×  matrix of Equation (16). In the whole 
matrix, Ncn

KLω  and Npn
KLω  denote the weights of the Ith 

convolutional layer and the th pooling layer of the N th 
population, respectively. Therefore, we map the bird 
population individuals one by one into the weights and 
thresholds of each layer of the network after completing the 
encoding and matrix and calculate the mean square error 
generated by this neural network, as shown in (17).

1 1 1 1 1 1 1 1 1 2
11 12 13 14 21

1 1 1 1 1 1 1 1
11 21 32

2 1 2 1 2 1 2 1 2 2
11 12 13 14 21

2 2 1 2 1 2 1 2
11 21 32

1 1 1
11 12 13 14

, , , , ,...,

       ,... , , ,...

, , , , ,...,

       ,... , , ,...
....

, , ,

c c c c c

cn p p p pn
KL KL

c c c c c

cn p p p pn
KL KL

Mc Mc Mc

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω 1 2
21

1 1 1
11 21 32

.

, ,...,

        ,... , , ,...

Mc Mc

Mcn Mp Mp Mp Mpn
KL KL

ω

ω ω ω ω ω

 
 
 
 
 
 
 
 
 
 
 
 

                (16)

2

1 1

1 ( ) .
N H

ji ji
i j

E Y y
N = =

= −∑∑                                       (17)

In Equation (17), E  indicates the expected value, N  
indicates the number of input samples waiting to be 
recognized, H  indicates the number of neurons output by 
the output layer, jiY  denotes the expected output of the j th 

output node of the i th sample, and jiy  denotes the actual 

output of the j th output node of the i th sample. We use 
Equation (17) as the fitness function of IBSA, use the 

individual who finds the optimal weight as the weight of the 
convolutional neural network, and stop the calculation when 
the specified number of iterations or requirements are reached 
so that the optimal weight in the convolutional neural 
network can be found. The specific process is as follows.

4.3 Algorithm Steps
Step 1: Set the CNN general parameters, set the initial 

parameters of the bird swarm algorithm, set the number of 
iterations, and the population size.

Step 2: Adopt the reverse center of gravity strategy 
fo r  popu la t ion  in i t i a l i za t ion  o f  the  b i rd  swarm; 
Step 3: Adopt foraging behavior based on similarity and 
aggregation.

Step 4: Perform vigilance behavior and flight behavior.
Step 5: Obtain the optimal value of the individual bird 

swarm algorithm.
Step 6: Mapping the bird swarm individuals to the 

corresponding weights in the convolution and pooling layers 
through the correspondence principle and assigning them to 
the vectors in each layer by decoding.

Step 7: According to Equation (17), as the fitness function 
of bird swarm individuals, the calculated mean squared error 
is ranked by individuals.

Step 8: When the number of iterations meets the 
maximum number of iterations, the algorithm stops iterating 
and exits the algorithm loop, and the optimal solution 
obtained by the algorithm at this time is used as the weight 
parameter of the convolutional neural network; otherwise, it 
returns to step 3 to continue the execution.

5. Simulation Experiments

5.1 Algorithm Performance Test
Good algorithm performance is an important component 

to ensure the optimization of CNN model parameters and is 
also the key to vehicle feature recognition. We selected the 
Ant Colony Algorithm (ACO), Particle Swarm Optimization 
Algorithm (PSO), and BSA algorithm as comparison 
algorithms for testing, setting the number of iterations 
of the algorithm to 1,000 and the population size to 100. 
The parameters of the three algorithms were taken from 
the respective literature. Table 1 shows the six classical 
benchmark test functions, Table 2 shows the comparison of 
the four algorithms under different dimensions in the classical 
test functions, and we chose the maximum value, minimum 
value and variance as metrics for the comparison.

Table 1. Test function
No Function Test function

F1 Sphere 2

1
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n

i
i

f x x
=

= ∑

F2 Schwefel2.22
1 1

( ) | | | |
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i i
i i

f x x x
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Table 2. Optimization results of the four algorithms on 
different benchmark functions

Function Dimension Algorithm Minimum value Maximum value Standard deviation

F1

2
ACO 0.1298 6.1872 1.5328
PSO 0.1123    7.2918 1.1982
BSA 1.4521E-08 2.4214E-07 4.4912E-09
IBSA 1.9832E-13 1.1368E-10 1.7214E-16

5
ACO 0.3706 3.9823 2.1672
PSO 0.2873 5.1912 4.3251
BSA 1.2531E-07 5.1361E-06 1.2831E-11
IBSA 0 4.2316E-08 1.3138E-14

30
ACO 124.2624 341.4163 173.8124
PSO 132.3613 287.1238 211.7132
BSA 2.7392E+01 1.2412E+03 2.341E+00
IBSA 4.1733E+00 1.7634E+01 2.7123E+01

F2

2
ACO 1.2127 9.1435 5.3272
PSO 0.0001 0.0013 0.0009
BSA 1.9241E-06 6.1017E-03 9.3171E-04
IBSA 0 5.1872E-22 1.5121E-32

5
ACO 0.8474 4.1208 3.3816
PSO 0.0049 1.3204 0.2537
BSA 1.3261E-04 1.9112E-01 3.9013E-02
IBSA 1.2381E-08 6.7831E-06 1.1231E-06

30
ACO 4.4566E+02 1.7097E+05 2.4159E+04
PSO 14.0176 27.9770 20.0343
BSA 1.2481E-02 8.9183E+00 3.1829E+00
IBSA 3.1491E-10 2.5221E-13 5.7191E-11

F3

2
ACO 0.0322 1.4221 0.8491
PSO 4.0870E-11 3.0017E-08 3.1023E-09
BSA 6.4501E-13 2.2132E-08 3.8131E-05
IBSA 0 3.8132E-10 7.1923E-11

5
ACO 10.2218 101.4431 27.8113
PSO 0.0021 0.0114 0.0063
BSA 8.4133E-07 3.3813E-05 5.1433E-03
IBSA 1.2217E-12 5.1315E-09 1.2255E-08

30
ACO 1.1603 9.0237 4.9412
PSO 8.9233E-11 4.1614E-09 6.1345E-11
BSA 3.7172E-06 9.5131E-02 1.9132E-02
IBSA 4.6791E-11 2.8213E-07 5.0704E-08

F4

2
ACO 1.15782 8.8934 4.4321
PSO 2.4119E-05 1.1674E-03 1.8154E-08
BSA 9.1741E-07 2.3513E-03 4.1307E-02
IBSA 8.2783E-19 3.1281E-15 5.2268E-16

5
ACO 3.9816 18.9023 28.6431
PSO 0.0517 4.4865 2.8138
BSA 2.9321E-02 7.4451E-01 1.4127E-01
IBSA 0 3.0684E-02 4.8915E-03

30
ACO 83.2133 91.7246 23.4213
PSO 15.8924 40.1832 48.1162
BSA 6.4503E-01 1.7073E+00 2.2413E-01
IBSA 3.8151E-02 6.3174E-01 1.5901E-02

F5

2
ACO 31.1722 62.9212 21.5236
PSO 4.5137 7.8013 3.1916
BSA 7.3136E-08 2.3212E+00 3.4169E-01
IBSA 6.2673E-11 4.5916E-04 6.8130E-05

5
ACO 18.8482 13.9522 14.2712
PSO 11.8191 17.3633 36.1307
BSA 8.2972E-01 3.1381E+00 1.5091E+00
IBSA 1.6715E-03 3.1621E+00 8.8214E-01

30
ACO 514.0331 799.3512 745.4923
PSO 348.4001 590.2501 634.3001
BSA 2.9221E+01 9.8061E+02 2.6021E+02
IBSA 2.7931E+01 2.8936E+01 4.0616E-01

F6

2
ACO 1213.0169 1648.3712 4451.1354
PSO 1512.0236 1732.7834 1871.8934
BSA 5.7041E-10 9.9261E-04 1.9512E-04
IBSA 1.4129E-14 6.1279E-08 1.2117E-08

5
ACO 0.8832 0.9168 0.7932
PSO 0.7004 0.6665 0.1309
BSA 8.9971E-04 2.9293E-01 4.7751E-02
IBSA 1.3212E-07 2.6103E-02 4.9214E-02

30
ACO 2.2163 9.1312 5.2109
PSO 1414.9936 7125.0413 1313.3237
BSA 1.7138E+00 1.3214E+01 2.132E+00
IBSA 3.1926E-01 2.1913E+00 6.2812E-01

The comparison results of the four algorithms under 
three metrics with six classical benchmarking functions are 
shown in Table 3. We find that the algorithms in this paper 
obtain better results under different conditions of the number 
of dimensions. This also shows that our improvement for the 
algorithms has good results. Among the six tested functions, 
IBSA has better results in terms of minimum, maximum 
and variance compared with the other three algorithms. In 
particular, in F1-F4, the minimum value is actually 0 when 
the dimension is 2 and 5, respectively, which shows that the 
algorithm has better solution quality. In F5-F6, although 

it does not obtain 0, it still obtains good results in terms 
of minimum, maximum and variance. Through these test 
results, we found that the performance of the algorithm was 
significantly improved after the center of gravity reversal 
strategy for population initialization and the optimization 
of foraging behavior based on similarity and aggregation. 
This lays the foundation for the subsequent development of 
optimization of CNN parameters to improve the accuracy of 
CNN recognition.

5.2 Model Performance Testing
To better illustrate the performance of IBSA-CNN, we 

chose the standard UCI dataset [40] to complete a simulation 
experiment in which we chose the UCI wine quality 
evaluation dataset [41]. This dataset collected 12 parameters: 
fixed acidity, volatile acidity, citric acid, residual sugar, 
chlorides, free sulfur dioxide, total sulfur dioxide, density, 
and pH. The experimental platform was used the Linux 
Ubuntu operating system with the Caffe framework, Core I5 
CPU, 16GDDR memory and 1T hard disk.

We set the number of layers of the convolutional neural 
network to six, with one input and fully connected output 
layer, two convolutional layers and two pooling layers. 
Twelve different types of wine parameters were input into 
the neural network, and the output was coded using a four-bit 
binary code to reflect the wine quality level. The results are 
shown in Table 3.

Table 3. Comparison of some test data
Result output CNN IBSA-CNN
1 0 0 1 0.816 0.000 0.000 0.837 0.912 0.000 0.000 1.000

1 1 1 0 1.000 1.000 1.000 0.023 1.000 1.000 0.693 0.000

0 1 1 1 0.024 1.000 1.000 1.000 0.000 0.987 1.000 1.000

1 0 0 1 1.000 0.028 0.003 1.000 1.000 0.000 0.112 0.967

1 1 0 0 1.000 0.879 0.001 0.000 1.000 1.000 0.000 0.000

0 0 0 1 0.000 0.000 0.001 0.998 0.000 0.014 0.000 1.000

1 0 1 0 0.819 0.000 1.000 0.001 0.987 0.000 1.000 0.000

    
We used the traditional CNN model and the IBSA-CNN 

model in our experiments, and from the results in Table 1, 
the correct rate of the network evaluation of CNN reached 
57.14%, while the correct rate of IBSA-CNN reached 75%. 
To evaluate the effect of measuring the correct rate, we 
modified the results of this experiment based on the existing 
evaluation criteria, and the evaluation formula is as follows:

1 1 2 2 3 3 4 4| | | | | | | | .Y y Y y Y y Y y T− + − + − + − ≤    (18)

We use NY  in Eq. (18) to denote the number of binary 
bits expected to be output in the network and ny  to denote 
the actual computed output by training at bit n . T  denotes 
the error tolerance value, and we determine the result when 
the error value between the two is less than the error 
tolerance value. The closer E is to 0, the more accurate the 
result is.
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Figure 2. Comparison of the mean square deviation of the 
two algorithms

Figure 2 shows the comparison results of the mean 
squared deviation of CNN and IBSA-CNN, from which 
is found that both algorithms show a gradually decreasing 
trend at the same number of iterations, but IBSA-CNN 
clearly outperforms CNN, especially in the same number 
of iterations. IBSA-CNN outperforms CNN in both, which 
shows that the convergence speed of IBSA-CNN is better 
compared to CNN and the network handles the problem more 
accurately. Therefore, it shows that IBSA-CNN has more 
obvious advantages.

5.3 Vehicle Feature Recognition
To illustrate the effectiveness of the algorithms in this 

paper, we use the vehicle images from the BIT-Vehicle 
dataset provided in the literature [42] as the image library, 
which contains a total of six types of vehicles: sedan, SUV, 
truck, bus, microbus and minivan. The comparison algorithms 
we choose are CNN and R-CNN. Figure 3 shows some of the 
vehicle images in these data. We divide the 9,850 images in 
this database into two parts and allocate the training dataset 
and test training dataset according to 6:4. Among these, 5,910 
vehicle sample images are used as training datasets, which 
are used to train the models of the three neural networks. The 
remaining 3,490 vehicle images are used as test datasets to 
test the comparison of the effects of the three network models 
completed by the network training.

  

(a) Suv (b) Sedan

 

(c) Microbus (d) Bus
Figure 3. Some images in the database

We calculate the recall rate (R), accuracy rate (P), average 
precision (AP) value for a single target and mean average 
precision (mAP). We choose the performance metrics AP 
and mAP for the analysis basis. The expressions of several 
metrics are as follows:
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+
                                                        (19)
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In Equations (19) and (20), pT  indicates the number of 

positive samples correctly identified, pF  indicates the 

number of negative samples misclassified as positive, nF  
indicates the number of positive samples misclassified as 
negative, and n  indicates the number of all samples labeled 
as positive. Equation (21) expresses the value of mAP . 
Equation (22), (0,0.1,0.2,......,1)re , denotes the 11 threshold 
points set, so when the recall R  is greater than these 11 
threshold points, each recall corresponds to a maximum 
accuracy P , that is, Equation (23), so according to the 
average of these 11 points, accuracy P  is the value of AP.

Figure 4. Comparison of the mAP of the three algorithms
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Figure 5. Comparison of the loss functions of the three 
algorithms

We use the produced vehicle dataset to train the R-CNN, 
CNN and IBSA-CNN in this study. Figure 4 shows the mAP 
effect of the three models for vehicle recognition The figure 
shows that as the number of iterations gradually increases, 
the results of the mAP of the three models increase to 
different degrees. The accuracy of the IBSA-CNN compared 
to the CNN and R-CNN is significant, which shows that the 
IBSA-CNN has better results in vehicle recognition. Figure 
5 shows the results of the three models for the vehicle loss 
function, which shows that the IBSA-CNN has the least 
loss and the model has a faster learning ability and is the 
first to reach model convergence, while the CNN model 
has a slower convergence rate and a higher loss. Table 4 
shows the recognition results of different neural network 
models for each of the six vehicle categories, illustrating that 
IBSA-CNN improves 4.9% compared to R-CNN and 6.8% 
compared to CNN in terms of recognition results in the data. 
Figure 6 shows the Precision-Recall curves of six kinds of car 
feature recognition. The results from six different car models 
show that the Precision values of all three algorithms exhibit 
a gradual decrease as the Recall values gradually increase, 
but IBSA-CNN has better results compared with CNN and 
R-CNN, which shows that IBSA-CNN has better recognition 
results.

Table 4. Recognition effects of different convolutional neural 
network models

Network 
structure

Sedan Suv Truck Bus Microbus Minivan mAP

CNN 0.811 0.829 0.831 0.832 0.812 0.808 0.821

R-CNN 0.83 0.841 0.843 0.861 0.833 0.81 0.836

IBSA-
CNN

0.87 0.882 0.872 0.892 0.863 0.882 0.877
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(f) Microbus
Figure 6. P-R curve value

6. Conclusion

To address the problems of local  optima,  s low 
convergence and weak generalization ability of CNNs, we 
propose an improved strategy for the bird swarm algorithm 

to optimize the weights of convolutional and pooling layers 
in convolutional neural networks. We use a center of gravity 
backward learning strategy in population initialization to 
improve individual diversity and an optimization strategy 
based on similarity and aggregation in foraging behavior to 
prevent the bird swarm algorithm from falling into a local 
optimum, which improves the algorithm performance. In the 
simulation experiments, we compare CNN and R-CNN in 
the BIT-Vehicle dataset. The test results illustrate that IBSA-
CNN has better vehicle feature recognition.
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