
The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   345

*Corresponding Author: Deris Stiawan; E-mail: deris@unsri.ac.id
DOI: 10.53106/160792642023032402013

The Development of an Internet of Things (IoT) Network Traffic Dataset 
with Simulated Attack Data

Deris Stiawan1*, Dimas Wahyudi1, Tri Wanda Septian1, Mohd Yazid Idris2, Rahmat Budiarto3

1 Faculty of Computer Science, Universitas Sriwijaya, Indonesia
2 Faculty of Computing, Universiti Teknologi Malaysia, Malaysia

3 College of Computer Science and Information Technology, Al Baha University, Saudi Arabia
deris@unsri.ac.id, mail.dimaswahyudi@gmail.com, twseptian@unsri.ac.id, yazid@utm.my, rahmat@bu.edu.sa

Abstract

Due to the complexity and multifaceted nature of Internet 
of Things (IoT) networks/systems, researchers in the field 
of IoT network security complain about the rareness of real 
life-based datasets and the limitation of heterogeneous of 
communication protocols used in the datasets. There are 
a number of datasets publicly available such as DARPA, 
Twente, ISCX2012, ADFA, CIC-IDS2017, CSE-CIC-
IDS2018, CIC-DDOS2019, MQTT-IoT-IDS-2020, and 
UNSW-NB15 that have been used by researchers to evaluate 
performance of the Intrusion Detection Systems (IDSs), 
nevertheless, the datasets creation are not based on real-
life scenarios and rely only on one communication protocol. 
This paper produces a dataset that is created using real-
life scenarios. The data are captured from an IoT test-bed 
network consists of six sensors running IEEE 802.11 (WiFi) 
and IEEE 802.15.4 (ZigBee) communication protocols and 
considering normal as well as attacks traffics. Furthermore, 
the robustness of the dataset for recognizing the types of data 
traffics is evaluated using Intrusion Detection Engine (IDE) 
with Naïve String Matching. The experiments on dataset 
robustness show promising results, i.e.: Accuracy level of 
99.92%, Precision of 100%, False Positive Rate (FPR) of 0, 
and False Negative Rate (FPR) of 0.0869.

Keywords: IDS Dataset, Internet of Things (IoT), IEEE 
802.11 (WiFi), IEEE 802.15.4 (ZigBee)

1  Introduction

The Internet of Things (IoT) integrates several identifying 
devices, sensing, and communication technologies, such 
as Radio Frequency Identification (RFID) tags, sensors, 
actuators, cell phones, and others cable/wireless devices via 
unique addressing schemes with standard communication 
protocols [1-2]. A growing number of heteregeneous IoT 
devices and services and their more widespread distribution 
have made IoT security more complex and challenging [3].

A main challenge in an IoT system implementation is 
security issues, such as privacy, authorization, verification, 
access control, system configuration, storage and information 
management [4-5]. An Intrusion Detection System (IDS) 

plays an important role in the network security defense by 
warning the security administrator about malicious behaviors 
such as intrusions, attacks, and malware. The IDS domain has 
evolved over the years with better systems. However, many 
researchers yet have difficulty in finding comprehensive 
and valid datasets for testing and evaluating their proposed 
techniques [6-7]. A useful dataset must meet certain criteria. 
There are 11 characteristics for a comprehensive and valid 
IDS dataset, i.e.: diversity of attacks, anonymity, available 
protocols, complete catches, complete interactions, complete 
network configurations, complete traffic, feature sets, 
heterogeneity, labeling, and  metadata [8].

Our contribution is the creation of a heterogenous IoT 
network/system dataset for various end devices (Arduino, 
Raspberry Pi, WeMos D1, etc.), sensors (DHT-11, DHT-
22, FC-28, K-0135, MQ-2, etc.), communication protocols, 
and different types of denial of service (DoS) and distributed 
denial of service (DDoS) attacks. 

2  Problem Formulation

The proposed dataset will be used to test and evaluate 
detection techniques against an intrusion. There are several 
datasets which have been used in IDS research, however 
some of these dataset do not support research domain in the 
IoT network security field [9-10]. Here, we have listed some 
of these datasets which were used in testing the simulation 
and the IDS validation, in order to show the actual needs on 
comprehensive datasets.

Defense Advanced Research Projects Agency 
(DARPA): This dataset, which was developed by MIT’s 
Lincoln Laboratory, contains normal and attacks traffic 
data in a simulated experimental environment. Services 
considered in this dataset include: Simple Mail Transfer 
Protocol (SMTP), File Transfer Protocol (FTP), Telnet, 
Internet Relay Chat (IRC), and Simple Network Management 
Protocol (SNMP). The dataset contains attacks such as DoS, 
guess passwords, buffer overflow, remote FTP, “synchronize” 
(SYN) flood, Nmap, and rootkit. This dataset does not 
represent real-world network traffic. Simulation attacks are 
carried out over several networks. The attack process is 
grouped into 5 attack phases as follows. First, a scanning 
process is carried out on the network to find target host, after 



346  Journal of Internet Technology Vol. 24 No. 2, March 2023

finding a loophole, a breach is made to entering the host by 
exploiting the Solaris sadmind vulnerability. Then, installing 
the mstream DDoS trojan software, and launching a DDoS 
attack on a server outside the network from the compromised 
host. In addition, the dataset is obsolete for an effective IDS 
evaluation of a modern network, both in terms of attack types 
and network infrastructure. Unfortunately, the dataset does 
not have real traffic history.

Twente (University of Twente, 2009): This dataset 
includes three services (Open Secure Socket Shell 
(OpenSSH),  Apache web server and Proftp) using 
authentication/identification on port 113 and data are 
extracted from a honeypot network by Netflow. It includes 
some simultaneous network traffics such as authentication/
identification, Internet Control Message Protocol (ICMP), 
and IRC traffic. Additionally, this dataset contains some 
unrecognized and non-correlated warning traffic. The 
simulation process is carried out by running a honeypot 
installed on a Citrix XenServer virtual machine. The 
selection of a honeypot as a virtual host is due to the 
flexibility to install, configure and restore virtual machines 
if compromised. In addition, compromised virtual machines 
can be saved for further analysis. Various scenarios are 
possible, in terms of number of virtual machines, operating 
systems and software. The experimental setup consists of a 
single virtual machine, namely Debian Etch 4.0. To keep the 
setup simple, controllable, and realistic, it does not rely on 
honeypot software, but configure the host manually [11]. The 
attack data volume is very limited.

ISCX2012 (University of New Brunswick, 2012): 
The attack simulation was carried out using a single 
layer 3 switch (Omniswitch 6850). A virtual Local Area 
Network is configured on the Switch to capture almost all 
communication between all machines.  This dataset has two 
profiles. The alpha profile performs a variety of multi-stage 
attack scenarios. The beta profile, which is the normal traffic 
generator, creates realistic network traffic for the Hypertext 
Transfer Protocol (HTTP), SMTP, SSH, Internet Message 
Access Protocol (IMAP), Post Office Protocol 3 (POP3) and 
FTP with a full packet payload [12].  Nevertheless, attack 
simulation traffic data are not based on real situation.

ADFA (Universitas New South Wales,  2013): 
Simulation of attacks was carried out using a payload 
meterpreter encoded with Metasploit. then the TikiWiki 
Vulnerability was used to upload a copy of the Java 
Meterpreter payload, which initiates a reverse TCP 
connection to the attacker’s computer during launching the 
attack. Once the shell is created, various actions are taken on 
the host system, including local privilege escalation, attempts 
to access the shadow password file, and persistent back door 
installation. This dataset includes training and validation 
data  with 10 attacks per vector. Services that are considered 
for testing environment include: SSH, MySql, dan FTP. It 
contains FTP and SSH password brute force, Java-based 
Meterpreter, add new superuser, Linux Meterpreter payload, 
and C100 webshell attacks traffics. Furthermore, the dataset 
was created on Linux and Windows operating systems for 
evaluation purpose using system call-based IDS [13]. The 
dataset has only a few types of attacks, even some attacks 
have similar behavior with normal traffic.

CIC-DDOS2019: The dataset is created using abstracting 
behavior of 25 users that utilizing HTTP, FTP, HTTPS, 
SSH, and SMTP protocols. The dataset has different 
reflective modem DDoS attacks traffics such as: Lightweight 
Directory Access Protocol (LDAP), PortMap, Microsoft 
SQL (MSSQL), NetBIOS, Domain Name Service (DNS), 
User Datagram Protocol (UDP), Network Time Protocol 
(NTP), UDP-Lag, SYN, dan SNMP. These attacks traffics 
data were created by executing 12 DDoS attacks during 
the testing, including: SNMP, LDAP, SYN, NTP, MSSQL, 
NetBIOS, SSDP, WebDDoS, DNS, UDP, UDP-Lag and 
Trivial File Transfer Protocol (TFTP). While 7 DDoS attacks 
including: PortScan, MSSQL, NetBIOS, UDP, UDP-Lag 
LDAP and SYN are executed during the training phase. 
Simulation is done by implementing two networks, namely 
Attack-Network and Victim-Network. Victim-Network is a 
high security infrastructure with firewalls, routers, switches 
and commonly used operating systems required to provide 
normal traffic on each PC. Attack-Network is a completely 
separate infrastructure that executes different types of DDoS 
attacks [12].  Nonetheless, the data captured from simulated 
attacks are not based on real life statistics.

UNSW-NB15: The dataset was created by utilizing IXIA 
PerfectStorm tool at Cyber Range Lab, University of New 
South Wales (UNSW) Canberra. It has 9 types of attacks, 
namely: Backdoors, Exploits, Fuzzers, Reconnaissance, 
Analysis, Generic, DoS, Shellcode and Worms. HTTP, FTP, 
SSH and DNS are the services that supported by the dataset. 
The simulation is done by configuring IXIA traffic generated 
by three virtual servers. Server 1 and Server 3 are configured 
for normal traffic deployment. Server 2 creates abnormal/
malicious activity traffic, establishes intercommunication 
between servers and acquires public and private network 
traffic. The servers are connected to the host via two 
routers. The routers are connected to a firewall device that 
is configured to pass all traffic whether normal or abnormal. 
The tcpdump tool is installed on router 1 to capture the Pcap 
files of the simulated uptime. The main purpose of this whole 
simulation process is to capture normal or abnormal traffic, 
originating from IXIA tools and dispersed among network 
nodes (for example, servers and clients) [14]. The entries in 
the dataset are also not based on real life statistics.

CIC-IDS2017:  A t t ack  s imula t ion  i s  made  by 
implementing two networks, namely Attack-Network 
and Victim-Network. Victim-Network is a high security 
infrastructure with Firewalls, Routers, switches and 
running common operating systems (Windows, Linux and 
Macintosh), which are required to provide normal traffic 
on each PC. Attack-Network is a completely separate 
infrastructure designed by routers and switches and four PCs, 
which have Kali and Windows 8.1 operating systems. The 
Victim Network consists of three servers, one firewall, two 
switches, and ten PCs connected to each other by a domain 
controller (DC) and active directory. Also, one port on the 
Victim-Network main switch has been configured as a mirror 
port and fully captures all sending and receiving traffic to the 
network. The dataset contains Brute Force Attack, Heartbleed, 
Botnet, Dos, DDos, Web and Infiltration attacks, captured 
from a set of traffic behavior of 25 users running SSH, HTTP, 
FTP, HTTPS and SMTP service protocols. Packet size of the 



The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   347

protocol, number of packets per flow, certain pattern in the 
payload, payload size and time to request of the protocol are 
considered as features of the entry data in the dataset [9].

CSE-CIC-IDS2018: The attack simulation configuration 
is similar to the creation of CIC-IDS2017, except the Victim 
Network consists of three servers, one firewall, two switches, 
and ten PCs connected to each other by a domain controller 
(DC) and active directory. Also, one port on the Victim-
Network main switch has been configured as a mirror port 
and fully captures all sending and receiving traffic to the 
network. In this dataset, packet size, number of packets 
per flow, certain pattern in the payload, payload size and 
distribution of requesting time for a protocol are considered 
as features. SSH, HTTPS, POP3, SMTP, IMAP, HTTP and 
FTP protocols are simulated in the testing environment. The 
available attack’s type include: Brute-force, Heartbleed, 
Botnet, DoS, DDoS, Web attacks and insider network 
infiltration  [9].

MQTT-IoT-IDS-2020: This dataset is created using 
Message Queuing Telemetry Transport (MQTT) protocol. It 
has 4 types of attacks, i.e.: Aggressive Scan (Scan A), User 
Datagram Protocol (UDP) Scan (Scan U), Sparta SSH brute-
force (Sparta) and MQTT Brute-Force attack (MQTT BF). 
The dataset is generated using a simulated MQTT network 
architecture. The network consists of 12 MQTT sensors, a 
broker, an engine to simulate camera feeds, and an attacker. 
During normal operation, the 12 sensors send random 
messages using the MQTT “Publish” command. Message 
lengths differ between sensors to simulate different usage 
scenarios. Message content is randomly generated. Camera 
feeds are simulated using the Visible Light Communication 
(VLC) media player which uses UDP streams. To further 
simulate a realistic scenario each network emulator drops 
packets by 0.2%, 1%, and 0.13%. During the recording of 
the four attack scenarios, normal background operations are 
left in action. The operating systems of different devices are 
as follows; Tiny Core Linux for sensors, Ubuntu for cameras 
& camera feed servers, and lastly, Kali Linux for launching 
attacks [15]. Some attacks have similar behavior with normal 
traffic.

3  Problem Solution

This research activity was conducted in the Computer 
Network and Information Security (COMNETS) laboratory 
in the Faculty of Computer Science, Sriwijaya University, 
Indonesia. The creation of the built-in system consisted of 
several steps which included topology design, identifying 
hardware requirements, identifying software requirements, 
system installation and configuration, as well as testing 
scenarios.

3.1 Topology
This research uses a star network topology. It consisted of 

six sensor nodes (air humidity, gas, fire, soil humidity, water 
level sensor and two units of heat sensor), two middleware 
devices, and one server. All the sensor nodes and middleware 
devices were connected in one network to the server via 
a wireless router by IP addresses using the Dynamic Host 

Configuration Protocol (DHCP).
Two communication protocols, IEEE 802.11 (WiFi) and 

the first version of IEEE 802.15.4 (ZigBee) are deployed. 
Data capturing was performed with three scenarios: (1) 
normal traffic data; (2) TCP FIN flood and zbassocflood 
attack traffic data; (3) mixed normal +  TCP FIN flood and  
zbassocflood attack traffic data. The traffic flow during the 
data capturing is illustrated in Figure 1. Black line represents 
the normal traffic, light Blue represents traffics that connect 
direct to wireless router and will be captured by sniffing 
computer. Line with Red color represents the attacks traffic. 
Details of the traffic simulation process are as follow.

1. Node 1 consists of WeMos D1 based on ESP8266 as 
a WiFi module and a DHT 22 sensor as a temperature 
and humidity sensor. WeMoS D1 is connected to the 
DHT 22 sensor to form Node 1, which functions to 
sense temperature and humidity parameters. WeMos 
D1 collects and sends the sensing data to the server 
via WiFi. 

2. Node 2 consists of WeMos D1 based on ESP8266 as 
a WiFi module and a soil moisture sensor. WeMoS 
D1 is connected to the soil moisture sensor to form 
Node 2 that functions to sense the parameters of the 
soil moisture level. WeMos D1 collects and sends the 
sensing data to the server via WiFi. 

3. Node 3 consists of WeMos D1 based on ESP8266 
as WiFi module and MQ2 sensor. WeMoS D1 is 
connected to the MQ2 sensor to form Node3, which 
functions to sense smoke and gas parameters. We-
Mos D1 collects and sends the sensing data to the 
server via WiFi.

4. Node 4 consists of WeMos D1 based on ESP8266 as 
a WiFi module and a water level sensor. WeMos D1 
collects and sends the sensing data to the server via 
WiFi. Furthermore, the data will be stored into the 
database server and displayed on a web in the forms 
of tables and figures.

5. Node 5 consists of Arduino UNO, I/O Expansion 
Shield V7, XBee series 1 radio module and DHT 11 
sensor. Each device is connected to form Node 5. 
The DHT 11 sensor on the node serves to sense the 
temperature and humidity parameters. Arduino UNO 
collects and sends the sensing data to the middleware 
via the XBee series 1 radio module. 

6. Node 6 has similar configuration with Node 5, the 
difference only on the sensor type, i.e.: temperature 
and humidity sensor. The sensing data on the middle-
ware is then sent via WiFi and stored into the data-
base server.

7. Middleware  is in the form of a Raspberry Pi model 
3 device which is integrated with the XBee Explorer 
Universal Serial Bus (USB) device. The middleware 
receives and accommodates sensor data from Node 
5 and Node 6 via the XBee radio module, then will 
send the data to the database server via WiFi. In this 
case the middleware serves to connect devices with 
different delivery methods. The difference lies in the 
type of sensor used, where Node 5 uses an XBee 
series 1 radio module and a DHT 11 sensor, while 
Node 6 uses an XBee series 1 radio module and a 



348  Journal of Internet Technology Vol. 24 No. 2, March 2023

DHT22 sensor. The process starts from the sensor 
function by sensing the temperature and humidity 
parameters, sensor data is collected and sent to the 
middleware via the XBee radio module, then the 
middleware will collect and send sensor data to the 
database server via WiFi.

8. Server monitoring is used to display the data sent by 
each node in the form of a web display. Data from 
each node will be sent in real time to the database 
server and displayed in the form of a web view. In 
this case the server uses MySQL.

The created dataset in this study has benefit compared to 
the existing datasets, as it is the only dataset of IoT network 
that runs IEEE 802.1 protocol as well as the first version of 
IEEE 802.15.4 protocol. Table 1 summarizes the comparison 
among the datasets. Each node consisted of an active sensor 
that collected data in real time. The data delivery process was 
categorized according to the communication protocol used 
by the node and middleware device. The detailed system 
specifications can be seen in Table 2.

Figure 1. The network topology for creating the dataset

Table 1. Comparison protocols/Service dataset 
No. Dataset Protocols/Service Network
1 DARPA SMTP, FTP, Telnet, IRC, and SNMP Conventional
2 Twente SSH, HTTP ,and PROFTP Conventional
3 ISCX2012 HTTP, SMTP, SSH, IMAP, POP3 and FTP Conventional
4 ADFA FTP, SSH, MySql Conventional
5 CIC-DDOS2019 HTTP, FTP, HTTPS, SSH, and SMTP Conventional
6 UNSW-NB15 HTTP, FTP, SSH, DNS Conventional
7 CIC-IDS2017 SSH, HTTP, FTP, HTTPS, and SMTP Conventional
8 CSE-CIC-IDS2018 SSH, HTTPS, POP3, SMTP,  IMAP, HTTP, dan FTP Conventional
9 MQTT-IoT-IDS-2020 MQTT IoT
10 This Dataset IEEE 802.11 (WiFi) and IEEE 802.15.4 (ZigBee) IoT



The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   349

Table 2. System specifications

Device Communication protocol

Node 1 - WeMos D1 WiFi UNO ESP8266 
- Temp./Humidity (DHT 22) Sensor

IEEE 802.11 (WiFi)

Node 2 - WeMos D1 WiFi UNO ESP8266 
- Soil Moisture (FC-28) Sensor

IEEE 802.11 (WiFi)

Node 3 - WeMos D1 WiFi UNO ESP8266 
- Gas (MQ2) Sensor

IEEE 802.11 (WiFi)

Node 4 - WeMos D1 WiFi UNO ESP8266 
- Water Level (K-0135) Sensor

IEEE 802.11 (WiFi)

Node 5 - Arduino UNO Microcontroller
- XBee Series 1 Wireless Module
- Temp./Humidity (DHT 11) Sensor

IEEE 802.15.4 (ZigBee)

Node 6 - Arduino UNO Microcontroller
- XBee Series 1 Wireless Module
- Temp./Humidity (DHT 22) Sensor

IEEE 802.15.4 (ZigBee)

Middleware 1-2 - Raspberry Pi 3 Microcontroller
- XBee Series 1 Wireless Module

IEEE 802.11 (WiFi)
IEEE 802.15.4 (ZigBee)

Server - Personal Computer IEEE 802.11 (WiFi)

3.2 Scenario
The dataset is created using twelve (12) scenarios 

consisting of normal data, attack data, and the combination of 
normal and attack data. For the experiment, each scenario has 
a duration of five minutes.  The use of five minutes interval is 
based on research work by Maciá-Fernández et al. [16] that 
mentioned to capture DDoS attack traffic in lower level can 
be done during the interval of 3 to 10 minutes.  This study 
takes the middle time interval, i.e.: 5 minutes.

In creating this dataset, we used three different DoS/
DDoS attack profiles. Table 3 displays the scenarios for 
creating the attack traffic data.

UDP Flood: This attack uses an IP address spoof to 
perform multiple attacks simultaneously, sending large 
amounts of User Datagram Protocol (UDP) packets at 
specified time intervals directed at random ports of the target 
[17].

RST/FIN Flood: This attack sends a large number of 
false “reset” (RST) or “finish” (FIN) packets which are 
not included in any session in the server session tables. An 
RST or FIN DoS attack will drain or consume the victim’s 
resources (memory, CPU, etc.) to locate and match the 
packets which are entered into an existing session. This 
results in a decrease in performance, and the service on the 
attacked server is not maximized [18-19].

Zbassocflood/association flooding: This attack sends 
a large number of association request packets on a device 
attach to the network. The attack results in high network 
traffic and large resource used by the victim. This is an 
insider attack, which occurs when an attacker joins into 
the network using a stored parameter that matches with the 
Personal Area Network Identifier (PAN ID) and channel on 
which the network operates [20-21].

Table 3. Scenario for creating attack traffic data

Scenario Information Duration
(Minutes) Attack

1 Send normal data packets in the form of sensor data to the server 5 Node, Middleware
2 Attack with TCP FIN flood and UDP flood on the server 5 Server
3 Scenarios 1 and 2 performed at the same time 5 Node, Middleware, 

Server
4 Nodes 1–4 send normal data packets in the form of sensor data to 

the server
5 Node 

5 Attack with TCP FIN flood and UDP flood completely on nodes 
1–4

5 Node

6 Scenarios 4 and 5 performed at the same time 5 Node
7 Middleware 1 and 2 sending normal packet data in the form of 

sensor data to the server
5 Middleware

8 TCP FIN flood and UDP flood completely to the middleware 1–2 5 Middleware
9 Scenario 7 and 8 performed at the same time 5 Middleware
10 Nodes 5–6 sending normal packet data in the form of sensor data to 

the middleware 1–2
5 Middleware

11 Zbassocflood attack completely on nodes 5–6 5 Node
12 Scenario 10 and 11 perform at the same time 5 Node



350  Journal of Internet Technology Vol. 24 No. 2, March 2023

4  Dataset

The process of capturing the data took approximately 75 
minutes. The 12 test scenarios were performed resulting in 15 
pcap files/datasets of the normal, attack, and normal-attack 
combinations. Table 4 displays the results of the captured 
traffic data during the experiments.

The created datasets have different sizes. The different in 
the size is due to differences in the number of data packets 
and the different data packet delivery formats between WiFi 
and XBee. No specific technique was used for data labeling. 
As an experiment run certain scenario, communication 
protocol and on certain network segment, then the category 
of the captured traffic data are automatically recognized. For 
example, the traffic data in the first dataset/file in Table 4 
are captured traffic in the server attached in the network that 
running WiFi communication protocol and using Scenario 
1 (pumping normal traffic). Thus, all captured traffics are 

normal traffic, labeled as normal and then the file is named 
with normal-server.pcap, indicating that the dataset/file 
contains normal traffic. Same procedure of labeling was 
implemented to other created datasets. Therefore, a dataset 
with just “normal” in its filename contains data packets 
with normal traffic; a dataset with an “attack” in its filename 
describes the entire data packet traffic as FIN flood and 
UDP flood attack on WiFi communication or Zbassocflood 
on XBee communication; a dataset with “normalxattack” 
describes a combination of normal data packet traffic and 
attack data packet traffic.

Table 5 is the result of the packet frequencies based 
on protocol type which were used in the FIN flood attack 
dataset. There are six types listed: User Datagram Protocol 
(UDP), Transmission Control Protocol (TCP), Address 
Resolution Protocol (ARP), Hypertext Transfer Protocol 
(HTTP), Internet Control Message Protocol (ICMP), and a 
category for all others.

Table 4. Created dataset result

No Dataset/Label Communication 
protocol Size Description Scenario

1 server-normal.pcap IEEE 802.11 (WiFi) 5.8 MB Server 1
2 server-attack.pcap IEEE 802.11 (WiFi) 655.5 

MB
Server 2

3 server-normalxattack.pcap IEEE 802.11 (WiFi) 805.3 
MB

Server 3

4 mid1-normal.pcap IEEE 802.11 (WiFi) 263.4 KB Middleware 1 7
5 mid1-attack.pcap IEEE 802.11 (WiFi) 82.4 MB Middleware 1 8
6 mid1-normalxattack.pcap IEEE 802.11 (WiFi) 83.6 MB Middleware 1 9
7 mid2-normal.pcap IEEE 802.11 (WiFi) 284.4 KB Middleware 2 7
8 mid2-attack.pcap IEEE 802.11 (WiFi) 109.2 

MB
Middleware 2 8

9 mid2-normalxattack.pcap IEEE 802.11 (WiFi) 112.5 
MB

Middleware 2 9

10 node-wifi-normal.pcap IEEE 802.11 (WiFi) 1.1 MB Nodes 1–4 4
11 node-wifi -attack.pcap IEEE 802.11 (WiFi) 168.4 

MB
Nodes 1–4 5

12 node-wifi-normalxattack.pcap IEEE 802.11 (WiFi) 170.3 
MB

Nodes 1–4 6

13 node-xbee-normal.pcap IEEE 802.15.4 
(ZigBee)

22.2 KB Nodes 5–6 10

14 node-xbee-attack.pcap IEEE 802.15.4 
(ZigBee)

701.4 KB Nodes 5–6 11

15 node-xbee-normalxattack.pcap IEEE 802.15.4 
(ZigBee)

808.9 KB Nodes 5–6 12

Table 5. Normal and TCP attack packet frequencies

Dataset/Label Protocol Total
UDP TCP ARP HTTP ICMP Other

server-normal.pcap 106 8856 457 2872 500 1 12792
server-attack.pcap 114 3132331 626 2322 0 0 3135393
server-normalxattack.pcap 114 3706556 639 2368 0 4 3709681
mid1-normal.pcap 99 1112 264 264 0 0 1739
mid1-attack.pcap 100 1174242 609 108 0 0 1175059
mid1- normalxattack.pcap 112 1190448 642 118 0 0 1191320
mid2-normal.pcap 119 1082 641 260 0 0 2102
mid2-attack.pcap 116 1554771 650 169 0 0 1555706
mid1- normalxattack.pcap 121 1602024 672 221 0 0 1603038
node-normal-wifi.pcap 124 5438 241 2003 0 0 7806
node-attack-wifi.pcap 232 2396917 1564 707 0 0 2399420
node-normalxattack.pcap 274 2423933 1640 752 0 0 2426599



The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   351

The TCP packets were most prevalent, because the FIN 
flood attack packets use the TCP, and this is coupled with the 
sensors sending data and other normal data from the nodes to 
the server using the TCP simultaneously.

Table 6 shows the traffic in terms of frequencies of data 
packets on the normal XBee dataset, XBee attack dataset, 
and XBee normal-attack dataset. The highest traffic in terms 
of numbers of packets was those using the IEEE 802.15.4 
protocol, followed by ZigBee, Internet Protocol version 6 
(IPv6), LwMesh, and 6LowPAN. This shows an increase 
in the percentage of IEEE 802.15.4 packet traffic from the 

normal XBee dataset to the XBee attack dataset and from 
the normal-attack XBee dataset to the Zbassocflood attack 
scenario.

Table 7 and Table 8 is the result of the packet frequencies 
based on protocol type which were used in the UDP attack, 
i.e.: UDP, TCP, ARP, HTTP, ICMP and by a category for all 
other protocols.

The dataset retrieval process was performed on the server 
network interface side, so that in this UDP dataset, there 
would be sufficient TCP packets. The packets include: actual 
sensor data being sent to the server via TCP-HTTP.

Table 6. Normal and UDP attack packet frequencies

Dataset/Label
Protocol

Total
ZigBee

IEEE 
802.15.4 LwMesh IPv6 6LowPAN

node-xbee- normal.pcap 9 527 17 4 11 568
node-xbee-attack.pcap 11 19374 11 9 21 19426
node-xbee normalxattack.pcap 6 22355 33 1 46 22441

Table 7. Packet Frequencies during the UDP attack to the server

Dataset/Label Protocol TotalUDP TCP ARP HTTP ICMP Other
server-normal.pcap 608 20329 1476 6981 0 6 29400
server-attack.pcap 9620943 17870 1584 5076 6 28 9645507
server- normalxattack.pcap 9772125 17632 1971 5102 6 19 9796855

Table 8. Old packet frequencies during the UDP attack

Dataset/Label Protocol TotalUDP TCP ARP HTTP ICMP Other
pcserver- combine-1.pcap 3270682 5991 501 1723 2 8 3278907
pcserver- combine-2.pcap 3054444 5596 722 1608 2 7 3062379
pcserver- combine-3.pcap 3446999 6045 748 1771 2 4 3455569
pcserver-normal-1.pcap 207 7089 482 2445 0 2 10225
pcserver-normal-2.pcap 213 6613 540 2270 0 4 9640
pcserver-normal-3.pcap 188 6627 454 2266 0 0 9535
pcserver-attack-1.pcap 3122817 6190 460 1722 0 1 3131190
pcserver-attack-2.pcap 3417550 6092 582 1759 2 7 3425992
pcserver-attack-3.pcap 3080576 5588 542 1595 4 20 3088325

5  Analysis

An analysis was conducted in the form of a preprocessing 
testing stage by comparing the normal and attack datasets.

Feature extraction process was done offline using TShark 
tool, then convert the extracted files into Comma Separated 
Values (CSV) format. The extracted features are displayed 
in Table 9 for the Xbee dataset while Table 10 is for WiFi 
dataset. This step aims to facilitate in reading and recognizing 
normal packet patterns and attack packet patterns. Later on, 
for the dataset evaluation purpose, feature selection process 
was conducted using rule based method.

Next, experiments on dataset evaluation are performed. 
Intrusion Detection Engine (IDE) Naïve String matching 
approach is used for the evaluation process, where Naïve 
String Matching algorithm is implemented on the IDE. 
Besides, pattern recognition approaches are also carried 
out, i.e.: recognizing signatures (known patterns) via deep 

inspection analysis on raw data in pcap format for attack 
from these preprocessing results, not all of the attributes are 
used as features for the detection process on the IDS system, 
only the relevant attributes or features will be selected for 
the classification process. Traffic data packets and testing 
experiments using Snort as IDE. In addition, correlation 
among extracted features, Snort alert log and pcap raw are 
investigated. This investigation is considered as analysis 
engine for confirming the information regarding the attack 
traffic patterns in the raw data (pcap) files with the attack 
that defined as rules. The patterns of TCP FIN flood and 
zbassocflood attack traffic are defined as rules, as follows
finflood_rules = {ip.ttl: 64, ip.hdr_len:20, ip.len: 40, tcp.
flags: F, window: 512, tcp.hdr_len: 20}.
zbassocflood_rules = {frame.len: 48, wpan.frame_type: 0x03, 
wpan.src_addr_mode: 0x03, wpan.src_pan: 0xffff, wpan.
dst16: 0x00, wpan.cmd: 0x01, data.len: 1}



352  Journal of Internet Technology Vol. 24 No. 2, March 2023

Table 9. Preprocessing result o the Xbee dataset
No Feature No Feature No Feature
1 frame.encap_type 23 ppi.80211-common.chan.flags.ofdm 45 wpan.frame_type
2 frame.time 23 ppi.80211-common.chan.flags.2ghz 46 wpan.security
3 frame.offset_shift 25 ppi.80211-common.chan.flags.5ghz 47 wpan.pending
4 frame.time_epoch 26 ppi.80211-common.chan.flags.passive 48 wpan.ack_request
5 frame.time_delta 27 ppi.80211-common.chan.flags.dynamic 49 wpan.fcf
6 frame.time_delta_displayed 28 ppi.80211-common.chan.flags.gfsk 50 wpan.seqno_suppression
7 frame.time_relative 29 ppi.80211-common.fhss.hopset 51 wpan.ie_present
8 frame.number 30 ppi.80211-common.fhss.pattern 52 wpan.dst_addr_mode
9 frame.len 31 ppi.80211-common.dbm.antsignal 53 wpan.version
10 frame.cap_len 32 ppi.80211-common.dbm.antnoise 54 wpan.src_addr_mode
11 frame.marked 33 ppi.80211-common.tsft 55 wpan.seq_no
12 frame.ignored 34 ppi.80211-common.flags 56 wpan.dst_pan
13 frame.protocols 35 ppi.80211-common.flags.fcs 57 wpan.dst16
14 ppi.version 36 ppi.80211-common.flags.tsft 58 wpan.src16
15 ppi.flags 37 ppi.80211-common.flags.fcs-invalid 59 wpan.dst64
16 ppi.flags.alignment 38 ppi.80211-common.flags.phy-err 60 wpan.src64
17 ppi.flags.reserved 39 ppi.80211-common.chan.freq 61 wpan.fcs
18 ppi.length 40 ppi.80211-common.chan.flags 62 wpan.fcs_ok
19 ppi.dlt 41 ppi.80211-common.chan.flags.turbo 63 data.data
20 ppi.field_type 41 ppi.80211-common.chan.flags.cck 64 data.len
21 ppi.field_len 43 wpan.frame_length
22 ppi.80211-common.rate 44 wpan.pan_id_compression

Table 10. Preprocessing result o the Wifi dataset
No Feature No Feature No Feature
1 frame.encap_type 33 ip.dsfield.ecn 65 tcp.flags.ns
2 frame.time 34 ip.len 66 tcp.flags.cwr
3 frame.offset_shift 35 ip.id 67 tcp.flags.ecn
4 frame.time_epoch 36 ip.flags 68 tcp.flags.urg
5 frame.time_delta 37 ip.flags.rb 69 tcp.flags.ack
6 frame.time_delta_displayed 38 ip.flags.df 70 tcp.flags.push
7 frame.time_relative 39 ip.flags.mf 71 tcp.flags.reset
8 frame.number 40 ip.frag_offset 72 tcp.flags.syn
9 frame.len 41 ip.ttl 73 _ws.expert
10 frame.cap_len 42 ip.proto 74 tcp.connection.sack,
11 frame.marked 43 ip.checksum 75 _ws.expert.message
12 frame.ignored 44 ip.checksum.status 76 _ws.expert.severity
13 frame.protocols 45 ip.src 77 _ws.expert.group
14 frame.coloring_rule.name 46 ip.addr 78 tcp.flags.fin
15 frame.coloring_rule.string 47 ip.src_host 79 tcp.flags.str
16 eth.dst 48 ip.host 80 tcp.window_size_value
17 eth.dst_resolved 49 ip.dst 81 tcp.window_size
18 eth.addr 50 ip.addr 82 tcp.checksum
19 eth.addr_resolved 51 ip.dst_host 83 tcp.checksum.status
20 eth.lg 52 ip.host 84 tcp.urgent_pointer
21 eth.ig 53 tcp.srcport 85 tcp.options
22 eth.src 54 tcp.dstport 86 tcp.options.mss
23 eth.src_resolved 55 tcp.port 87 tcp.option_kind
23 eth.addr 56 tcp.port 88 tcp.option_len
25 eth.addr_resolved 57 tcp.stream 89 tcp.options.mss_val
26 eth.lg 58 tcp.len 90 tcp.analysis
27 eth.ig 59 tcp.seq 91 tcp.analysis.acks_frame
28 eth.type 60 tcp.nxtseq 92 tcp.analysis.ack_rtt
29 ip.version 61 tcp.ack 93 tcp.analysis.initial_rtt
30 ip.hdr_len 62 tcp.hdr_len 94 tcp.time_relative
31 ip.dsfield 63 tcp.flags 95 tcp.time_delta
32 ip.dsfield.dscp 64 tcp.flags.res

Table 11. Evaluation performance
Detection rate Performance 
Accuracy 99.92%
Precision 100%
FPR 0
FNR 0.0869



The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   353

Attacks patterns which are defined as rules are needed 
as attacks knowledge base, pattern itself and as feature 
selection engine of the IDE. To validate the significance of 
the results of the carried out testing experiments on attacks 
detection, correlation between alerts produced during the 
experiments and the patterns information in the raw data 
should be investigated. The correlations are measured by 
inspecting the timestamp of the alert and the timestamp of 
the corresponding patterns in the raw pcap data, as shown in 
Figure 2 to Figure 6.

Performance evaluation on the IDE is carried out using 
True Positive (TP), False Positive (FP), True Negative (TN), 
and False Negative (FN) values as metrics, thus Accuracy, 
Precision, False Positive Rate (FPR), and False Negative 

Rate (FNR) are computed as presented in Table 11. It is 
shown that FPR and FNR values are low, 0% and 0.0869, 
respectively. As for precision level, the IDE achieves 100%, 
while the accuracy level achieves 99.92%.
  

Accuracy = (TP + TN)/(TP+TN+FP+FN).          (1)

Precision = TP/(TP+FP).                                      (2)

FPR = FP/(TN+FP).                                             (3)

FNR = FN/(FN+TP).                                             (4)

Figure 2. Server attack dataset test correlation

Figure 3. Middleware 1 attack dataset test correlation



354  Journal of Internet Technology Vol. 24 No. 2, March 2023

Figure 4. Middleware 2 attack dataset test correlation

Figure 5. Node Wifi attack dataset test correlation

Figure 6. Node Xbee attack dataset test correlation



The Development of an Internet of Things (IoT) Network Traffic Dataset with Simulated Attack Data   355

6  Summary

This study has created a dataset using a heterogenous IoT 
network with a variety of end devices (Arduino, Raspberry 
Pi, WeMos D1, etc.), sensor devices (DHT-11, DHT-22, FC-
28, K-0135, MQ-2, etc.), Communication Protocol IEEE 
802.11 (WiFi) and IEEE 802.15.4 (ZigBee) and subjected 
it to a variety of DoS/DdoS FIN flood, UDP flood, and 
Zbassocflood/association flood attacks. The resulting overall 
dataset is labeled with normal, attack, and combined normal-
attack dataset categories. Processing the dataset has generated 
95 attributes or features for the datasets using the IEEE 
802.11 communication protocol (WiFi) and 64 attributes or 
features for the datasets using the IEEE 802.15.4 (ZigBee) 
communication protocol.

Supplementary Material

The online version of the datasets associated with this 
article can be found at DOI: https://dx.doi.org/10.21227/
n109-ng79

References

[1] S. Li, L. Da Xu, S. Zhao, The internet of things: a 
survey, Information Systems Frontiers, Vol. 17, No. 2,  
pp. 243-259, April, 2015.

[2] L. L. Hung, Intelligent Sensing for Internet of Things 
Systems, Journal of Internet Technology, Vol. 23,  No. 
1, pp. 185-191, January, 2022.

[3] A. A. Diro, N. Chilamkurti, Distributed attack detection 
scheme using deep learning approach for Internet of 
Things, Future Generation Computer Systems, Vol. 82, 
pp. 761-768, May, 2018.

[4] F. A. Alaba, M. Othman, I. A. T. Hashem, F. Alotaibi, 
Internet of Things security: A survey, Journal of 
Network and Computer Applications, Vol. 88, pp. 10-
28, June, 2017.

[5] S. Y. Moon, J. H. Park, J. H. Park, Authentications for 
Internet of Things Security: Threats, Challenges and 
Studies,  Journal of Internet Technology, Vol. 19, No. 2, 
pp. 349-358, March, 2018.

[6] J. O. Nehinbe, A Simple Method for Improving Intrusion 
Detections in Corporate Networks, in: D. Weerasinghe 
(Eds.), Information Security and Digital Forensics. 
ISDF 2009. Lecture Notes of the Institute for Computer 
Sciences, Social Informatics and Telecommunications 
Engineering, Vol. 41 LNICST, Springer, 2010, pp. 111-
122.

[7] R. Koch, M. Golling, G. D. Rodosek, Towards 
Comparability of Intrusion Detection Systems: New 
Data Sets, TERENA Networking Conference, Dublin, 
Ireland, 2014.

[8] A. Gharib, I. Sharafaldin, A. H. Lashkari, A. A. 
Ghorbani, An Evaluation Framework for Intrusion 
Detection Dataset, International Conference on 
Information Science and Security (ICISS), Pattaya, 
Thailand, 2016, pp. 1-6.

[9] I. Sharafaldin, A. H. Lashkari, A. A. Ghorbani, Toward 

Generating a New Intrusion Detection Dataset and 
Intrusion Traffic Characterization, 4th International 
Conference on Information System Security and 
Privacy, Madeira, Portugal, 2018, pp. 108-116.

[10] M. Ring, S. Wunderlich, D. Scheuring, D. Landes, A. 
Hotho, A survey of Network-based Intrusion Detection 
Data Sets, Computer Security, Vol. 86, pp. 147-167, 
September, 2019.

[11] A. Sperotto, R. Sadre, F. Van Vliet, A. Pras, A Labeled 
Data Set for Flow-Based Intrusion Detection, in: G. 
Nunzi, C. Scoglio, X. Li (Eds.), IP Operations and 
Management. IPOM 2009. Lecture Notes in Computer 
Science, Vol. 5843, Springer, 2009, pp. 39-50.

[12] A. Shiravi, H. Shiravi, M. Tavallaee, A. A. Ghorbani, 
Toward Developing a Systematic Approach to Generate 
Benchmark Datasets for Intrusion Detection, Computers 
& Security, Vol. 31, No. 3, pp. 357-374, May, 2012.

[13] G. Creech, J. Hu, Generation of a New IDS Test 
Dataset: Time to Retire the KDD Collection, IEEE 
Wireless Communications and Networking Conference 
(WCNC), Shanghai, China, 2013, pp. 4487-4492.

[14] N. Moustafa, J. Slay, UNSW-NB15: A Comprehensive 
Data Set for Network Intrusion Detection Systems 
(UNSW-NB15 Network Data Set), 2015 Military 
Communications and Information Systems Conference 
(MilCIS),   Canberra, Australia, 2015, pp. 1-6.

[15] H. Hindy, E. Bayne, M. Bures, R. Atkinson, C. 
Tachtatzis, X. Bellekens, Machine Learning Based IoT 
Intrusion Detection System: An MQTT Case Study 
(MQTT-IoT-IDS2020 Dataset), in: B. Ghita, S. Shiaeles 
(Eds.), Selected Papers from the 12th International 
Networking Conference. INC 2020. Lecture Notes in 
Networks Systems, Vol. 180, Springer, 2021, pp. 73-84.

[16] G. Maciá-Fernández, J. Camacho, R. Magán-Carrión, 
P. García-Teodoro, R. Therón, UGR‘16: A New Dataset 
for the Evaluation of Cyclostationarity-based Network 
IDSs, Computers & Security, Vol. 73, pp. 411-424, 
March, 2018.

[17] Kamaldeep, M. Malik, M. Dutta, Contiki-based 
Mitigation of UDP flooding Attacks in the Internet of 
Things, IEEE International Conference on Computing, 
Communication and Automation (ICCCA 2017), Greater 
Noida, India, 2017, pp. 1296-1300.

[18] Allot Communications, DDoS Attack Handbook, Allot 
Communications Ltd, 2018, p. 20.

[19] D. Stiawan, D. Wahyudi, A. Heryanto, Samsuryadi, 
M. Y. Idris, F. Muchtar, M. A. Alzahrani, R. Budiarto, 
TCP FIN Flood Attack Pattern Recognition on Internet 
of Things with Rule Based Signature Analysis, 
International Journal of Online and Biomedical 
Engineering (iJOE), Vol. 15, No. 7, pp. 124-139, April, 
2019.

[20] B. Stelte, G. D. Rodosek, Thwarting attacks on ZigBee 
- Removal of the KillerBee Stinger, 9th  International 
Conference on Network and Service Management 
(CNSM 2013), Zurich, Switzerland, 2013, pp. 219-226.

[21] C. Azzi, Vulnerability Analysis and Security Framework 
for Zigbee Communication in IOT, Master Thesis, 
University of Nevada, Las Vegas, United States of 
America, 2016.



356  Journal of Internet Technology Vol. 24 No. 2, March 2023

Biographies

Deris Stiawan received PhD degree in 
Computer Engineering from Universiti 
Teknologi Malaysia, Malaysia, in 2013. 
He is currently an Associate Professor at 
Department of Computer Engineering, 
Faculty of Computer Science, Universitas 
Sriwijaya. His research interests include 
computer network,  Intrusion Detection/ 

Prevention System, and heterogeneous network.

Dimas Wahyudi received bachelor degree 
from Department of Computer Engineering, 
Universi tas  Sriwijaya,  Indonesia,  in 
2018. His main interest includes both 
theoretical and practical aspect of Internet 
of Things and Computer Network under 
Computer Network & Information Security 
(COMNETS) Research Group at Faculty of 

Computer Science, Universitas Sriwijaya since 2017.

Tri Wanda Septian is currently a lecturer 
at the Computer Engineering Department, 
Universitas Sriwijaya. He holds Offensive 
Security Certifi ed Professional (OSCP), EC-
Council’s Certified Ethical Hacker (CEH) 
practical and EC-Council’s Certifi ed Secure 
Computer User (CSCU). His research 
interests include heterogeneous networks, 

distributed systems, and network security.

Mohd Yazid Idris is an Associate Professor 
at  School  of  Computing,  Facul ty of 
Computing, Universiti Teknologi Malaysia. 
In software engineering, he focuses on the 
research of designing and development of 
mobile and telecommunication software. His 
main research activity in IT security is in the 
area of Intrusion Prevention and Detection.

Rahmat Budiarto is a full Professor at the 
Department of Computer Engineering and 
Science, Al Baha University, Al Bahah, 
Saudi Arabia. His research interests include 
intelligent systems, brain modeling, IPv6, 
network security, Wireless sensor networks, 
and MANETs.


