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Abstract

The development of cloud storage is indispensable for 
today’s Internet information technology. The superiority of 
cloud storage is that the ownership of the storage medium and 
the ownership of the stored data are divided and held by two 
parties with respective interests - cloud server providers and 
data users. However, the transmission, storage and utilization 
of data constantly caused the violation of users’ rights and 
interests. Data integrity as a countermeasure has been paid 
growing attention to by researchers. Traditional data integrity 
protection schemes are based on the cloud server-client 
architecture, which requires high computational overhead 
and communication. To address this scenario, this paper 
proposes an improved data integrity verification scheme 
that enables local users to perform rapid and efficient data 
integrity verification of data stored on cloud servers, reduces 
the volume of communication data during the verification 
process, and effectively prevents the loss or tampering of data 
stored in the cloud server.

Keywords: Tamper-Proof, Integrity verification, Communi-
cation overhead optimization

1  Introduction

With the advance of Internet information technology 
penetrating into all aspects of people’s lives, users are more 
closely connected to each other, resulting in a proliferation 
of user data. However, the mobile storage technology, in 
recent years, has not made great progress in the upper ratio. 
Therefore, the user’s local terminal device has not been able 
to meet the basic storage requirement. At the same time, due 
to the data volatility of the storage units in current mobile 
storage devices (solid-state drives themselves have design 
flaws that lead to data loss over long periods of power on 
and off), the demand for important/significant/crucial/privacy 
data backup is also becoming increasingly prominent. In 
order to face the above-mentioned problems, cloud storage 
products came into being, at the same time, how to ensure 
the data security and data integrity of users in the cloud 
storage environment has become a new urgent problem. In 
the traditional data integrity verification scheme, users need 
to save the hash value of each file data for hashing operation, 
then develop a hash table containing the hash values of all 

stored file data, and store the hash table in the local grant 
environment. When the cloud file needs to be updated, the 
hash value, corresponding to this file, in the hash table that 
is stored in the credit environment needs to be updated 
synchronously. When the integrity of the file data in the cloud 
storage requires verification, the file data in the cloud storage 
entail transmission to the user’s local terminal, and applying 
the hashing operation on it, then matching it with the original 
hash value in the hash table and determining whether the data 
integrity is damaged based on the matching result.

The traditional method of data integrity verification 
calculates the hash value of each file and saves the hash value 
through the local authorization mechanism, which has the 
following shortcomings: each verification of file data needs to 
transfer the file data stored in the cloud to the local terminal 
in order to match, which occupies a large amount of local 
data bandwidth; with the gradual increase of file data, the 
number of hash values to be stored in the local authorization 
mechanism increases proportionally, and the complexity of 
managing hash data increases unequally. Because the above 
two key problems are not solved perfectly, the traditional 
data integrity verification is inefficient, resulting in the data 
integrity technology not being widely used in practice.

There is an urgent need to study an efficient and easy-
to-manage data integrity scheme for cloud storage data that 
can efficiently complete data integrity verification requests 
and also ensure the correctness and non-tamperability of 
data verification results. At the same time, it can ensure that 
the proliferation of file data does not affect the efficiency 
of data integrity verification by users. These two aspects 
are the focus of data integrity verification and are of great 
importance to the management of user data.

With the advent of the big data era, a large amount of 
relevant business data generated in various fields, which 
are usually put in cloud servers for easy data management. 
However, these data may be tampered with by dishonest 
cloud servers, thus verifying data integrity is a necessity 
for secure data storage. In order to perform data integrity 
verification more efficiently, this paper proposes a trusted and 
communication data reduced integrity verification scheme 
in the cloud, and a special binomial tree data structure based 
on Merkle tree is proposed, which uses a top-down approach 
to compute arbitrary data nodes. In addition, for integrity 
verification, a new integrity checking approach is introduced 
by unifying the processing of database records and Merkle 
Tree nodes. The proposed scheme has less communication 
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overhead than existing ones.
In this paper, we propose a trusted data integrity 

verification scheme in the cloud that reduces the amount of 
lower communication. A special Merkle tree data structure is 
introduced to achieve the integrity verification of data in the 
cloud. And it is also very efficient to update the Merkle tree 
when some data changes frequently. The main contributions 
are as follows.

(1) An improved cloud data integrity verification scheme 
is proposed that can reduce the communication overhead 
between cloud servers and users. 

(2) By using a special Merkle tree-based encryption 
technique, the user can verify whether a certain data is 
tampered or not with less communication overhead and 
computation overhead.

(3) In the data upload or update phase, the user only 
needs to send the data and the value of its parent node to the 
cloud server, and the update work is done by the cloud server.

2  Related Work

Nicolescu et al. [1] proposed that the value held by IoT 
services and products throughout their lifecycle in creating 
and maintaining the value of IoT services, while the work in 
this paper is in maintaining the value of IoT services. Deb et 
al. [2] proposed a new image cryptosystem based on chaos 
theory when using a statistical approach to test the data and 
the efficiency of the system, which shows the need to protect 
the operational efficiency of the system while safeguarding 
the integrity of the data. Ji et al. [3] on the optimization and 
allocation of communication resources for high throughput in 
UAV-ground communication scenarios, giving us a research 
focus on the need for a system that should be as efficient as 
possible for communication, is the latest research trend.

For the work on data integrity verification, Zhou et al. 
[4] made a summary of the need to accomplish functionality, 
security and efficiency. Changalvala and Malik [5] 
developed a data hiding technique based on 3-dimensional 
quantized index modulation for data integrity verification 
in the transmission protocol used for data transmission 
in autonomous driving scenarios, but the scheme did not 
consider data security. K. Hao et al. [6] also highlight the 
problem of untrustworthy storage environment caused by 
outsourcing data to cloud servers for storage. Ding et al. [7] 
propose a data integrity verification scheme with smaller 
computational overhead and latency for fog node servers 
whose computational overhead is not easily but large, but 
the scheme does not consider the weak computational power 
of the client. Xu et al. [8] address the data integrity. The 
unique tag replacement algorithm was proposed for the 
problem of reliability of tags generated by the proof, but 
the scheme did not consider the excessive computational 
overhead required for the verification process. Cui et al. [9] 
also proposed a solution for the data integrity verification 
problem in edge computing scenario, but the scheme used 
a large number of modulo multiplication operations which 
slowed down the data processing time. Khadse et al. [10] 
data hiding technique uses the data structure of Merkle 
tree for data integrity verification, but the scheme is only 

suitable for scenarios of large size like images because of the 
communication overhead of Merkle tree, which can be seen 
in the later scheme. Ji et al. [11] use the idea of continuous 
modulo multiplication for data label aggregation, which 
can better reduce the communication overhead, but the data 
computation of the scheme increases a lot. Arasu et al. [12] 
proposed to fix the key value of each node of the Merkle 
tree for the purpose of localization, which can reduce the 
computational and communication overheads to some extent, 
and provides an idea for the scheme in this paper.

Zhu et al. [13] proposed a data integrity verification 
scheme based on short signature algorithm with a rigorous 
proof of formula derivation, but the scheme used a large 
number of bilinear mappings, modulo power operations 
and modulo multiplication operations, but could not be 
applied to client devices with less computational power. Xu 
et al. [14] proposed a data integrity verification model with 
privacy protection based on healthcare system, and the Shen 
et al. [15] proposed an innovative data integrity verification 
scheme based on transportation systems, but the scheme 
relies too much on data transmission, and the scheme has 
too high overhead for data communication, which is not 
conducive to mobile in-vehicle data transmission.

In addition to the privacy protection work, there is the 
combination of authentication and data integrity verification 
work, Sahu et al. [16] added trusted third parties to challenge 
the cloud server, using Bloom Filter, lattice based signature 
construction and matrix computation to improve the 
search efficiency, in fact, the computation task is moved 
to trusted third parties to complete, the construction of the 
scheme has some innovative significance The construction 
of this scheme is innovative, but it cannot be applied to 
scenarios with relatively low data overhead requirements 
in the IoT environment. Considering the collusion attack 
problem brought by using trusted third parties to reduce 
the computational burden, Bai et al. [17] proposed to use 
blockchain for data integrity verification, which can well 
prevent the collusion attack problem caused by collusion 
between third parties and cloud servers, but putting IoT 
devices on the chain is not a good solution. In response to 
blockchain references, Cherupally et al. [18] turned to using 
distributed ledger technology to implement a data integrity 
verification scheme that optimizes the P2P network to reduce 
the computational overhead, but this undoubtedly increases 
the communication overhead between devices.

Changalvala [19] proposed low complexity data hiding 
techniques that are easy to implement and do not require 
a lot of processing power or memory, and used them to 
protect sensor data transmission in resource-constrained and 
real-time environments (autonomous driving), which is an 
alternative idea that can guarantee data integrity verification. 
Ren et al. [20] proposed a data integrity verification scheme at 
the data block level and proposed to be able to resist attacks 
such as label forgery, data alteration, etc. and suggested that 
a good scheme needs to support dynamic manipulation of 
data. In addition to considering data integrity, data trust in 
wireless sensor networks also needs to be considered. Daniel 
et al. [21] proposed a trust-based data aggregation protocol 
that can successfully check the correctness of data, but the 
scheme does not take into account that this consumes too 
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much communication overhead for the devices. Yu et al. 
[22] addressed the problem of frequent checking of data 
integrity that wastes resources and proposed a scheme that 
uses periodic checking and arbitration algorithm for data 
integrity verification strategy, which is more reasonable and 
fair compared to similar schemes. In order to guarantee the 
supervision of pharmaceutical production line data, Leal et al. 
[23] proposed a data supervision scheme based on blockchain 
and smart contracts and using industrial sensors for 
uploading data, but the scheme does not pay much attention 
to the privacy protection of data and is only applicable in this 
scenario. In order to make the scheme applicable to more 
scenarios, Abhishek et al. [24] proposed a low latency data 
integrity verification scheme based on vehicular networking, 
which is capable of low data latency, meaning that it does not 
require excessive communication overhead, which provides 
ideas for our scheme.

2.1 Preliminaries
2.1.1 Hash Functions

Hash function is an irreversible function, common Hash 
algorithms are MD5 and SHA series, currently MD5 and 
SHA1 have been cracked, this paper recommends the use of 
SHA-256 algorithm.

SHA-256 operates in a similar process to a normal hash 
function, where the following two steps are first performed 
before the hash is computed:

a) Complementary processing of the message, with the 
final length being a multiple of 512 bits.

b) Chunking the message in 512-bit units to M1, M2, ..., 
Mn. 

c) Process the message chunks: starting with an initial 
hash H0, iteratively compute: ( )1 1i i i iH H CM H− −= ⊕  

where C is the SHA256 compression function, ⊕  is the 
mode 232 addition, Hn is the hash value of the message block.
2.1.2 Demand Analysis

A practical data integrity verification scheme needs to be 
designed to meet the following security objectives.

(1) The integrity attestation cannot be falsified by the 
cloud server.

(2) The data verification can manipulate over single data 
or multiple data concurrently.

(3) Availability: Resistant to collusive attacks by attackers 
and cloud servers.

(4) Correctness and accuracy: Any errors in the data can 
be identified by the user.

3 New Data Integrity Verification Scheme

3.1 System Model
In our hypothesis, the two parties involved are: the 

user and a semi-trusted cloud server. The user has absolute 
ownership of the data, uploading, updating, reading and 
verifying the integrity of the data. The data is required to be 
stored in a specified location in the cloud. The specific steps 
are as follows.

a) Upload data: The user sends a command to send the 
data to the cloud location, and at the same time, the value of 

the corresponding parent node in the Merkle tree is calculated 
and uploaded together with the data, which is done when the 
cloud data is first opened.

b) Update data: The user sends a data update command 
to replace the data at the cloud location, and at the same time 
recalculates the value of the corresponding parent node in the 
Merkle tree and uploads it together with the data.

c) Get (download) data: The user sends a data download 
command, and the cloud server returns the data at the cloud 
location to the user along with the value of the corresponding 
parent node in the Merkle tree.

d) Data integrity verification: After obtaining the values 
returned from the cloud and their corresponding parent nodes 
in the Merkle tree, the user verifies them according to the 
rules of the Merkle tree designed by us.

If the data integrity verification passes, the user accepts 
the data as true and complete, otherwise the user considers 
the cloud data unreliable. The system model is shown in 
Figure 1.

Cloud ServerUser

Upload data: data location, data, data 
generated by the parent node

Update data: data location, data, data 
generated by the parent node

Get data: data corresponding to the data 
location, data generated by the parent node

Figure 1. System model

3.2 Security Goal
In addition to safeguarding the data integrity, the 

data integrity verification scheme needs to consider the 
complexity of the cloud environment and the different attack 
directions of the attackers, and needs to satisfy the following 
assumptions proposed by the security model.

a) The scheme should be able to resist forgery attacks, 
where an attacker forges false data and false integrity 
verification parameters that the user can identify during the 
verification process.

b) The scheme should be able to guarantee the privacy of 
user keys and user data, where an attacker cannot decrypt the 
user’s private information on the parameters exposed on the 
public channel and data in the cloud server.

c) The user can have the ability to have unique proof of 
ownership of the data stored in the cloud, i.e., an attacker 
cannot make changes to the ownership of the data.

The attacker is a malicious user who is able to listen to 
the content of the user’s conversation with the cloud server 
on a public channel, and a capable attacker could potentially 
conspire with the cloud server to modify the actual user’s 
data.
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3.3 Our Scheme
A data integrity verification scheme with a faster 

verification rate is proposed here:
First, first introduce a binary tree data structure: as 

shown in Figure 2, define the key value of the root node 
of the binary tree as ϕ , the left child node of each node on 
the binary tree (including the root node ϕ) is the key value 
of its parent node followed by 0, the right child node is the 
key value of its parent node followed by 1, up to a certain 
layer t. Here is an example of t = 257, the number of leaf 
nodes at the lowest level covered by the binary tree is 2257/−1 ≈ 
1.1579208923732 × 1077, here the bottom level of the binary 
tree is used The leaf nodes represent the key code of the data, 
and the other nodes are used as the key code of the Merkle 
tree. By analogy with the difficulty of cracking the hash 
function above, this value has long exceeded the number of 
atoms in the known universe, so for the cloud server, this 
value is far enough to mark (number) all the stored data.

0

φ

1

00 01 10 11

2560 2561. . . . . .

Merkle tree key 
values

Data Key Value

Figure 2. Relationship between Merkle tree and data key values

In the traditional bottom-up Merkle tree-based data 
integrity verification, the data communication overhead 
involved is large, and the cloud needs to transmit the verified 
data and each layer of ancestor nodes involved in the data to 
the user for hash verification, which is obviously too heavy 
for a larger database because the amount of communication 
required for one data integrity verification is 2(t − 2) + 1 
= 2t − 3, for example , as assumed here above of t = 257, 
in order to verify the integrity of 1 data, the cloud needs to 
transmit data up to 511 node data in Merkle tree, this result is 
too heavy for the load of the network. Therefore, this paper 
proposes a top-down data integrity verification scheme to 
reduce the communication overhead of data in the integrity 
verification process.

A Merkle tree-based data structure is defined as shown in 
Figure 3. A new data integrity verification scheme using this 
data structure is described below.

Setup: The cloud server selects a non-collision hash 
function h(∙) and publishes it to the user as a global 
parameter.

Special Merkle tree construction: the cloud server 
generates two random numbers r1, r2, which are used to 
construct the values of the corresponding second-level nodes 
in the data structure of Figure 3: r1 → h0, r2 → h1, and sends 
the values of h0 and h1 to the user.

The user generates the private key mk locally to prevent 
the data from being falsified by the cloud data and generates 

the root node in Figure 3: rootϕ = h(mk, h0, h1), the user only 
saves the value of the root node rootϕ.

The user calculates locally the values of all nodes of the 
binary tree:

( ) ( 1)
ˆ

( ) ( 1)
ˆ

( , , ),3 1

( , , , ), .

i i
k k

i i
k kk

h h mk h k i t

h h mk h k m i t

−

−

 = ≤ ≤ −


= =
                       (1)

Here k denotes the key value in the Merkle tree: k ∈ {{0, 
1}2, {0, 1}3, ..., {0, 1}t − 1}; k̂  denotes the key value of the 

parent node of k, and ( )i
kh  denotes the node value of the 

Merkle tree with the key value k at the i-th level.

h1

h00 h01 h10 h11

256
0h 256

1h. . . . . .

Merkle Tree

Merkle Tree base 
layer

root

h0

0m km 2562m. . . . . . . . . . . .Data

Figure 3. Special data structure based on Merkle tree

Validation: When the user requests integrity verification 
of the data mk downloaded for access, the cloud server sends 
the values of two data h0 and h1 to the user, who first verifies 
that the values of h0 and h1 have not been tampered with 
using their root node.

( ) ( 1)
ˆ

( ) ( 1)
ˆ

( , , ),3 1

( , , , ), .

i i
k k

i i
k kk

h h mk h k i t

h h mk h k m i t

−

−

 = ≤ ≤ −


= =
                       (2)

Note that here, unlike the previous construction step, 
instead of constructing the entire Merkle tree node, a top-
down path is constructed from the root node ϕ to the bottom 
node k ∈ {0, 1}t of the Merkle, and no other nodes are 
computed. Once the above equation holds, it is proved that 
the data mk is complete and has not been tampered with. 
Otherwise, the verification fails and mk has been tampered.

4  Scheme Analysis

4.1 Correctness Analysis
The scheme guarantees that the data completes the data 

integrity proof as in Equation (1), and with the addition 
of a special Merkle tree, the user is able to reverse the 
construction of partial proof data in the same way, i.e., to 
reason from the root node to any of the leaf nodes, thus being 
able to accurately verify the authenticity of the corresponding 
data.
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In addition, the solution is able to verify the authenticity 
of multiple data at the same time, achieving the goals required 
for integrity verification: bulk verification, correctness and 
accuracy.

4.2 Security Analysis
The proposed scheme in this paper can meet certain 

security requirements, firstly, for cloud servers, which cannot 
get any details of the Merkle tree from the data uploaded by 
users.
Theorem 1: The cloud server cannot forge a proof of data 
integrity to deceive the user.
Proof: In the scheme of this paper, the user uses a hashing 
algorithm for data processing and the Merkle tree is 
generated to hide the user data information. Even during the 
integrity verification process, the user information is hidden 
in the hashed data block. Therefore, the user key and hash 
function cover up the proof data construction details and the 
cloud server cannot know about it.

While meeting the above requirements, the solution also 
has the availability to resist various means of attack by cloud 
servers or attackers.
Theorem 2: An attacker cannot fake a new Merkle tree to 
deceive the user.
Proof: Here we first prove the probability that the parent node 
of the second level is faked at time 255{0,1}

P .

255
255

{0,1}

1( ({0,1} ))= ( ( ))= .P P Adv P Adv mk
p

=        (3)

And the probability of forging the whole Merkle tree also 
depends on whether the attacker can obtain the user key mk, 
so the probability of forging the whole Merkle tree event 
Pmerkle is:

             
1( ( )) ( ( )) .merkleP P Adv merkle P Adv mk
p

= = =       (4)

And the original Merkle tree is constructed as:
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k kk
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
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                       (5)

By the nature of the non-colliding hash function, it is very 
difficult to find a number x that satisfies h(x) = y, given a 
value y in advance. Here, given the value ( )i

kh  of any tree 
node, it is also impossible to solve for the reverse mk.

From this, it can be obtained that the attacker cannot 
forge a new Merkle tree to pass the user’s verification and the 
theorem holds.
Theorem 3: The attacker cannot collude with the cloud 
server to achieve collusion attack.
Proof: Assuming that in the process of joint deception 
between the attacker and the cloud server, the user cannot 
be informed of the event in advance, then the attacker and 
the cloud server may create false data, but this possibility is 
proven by Theorem 1 to be unattainable because the scheme 
design itself has made the data owner’s proof of data integrity 
construction to include a random number set by itself as the 
key, unless the attacker and the cloud Unless the attacker and 
the cloud server have access to the user key, the attacker and 
the cloud server cannot achieve collusion attack. This proves 
that the scheme in this paper can resist collusion attacks.

It can be seen that the scheme in this paper can better 
meet the requirements for verification of data integrity, and 
its availability cannot be compromised by attackers during 
the operational phase of the scheme.

5  Scheme Comparison

In this section, we compare the scheme of this paper 
with similar schemes [14] and [17] in terms of both 
computational and communication overheads. As shown in 
Table 1, the computational overhead and communication 
overhead of each scheme are presented. Where MI denotes 
modulo-inverse operation, ME denotes modulo-power 
operation, MM denotes modulo-multiplication operation, H 
denotes hash operation, and B denotes bilinear operation. 
The computational overhead here is the computational 
overhead required to verify n data, and it calculates only the 
consumption of additional verification data except for the 
data itself.

From the table, we can roughly see that our scheme has 
lower computation overhead and communication overhead 
compared to similar schemes [14] and [17], which exhibits 
the advantage of our scheme in addition to this paper, which 
will be more accurately verified in the experimental section.

Table 1. Scheme comparison

Calculation overhead Communication overhead

Scheme [14] 2n*MI; 10n+4*MM; n*H; 3*B 2n

Scheme [17] 4n+3*ME; 5n+1*MM; n*H; 2*B 3n

Our scheme 2n − 1*H n
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6  Experimental Simulation

To compare various programs,  data s imulat ion 
experiments are simulated. The experimental environment 
runs on a laptop computer model Lenovo Erazer Z51-
70, processor model: Intel(R) Core(TM) i5-5200U CPU 
@2.20GHz; running memory: 8.00 G RAM; storage 
space: 480G SSD; operating system: 64-bit Windows 10 
Professional; programming language is JAVA, the toolkit is 
JPBC library, and the hash function used is SHA-256.

Figure 4 is the overhead experimental results of the three 
data integrity verification schemes, from which it can be seen 
that the scheme proposed in this paper has disadvantages in 
terms of computational overhead to a certain extent, but the 
difference is not very large, keeping the same magnitude of 
computational overhead.

The reason for this experimental phenomenon in Figure 
4 is explained by the fact that our scheme only uses hashing 
operations, resulting in almost the same computational 
overhead as similar schemes in the finite domain, and even 
performing better in all cases.

The communication overhead of the three data integrity 
verification schemes is simulated and the experimental result 
is plotted in Figure 5, which illustrates that the scheme of 
this paper can meet practical requirements better than similar 
schemes, and the response delay is improved to a great 
extent. The reason for jumping points in the graph is that 
there are anomalies in the communication time overhead due 
to the instability of the communication environment, but this 
has no impact on the judgment of the overall trend.

The reason for the experimental phenomenon shown 
in Figure 5 is due to the fact that our scheme only requires 
the cloud server to return the nodes at both ends of the 
binomial tree to the user during the validation phase, without 
transmitting this Merkle tree to the user.

Figure 4. Experimental results of computational overhead 
simulation

Figure 5. Communication overhead simulation results

7  Conclusion

In this paper, we propose an improved data integrity 
verification scheme to solve the problem of tampering with 
user data stored in the cloud server. The Merkle tree required 
for data integrity verification is constructed step by step 
starting from the root node. Within the same computational 
overhead, the communication overhead required for 
verification is greatly reduced because the cloud server and 
the user only need to transmit the values of each leaf node 
in the last layer during the verification process. The scheme 
security analysis shows that the proposed scheme can meet 
the requirements of the security model for resisting forgery 
attacks and resisting collusion attacks.
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