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Abstract 

The kernel adaptive filter (KAF), which processes data 
in the reproducing kernel Hilbert space (RKHS), can im-
prove the performance of conventional adaptive filters in 
nonlinear systems. However, the presence of impulse noise 
can seriously degrade the performance of KAF. In this paper, 
we propose a kernel modified-sign least-mean-square algo-
rithm (KMSLMS) to mitigate the impact of impulse noise in 
communication systems. Moreover, we apply the nearest-in-
stance-centroid estimation (NICE) algorithm to reduce the 
computational complexity of our KMSLMS algorithm, called 
the NICE-KMSLMS algorithm. Finally, computer simula-
tions were used to evaluate the effectiveness of our proposed 
method. Compared with the conventional kernel least-mean-
square algorithm (KLMS), our proposed method can improve 
the testing mean-squared error (MSE) by 2.32 dB and 7.39 
dB for the nonlinear channel equalization and Mackey-Glass 
chaotic time series prediction problems, respectively. Fur-
thermore, the testing MSE degradation caused by combining 
the NICE algorithm with our KMSLMS algorithm is negli-
gible but can save about 55% computational cost in terms of 
the required mean size.

Keywords: Impulse noise, Kernel least-mean-square (KLMS) 
algorithm, Nearest-instance-centroid estimation (NICE), 
Nonlinear system

1  Introduction

Various filtering algorithms have been widely used in 
communication systems [1-3], but conventional linear filter-
ing algorithms can only work in linear systems, and commu-
nication systems in practical problems are often nonlinear.
Many nonlinear adaptive filtering algorithms, such as the 
adaptive filter based on the genetic algorithm [4], the digital 
noise reduction scheme [5], the Volterra model based on the 
Volterra series [6], and the communication systems based on 
deep learning [7], were proposed to solve the issue. However, 
these nonlinear filtering models have problems, such as high 
complexity, unstable convergence, and difficulty determin-
ing the proper order. Therefore, how to design a stable and 
reliable nonlinear adaptive filtering algorithm has practical 
significance.

Recently, the kernel adaptive filter (KAF) has been pro-
posed, which filters data in reproducing kernel Hilbert spaces 
with a linear structure but implements nonlinear filtering for 
the input space to deal with nonlinear filtering problems. 
The main idea of the kernel method (KM) [8] is to convert 
the computation of the inner product in high-dimensional 
feature space to the calculation of kernel function in input 
space. Moreover, KM has been successfully introduced into 
machine learning and nonlinear estimation, proving KM’s 
superior performance in dealing with nonlinear problems. 
However, two drawbacks need to be solved for the KAF-
based algorithms. Firstly, the computational complexity of 
the KAF algorithms is too high. The complicated structure 
of KAF increases linearly with the amount of input data and 
thus seriously restricts its practical value. Many sparsifica-
tion techniques have been proposed to reduce the necessary 
computational costs, such as the novelty criterion (NC) [9], 
the data-selective approach [10], and the K-means clustering 
method [11]. Although these sparsification techniques can 
effectively reduce computational complexity, these methods 
may significantly decrease the convergence accuracy. In this 
case, the nearest-instance-centroid estimation (NICE) has 
been proposed [12] to deal with this issue. NICE uses the 
predefined distance threshold to determine the number of 
clusters, so the final sparse filtering network can effectively 
reduce the computational complexity of the accounting meth-
od. However, an inappropriate clustering formation could be 
done in the presence of impulse noise. Secondly, the presence 
of impulse noise can significantly degrade the performance 
of the KAF. Moreover, impulse noise is far more destructive 
than other noise in high-quality digital communication [13]. 
Thus, it is necessary to design a KAF against impulse noise; 
little literature has dealt with this problem to the best of the 
author’s knowledge. Applying the sign function to error 
signals to mitigate the impact of the impulse noise has been 
widely used [14-15]. However, the sign function may cause 
a slow convergence rate. In this paper, we propose using a 
modified sign (MS) function to deal with the impulse noise’s 
impact and apply it to the kernel least-mean-square algorithm 
(hereinafter referred to as the KMSLMS algorithm). More-
over, we combine the concept of the NICE method with our 
KMLMS (hereinafter referred to as the NICE-KMSLMS 
algorithm) to reduce the computational complexity of the 
KMSLMS algorithm. The effectiveness of our proposed 



358  Journal of Internet Technology Vol. 24 No. 2, March 2023

method was evaluated by nonlinear channel equalization and 
chaotic time serious prediction problem.

The remainder of this paper is organized as follows. 
Section 2 describes the system model. Section 3 outlines the 
proposed KMSLMS algorithm and the NICE-KMSLMS al-
gorithm. Section 4 presents two numerical simulation results 
to confirm the effectiveness of our proposed method. Finally, 
conclusions are drawn in Section 5.

2  System Models

Figure 1. System model of a nonlinear adaptive filtering 
problem

Figure 1 illustrates the system model of a nonlinear adap-
tive filtering problem. The input of the adaptive filter (x(i)) 
can be expressed as follow:

         ( )( ) ( ) ( )x i g u i iη= + ,                                                  (1)

where i is the time index; u(i)denotes the input of a nonlinear 
function g(∙); the output of g(u(i)) is corrupted by an additive 
impulse noise η(i), which can be modeled as follows:

          ( ) ( ) ( )i i iη ζ ρ= ⋅ ,                                                        (2)

where ζ(i) is a Bernoulli random variable with the success 
probability pc, i.e., p[ζ(i) = 1] = pc and p[ζ(i) = 0] = 1− pc; ρ(i)
is a continuously uniformly distributed random variable with 
range [−L, L].

The adaptive update weight aims at adjusting our pro-
posed NICE-KMSLMS filter so that the error signal e(i), can 
be minimized in the minimum mean square error (MMSE) 
sense. The error signal can be expressed as follow:

         ( )ˆ( ) ( ) ( )e i d i f i= − x ,                                                 (3)

where d(i) denotes the desired signal and ( )ˆ ( )f ix  is the out-
put of the adaptive filter.

3  Proposed Method

3.1 KMSLMS Algorithm
Inspired by the conventional error-sign LMS algorithm, 

we devise a modified sign function to mitigate the impact of 
impulse noise for the KLMS algorithm. The proposed modi-
fied sign function MS(∙) of e(i) can be expressed as follows:

sgn[ ( )] , if ( )
( ( ))

( ) (1 )sgn[ ( )] ,otherwise
e i e i

MS e i
e i e i

γ β
δ δ
 ≥

= 
+ −

    (4)

where sgn(∙) denotes the sign function. Note that the pa-
rameter γ can balance the resulting convergence rate and 
accuracy when the value of |e(i)| is greater than a predeter-
mined threshold β; on the other hand, we combine e(i) with  
sgn[e(i)] via linear interpolation; the combination parameter 
δ is a positive value (less than one). The function curve of the 
proposed MS function is depicted in Figure 2.

Figure 2. The proposed modified sign (MS) function curve

Next, we evolve the KMSLMS algorithm by replacing 
the e(i) with MS(e(i)) as follows: 

         ( )( ) ( 1) ( ( )) ( )i i MS e i iµ ϕ= − +w w x ,                          (5)

where w(i) denotes the estimate of the weight vector in fea-
ture space induced by the kernel mapping φ(∙); μ is the step 
size. By iteratively replacing i with i − 1, We can further re-
write Eq. (5) as follows:
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Note that the last equality holds if we assume the initial 
weight vector w(0) = 0. At the end of the training phase, the 
weight estimation at time i, the output of the system to a new 
input x' can be expressed as follows:
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Assumed that a Gaussian kernel is adopted as the kernel 
function, the proposed KMSLMS algorithm can be expressed 
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as follows:

1
2

1

ˆ ( ( )) ( 1)exp( ( ) ( ) ),
i

j
j

f x i i A x i x jα
−

=

= − − −∑               (8)

where ˆ ( )f ⋅  denotes the estimation of the nonlinear mapping; 
αj (i − 1) is the j -th component of the vector α (i − 1); A is a 
kernel parameter, which is used to adjust the Gaussian kernel 
size. Note that the new component of α(i) is the coefficient  
μMS(e(i)) with the error signal ˆ( ) ( ) ( ( ))e i d i f i= − x .

3.2 NICE-KMSLMS Algorithm
From Eq. (8), we can observe that one of the main draw-

backs of the kernel adaptive filtering algorithm is the high 
computational complexity. The size of the structure α(i) 
grows for each new sample. The nearest-instance-centroid-es-
timation (NICE) algorithm introduces the concept of online 
clustering into the process of selecting dictionaries to reduce 
the computational complexity involved in Eq. (8). We denote 
a set of a cluster as C = {C1, C2,...,C|C|} , where |C| represents 
the number of clusters in the set. The number of elements 
within the j -th cluster is denoted as Zj. The distance between 
the input x(i) and the nearest cluster is as follows:

    
2

min 1
min ( )

j
d i

< <
= − jC

x c ,                                              (9)

where jc  represent the centroid of the j -th cluster. Let the 
index of the nearest cluster for x(i) be j*, which can be 
expressed as follows:

  
2*

1
arg min ( )

j
j i

< <
= − j

C
x c .                                           (10)

If dmin < dc, the new input x(i) is joined its nearest Cj*. 
Note that the value of the threshold dc can be chosen from the 
range (0,3 / 2A] . In this case, the centroid of the j* -th 

cluster *( ( ))i
j

c  is updated as follows:
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Note that the size of the j* -th cluster will be added by 
one after the new input x(i) joined. On the other hand, a 
new cluster will be formed if dmin > dc holds. The initial size 
of the newly formed cluster is one, and its initial centroid 
is x(i). Therefore, Eq. (8) can be calculated with fewer 
computational resources as follows:

      *
( ) ( ) 2

*1 *
ˆ ( ( )) exp( ( ) ),j

lZ l
jl j

f i A C ix xα
=

= − −∑                (12)

where ( )
*
l

jα  denotes the weight of the  -th element within the 

j* -th cluster ( *
( )
j
C ). Table 1 summarizes the proposed NICE-

KMSLMS. Note that the proposed modified sign function 
significantly affects the weight values associated with the j* 
-th cluster.

Table 1.  Proposed NICE-KMSLMS algorithm
Initialization:
The centroid distance threshold and: dc 
The kernel parameter: A
The learning rate: μ 
The initial weight: α1 − [μd(1)]
Set of the clusters: C = {C1}

The centroid of the first cluster: (1)= x1c

The size of the first cluster: Z1 − 1
The initial cluster: C1 = {x(1)}
Computation:
while {x(i), d(i)} available do 

        Compute the minimum centroid distance
2

min 1
min ( )d i
< <

= − jC
x c

Select the nearest-neighbor cluster
2

1
arg min ( )

j
j i∗

< <
= − j

C
x c

        Compute the output 
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        Nearest-Instance-Centroid-Estimation:
        If dmin < dc then 
            Update the weights of filter j*

                * *[ , ( ( ))]
j j

MS e iα α µ=

            Update the cluster j*:
                * *{ , ( )}

j j
C C x i=

Update the centroid and size of the j* -th cluster: 
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            else
            Form a new cluster
            C|c|+1 = {x(i)}

Set the centroid and size for the new cluster:

1 ( )i+ =Cc x , 1 1Z + =C

The weight of the newly formed cluster:

*
( )

1 j1
( ( ))j

Z

l
MS e iµ∗

+ =
 = + ∑ 

Cáá

            Cluster Updating: 
C = {C, C|C|+1}

         end
end while
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4  Simulation and Analysis

To verify the superiority of the NICE-KMSLMS algo-
rithm, we have conducted simulations for the nonlinear chan-
nel equalization and chaotic time series prediction problems, 
in which the observed data was contaminated by impulse 
noise η(i). The occurrence probability and strength are cho-
sen as pc = 0.05 and L = 6, respectively (see Eq. (2)). The 
performance metric to assess the performance of adaptive 
filters is testing mean-square-error (MSE); the computational 
complexity was evaluated by using the mean size, which is 
the average number of centers within clusters [12]. In addi-
tion, we use the execution time for various adaptive filtering 
algorithms to evaluate the computational cost. Three compa-
rable works were considered in the simulations: LMS, KLMS 
[16], and NICE-KLMS [12]. The statistics of all performance 
metrics were calculated by averaging over 100 independent 
Monte Carlo simulations. We generate 3,000 and 150 data as 
training and testing data, respectively. We select the average 
of the last 100 testing MSEs in the simulations to measure 
convergence accuracy. The testing MSE can be calculated as 
follows [17]:

2

1 1

1 1 ˆTesting MSE ( ) ( )
m n

i j
j j

m n= =


= −


 
 

∑ ∑ x x ,           (13)

where ˆ( )x j  is the estimation of x(j); n and m denote the 
numbers of testing data and Monte Carlo simulations, 
respectively.

4.1 Case-1: Nonlinear Channel Equalization Problem
Figure 3 illustrates the system model of the nonlinear 

channel equalization problem. The desired signal d(i) is the 
time delay of the input signal u(i), which is +1 or −1 with 
equal probability. The time delay was set as two in case-1. In 
this simulation, the transfer function of the system model is 
set as follows:

 1( ) 1 0.5H z z−= + .                                                     (14)

Figure 3. System model of a nonlinear channel equalization 
problem

The observed data at the output of the nonlinear channel 
x(i) can be modeled as follows:

  2 30( ) ( ) 0 .15 ( ) (7 ( ). )x i s ii s i s iη+ += − .                    (15)

We use an exhaustive search method to choose suitable 
parameters for δ and β to achieve the lower values of the 

testing MSE in case-1. Table 2 and Table 3 summarize part of 
the evaluation results on case-1 with various values of δ and 
β, respectively. Eventually, we choose δ = 0.8 and β = 2.67 
for case-1.

Table 2. The testing MSE of NICE-KMSLMS on case-1 with 
various δ
δ 0.1 0.3 0.5 0.7 0.9
Testing MSE (x10-1) 3.94 3.77 3.49 2.82 3.20

Table 3. The testing MSE of NICE-KMSLMS on case-1 with 
various β
β 0.5 1.5 2.5 3.5 4.5
Testing MSE (x10-1) 4.19 3.38 2.42 3.22 3.73 

Figure 4 illustrates the learning curves for various 
adaptive algorithms. Obviously, the conventional linear LMS 
algorithm diverged during the adaptation processes. Although 
the KLMS and NICE-KLMS converged, the impulse noise 
can seriously degrade the resulting testing MSE. However, 
our proposed KMSLMS significantly outperforms these 
related works. It can confirm that our proposed modified sign 
method can effectively combat the impulse noise in this case. 
The resulting testing MSE improvements over the KLMS are 
2.32 dB on average (from 0.4079 to 0.2391). Compared with 
the KMSLMS algorithm, its low-complexity version (i.e., 
NICE-KMSLMS) has a negligible performance loss (0.0021 
dB, from 0.2412 to 0.2391) but can reduce the mean size 
of clusters by 55.59% (from 3204.2 to 1423.1) on average. 
Table 4 summarizes the comparison results.

Figure 4. The learning curves comparisons in case-1 with μ 
= 0.31, A = 0.2, dc = 2.96, and γ = 3.0

Table 4. Comparison results for case-1
Algorithm Mean size Time Testing MSE
LMS - 11.8s -
KLMS 2300.0 38.2s 0.4079
NICE-KLMS 1071.4 17.9s 0.4247
KMSLMS 3204.2 46.1s 0.2391
NICE-KMSLMS 1423.1 19.2s 0.2412

4.2 Case-2: Mackey-Glass (MG) Chaotic Time Series 
Prediction Problem
In this case, the short-term prediction of the Mackey-

Glass (MG) chaotic time series was used further to evaluate 
the superiority of the proposed NICE-KMSLMS algorithm. 
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The chaotic time series u(t) are generated according to the 
time-delay ordinary differential equation [18] as follows:

 [ ]10

( ) ( )( )
1 ( )

du t au tbu t
dt u t

τ
τ

−
= − +

+ −
,                              (16)

where a = 0.2, b = 0.1 and τ = 20. The time series are sampled 
for a period of eight seconds. In this case, the contaminated 
input vector x(i) = [u(i − 10) + η(i − 10), u(i − 9) + η(i − 9), 
..., u(i − 1) + η(i − 1) (i.e., the filter length is 10) was used to 
predict the desired data u(i) at time i.

Similar to case-1, Table 5 and Table 6 summarize part of 
the evaluation results on case-2 with various values of δ and 
β, respectively. In this case, we choose δ = 0.6 and β = 1.74. 
Figure 5 depicts the learning curves for various adaptive 
algorithms. Again, the conventional linear LMS algorithm 
cannot converge well during the adaptation processes. 
However, our proposed KMSLMS still significantly 
outperforms these related works in this case. The resulting 
testing MSE improvements over the KLMS are 7.39 dB 
on average (from 0.0263 to 0.0048). Compared with the 
KMSLMS algorithm, the NICE-KMSLMS algorithm has 
an insignificant performance loss (0.59 dB, from 0.0055 to 
0.0048) but can lower the mean size of clusters by 54.55% 
(from 2364.6 to 1074.6) on average. Table 7 summarizes the 
comparison results.

Figure 5. The learning curves comparisons in case-2 with μ 
= 0.23, A = 0.8, dc = 1.53, and γ = 2.0

Table 5. The testing MSE of NICE-KMSLMS on case-2 with 
various δ
δ 0.1 0.3 0.5 0.7 0.9
Testing MSE (x10-3) 15.7 14.0 7.2 9.2 22.4

Table 6. The testing MSE of NICE-KMSLMS on case-2 with 
various β
β 0.5 1.5 2.5 3.5 4.5
Testing MSE (x10-3) 17.3 6.2 14.8 19.2 22.7 

Table 7. Comparison results for case-2
Algorithm Mean size Time Testing MSE
LMS - 7.2s -
KLMS 1769.2 26.2s 0.0263
NICE-KLMS 723.8 12.1s 0.0271
KMSLMS 2364.6 31.9s 0.0048
NICE-KMSLMS 1074.6 14.7s 0.0055

5  Conclusions

In this paper, we devise a modified sign (MS) function 
and apply it to the KLMS algorithm to combat the impact 
caused by the impulse noise during the adaptation process.

Moreover, the MS function makes a better cluster 
formation in the presence of the impulse noise in the NICE-
KMSLMS algorithm. Simulation results show that our 
KMSLMS algorithm improves the averaged testing MSE by 
2.32 dB and 7.39 dB for the nonlinear channel equalization 
and MG chaotic time series prediction problems, respectively. 
In addition, the combination of NICE and KMSLMS results 
in inconsiderable performance loss but gains a computational 
saving of about 55% in both problems. However, the 
limitation of this work is the lack of an adaptation process 
to determine the optimal parameters of the MS function. 
Our further work is to optimize the values of δ and β of the 
proposed MS function via systematic approaches.
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