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Abstract

Recently, fuzzy utility pattern mining has received much 
attention for its practicality and comprehensibility. It aims to 
discover high fuzzy utility itemsets (HFUIs) by considering 
not only utility but also linguistic factors. Among existing 
algorithms, experiments showed that fuzzy-list-based algo-
rithms are effective and efficient. However, a significant dis-
advantage of fuzzy-list-based algorithms is that constructing 
and maintaining fuzzy-lists is time-consuming and memo-
ry-overhead. To address this issue, a novel algorithm named 
explainable Itemset Utility Maximization with Fuzzy Set 
(FS-IUM) is proposed in this paper. The traditional fuzzy-
list structure is replaced by a better structure (i.e., fuzzy-
list buffer), which speeds up the mining process and reduces 
memory consumption. Compared with fuzzy-list structure, 
the fuzzy-list buffer structure and its auxiliary structure help 
the algorithm locate the fuzzy-list quickly and thus reduce 
the runtime. Moreover, with an efficient fuzzy-list buffer 
construction method, the algorithm reduces the cost of can-
didate storage. Furthermore, with several efficient strategies, 
the proposed algorithm can prune numerous useless patterns 
in advance and thus considerably reduces the runtime usage. 
Finally, extensive experiments on various datasets were con-
ducted to compare the performance of FS-IUM with some 
state-of-the-art algorithms. The experimental results reveal 
that the proposed fuzzy-list buffer-based algorithm highly 
outperforms the baselines in terms of runtime and memory 
consumption.

Keywords: Data mining, Fuzzy utility mining, Fuzzy-list 
buffer, Fuzzy set theory

1  Introduction

With the rapid development of data technology, how to 
mine valuable information from transaction databases has 
become a popular topic recently. Association rule mining 
(ARM) [1] is used to discover useful but hidden association 
rules, and the discovered rules are always frequent and high 
confidence. Association rules reflect the interdependence and 
relevance between distinct items and are easy to predict the 
occurrence of other related items. A classic sample is “Beer 
and Nappies” which was proposed by Walmart. Retailers 
noticed that married men often bought beer and nappies to-
gether after they were off duty. Thus, retailers tried to shelve 

beer and nappies together, and the sale volume of the product 
combination rose as expected. In the meanwhile, a subfield 
of ARM, frequent itemset mining (FIM) [2-3] has also been 
widely studied. FIM aims at mining frequent itemsets which 
are portions of association rule. However, ARM and FIM 
algorithms all only focus on the occurrence of itemsets but 
ignore other important factors (e.g., risk, unit profit, and 
weight) of different items. For instance, the sold volume of 
bread and milk is higher than that of steak and red wine, but 
the revenue of the second product combination is obviously 
larger than that of the first combination. In other words, ARM 
and FIM algorithms may output frequent but low profit re-
sults, which is unacceptable in some cases.

To address this issue, a new mining task called high util-
ity itemset mining (HUIM) [4] was proposed and is based on 
utility from economics [5]. In this field, Shen et al. [6] firstly 
tried applying utility constraint into association rule min-
ing. They stated that the utility consists of quantity and unit 
profit of item, which is neither monotone nor anti-monotone. 
Furthermore, due to the utility may be positive or negative, 
previous optimization methods in FIM cannot be directly 
adopted in HUIM. Then, Yao et al. [7] formalized the utili-
ty mining problem. However, their proposed approach was 
too naive to discover high utility itemsets (abbreviated as 
HUIs). In fact, the problem of these two mentioned works is 
ignoring the downward-closure property. These algorithms 
may face a “combinatorial explosion” of itemsets since the 
number of distinct items may be very large. In FIM domain, 
downward-closure property means the subsets of a frequent 
itemset must be always frequent. This can greatly help algo-
rithms prune massive useless candidates during the mining 
process. Thus, transaction-weighted utilization (abbreviat-
ed TWU) model [8] was proposed. TWU of an itemset X is 
calculated by the summation utility of transactions which 
contain X. Since the occurrence times of supersets of X are 
always less than or equal to that of X in a database, TWU of 
these supersets must be lower than or equal to TWU of X too. 
Obviously, TWU is a powerful upper-bound and can be used 
to estimate the utility of X. If TWU of an itemset is lower than 
the user-specified minimal utility threshold (minUtil), we can 
safely prune the itemset and its supersets during the mining 
process. After that, there are a lot of information available in 
literature about HUIM algorithms (e.g., HUI-Miner [9], FHM 
[10], TopHUI [11], and ULB-Miner [12]).

Though HUIM algorithm assesses the importance of 
different items by numerical utility measure, the mined re-
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sults cannot provide more details of HUIs, such as purchase 
quantity of items. In some cases, users want to find “tall” 
trees in a forest or discover a group of “beautiful” girls. The 
adjectives “tall” and “beautiful” are both language terms that 
cannot be described directly in numerical values. Therefore, 
by combining with fuzzy set theory [13], Wang et al. [14] 
proposed a new framework called fuzzy utility mining (FUM) 
to discover high fuzzy utility itemsets (HFUIs) from quan-
titative transaction databases. Then, Lan et al. [15] adopted 
a user-defined membership function to assess items’ fuzzy 
utility. The highlight of their work is implementing the down-
ward-closure property in FUM, which is a general but effec-
tive fuzzy utility upper-bound (FUUB). Recently, Wan et al. 
[16] proposed a one phase FUM algorithm called FUIM. The 
remaining fuzzy utility is the first time adopted in FUM do-
main. The extensive experiments show FUIM performs better 
than previous algorithms. However, because of the fuzzy-
list structure, FUIM costs too much runtime and memory in 
joining operation. We therefore infer that the performance of 
FUIM still can be improved. In this paper, we not only utilize 
some efficient pruning strategies, but also adopt buffer list 
structure to save runtime and memory. The novel approach is 
called explainable Itemset Utility Maximization with Fuzzy 
Set (abbreviated as FS-IUM). The following content details 
the major contributions of this paper.

1) A novel Fuzzy-List Buffer structure (named FLBuf) 
and a summary fuzzy-list (named SL) are proposed. FLBuf 
can be used repeatedly to store the key information of prom-
ising fuzzy itemsets. Accordingly, SL can quickly locate the 
start and end indexes of fuzzy items in FLBuf.

2) We use the Estimated Fuzzy utility Co-occurrence 
Structure (named EFuCS) to store the upper-bound of 
high-level itemsets. And the corresponding Estimated Fuzzy 
utility of itemset to Prune (named EF2P) strategy is used to 
prune the search space in advance.

3) We conduct extensive experiments on eight datasets 
(including real and synthetic) to demonstrate the effective-
ness and efficiency of our novel algorithm. We also compare 
the performances of the HUIM and FUM algorithms. The 
experiments show that the FS-IUM outperforms other state-
of-the-art algorithms.

The rest content of this paper is organized as follows. 
Section 2 briefly reviews the related work in HUIM and FUM 
domains. Thereafter, Section 3 introduces the preliminaries 
and defines the problem of high fuzzy utility itemset mining. 
The details of our proposed algorithm are presented in Sec-
tion 4. In Section 5, the experimental results are discussed. In 
the end, we summarize this paper and plan the future work in 
Section 6.

2  Related Work

2.1 High Utility Itemset Mining
Interesting measures play a vital role in knowledge dis-

covery [1-2, 17-18]. Due to relative importance of distinct 
items are not considered in frequent itemset mining, utili-
ty-based measures use the utilities of itemsets to reflect the 
user’s goals. Since Shen et al. [6] first proposed utility con-
straint rule mining task, there are a multitude of investigators 

have hastened to improve the performance of high utility 
itemset mining (HUIM). In fact, all the proposed HUIM algo-
rithms can be roughly divided into two classes. The first class 
is two phase model. Taking the most famous approach Two-
Phase [8] as example, its mining mechanism is as follows: 
1) In the Phase I, Two-Phase will scan the database and then 
generates a mass of candidates by using TWU upper-bound. 
We call Phase I as generating part; and 2) In the Phase II, it 
scans database multiple times and computes the real utility of 
candidates to discover HUIs. This phase is defined as check-
ing part. The Two-Phase algorithm will repeat two phases 
until no more HUIs are generated. To reduce the number of 
candidates generation, studies [19-21] keep original database 
in a tree data structure. The experiments show the latter saves 
more time and memory usage than the former.

However, as previous content we mentioned, scanning 
database multiply is costly and unacceptable. Hence, the 
second class (one phase model) was proposed as a solution 
to the above problem. The key idea of one phase algorithms 
is utilizing efficient data structure to store major information 
of itemsets in memory. HUI-Miner [9] is the first and most 
famous list-based one phase algorithm. It only needs to scan 
the database twice times and then construct utility-lists for 
different itemsets. The utility-list collects all key information 
(i.e., transaction identification, utility value, and remaining 
utility) of an itemset. Then, the super-itemset can be obtained 
by joining two distinct utility-lists. Recently, Duong et al. [12] 
figured out that the major computational cost of list-based 
algorithm is maintaining massive utility-lists in memory. 
Therefore, they proposed a reusable utility-list buffer data 
structure. The novel structure only uses a portion of space 
to store basic information of promising items, and the rest is 
reused to keep information of itemsets. Compared with the 
state-of-the-art algorithms HUI-Miner [9] and FHM [10], 
the peak memory consumption of their novel algorithm was 
reduced nearly to six times, and the performance in terms of 
runtime cost also plays very well. All in all, there is a lot of 
information available in literature about HUIM. Further de-
tails can be found in studies [4, 22-24].

2.2 Fuzzy Utility Mining
As previously mentioned, high utility itemsets are usually 

lack of comprehensibility attribute. How to mine explainable 
results emerges as an important topic. Mining fuzzy item-
sets is a solution to the above issue. Since Wang et al. [14] 
first proposed the fuzzy utility mining task, researchers have 
found a new way to get explainable patterns. Lan et al. con-
tinuously proposed two studies [15, 25]. And they designed 
a new fuzzy utility upper-bound (FUUB) to accelerate the 
mining process. In FUM algorithms, FUUB plays the same 
role as TWU works in HUIM. It can filter unpromising items 
after scans database once and is greatly reduces the number 
of candidates generation during mining process. In their 
proposed works, three parameters (user-defined membership 
function, a quantitative transaction database, and a user-spec-
ified minimal utility threshold) are taken as input, and then 
the algorithm yields high fuzzy utility itemsets (HFUIs) as 
output. The membership function is used to calculate differ-
ent linguistic region values (e.g., Low, Middle, and High) 
of an item. Since a fuzzy itemset consists of distinct fuzzy 
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items, Lan et al. [15] utilized the minimum operator principle 
to compute the fuzzy utility of the itemset. That is, for exam-
ple, if region values of two fuzzy items egg.Low and milk.
Middle are 0.6 and 0.4 respectively, then the region value of 
fuzzy itemset {egg.Low, milk.Middle} is 0.4. In other words, 
the region value of egg.Low in the fuzzy itemset is set as 0.4 
rather than 0.6. However, all above discussed approaches be-
long to two phase model. Recently, Wan et al. [16] proposed 
an efficient one phase algorithm named FUIM. They first pro-
posed the remaining fuzzy utility notion, which is a tighter 
upper-bound than FUUB. The experiments reveal that FUIM 
performs better than previous algorithms.

At the same time, Huang et al. [26] noticed that tradi-
tional FUM algorithms do not consider the temporal factor, 
which plays an important role in many data analytic systems 
and applications. Hence, they proposed a new mining task 
called temporal fuzzy utility itemset mining (TFUIM) to 
solve this issue. Subsequently, there are other studies [27-
28] continuously proposed to improve the performance of 
TFUIM algorithms. All in all, we suppose that FUIM adopts 
naive method to intersect different fuzzy-lists will cause poor 
efficiency. Thus, in this paper, we will propose a novel fuzzy 
utility itemset mining algorithm which performs better than 
FUIM in terms of both runtime and memory usage.

3  Preliminaries and Problem Statement

In this section, the basic definitions our novel algorithm 
adopted will be introduced and exemplified. Most notations 
are provided in studies [15-16], and we formulate the 
problem statement of fuzzy utility itemset mining finally.

3.1 Basic Preliminaries
In the novel algorithm, we assume I = {x1, x2, …, xn} is 

a set of n different items. The itemset X = {x1, x2, …, xk}is a 
superset of items. We call X is an k-itemset if it consists of k 
distinct items where |X| = k. A quantitative transaction data-
base D = {T1, T2, …, Tm}, and the transaction Tm is a subset 
of I. In particular, an item xi in D has an external utility (e.g., 
unit profit) p(xi) and an internal utility (e.g., quantity) q(xi, Ti). 
We also take a sample transaction database (Table 1) as our 
running example in this paper, and the external utility of A, B, 
C, and D is $5, $3, $2, and $7 respectively. At the same time, 
the membership function is shown in Figure 1 and defines 
three regions Low, Middle, and High.

Definition 1: In the user-specified membership function, a 
fuzzy set fij of an item xi in transaction Tj is defined as

 

               1 2

1 2

( ... ),ij ij ijl
ij

i i il

f f f
f

R R R
= + + +                                     (1)

where l is the number of regions given by the membership 
function. Ril is the l-th fuzzy region value of xi, and fijl ∈
[0,1]. In addition, the fuzzy utility of the fuzzy item xil in Tj is 
denoted as

( , ) ( , ) ( ),ijl il j ijl i j ifu x T f q x T p x= × ×                       (2)

and its total fuzzy futility in  is defined as

      ( ) ( , ).
i j jil il x T T ijl i jfu x fu x T∈ ∧ ∈= ∑                           (3)

For example, consider the internal utility of an item D in 
transaction T6 in Table 1 (that is q(D, T6) = 7), fD,6 is (0/D.Low, 
0.8/D.Middle, 0.2/D.High) by the given membership function 
(Figure 1). Then, the fuzzy utility of fuzzy item D.Middle is 
0.8×7×$7, where is $39.2.

Figure 1. The membership function

Table 1. A simple quantitative transaction database
Tid A B C D
T1 2 11 4 3
T2 0 0 5 0
T3 9 0 0 0
T4 10 0 0 2
T5 6 0 1 3
T6 0 2 3 7
T7 0 8 1 0
T8 0 0 0 4
T9 5 0 1 3
T10 3 0 5 0

Definition 2: An itemset consists of several distinct items. 
Similarly, a fuzzy itemset is a superset of distinct fuzzy 
items. The fuzzy utility of a fuzzy itemset X in transaction Tj 
is defined as

( ),   ( , ),
il jjx j jX x X X T ijl i jfu X T f fu x T∈ ∧ ⊆= ×∑        (4)

 
and its corresponding fuzzy utility in D is denoted as

( )   ( , ),
j jX X T T jx jfu X fu X T⊆ ∧ ∈= ∑                      (5)

Where fjx is the minimal fuzzy region values of all fuzzy 
items in X. In addition, different fuzzy regions of an item can-
not occur in a fuzzy itemset at the same time. In other words, 
an item cannot both Low and High in a fuzzy itemset.

For example, let fuzzy itemset X be {B.Low, C.Mid-
dle} in transaction T6, the fuzzy region values of B.Low and 
C.Middle are 0.8 and 0.4, respectively. Thus, the fuzzy utility 
of {B.Low, C.Middle} in T6 is 0.4 × ((2 × $3) + (3 ×$2)) = 
$4.8, and the total fuzzy utility of X in D is fu6,X = $4.8.

Definition 3: The fuzzy utility of a transaction Tj is denot-
ed as

 ( ) ( , ).
il jx T ijl il jjt uf x Tfu T ∈= ∑                                 (6)
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Furthermore, the fuzzy utility of a quantitative transaction 
database D is defined as

 ( ).
jT jfu tfu T∈= ∑                                               (7)

Definition 4: Given a user-specified minimal utility 
threshold δ (0 < δ < 1), if the total fuzzy utility of fuzzy 
itemset X is no less than minUtil (fuD × δ), then we suppose 
X is a high fuzzy utility itemset (simplified as HFUI). To sim-
plify the expression, we will use “minUtil” to represent the 
user-specified minimal fuzzy utility in the rest paper rather 
than the formula.

For example, consider the example database (Table 1) 
and membership function (Figure 1), assume a fuzzy itemset 
X is C.Low. fuX(X) = fu1,X + fu2,X + fu5,X + fu6,X + fu7,X + fu9,X + 
fu10,X = $16.8. And the total fuzzy utility of its superset Y = 
{C.Low, D.Middle} is fuY(Y) = fu1,Y + fu5,Y + fu6,Y + fu9,Y = $63. 
If we assume δ = $60, then Y is an HFUI, but X is not.

In the latest example, fuzzy itemset {C.Low, D.Middle} is 
an HFUI while its subset {C.Low} is not. This case indicates 
that fuzzy utility does not hold the downward-closure prop-
erty. Therefore, to address this problem, we utilize the fuzzy 
utility upper bound (FUUB) [15-16]. The related notions and 
definitions are listed as follows.

Definition 5: The maximal fuzzy utility of an item xi in 
transaction Tj is formulated as

mfuij = max {fuij1(xi, Tj), fuij2(xi, Tj),…},                 (8)

and the maximal transaction fuzzy utility of Tj is 

.
i jj x T ijmtfu mfu∈= ∑                                                (9)

For example, consider Table 1 and Figure 1, the fuzzy 
utility of fuzzy items D.Low and D.Middle in transaction T1 
are $12.6 and $8.4. Thus, mfuD,1 is $12.6. In transaction T4, 
the maximal fuzzy utility of items A and D are $40 and $11.2, 
respectively. Apparently, mtfu4 = mfuA,4 + mfuD,4 = $51.2.

Definition 6: The fuzzy utility upper bound of a fuzzy 
itemset X is denoted as 

.
j jX X T T jFUUB mtfu⊆ ∧ ∈= ∑                                (10)

Given a user-specified minimum utility threshold δ, X is a 
high fuzzy utility upper bound itemset (HFUUBI) if and only 
if FUUBX is no less than minUtil. 

Table 2. HFUIs w.r.t. minUtil = $60
Fuzzy Itemset Utility
{A.Middle}
{A.High}
{D.Low}
{D.Middle}
{A.Middle, D.Low}
{C.Low, A.Middle}
{C.Low, D.Middle}
{C.Low, A.Middle, D.Low}

$86
$67
$60.2
$84
$77.2
$62.2
$63
$68.4

Property 1. Let fuzzy itemset X be a superset of another fuzzy 
itemset Y. Obviously, FUUBX is always no less than fuX(X), 
and FUUBX  ≥ FUUBY. That is, if a fuzzy itemset is not an 
HFUUBI, it must be a low fuzzy utility itemset. The study [15] 
offers the proof details.

3.2 Problem Statement
Given a user-defined membership function, a user-speci-

fied utility threshold, and a quantitative transaction database, 
the problem of high fuzzy utility itemset mining can be inter-
preted as discovering a complete set of high fuzzy itemsets 
from the quantitative transaction database.

For example, consider the sample database and member-
ship function (Table 1 and Figure 1), if we set minUtil as $60, 
a set of high fuzzy utility itemsets are listed in Table 2.

4 The Proposed Algorithm

As we have discussed in previous content, the major dis-
advantage of FUIM is its high cost because of its naive join 
operation. In this section, we propose a high fuzzy utility 
itemset mining algorithm (namely FS-IUM). In the following 
content, we also introduce several data structures and pruning 
strategies.

4.1 The Fuzzy-List Structure
Before introducing the fuzzy-list structure, we first talk 

the adopted ordering rule. Let ≺ be a global FUUB-ascend-
ing order on items from I. With ≺ order, a transaction can 
be sorted as a new revised transaction. Thus, in a revised 
transaction Tj, these fuzzy items after X are called remaining 
fuzzy items [16], and the summation of their maximum fuzzy 
utility is named remaining maximal fuzzy utility

 
( , ) ,

i j ij x T X x ijrfu X T mfu∈ ∧= ∑


                            (11)

which can easily estimate how much the fuzzy utility of X 
can be increased.

Definition 7: As shown in Figure 2, a fuzzy-list structure 
of a fuzzy itemset X is denoted as ful(X) which consists of 
several tuples. A tuple contains three elements: transaction 
identification (Tid), fuzzy utility (fu(X, Tj)) and remaining 
fuzzy utility (rfu(X, Tj)). In addition, the total fuzzy utility of 
X in D is the summation of all fu(X, Tj) in ful(X), which is 
denoted as 

( )( ) ( , ),
jT ful X jsumFu X fu X T∈= ∑                       (12)

and the summation of all remaining fuzzy utility of X is 
defined as 

( )( ) ( , ).
jT ful X jsumRfu X rfu X T∈= ∑                     (13)
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Figure 2. The fuzzy-lists of some fuzzy 1-itemsets

Property 2. Let X be a fuzzy itemset. If sumFu(X) in ful(X) 
is higher than or equal to minUtil, we suppose X is an HFUI. 
Otherwise, it is a low fuzzy utility itemset [16].

Property 3. Let X be a fuzzy itemset. If the sum of sumFu 
and sumRfu of X in ful(X) is less than minUtil, we assume all 
the supersets of X are low fuzzy utility itemsets [16].

Property 4. Given two different fuzzy itemsets X and Y, if 

( )

( )

( ( , ) ( , ))

( ( , ) ( , ))
j

j j

T ful X j j

T ful X Y T j j

fu X T rfu X T

fu X T rfu X T
∈

∈ ∧ ⊆

+

− +

∑
∑

is less than minUtil, then the fuzzy super-itemset XY and all 
its extensions cannot be HFUIs [16].

Due to the space limitation of this paper, the proof details 
of Properties 2, 3 and 4 are provided in Ref. [16].

4.2 The Fuzzy-List Buffer Structure
In the FUIM algorithm, joining fuzzy-lists is a significant 

step to obtain fuzzy utility information about fuzzy k-itemsets 
(where k is higher than 1). The key part of joining operation 
is locating identical Tids in fuzzy-lists. FUIM adopts a binary 
search method on fuzzy-lists to check whether there are ele-
ments with the same Tid. The time complexity is O(mlogn), 
where m and n are the size of two joined fuzzy-lists. Howev-
er, joining operation is costly in terms of runtime. Especially, 
the algorithm has to maintain massive fuzzy-lists until all of 
them have already been compared. Therefore, the memory 
usage of FUIM is also intolerable. Then, we propose a fuzzy-
list buffer data structure to solve this issue.

Definition 8: The fuzzy-list buffer is like a memory pipe-
line, it is defined as
                                                               
               FLBuf = {e|e ∈ ful (X)},                                      (14)

where X is a fuzzy itemset, and e is a tuple of fuzzy-list of X. 
We call the tuple of buffer structure as data segment [12].

Definition 9: To quickly find identical Tids in FLBuf, we 
also adopt index segment structure [12]. Given a fuzzy item-
set X, the index segment of X is a summary fuzzy-list (SL(X)) 
which records the index information of X in FLBuf. An index 
segment of X is a tuple (X, startPos, endPos, sumFu, sumR-
fu). In addition, all the SL(X) can also be stored in a memory 
pipeline as the same as FLBuf.

The FLBuf and SL structures are shown in Figure 3. Take 
fuzzy item D.Middle as an example, the summary informa-
tion of D.Middle consists of the following information: the 
item is D.Middle, its start position index and end position in-
dex in the lists are 6 and 12, the summation of its fuzzy utili-
ty is $84, and the summation of its remaining fuzzy utility is 
$0. It is also efficient to obtain a fuzzy-list stored in the FL-
Buf using the SL structure. For instance, after accessing the 
summary fuzzy-list of fuzzy item D.Middle, its fuzzy-list can 
be read directly in the FLBuf structure from the SL({D.Mid-

dle}).startPos to SL({D.Middle}).endPos (in blue segment in 
Figure 3 (up)).

Figure 3. The FLBuf (up) and SL (down) structures of two 
fuzzy 1-itemsets

4.3 The Estimated Fuzzy Utility Co-occurrence Structure
Definition 10: Let I* be a set of high fuzzy utility upper 

bound 1-itemset, and the elements of I* are sorted in ≺ order. 
The new structure consists of several triples of the form (x 
∈ I*, y ∈ I*, z ∈ R). A triple (x, y, z) indicates that FUUBxy = 
z. The EFuCS can be implemented by hashmap where z ≥ 
minUtil and z ≠ $0.

Property 5. Let Px and Py are two different fuzzy 
itemsets. In EFuCS structure, if   

xyPz FUUB=  is less than 
minUtil, the new fuzzy itemset Pxy and all its supersets are 
low fuzzy utility itemsets. The proof details directly follow 
from Property 1.

4.4 Efficient Pruning Strategies
Due to the utilized data structures are more complex than 

simple fuzzy-list, adopting efficient pruning strategies to 
avoid degrading the mining performance is urgency. In our 
novel algorithm, we utilize the following pruning strategies.

Strategy 1. Consider the Property 1, if FUUB of a fuzzy 
itemset is less than minUtil, we can safely prune the fuzzy 
itemset and its supersets during the following process.

We notice that high fuzzy upper bound 1-itemsets 
(FUUB1) are computed after the first-time database scans. 
Consider the Strategy 1, the algorithm only needs to con-
struct FLBuf of FUUBI1, and the search space during mining 
becomes smaller than before. Then, the following pruning 
strategies can be optimized with the same manner.

Strategy 2. Consider the Property 5, the estimated fuzzy 
utility of itemset to prune strategy (EF2P) is declared as 
follows. If the FUUB value of two different fuzzy itemsets is 
no less than minUtil, then we assume the combination of two 
fuzzy itemsets is a potential HFUI. Otherwise, we can prune 
the search space to speed up the mining process.

The EFuCS structure can reduce the useless joining oper-
ation times of fuzzy itemsets when certain requirements are 
satisfied. The EFuCS structure and its corresponding EF2P 
strategy therefore can decrease a number of candidates.

Strategy 3.  According to the Property 3 ,  if the 
summation of sumFu and sumRfu values of a fuzzy itemset is 
less than minUtil, then we prune this fuzzy itemset as well as 
its supersets to reduce the search space.

Strategy 4. Based on the Property 4, if the inequality is 
true, it is no need to generate the high-level fuzzy itemsets by 
joining two related fuzzy itemsets.

Inspired by the study [29], the early abandoning strategy 
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(EA) is applied to exit the fuzzy-list construction process in 
advance when specific conditions are satisfied. The EA strat-
egy is introduced in the following.

Strategy 6. Let EAMeasure be the sum of sumFu and 
sumRfu of two distinct fuzzy itemsets. When constructing a 
fuzzy-list, the approach subtracts the sum of fu and rfu from 
EAMeasure for those transactions whose Tids are not equal. 
If the EAMeasure value is less than minUtil, the construction 
process can quit early, and the rest of transactions will be 
abandoned.

4.5 The FLBuf Reusing Memory Construct Method
 Now we give the introduction of the FLBuf structure. In 

FUIM, after constructing a fuzzy-list of a certain fuzzy item-
set, the fuzzy-list may no longer be used. This causes a waste 
of the memory allocated for storing the fuzzy-list of the fuzzy 
itemset. A novel method for constructing the fuzzy-list buffer 
is shown in Algorithm 1. The main operations for memory 
re-utilization are shown as follows. If a fuzzy itemset is no 
longer used to explore the search space, then the allocated 
memory that is used to store fuzzy-list will be reused for the 
next promising fuzzy itemset. In addition, new memory is 
allocated only when the FLBuf is at capacity (lines 17-26). 
Furthermore, based on Strategy 6, the EA strategy is applied 
to the construction of FLBuf using the variable EAMeasure. 
The detailed implementation is shown in Algorithm 1.

4.6 Proposed FS-IUM Algorithm
The Algorithm 2 is the search procedure. It takes six input 

parameters: 1) a prefix fuzzy itemset P, 2) a set of extension 
fuzzy items of P ExtensionsOfP, 3) a user-specified minimal 
utility minUtil, 4) the EFuCS structure, 5) the FLBuf struc-
ture, and 6) the summary fuzzy-list SL. For each fuzzy item-
set X ∈ ExtensionsOfP, X is firstly checked to learn whether 
it is an HFUI (lines 2-4). Then, according to Strategy 3, if 
the sum of sumFu and sumRfu of X is no less than minUtil, 
the fuzzy super-itemsets of X are regarded as potential HFUIs 
and should be further examined (line 5). Then, in line 7, the 
procedure checks each fuzzy itemset Y ∈ ExtensionsOfP (X ≺ 
Y) because all 1-itemsets in FLBuf are sorted with FUUB-as-
cending order. The algorithm checks whether there exists 
two fuzzy itemsets in EFuCS that their FUUB value is no 
less than minUtil (line 8). If there exists one, the procedure 
will call the FLBuf-Construct method (cf. Algorithm 1) to 
construct the fuzzy-list segment of Pxy by joining the fuzzy-
list segments of P, X and Y (line 9). According to Strategy 
4, if the sumFu value of XY in SL is higher than 0, then the 
procedure will combine X with Y to create a high-level fuzzy 
itemset Pxy and add it to the extensions of X (lines 10-13). 
Finally, the procedure recursively calls itself until there are 
no HFUIs generated (line 18).

Based on previous introduction, the main pseudocode is 
shown in Algorithm 3. The input parameters are 1) a quanti-
tative transaction database D, 2) a pre-defined membership 
function R, and 3) a user-specified fuzzy utility minUtil. The 
outcome is a set of HFUIs. The main algorithm carries out 
the following steps. At the first time, it scans D to compute 
the FUUB value of all items xi in Tj ∈ D by the member-
ship function R in line 1. Next, based on the FUUB values, it 
builds the promising set I*, which consists of all fuzzy items 

meet condition (i.e., FUUB ≥ minUtil) (line 2). Then, the 
algorithm sorts all xi ∈ I* by the FUUB-ascending order (line 
3). The main algorithm scans the database D for the second 
time to construct the FLBuf, SL, and EFuCS structures in line 
4. At last, when the mining process terminates, the algorithm 
calls a recursive method (cf. Algorithm 2) to find all HFUIs 
and output the results (lines 5 and 6).

Algorithm 1. FLBuf-Construct procedure
Input:
FLBuf, SL: buffer structure;
P, Px, Py: fuzzy itemsets;
minUtil: user-given minimal utility threshold.
Output:
Status of updating FLBuf, SL with fuzzy itemset Pxy;

1: let PPnt, PxPnt, PyPnt be three pointers that initially 
    point to FLBuf at positions SL(P).StartPos, SL(Px).Start
    Pos, SL(Py).StartPos, respectively;
2: let EAMeasure=SL(Px).sumFu + SL(Px).sumRfu +
    SL(Py).sumFu + SL(Py).sumRfu;
3: let insertPos = SL.Last.EndPos;
4: while PxPnt ≠ SL(Px).EndPos and PyPnt  ≠
    SL(Py).EndPos do
5:      if Tids[PxPnt] < Tids[PyPnt] then
6:          PxPnt++;
7:          subtract EAMeasure by (fus[PxPnt] +
             rfus[PxPnt]);
8:      else if Tids[PxPnt] > Tids[PyPnt] then
9:           PyPnt++;
10:         subtract EAMeasure by (fus[PyPnt] + rfus[PyPnt]);
11:     else
12:          if SL(P) ≠ null then
13:               while PPnt ≠ SL(P).EndPos and 

Tids[PPnt] ≠ Tids[PxPnt] do
14:                        PPnt++;
15:                end
16:          end
17:          if insertPos ≥ |FLBuf| then
18:                FLBuf.Tids[Tids.count+] = Tids[PxPnt];
19:                FLBuf.fus[fus.count+] = fus[PxPnt] 
+ fus[PyPnt] – fus[PPnt];
20:                FLBuf.rfus[rfus.count+] = rfus[PyPnt];
21:          else
22:               insertPos++; /* reuse memory */
23:               FLBuf.Tids[insertPos] = Tids[PxPnt];
24:               FLBuf.fus[insertPos] = fus[PxPnt] + 

fus[PyPnt] – fus[PPnt];
25:               FLBuf.rfus[insertPos] = rfus[PyPnt];
26:           end
27:           PxPnt++;
28:           PyPnt++;
29:     end
30: end
31: if EAMeasure < minUtil then
32:     return false
33: end
34: update SL(Pxy);
35: return true
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Algorithm 2. The search procedure
Input:
P: a prefix fuzzy itemset;
ExtensionsOfP: a set of extension fuzzy items of P;
minUtil: a user-specified minimal utility threshold;
EFuCS: the estimated fuzzy utility co-occurrence structure;
FLBuf: the fuzzy-list buffer structure;
SL: the summary fuzzy-list.

1: for X ∈ ExtensionsOfP do
2:     if SL(X).sumFu ≥ minUtil then
3:          HFUIs ← X;
4:     end
5:     if SL(X).sumFu + SL(X).sumRfu ≥ minUtil then
6:          initialize ExtensionsOfX as null;
7:          for Y after X in ExtensionsOfP do
8:               if ∃ (X, Y, z) ∈ EFuCS and z ≥ minUtil then
9:                    if FLBuf-Construct(FLBuf, SL, P, X, Y, 

minUtil) == true then
10:                       Pxy ← X ⋃ Y;
11:                       if SL(Pxy).sumFu > 0 then
12:                         ExtensionsOfX ← ExtensionsOfX ⋃ Pxy;
13:                       end
14:                  end
15:             end
16:         end
17:         Px ← P ⋃ X;
18:         call Search(Px, ExtensionsOfX, minUtil,

EFuCS, FLBuf, SL);
19:     end
20: end

Algorithm 3. The FS-IUM algorithm
Input:
D: a quantitative transaction database;
R: a pre-defined membership function;
minUtil: a user-specified minimal utility threshold.
Output:
HFUIs: A set of high fuzzy utility itemsets;

1: scan D to compute the FUUB of all items xi by R;
2: let I* be the set of fuzzy items x, where FUUBx ≥ minUtil;
3: sort all xi ∈ I* by FUUB-ascending order;
4: scan D again to build FLBuf, SL, and EFuCS;
5: call Search (ϕ, I*, minUtil, EFuCS, FLBuf, SL);
6: return HFUIs

5  Performance Evaluation
 
In this section, we describe various experiments to assess 

the performance of the proposed FS-IUM algorithm. We se-
lect several compared algorithms in the following. We had 
compared the performance of FS-IUM with FUIM [16] and 
two well-known HUIM algorithms (FHMeucst  and ULB-Min-
er [12]) in terms of runtime and memory usage. We modify 
EUCS structure of FHM [10] as similar to EFuCS in our al-
gorithm. To further assess the efficiency of the EFuCS struc-
ture, a various version named FLB-Miner is utilized, which 

yields HFUIs without utilizing the EFuCS structure and EF2P 
strategy. Each experiment was tested at least three times. In 
addition, if the tested algorithm runs out of 600,000 seconds, 
we suppose the algorithm cannot get the right results. Hence, 
we use “-” to represent it in tables.

 
5.1 Experimental Setup

The experimental algorithms were implemented with 
Java language, and the experiments were conducted on the 
Windows 10 (64-bit) Professional Edition system with an In-
tel Core i7 processor of 2.5 GHz and 16 GB of RAM.

In our experiments, we used eight different real and syn-
thetic datasets. All datasets can be freely downloaded from 
the SPMF library (http://www.philippe-fournier-viger.com/
spmf/index.php). The external utility of each item was creat-
ed randomly from 1 to 10,000 by using a log-normal distri-
bution approach. And the internal utility of each item in each 
transaction was randomly created within a range (1-6) for 
the Foodmart dataset, and within a range (1-5) for the other 
datasets. Table 3 shows more details of all datasets, includ-
ing the type of all datasets, the number of transactions and 
distinct items, as well as the maximum and average length of 
all transactions. We assumed all items have the same mem-
bership function with three fuzzy regions (Low, Middle, and 
High). The membership function is shown in Figure 4.

Figure 4. Membership function in the experiments

Table 3. Characteristics of experimental datasets
Dataset #Trans #Items Sig-

nature (MS)
AvgLen MaxLen #Type

Retail 88,163 16,471 10.3 76 Sparse

Foodmart 4,141 1,559 4.4 11 Sparse

BMSPOS 515,367 1,658 6.5 164 Sparse

T10I4D100K 100,000 1,001 10.1 29 Sparse

Chess 3,196 75 37 37 Dense

Accident 340,183 468 33.8 49 Dense

Mushroom 8,124 119 23 23 Dense

T40I10D100K 100,00 1,001 39.6 77 Dense

5.2 Runtime Cost Analysis
To better understand the runtime of the tested algorithms, 

we compared their runtime in all datasets under various 
thresholds (δ). As shown in Figure 5, our proposed FS-IUM 
algorithm performs significantly better than other algorithms. 
In particular, the advantage of our novel algorithm is more 
obvious while the threshold decreases. In the meanwhile, the 
HUIM algorithms, FHMeucst and ULB-Miner, often run out of 
time. For example, on the Retail dataset, FS-IUM only takes 
half of running time of FUIM to discover a complete set of 
HFUIs, but all HUIM algorithms run out of time. Moreover, 
it can be observed that FLB-Miner also spends less runtime 
compared to FUIM in general. Thanks to the fuzzy-list buffer 
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structure and its efficient auxiliary technique, as well as the 
pruning strategies we adopted like the EF2P strategy, FS-
IUM can strikingly reduce the execution time. Furthermore, 
we notice that ULB-Miner performs better than FS-IUM in 
some cases. The main reason we suppose is that ULB-Miner 
generates fewer candidates than FS-IUM does in these data-
sets. That is why the rest HUIM algorithms yield numerous 
candidates and oftentimes run out of time. In a word, the 
proposed FS-IUM algorithm can efficiently mine HFUIs and 
outperforms the compared algorithms in all datasets.

5.3 Memory Usage Analysis
 We compare the maximum memory usage of the test-

ed algorithms on all datasets (the thresholds δ are the same 
as Figure 5), and the details are shown in Table 4. It can be 
observed that the proposed novel algorithm outperforms the 
other algorithms in most cases. The tested HUIM algorithms 
are still unable to complete the mining process on some 
datasets, so we do not list their results on these datasets. For 
example, on the Mushroom dataset, the peak memory usag-
es of FUIM, FLB-Miner, and FS-IUM are 325.8 MB, 395.6 
MB, and 102.5 MB, respectively. This indicates that FS-
IUM uses about three times less memory than that of FUIM 
and FLB-Miner. Since the fuzzy-list buffer structure and the 
FLBuf construct method are capable of reusing memory, the 
memory consumption of maintaining information in FLBuf 
which is no longer used will be recalled and reused for other 
high-level fuzzy itemsets. Hence, as mentioned above, even 
though FS-IUM may create more candidates than that of 
FUIM, FS-IUM can still reduce memory usage in most cases. 
And the FS-IUM algorithm decreases memory consumption 
dramatically. In a word, massive memory is saved and re-
duced in FS-IUM, and thus FS-IUM costs less memory than 
other compared algorithms.

Figure 5. Runtime comparison with various δ 

Table 4. Compare the peak memory (MB)
Dataset FHMeucst ULB-Miner FUIM FLB-Miner FS-IUM

Retail - - 652.3 1411.3 520.3

Foodmart 160.5 268.6 110.7 244.8 61.7

BMSPOS 1107.1 1148.5 1079.6 1100.1 979.7

T10I4D100K 787.1 583.5 446.7 832.8 514.6

Chess - - 298.1 339.9 106.2

Accident - - 1205.6 498 491.7

Mushroom - - 325.8 395.6 102.5

T40I10D100K 1195.6 1252.8 1211.7 1155.9 1190

5.4 Scalability Analysis
In the last subsection, we conduct experiments to com-

pare the scalability of FUIM, FLB-Miner and the proposed 
FS-IUM on a real-life dataset (i.e., Accident). In each test, the 
dataset size (|D|) is 40k, 55k, 70k, 85k, and 100k transactions 
when δ is fixed to 1% (“k” is equal to 1,000). The experimen-
tal results in terms of runtime and memory usages are shown 
in Figure 6. It can be observed that, along with the dataset 
size increases, both the runtime and memory consumption 
of FS-IUM increase more smoothly than those of other algo-
rithms. The proposed algorithm has almost linear scalability 
when the dataset size increases in terms of runtime usage. In 
summary, FS-IUM outperforms other compared algorithms 
on the scalability test.

Figure 6. The scalability test under varied |D|

6  Conclusions
 
Existing fuzzy-list-based algorithms for mining high 

fuzzy utility itemsets are efficient and easy to implement. 
However, they require a large amount of memory for main-
taining fuzzy-lists. To solve this problem, in this paper, we 
proposed a novel memory reuse structure called fuzzy-list 
buffer. This paper presents an efficient algorithm called FS-
IUM for high fuzzy utility itemset mining. The new algo-
rithm combines the fuzzy-list buffer structure with efficient 
techniques for building fuzzy-list segments to decrease the 
runtime and memory consumption. The FLBuf structure and 
its ancillary structure (SL) help to locate and retrieve the 
fuzzy-list quickly. According to the efficient EFuCS structure 
and EF2P strategy, FS-IUM can significantly reduce runtime 
consumption compared to the state-of-the-art algorithms. In 
addition, FS-IUM decreases memory usage by the fuzzy-list 
buffer construction method for reusing memory. Finally, we 
have conducted an extensive experiment on eight datasets to 
compare the performances of FHMeucst, ULB-Miner, FUIM, 
FLB-Miner, and FS-IUM. Our experimental results demon-
strate that the proposed FS-IUM algorithm improves the effi-
ciency of mining. 

In future work, we plan to further improve the effective-
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ness of FS-IUM, such as applying more efficient pruning 
strategies and investigating other optimization techniques. 
Furthermore, since data stream mining has become a popular 
research topic in many domains recently, how to apply the 
fuzzy-list buffer structure to tackle the data stream mining 
issue will be an interesting and challenging task.
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