
A New Data Integrity Verification Scheme with Low Communication Cost 283

*Corresponding Author: Jun Ye; E-mail: yejun@hainanu.edu.cn
DOI: 10.53106/160792642023032402007

A New Data Integrity Verification Scheme with Low Communication Cost

Fanglin An1, Jun Ye1,2*, Zhen Guo1,2

1 School of Cyberspace Security, Hainan University, China
2 Key Laboratory of Internet Information Retrieval of Hainan Province, China

22110839000008@hainanu.edu.cn, yejun@hainanu.edu.cn, guozhen@hainanu.edu.cn

Abstract

The development of cloud storage is indispensable for
today’s Internet information technology. The superiority of
cloud storage is that the ownership of the storage medium and
the ownership of the stored data are divided and held by two
parties with respective interests - cloud server providers and
data users. However, the transmission, storage and utilization
of data constantly caused the violation of users’ rights and
interests. Data integrity as a countermeasure has been paid
growing attention to by researchers. Traditional data integrity
protection schemes are based on the cloud server-client
architecture, which requires high computational overhead
and communication. To address this scenario, this paper
proposes an improved data integrity verification scheme
that enables local users to perform rapid and efficient data
integrity verification of data stored on cloud servers, reduces
the volume of communication data during the verification
process, and effectively prevents the loss or tampering of data
stored in the cloud server.

Keywords: Tamper-Proof, Integrity verification, Communi-
cation overhead optimization

1 Introduction

With the advance of Internet information technology
penetrating into all aspects of people’s lives, users are more
closely connected to each other, resulting in a proliferation
of user data. However, the mobile storage technology, in
recent years, has not made great progress in the upper ratio.
Therefore, the user’s local terminal device has not been able
to meet the basic storage requirement. At the same time, due
to the data volatility of the storage units in current mobile
storage devices (solid-state drives themselves have design
flaws that lead to data loss over long periods of power on
and off), the demand for important/significant/crucial/privacy
data backup is also becoming increasingly prominent. In
order to face the above-mentioned problems, cloud storage
products came into being, at the same time, how to ensure
the data security and data integrity of users in the cloud
storage environment has become a new urgent problem. In
the traditional data integrity verification scheme, users need
to save the hash value of each file data for hashing operation,
then develop a hash table containing the hash values of all

stored file data, and store the hash table in the local grant
environment. When the cloud file needs to be updated, the
hash value, corresponding to this file, in the hash table that
is stored in the credit environment needs to be updated
synchronously. When the integrity of the file data in the cloud
storage requires verification, the file data in the cloud storage
entail transmission to the user’s local terminal, and applying
the hashing operation on it, then matching it with the original
hash value in the hash table and determining whether the data
integrity is damaged based on the matching result.

The traditional method of data integrity verification
calculates the hash value of each file and saves the hash value
through the local authorization mechanism, which has the
following shortcomings: each verification of file data needs to
transfer the file data stored in the cloud to the local terminal
in order to match, which occupies a large amount of local
data bandwidth; with the gradual increase of file data, the
number of hash values to be stored in the local authorization
mechanism increases proportionally, and the complexity of
managing hash data increases unequally. Because the above
two key problems are not solved perfectly, the traditional
data integrity verification is inefficient, resulting in the data
integrity technology not being widely used in practice.

There is an urgent need to study an efficient and easy-
to-manage data integrity scheme for cloud storage data that
can efficiently complete data integrity verification requests
and also ensure the correctness and non-tamperability of
data verification results. At the same time, it can ensure that
the proliferation of file data does not affect the efficiency
of data integrity verification by users. These two aspects
are the focus of data integrity verification and are of great
importance to the management of user data.

With the advent of the big data era, a large amount of
relevant business data generated in various fields, which
are usually put in cloud servers for easy data management.
However, these data may be tampered with by dishonest
cloud servers, thus verifying data integrity is a necessity
for secure data storage. In order to perform data integrity
verification more efficiently, this paper proposes a trusted and
communication data reduced integrity verification scheme
in the cloud, and a special binomial tree data structure based
on Merkle tree is proposed, which uses a top-down approach
to compute arbitrary data nodes. In addition, for integrity
verification, a new integrity checking approach is introduced
by unifying the processing of database records and Merkle
Tree nodes. The proposed scheme has less communication

284 Journal of Internet Technology Vol. 24 No. 2, March 2023

overhead than existing ones.
In this paper, we propose a trusted data integrity

verification scheme in the cloud that reduces the amount of
lower communication. A special Merkle tree data structure is
introduced to achieve the integrity verification of data in the
cloud. And it is also very efficient to update the Merkle tree
when some data changes frequently. The main contributions
are as follows.

(1) An improved cloud data integrity verification scheme
is proposed that can reduce the communication overhead
between cloud servers and users.

(2) By using a special Merkle tree-based encryption
technique, the user can verify whether a certain data is
tampered or not with less communication overhead and
computation overhead.

(3) In the data upload or update phase, the user only
needs to send the data and the value of its parent node to the
cloud server, and the update work is done by the cloud server.

2 Related Work

Nicolescu et al. [1] proposed that the value held by IoT
services and products throughout their lifecycle in creating
and maintaining the value of IoT services, while the work in
this paper is in maintaining the value of IoT services. Deb et
al. [2] proposed a new image cryptosystem based on chaos
theory when using a statistical approach to test the data and
the efficiency of the system, which shows the need to protect
the operational efficiency of the system while safeguarding
the integrity of the data. Ji et al. [3] on the optimization and
allocation of communication resources for high throughput in
UAV-ground communication scenarios, giving us a research
focus on the need for a system that should be as efficient as
possible for communication, is the latest research trend.

For the work on data integrity verification, Zhou et al.
[4] made a summary of the need to accomplish functionality,
security and efficiency. Changalvala and Malik [5]
developed a data hiding technique based on 3-dimensional
quantized index modulation for data integrity verification
in the transmission protocol used for data transmission
in autonomous driving scenarios, but the scheme did not
consider data security. K. Hao et al. [6] also highlight the
problem of untrustworthy storage environment caused by
outsourcing data to cloud servers for storage. Ding et al. [7]
propose a data integrity verification scheme with smaller
computational overhead and latency for fog node servers
whose computational overhead is not easily but large, but
the scheme does not consider the weak computational power
of the client. Xu et al. [8] address the data integrity. The
unique tag replacement algorithm was proposed for the
problem of reliability of tags generated by the proof, but
the scheme did not consider the excessive computational
overhead required for the verification process. Cui et al. [9]
also proposed a solution for the data integrity verification
problem in edge computing scenario, but the scheme used
a large number of modulo multiplication operations which
slowed down the data processing time. Khadse et al. [10]
data hiding technique uses the data structure of Merkle
tree for data integrity verification, but the scheme is only

suitable for scenarios of large size like images because of the
communication overhead of Merkle tree, which can be seen
in the later scheme. Ji et al. [11] use the idea of continuous
modulo multiplication for data label aggregation, which
can better reduce the communication overhead, but the data
computation of the scheme increases a lot. Arasu et al. [12]
proposed to fix the key value of each node of the Merkle
tree for the purpose of localization, which can reduce the
computational and communication overheads to some extent,
and provides an idea for the scheme in this paper.

Zhu et al. [13] proposed a data integrity verification
scheme based on short signature algorithm with a rigorous
proof of formula derivation, but the scheme used a large
number of bilinear mappings, modulo power operations
and modulo multiplication operations, but could not be
applied to client devices with less computational power. Xu
et al. [14] proposed a data integrity verification model with
privacy protection based on healthcare system, and the Shen
et al. [15] proposed an innovative data integrity verification
scheme based on transportation systems, but the scheme
relies too much on data transmission, and the scheme has
too high overhead for data communication, which is not
conducive to mobile in-vehicle data transmission.

In addition to the privacy protection work, there is the
combination of authentication and data integrity verification
work, Sahu et al. [16] added trusted third parties to challenge
the cloud server, using Bloom Filter, lattice based signature
construction and matrix computation to improve the
search efficiency, in fact, the computation task is moved
to trusted third parties to complete, the construction of the
scheme has some innovative significance The construction
of this scheme is innovative, but it cannot be applied to
scenarios with relatively low data overhead requirements
in the IoT environment. Considering the collusion attack
problem brought by using trusted third parties to reduce
the computational burden, Bai et al. [17] proposed to use
blockchain for data integrity verification, which can well
prevent the collusion attack problem caused by collusion
between third parties and cloud servers, but putting IoT
devices on the chain is not a good solution. In response to
blockchain references, Cherupally et al. [18] turned to using
distributed ledger technology to implement a data integrity
verification scheme that optimizes the P2P network to reduce
the computational overhead, but this undoubtedly increases
the communication overhead between devices.

Changalvala [19] proposed low complexity data hiding
techniques that are easy to implement and do not require
a lot of processing power or memory, and used them to
protect sensor data transmission in resource-constrained and
real-time environments (autonomous driving), which is an
alternative idea that can guarantee data integrity verification.
Ren et al. [20] proposed a data integrity verification scheme at
the data block level and proposed to be able to resist attacks
such as label forgery, data alteration, etc. and suggested that
a good scheme needs to support dynamic manipulation of
data. In addition to considering data integrity, data trust in
wireless sensor networks also needs to be considered. Daniel
et al. [21] proposed a trust-based data aggregation protocol
that can successfully check the correctness of data, but the
scheme does not take into account that this consumes too

A New Data Integrity Verification Scheme with Low Communication Cost 285

much communication overhead for the devices. Yu et al.
[22] addressed the problem of frequent checking of data
integrity that wastes resources and proposed a scheme that
uses periodic checking and arbitration algorithm for data
integrity verification strategy, which is more reasonable and
fair compared to similar schemes. In order to guarantee the
supervision of pharmaceutical production line data, Leal et al.
[23] proposed a data supervision scheme based on blockchain
and smart contracts and using industrial sensors for
uploading data, but the scheme does not pay much attention
to the privacy protection of data and is only applicable in this
scenario. In order to make the scheme applicable to more
scenarios, Abhishek et al. [24] proposed a low latency data
integrity verification scheme based on vehicular networking,
which is capable of low data latency, meaning that it does not
require excessive communication overhead, which provides
ideas for our scheme.

2.1 Preliminaries
2.1.1 Hash Functions

Hash function is an irreversible function, common Hash
algorithms are MD5 and SHA series, currently MD5 and
SHA1 have been cracked, this paper recommends the use of
SHA-256 algorithm.

SHA-256 operates in a similar process to a normal hash
function, where the following two steps are first performed
before the hash is computed:

a) Complementary processing of the message, with the
final length being a multiple of 512 bits.

b) Chunking the message in 512-bit units to M1, M2, ...,
Mn.

c) Process the message chunks: starting with an initial
hash H0, iteratively compute: ()1 1i i i iH H CM H− −= ⊕

where C is the SHA256 compression function, ⊕ is the
mode 232 addition, Hn is the hash value of the message block.
2.1.2 Demand Analysis

A practical data integrity verification scheme needs to be
designed to meet the following security objectives.

(1) The integrity attestation cannot be falsified by the
cloud server.

(2) The data verification can manipulate over single data
or multiple data concurrently.

(3) Availability: Resistant to collusive attacks by attackers
and cloud servers.

(4) Correctness and accuracy: Any errors in the data can
be identified by the user.

3 New Data Integrity Verification Scheme

3.1 System Model
In our hypothesis, the two parties involved are: the

user and a semi-trusted cloud server. The user has absolute
ownership of the data, uploading, updating, reading and
verifying the integrity of the data. The data is required to be
stored in a specified location in the cloud. The specific steps
are as follows.

a) Upload data: The user sends a command to send the
data to the cloud location, and at the same time, the value of

the corresponding parent node in the Merkle tree is calculated
and uploaded together with the data, which is done when the
cloud data is first opened.

b) Update data: The user sends a data update command
to replace the data at the cloud location, and at the same time
recalculates the value of the corresponding parent node in the
Merkle tree and uploads it together with the data.

c) Get (download) data: The user sends a data download
command, and the cloud server returns the data at the cloud
location to the user along with the value of the corresponding
parent node in the Merkle tree.

d) Data integrity verification: After obtaining the values
returned from the cloud and their corresponding parent nodes
in the Merkle tree, the user verifies them according to the
rules of the Merkle tree designed by us.

If the data integrity verification passes, the user accepts
the data as true and complete, otherwise the user considers
the cloud data unreliable. The system model is shown in
Figure 1.

Cloud ServerUser

Upload data: data location, data, data
generated by the parent node

Update data: data location, data, data
generated by the parent node

Get data: data corresponding to the data
location, data generated by the parent node

Figure 1. System model

3.2 Security Goal
In addition to safeguarding the data integrity, the

data integrity verification scheme needs to consider the
complexity of the cloud environment and the different attack
directions of the attackers, and needs to satisfy the following
assumptions proposed by the security model.

a) The scheme should be able to resist forgery attacks,
where an attacker forges false data and false integrity
verification parameters that the user can identify during the
verification process.

b) The scheme should be able to guarantee the privacy of
user keys and user data, where an attacker cannot decrypt the
user’s private information on the parameters exposed on the
public channel and data in the cloud server.

c) The user can have the ability to have unique proof of
ownership of the data stored in the cloud, i.e., an attacker
cannot make changes to the ownership of the data.

The attacker is a malicious user who is able to listen to
the content of the user’s conversation with the cloud server
on a public channel, and a capable attacker could potentially
conspire with the cloud server to modify the actual user’s
data.

286 Journal of Internet Technology Vol. 24 No. 2, March 2023

3.3 Our Scheme
A data integrity verification scheme with a faster

verification rate is proposed here:
First, first introduce a binary tree data structure: as

shown in Figure 2, define the key value of the root node
of the binary tree as ϕ , the left child node of each node on
the binary tree (including the root node ϕ) is the key value
of its parent node followed by 0, the right child node is the
key value of its parent node followed by 1, up to a certain
layer t. Here is an example of t = 257, the number of leaf
nodes at the lowest level covered by the binary tree is 2257/−1 ≈
1.1579208923732 × 1077, here the bottom level of the binary
tree is used The leaf nodes represent the key code of the data,
and the other nodes are used as the key code of the Merkle
tree. By analogy with the difficulty of cracking the hash
function above, this value has long exceeded the number of
atoms in the known universe, so for the cloud server, this
value is far enough to mark (number) all the stored data.

0

φ

1

00 01 10 11

2560 2561.

Merkle tree key
values

Data Key Value

Figure 2. Relationship between Merkle tree and data key values

In the traditional bottom-up Merkle tree-based data
integrity verification, the data communication overhead
involved is large, and the cloud needs to transmit the verified
data and each layer of ancestor nodes involved in the data to
the user for hash verification, which is obviously too heavy
for a larger database because the amount of communication
required for one data integrity verification is 2(t − 2) + 1
= 2t − 3, for example , as assumed here above of t = 257,
in order to verify the integrity of 1 data, the cloud needs to
transmit data up to 511 node data in Merkle tree, this result is
too heavy for the load of the network. Therefore, this paper
proposes a top-down data integrity verification scheme to
reduce the communication overhead of data in the integrity
verification process.

A Merkle tree-based data structure is defined as shown in
Figure 3. A new data integrity verification scheme using this
data structure is described below.

Setup: The cloud server selects a non-collision hash
function h(∙) and publishes it to the user as a global
parameter.

Special Merkle tree construction: the cloud server
generates two random numbers r1, r2, which are used to
construct the values of the corresponding second-level nodes
in the data structure of Figure 3: r1 → h0, r2 → h1, and sends
the values of h0 and h1 to the user.

The user generates the private key mk locally to prevent
the data from being falsified by the cloud data and generates

the root node in Figure 3: rootϕ = h(mk, h0, h1), the user only
saves the value of the root node rootϕ.

The user calculates locally the values of all nodes of the
binary tree:

() (1)
ˆ

() (1)
ˆ

(, ,),3 1

(, , ,), .

i i
k k

i i
k kk

h h mk h k i t

h h mk h k m i t

−

−

 = ≤ ≤ −


= =
 (1)

Here k denotes the key value in the Merkle tree: k ∈ {{0,
1}2, {0, 1}3, ..., {0, 1}t − 1}; k̂ denotes the key value of the

parent node of k, and ()i
kh denotes the node value of the

Merkle tree with the key value k at the i-th level.

h1

h00 h01 h10 h11

256
0h 256

1h.

Merkle Tree

Merkle Tree base
layer

root

h0

0m km 2562m.Data

Figure 3. Special data structure based on Merkle tree

Validation: When the user requests integrity verification
of the data mk downloaded for access, the cloud server sends
the values of two data h0 and h1 to the user, who first verifies
that the values of h0 and h1 have not been tampered with
using their root node.

() (1)
ˆ

() (1)
ˆ

(, ,),3 1

(, , ,), .

i i
k k

i i
k kk

h h mk h k i t

h h mk h k m i t

−

−

 = ≤ ≤ −


= =
 (2)

Note that here, unlike the previous construction step,
instead of constructing the entire Merkle tree node, a top-
down path is constructed from the root node ϕ to the bottom
node k ∈ {0, 1}t of the Merkle, and no other nodes are
computed. Once the above equation holds, it is proved that
the data mk is complete and has not been tampered with.
Otherwise, the verification fails and mk has been tampered.

4 Scheme Analysis

4.1 Correctness Analysis
The scheme guarantees that the data completes the data

integrity proof as in Equation (1), and with the addition
of a special Merkle tree, the user is able to reverse the
construction of partial proof data in the same way, i.e., to
reason from the root node to any of the leaf nodes, thus being
able to accurately verify the authenticity of the corresponding
data.

A New Data Integrity Verification Scheme with Low Communication Cost 287

In addition, the solution is able to verify the authenticity
of multiple data at the same time, achieving the goals required
for integrity verification: bulk verification, correctness and
accuracy.

4.2 Security Analysis
The proposed scheme in this paper can meet certain

security requirements, firstly, for cloud servers, which cannot
get any details of the Merkle tree from the data uploaded by
users.
Theorem 1: The cloud server cannot forge a proof of data
integrity to deceive the user.
Proof: In the scheme of this paper, the user uses a hashing
algorithm for data processing and the Merkle tree is
generated to hide the user data information. Even during the
integrity verification process, the user information is hidden
in the hashed data block. Therefore, the user key and hash
function cover up the proof data construction details and the
cloud server cannot know about it.

While meeting the above requirements, the solution also
has the availability to resist various means of attack by cloud
servers or attackers.
Theorem 2: An attacker cannot fake a new Merkle tree to
deceive the user.
Proof: Here we first prove the probability that the parent node
of the second level is faked at time 255{0,1}

P .

255
255

{0,1}

1(({0,1}))= (())= .P P Adv P Adv mk
p

= (3)

And the probability of forging the whole Merkle tree also
depends on whether the attacker can obtain the user key mk,
so the probability of forging the whole Merkle tree event
Pmerkle is:

1(()) (()) .merkleP P Adv merkle P Adv mk
p

= = = (4)

And the original Merkle tree is constructed as:

() (1)

ˆ

() (1)
ˆ

(, ,),3 1

(, , ,), .

i i
k k

i i
k kk

h h mk h k i t

h h mk h k m i t

−

−

 = ≤ ≤ −


= =
 (5)

By the nature of the non-colliding hash function, it is very
difficult to find a number x that satisfies h(x) = y, given a
value y in advance. Here, given the value ()i

kh of any tree
node, it is also impossible to solve for the reverse mk.

From this, it can be obtained that the attacker cannot
forge a new Merkle tree to pass the user’s verification and the
theorem holds.
Theorem 3: The attacker cannot collude with the cloud
server to achieve collusion attack.
Proof: Assuming that in the process of joint deception
between the attacker and the cloud server, the user cannot
be informed of the event in advance, then the attacker and
the cloud server may create false data, but this possibility is
proven by Theorem 1 to be unattainable because the scheme
design itself has made the data owner’s proof of data integrity
construction to include a random number set by itself as the
key, unless the attacker and the cloud Unless the attacker and
the cloud server have access to the user key, the attacker and
the cloud server cannot achieve collusion attack. This proves
that the scheme in this paper can resist collusion attacks.

It can be seen that the scheme in this paper can better
meet the requirements for verification of data integrity, and
its availability cannot be compromised by attackers during
the operational phase of the scheme.

5 Scheme Comparison

In this section, we compare the scheme of this paper
with similar schemes [14] and [17] in terms of both
computational and communication overheads. As shown in
Table 1, the computational overhead and communication
overhead of each scheme are presented. Where MI denotes
modulo-inverse operation, ME denotes modulo-power
operation, MM denotes modulo-multiplication operation, H
denotes hash operation, and B denotes bilinear operation.
The computational overhead here is the computational
overhead required to verify n data, and it calculates only the
consumption of additional verification data except for the
data itself.

From the table, we can roughly see that our scheme has
lower computation overhead and communication overhead
compared to similar schemes [14] and [17], which exhibits
the advantage of our scheme in addition to this paper, which
will be more accurately verified in the experimental section.

Table 1. Scheme comparison

Calculation overhead Communication overhead

Scheme [14] 2n*MI; 10n+4*MM; n*H; 3*B 2n

Scheme [17] 4n+3*ME; 5n+1*MM; n*H; 2*B 3n

Our scheme 2n − 1*H n

288 Journal of Internet Technology Vol. 24 No. 2, March 2023

6 Experimental Simulation

To compare various programs, data s imulat ion
experiments are simulated. The experimental environment
runs on a laptop computer model Lenovo Erazer Z51-
70, processor model: Intel(R) Core(TM) i5-5200U CPU
@2.20GHz; running memory: 8.00 G RAM; storage
space: 480G SSD; operating system: 64-bit Windows 10
Professional; programming language is JAVA, the toolkit is
JPBC library, and the hash function used is SHA-256.

Figure 4 is the overhead experimental results of the three
data integrity verification schemes, from which it can be seen
that the scheme proposed in this paper has disadvantages in
terms of computational overhead to a certain extent, but the
difference is not very large, keeping the same magnitude of
computational overhead.

The reason for this experimental phenomenon in Figure
4 is explained by the fact that our scheme only uses hashing
operations, resulting in almost the same computational
overhead as similar schemes in the finite domain, and even
performing better in all cases.

The communication overhead of the three data integrity
verification schemes is simulated and the experimental result
is plotted in Figure 5, which illustrates that the scheme of
this paper can meet practical requirements better than similar
schemes, and the response delay is improved to a great
extent. The reason for jumping points in the graph is that
there are anomalies in the communication time overhead due
to the instability of the communication environment, but this
has no impact on the judgment of the overall trend.

The reason for the experimental phenomenon shown
in Figure 5 is due to the fact that our scheme only requires
the cloud server to return the nodes at both ends of the
binomial tree to the user during the validation phase, without
transmitting this Merkle tree to the user.

Figure 4. Experimental results of computational overhead
simulation

Figure 5. Communication overhead simulation results

7 Conclusion

In this paper, we propose an improved data integrity
verification scheme to solve the problem of tampering with
user data stored in the cloud server. The Merkle tree required
for data integrity verification is constructed step by step
starting from the root node. Within the same computational
overhead, the communication overhead required for
verification is greatly reduced because the cloud server and
the user only need to transmit the values of each leaf node
in the last layer during the verification process. The scheme
security analysis shows that the proposed scheme can meet
the requirements of the security model for resisting forgery
attacks and resisting collusion attacks.

Acknowledgments

This work is supported in part by the National Natural
Science Foundation of China (62162020), the Science Project
of Hainan University (KYQD (ZR) 20021).

References

[1] R. Nicolescu, M. Huth, P. Radanliev, D. D. Roure,
Mapping the values of IoT, Journal of Information
Technology, Vol. 33, No. 4, pp. 345-360, December,
2018.

[2] S. Deb, B. Bhuyan, N. Kar, K. S. Reddy, Colour
image encryption using an improved version of stream
cipher and chaos, International Journal of Ad Hoc and
Ubiquitous Computing, Vol. 41, No. 2, pp. 118-133,
July, 2022.

[3] A. Ji, X. Guo, R. Zhang, J. Wu, X. Cheng, Joint HAP
deployment and resource allocation for HAP-UAV-
terrestrial integrated networks, IET Communications,
pp. 1-12, October, 2022. https://doi.org/10.1049/
cmu2.12512

[4] L. Zhou, A. Fu, S. Yu, M. Su, B. Kuang, Data integrity
verification of the outsourced big data in the cloud
environment: A survey, Journal of Network and
Computer Applications, Vol. 122, pp. 1-15, November,
2018.

[5] R. Changalvala, H. Malik, LiDAR data integrity

A New Data Integrity Verification Scheme with Low Communication Cost 289

verification for autonomous vehicle, IEEE Access, Vol.
7, pp. 138018-138031, September, 2019.

[6] K. Hao, J. Xin, Z. Wang, G. Wang, Outsourced data
integrity verification based on blockchain in untrusted
environment, World Wide Web, Vol. 23, No. 4, pp. 2215-
2238, July, 2020.

[7] Y. Ding, Y. Li, W. Yang, K. Zhang, Edge data integrity
verification scheme supporting data dynamics and batch
auditing, Journal of Systems Architecture, Vol. 128,
Article No. 102560, July, 2022.

[8] G. Xu, S. Han, Y. Bai, X. Feng, Y. Gan, Data tag
replacement algorithm for data integrity verification in
cloud storage, Computers & Security, Vol. 103, Article
No. 102205, April, 2021.

[9] G. Cui, Q. He, B. Li, X. Xia, F. Chen, H. Jin, Y. Xiang,
Y. Yang, Efficient verification of edge data integrity in
edge computing environment, IEEE Transactions on
Services Computing, pp. 1-1, June, 2021. DOI: 10.1109/
TSC.2021.3090173

[10] D. B. Khadse, G. Swain, Data Hiding and Integrity
Verification based on Quotient Value Differencing
and Merkle Tree, Arabian Journal for Science
and Engineering, pp. 1-13, July, 2022. https://doi.
org/10.1007/s13369-022-06961-9

[11] Y. Ji, B. Shao, J. Chang, G. Bian, Flexible identity-
based remote data integrity checking for cloud storage
with privacy preserving property, Cluster Computing,
Vol. 25, No. 1, pp. 337-349, February, 2022.

[12] A. Arasu, B. Chandramouli, J. Gehrke, E. Ghosh,
D. Kossmann, J. Protzenko, R. Ramamurthy, T.
Ramananandro, A. Rastogi, S. Setty, N. Swamy,
A. Renen, M. Xu, Fastver: Making data integrity a
commodity, Proceedings of the 2021 International
Conference on Management of Data, Xi’an, Shaanxi,
China, 2021, pp. 89-101.

[13] H. Zhu, Y. Yuan, Y. Chen, Y. Zha, W. Xi, B. Jia, Y. Xin,
A secure and efficient data integrity verification scheme
for cloud-IoT based on short signature, IEEE Access,
Vol. 7, pp. 90036-90044, June, 2019.

[14] J. Xu, L. Wei, W. Wu, A. Wang, Y. Zhang, F. Zhou,
Privacy-preserving data integrity verification by using
lightweight streaming authenticated data structures for
healthcare cyber–physical system, Future Generation
Computer Systems, Vol. 108, pp. 1287-1296, July, 2020.

[15] X. Shen, Y. Lu, Y. Zhang, X. Liu, L. Zhang, An
Innovative Data Integrity Verification Scheme in the
Internet of Things assisted information exchange in
transportation systems, Cluster Computing, Vol. 25, No.
3, pp. 1791-1803, June, 2022.

[16] I. K. Sahu, M. J. Nene, Identity-Based Integrity
Verification (IBIV) protocol for cloud data storage,
2021 International Conference on Advances in
Electrical, Computing, Communication and Sustainable
Technologies, Bhilai, India, 2021, pp. 1-6.

[17] Y. Bai, Z. Zhou, X. Luo, X. Wang, F. Liu, Y. Xu,
A Cloud Data Integrity Verification Scheme Based
on Blockchain, 2021 IEEE SmartWorld, Ubiquitous
Intelligence & Computing, Advanced & Trusted
Computing, Scalable Computing & Communications,
Internet of People and Smart City Innovation, Atlanta,

GA, USA, 2021, pp. 357-363.
[18] S. R. Cherupally, S. Boga, P. Podili, K. Kataoka,

Lightweight and Scalable DAG based distributed ledger
for verifying IoT data integrity, 2021 International
Conference on Information Networking, Jeju Island,
Korea, 2021, pp. 267-372.

[19] R. Changalvala, Sensor Data Integrity Verification for
Real-time and Resource Constrained Systems, Ph.D,
Thesis, University of Michigan-Dearborn, Michigan,
US, 2021.

[20] Y. Ren, J. Qi, Y. Liu, J. Wang, G. J. Kim, Integrity
verification mechanism of sensor data based on bilinear
map accumulator, ACM Transactions on Internet
Technology, Vol. 21, No. 1, pp. 1-19, February, 2021.

[21] A. Daniel, S. E. Roslin, Data validation and integrity
verification for trust based data aggregation protocol
in WSN, Microprocessors and Microsystems, Vol. 80,
Article No. 103354, February, 2021.

[22] H. Yu, Q. Hu, Z. Yang, H. Liu, Efficient continuous big
data integrity checking for decentralized storage, IEEE
Transactions on Network Science and Engineering, Vol.
8, No. 2, pp. 1658-1673, April-June, 2021.

[23] F. Leal, A. E. Chis, S. Caton, H. González–Vélez, J.
M. García–Gómez, M. Durá, A. Sánchez–García, C.
Sáez, A. Karageorgos, V. C. Gerogiannis, A. Xenakis,
E. Lallas, T Ntounas, E. Vasileiou, G. Mountzouris,
B. Otti, P. Pucci, R. Papini, D. Cerrai, M. Mier, Smart
pharmaceutical manufacturing: Ensuring end-to-end
traceability and data integrity in medicine production,
Big Data Research, Vol. 24, Article No. 100172, May,
2021.

[24] N. V. Abhishek, M. N. Aman, T. J. Lim, B. Sikdar,
DRiVe: Detecting Malicious Roadside Units in the
Internet of Vehicles with Low Latency Data Integrity,
IEEE Internet of Things Journal, Vol. 9, No. 5, pp.
3270-3281, March, 2022.

Biographies

Fanglin An, received his M.S. degree from
Hainan University in 2019, he is doctoral
candidate at in Hainan University, and his
research interests are information security,
privacy protection and cloud computing.

Jun Ye , PhD, graduated from Xidian
Univers i ty. Now he i s an assoc ia te
professor and PhD supervisor in the
School of Cyberspaces Security, Hainan
University. His research interests are applied
cryptography, privacy protection and cloud
computing.

290 Journal of Internet Technology Vol. 24 No. 2, March 2023

Zhen Guo, PhD, graduated from Xidian
University, she is an associate professor
at Hainan University. Her main research
interests include network security and
cryptography.

