
Explainable Itemset Utility Maximization with Fuzzy Set 257

*Corresponding Author: Shicheng Wan; E-mail: scwan1998@gmail.com
DOI: 10.53106/160792642023032402004

Abstract

Recently, fuzzy utility pattern mining has received much
attention for its practicality and comprehensibility. It aims to
discover high fuzzy utility itemsets (HFUIs) by considering
not only utility but also linguistic factors. Among existing
algorithms, experiments showed that fuzzy-list-based algo-
rithms are effective and efficient. However, a significant dis-
advantage of fuzzy-list-based algorithms is that constructing
and maintaining fuzzy-lists is time-consuming and memo-
ry-overhead. To address this issue, a novel algorithm named
explainable Itemset Utility Maximization with Fuzzy Set
(FS-IUM) is proposed in this paper. The traditional fuzzy-
list structure is replaced by a better structure (i.e., fuzzy-
list buffer), which speeds up the mining process and reduces
memory consumption. Compared with fuzzy-list structure,
the fuzzy-list buffer structure and its auxiliary structure help
the algorithm locate the fuzzy-list quickly and thus reduce
the runtime. Moreover, with an efficient fuzzy-list buffer
construction method, the algorithm reduces the cost of can-
didate storage. Furthermore, with several efficient strategies,
the proposed algorithm can prune numerous useless patterns
in advance and thus considerably reduces the runtime usage.
Finally, extensive experiments on various datasets were con-
ducted to compare the performance of FS-IUM with some
state-of-the-art algorithms. The experimental results reveal
that the proposed fuzzy-list buffer-based algorithm highly
outperforms the baselines in terms of runtime and memory
consumption.

Keywords: Data mining, Fuzzy utility mining, Fuzzy-list
buffer, Fuzzy set theory

1 Introduction

With the rapid development of data technology, how to
mine valuable information from transaction databases has
become a popular topic recently. Association rule mining
(ARM) [1] is used to discover useful but hidden association
rules, and the discovered rules are always frequent and high
confidence. Association rules reflect the interdependence and
relevance between distinct items and are easy to predict the
occurrence of other related items. A classic sample is “Beer
and Nappies” which was proposed by Walmart. Retailers
noticed that married men often bought beer and nappies to-
gether after they were off duty. Thus, retailers tried to shelve

beer and nappies together, and the sale volume of the product
combination rose as expected. In the meanwhile, a subfield
of ARM, frequent itemset mining (FIM) [2-3] has also been
widely studied. FIM aims at mining frequent itemsets which
are portions of association rule. However, ARM and FIM
algorithms all only focus on the occurrence of itemsets but
ignore other important factors (e.g., risk, unit profit, and
weight) of different items. For instance, the sold volume of
bread and milk is higher than that of steak and red wine, but
the revenue of the second product combination is obviously
larger than that of the first combination. In other words, ARM
and FIM algorithms may output frequent but low profit re-
sults, which is unacceptable in some cases.

To address this issue, a new mining task called high util-
ity itemset mining (HUIM) [4] was proposed and is based on
utility from economics [5]. In this field, Shen et al. [6] firstly
tried applying utility constraint into association rule min-
ing. They stated that the utility consists of quantity and unit
profit of item, which is neither monotone nor anti-monotone.
Furthermore, due to the utility may be positive or negative,
previous optimization methods in FIM cannot be directly
adopted in HUIM. Then, Yao et al. [7] formalized the utili-
ty mining problem. However, their proposed approach was
too naive to discover high utility itemsets (abbreviated as
HUIs). In fact, the problem of these two mentioned works is
ignoring the downward-closure property. These algorithms
may face a “combinatorial explosion” of itemsets since the
number of distinct items may be very large. In FIM domain,
downward-closure property means the subsets of a frequent
itemset must be always frequent. This can greatly help algo-
rithms prune massive useless candidates during the mining
process. Thus, transaction-weighted utilization (abbreviat-
ed TWU) model [8] was proposed. TWU of an itemset X is
calculated by the summation utility of transactions which
contain X. Since the occurrence times of supersets of X are
always less than or equal to that of X in a database, TWU of
these supersets must be lower than or equal to TWU of X too.
Obviously, TWU is a powerful upper-bound and can be used
to estimate the utility of X. If TWU of an itemset is lower than
the user-specified minimal utility threshold (minUtil), we can
safely prune the itemset and its supersets during the mining
process. After that, there are a lot of information available in
literature about HUIM algorithms (e.g., HUI-Miner [9], FHM
[10], TopHUI [11], and ULB-Miner [12]).

Though HUIM algorithm assesses the importance of
different items by numerical utility measure, the mined re-

Explainable Itemset Utility Maximization with Fuzzy Set

Guotao Xu1, Jiahui Chen1, Shicheng Wan1*, Cuiwei Peng2, Yu Liu1

1 School of Computer Science and Technology, Guangdong University of Technology, China
2 School of International Education, Guangdong University of Technology, China

guotaoxu00@gmail.com, csjhchen@gmail.com, scwan1998@gmail.com, vivianoop3@gmail.com, 1181576843ly@gmail.com

258 Journal of Internet Technology Vol. 24 No. 2, March 2023

sults cannot provide more details of HUIs, such as purchase
quantity of items. In some cases, users want to find “tall”
trees in a forest or discover a group of “beautiful” girls. The
adjectives “tall” and “beautiful” are both language terms that
cannot be described directly in numerical values. Therefore,
by combining with fuzzy set theory [13], Wang et al. [14]
proposed a new framework called fuzzy utility mining (FUM)
to discover high fuzzy utility itemsets (HFUIs) from quan-
titative transaction databases. Then, Lan et al. [15] adopted
a user-defined membership function to assess items’ fuzzy
utility. The highlight of their work is implementing the down-
ward-closure property in FUM, which is a general but effec-
tive fuzzy utility upper-bound (FUUB). Recently, Wan et al.
[16] proposed a one phase FUM algorithm called FUIM. The
remaining fuzzy utility is the first time adopted in FUM do-
main. The extensive experiments show FUIM performs better
than previous algorithms. However, because of the fuzzy-
list structure, FUIM costs too much runtime and memory in
joining operation. We therefore infer that the performance of
FUIM still can be improved. In this paper, we not only utilize
some efficient pruning strategies, but also adopt buffer list
structure to save runtime and memory. The novel approach is
called explainable Itemset Utility Maximization with Fuzzy
Set (abbreviated as FS-IUM). The following content details
the major contributions of this paper.

1) A novel Fuzzy-List Buffer structure (named FLBuf)
and a summary fuzzy-list (named SL) are proposed. FLBuf
can be used repeatedly to store the key information of prom-
ising fuzzy itemsets. Accordingly, SL can quickly locate the
start and end indexes of fuzzy items in FLBuf.

2) We use the Estimated Fuzzy utility Co-occurrence
Structure (named EFuCS) to store the upper-bound of
high-level itemsets. And the corresponding Estimated Fuzzy
utility of itemset to Prune (named EF2P) strategy is used to
prune the search space in advance.

3) We conduct extensive experiments on eight datasets
(including real and synthetic) to demonstrate the effective-
ness and efficiency of our novel algorithm. We also compare
the performances of the HUIM and FUM algorithms. The
experiments show that the FS-IUM outperforms other state-
of-the-art algorithms.

The rest content of this paper is organized as follows.
Section 2 briefly reviews the related work in HUIM and FUM
domains. Thereafter, Section 3 introduces the preliminaries
and defines the problem of high fuzzy utility itemset mining.
The details of our proposed algorithm are presented in Sec-
tion 4. In Section 5, the experimental results are discussed. In
the end, we summarize this paper and plan the future work in
Section 6.

2 Related Work

2.1 High Utility Itemset Mining
Interesting measures play a vital role in knowledge dis-

covery [1-2, 17-18]. Due to relative importance of distinct
items are not considered in frequent itemset mining, utili-
ty-based measures use the utilities of itemsets to reflect the
user’s goals. Since Shen et al. [6] first proposed utility con-
straint rule mining task, there are a multitude of investigators

have hastened to improve the performance of high utility
itemset mining (HUIM). In fact, all the proposed HUIM algo-
rithms can be roughly divided into two classes. The first class
is two phase model. Taking the most famous approach Two-
Phase [8] as example, its mining mechanism is as follows:
1) In the Phase I, Two-Phase will scan the database and then
generates a mass of candidates by using TWU upper-bound.
We call Phase I as generating part; and 2) In the Phase II, it
scans database multiple times and computes the real utility of
candidates to discover HUIs. This phase is defined as check-
ing part. The Two-Phase algorithm will repeat two phases
until no more HUIs are generated. To reduce the number of
candidates generation, studies [19-21] keep original database
in a tree data structure. The experiments show the latter saves
more time and memory usage than the former.

However, as previous content we mentioned, scanning
database multiply is costly and unacceptable. Hence, the
second class (one phase model) was proposed as a solution
to the above problem. The key idea of one phase algorithms
is utilizing efficient data structure to store major information
of itemsets in memory. HUI-Miner [9] is the first and most
famous list-based one phase algorithm. It only needs to scan
the database twice times and then construct utility-lists for
different itemsets. The utility-list collects all key information
(i.e., transaction identification, utility value, and remaining
utility) of an itemset. Then, the super-itemset can be obtained
by joining two distinct utility-lists. Recently, Duong et al. [12]
figured out that the major computational cost of list-based
algorithm is maintaining massive utility-lists in memory.
Therefore, they proposed a reusable utility-list buffer data
structure. The novel structure only uses a portion of space
to store basic information of promising items, and the rest is
reused to keep information of itemsets. Compared with the
state-of-the-art algorithms HUI-Miner [9] and FHM [10],
the peak memory consumption of their novel algorithm was
reduced nearly to six times, and the performance in terms of
runtime cost also plays very well. All in all, there is a lot of
information available in literature about HUIM. Further de-
tails can be found in studies [4, 22-24].

2.2 Fuzzy Utility Mining
As previously mentioned, high utility itemsets are usually

lack of comprehensibility attribute. How to mine explainable
results emerges as an important topic. Mining fuzzy item-
sets is a solution to the above issue. Since Wang et al. [14]
first proposed the fuzzy utility mining task, researchers have
found a new way to get explainable patterns. Lan et al. con-
tinuously proposed two studies [15, 25]. And they designed
a new fuzzy utility upper-bound (FUUB) to accelerate the
mining process. In FUM algorithms, FUUB plays the same
role as TWU works in HUIM. It can filter unpromising items
after scans database once and is greatly reduces the number
of candidates generation during mining process. In their
proposed works, three parameters (user-defined membership
function, a quantitative transaction database, and a user-spec-
ified minimal utility threshold) are taken as input, and then
the algorithm yields high fuzzy utility itemsets (HFUIs) as
output. The membership function is used to calculate differ-
ent linguistic region values (e.g., Low, Middle, and High)
of an item. Since a fuzzy itemset consists of distinct fuzzy

Explainable Itemset Utility Maximization with Fuzzy Set 259

items, Lan et al. [15] utilized the minimum operator principle
to compute the fuzzy utility of the itemset. That is, for exam-
ple, if region values of two fuzzy items egg.Low and milk.
Middle are 0.6 and 0.4 respectively, then the region value of
fuzzy itemset {egg.Low, milk.Middle} is 0.4. In other words,
the region value of egg.Low in the fuzzy itemset is set as 0.4
rather than 0.6. However, all above discussed approaches be-
long to two phase model. Recently, Wan et al. [16] proposed
an efficient one phase algorithm named FUIM. They first pro-
posed the remaining fuzzy utility notion, which is a tighter
upper-bound than FUUB. The experiments reveal that FUIM
performs better than previous algorithms.

At the same time, Huang et al. [26] noticed that tradi-
tional FUM algorithms do not consider the temporal factor,
which plays an important role in many data analytic systems
and applications. Hence, they proposed a new mining task
called temporal fuzzy utility itemset mining (TFUIM) to
solve this issue. Subsequently, there are other studies [27-
28] continuously proposed to improve the performance of
TFUIM algorithms. All in all, we suppose that FUIM adopts
naive method to intersect different fuzzy-lists will cause poor
efficiency. Thus, in this paper, we will propose a novel fuzzy
utility itemset mining algorithm which performs better than
FUIM in terms of both runtime and memory usage.

3 Preliminaries and Problem Statement

In this section, the basic definitions our novel algorithm
adopted will be introduced and exemplified. Most notations
are provided in studies [15-16], and we formulate the
problem statement of fuzzy utility itemset mining finally.

3.1 Basic Preliminaries
In the novel algorithm, we assume I = {x1, x2, …, xn} is

a set of n different items. The itemset X = {x1, x2, …, xk}is a
superset of items. We call X is an k-itemset if it consists of k
distinct items where |X| = k. A quantitative transaction data-
base D = {T1, T2, …, Tm}, and the transaction Tm is a subset
of I. In particular, an item xi in D has an external utility (e.g.,
unit profit) p(xi) and an internal utility (e.g., quantity) q(xi, Ti).
We also take a sample transaction database (Table 1) as our
running example in this paper, and the external utility of A, B,
C, and D is $5, $3, $2, and $7 respectively. At the same time,
the membership function is shown in Figure 1 and defines
three regions Low, Middle, and High.

Definition 1: In the user-specified membership function, a
fuzzy set fij of an item xi in transaction Tj is defined as

 1 2

1 2

(...),ij ij ijl
ij

i i il

f f f
f

R R R
= + + + (1)

where l is the number of regions given by the membership
function. Ril is the l-th fuzzy region value of xi, and fijl ∈
[0,1]. In addition, the fuzzy utility of the fuzzy item xil in Tj is
denoted as

(,) (,) (),ijl il j ijl i j ifu x T f q x T p x= × × (2)

and its total fuzzy futility in is defined as

 () (,).
i j jil il x T T ijl i jfu x fu x T∈ ∧ ∈= ∑ (3)

For example, consider the internal utility of an item D in
transaction T6 in Table 1 (that is q(D, T6) = 7), fD,6 is (0/D.Low,
0.8/D.Middle, 0.2/D.High) by the given membership function
(Figure 1). Then, the fuzzy utility of fuzzy item D.Middle is
0.8×7×$7, where is $39.2.

Figure 1. The membership function

Table 1. A simple quantitative transaction database
Tid A B C D
T1 2 11 4 3
T2 0 0 5 0
T3 9 0 0 0
T4 10 0 0 2
T5 6 0 1 3
T6 0 2 3 7
T7 0 8 1 0
T8 0 0 0 4
T9 5 0 1 3
T10 3 0 5 0

Definition 2: An itemset consists of several distinct items.
Similarly, a fuzzy itemset is a superset of distinct fuzzy
items. The fuzzy utility of a fuzzy itemset X in transaction Tj
is defined as

(), (,),
il jjx j jX x X X T ijl i jfu X T f fu x T∈ ∧ ⊆= ×∑ (4)

and its corresponding fuzzy utility in D is denoted as

() (,),
j jX X T T jx jfu X fu X T⊆ ∧ ∈= ∑ (5)

Where fjx is the minimal fuzzy region values of all fuzzy
items in X. In addition, different fuzzy regions of an item can-
not occur in a fuzzy itemset at the same time. In other words,
an item cannot both Low and High in a fuzzy itemset.

For example, let fuzzy itemset X be {B.Low, C.Mid-
dle} in transaction T6, the fuzzy region values of B.Low and
C.Middle are 0.8 and 0.4, respectively. Thus, the fuzzy utility
of {B.Low, C.Middle} in T6 is 0.4 × ((2 × $3) + (3 ×$2)) =
$4.8, and the total fuzzy utility of X in D is fu6,X = $4.8.

Definition 3: The fuzzy utility of a transaction Tj is denot-
ed as

 () (,).
il jx T ijl il jjt uf x Tfu T ∈= ∑ (6)

260 Journal of Internet Technology Vol. 24 No. 2, March 2023

Furthermore, the fuzzy utility of a quantitative transaction
database D is defined as

 ().
jT jfu tfu T∈= ∑ (7)

Definition 4: Given a user-specified minimal utility
threshold δ (0 < δ < 1), if the total fuzzy utility of fuzzy
itemset X is no less than minUtil (fuD × δ), then we suppose
X is a high fuzzy utility itemset (simplified as HFUI). To sim-
plify the expression, we will use “minUtil” to represent the
user-specified minimal fuzzy utility in the rest paper rather
than the formula.

For example, consider the example database (Table 1)
and membership function (Figure 1), assume a fuzzy itemset
X is C.Low. fuX(X) = fu1,X + fu2,X + fu5,X + fu6,X + fu7,X + fu9,X +
fu10,X = $16.8. And the total fuzzy utility of its superset Y =
{C.Low, D.Middle} is fuY(Y) = fu1,Y + fu5,Y + fu6,Y + fu9,Y = $63.
If we assume δ = $60, then Y is an HFUI, but X is not.

In the latest example, fuzzy itemset {C.Low, D.Middle} is
an HFUI while its subset {C.Low} is not. This case indicates
that fuzzy utility does not hold the downward-closure prop-
erty. Therefore, to address this problem, we utilize the fuzzy
utility upper bound (FUUB) [15-16]. The related notions and
definitions are listed as follows.

Definition 5: The maximal fuzzy utility of an item xi in
transaction Tj is formulated as

mfuij = max {fuij1(xi, Tj), fuij2(xi, Tj),…}, (8)

and the maximal transaction fuzzy utility of Tj is

.
i jj x T ijmtfu mfu∈= ∑ (9)

For example, consider Table 1 and Figure 1, the fuzzy
utility of fuzzy items D.Low and D.Middle in transaction T1
are $12.6 and $8.4. Thus, mfuD,1 is $12.6. In transaction T4,
the maximal fuzzy utility of items A and D are $40 and $11.2,
respectively. Apparently, mtfu4 = mfuA,4 + mfuD,4 = $51.2.

Definition 6: The fuzzy utility upper bound of a fuzzy
itemset X is denoted as

.
j jX X T T jFUUB mtfu⊆ ∧ ∈= ∑ (10)

Given a user-specified minimum utility threshold δ, X is a
high fuzzy utility upper bound itemset (HFUUBI) if and only
if FUUBX is no less than minUtil.

Table 2. HFUIs w.r.t. minUtil = $60
Fuzzy Itemset Utility
{A.Middle}
{A.High}
{D.Low}
{D.Middle}
{A.Middle, D.Low}
{C.Low, A.Middle}
{C.Low, D.Middle}
{C.Low, A.Middle, D.Low}

$86
$67
$60.2
$84
$77.2
$62.2
$63
$68.4

Property 1. Let fuzzy itemset X be a superset of another fuzzy
itemset Y. Obviously, FUUBX is always no less than fuX(X),
and FUUBX ≥ FUUBY. That is, if a fuzzy itemset is not an
HFUUBI, it must be a low fuzzy utility itemset. The study [15]
offers the proof details.

3.2 Problem Statement
Given a user-defined membership function, a user-speci-

fied utility threshold, and a quantitative transaction database,
the problem of high fuzzy utility itemset mining can be inter-
preted as discovering a complete set of high fuzzy itemsets
from the quantitative transaction database.

For example, consider the sample database and member-
ship function (Table 1 and Figure 1), if we set minUtil as $60,
a set of high fuzzy utility itemsets are listed in Table 2.

4 The Proposed Algorithm

As we have discussed in previous content, the major dis-
advantage of FUIM is its high cost because of its naive join
operation. In this section, we propose a high fuzzy utility
itemset mining algorithm (namely FS-IUM). In the following
content, we also introduce several data structures and pruning
strategies.

4.1 The Fuzzy-List Structure
Before introducing the fuzzy-list structure, we first talk

the adopted ordering rule. Let ≺ be a global FUUB-ascend-
ing order on items from I. With ≺ order, a transaction can
be sorted as a new revised transaction. Thus, in a revised
transaction Tj, these fuzzy items after X are called remaining
fuzzy items [16], and the summation of their maximum fuzzy
utility is named remaining maximal fuzzy utility

(,) ,

i j ij x T X x ijrfu X T mfu∈ ∧= ∑

 (11)

which can easily estimate how much the fuzzy utility of X
can be increased.

Definition 7: As shown in Figure 2, a fuzzy-list structure
of a fuzzy itemset X is denoted as ful(X) which consists of
several tuples. A tuple contains three elements: transaction
identification (Tid), fuzzy utility (fu(X, Tj)) and remaining
fuzzy utility (rfu(X, Tj)). In addition, the total fuzzy utility of
X in D is the summation of all fu(X, Tj) in ful(X), which is
denoted as

()() (,),
jT ful X jsumFu X fu X T∈= ∑ (12)

and the summation of all remaining fuzzy utility of X is
defined as

()() (,).
jT ful X jsumRfu X rfu X T∈= ∑ (13)

Explainable Itemset Utility Maximization with Fuzzy Set 261

Figure 2. The fuzzy-lists of some fuzzy 1-itemsets

Property 2. Let X be a fuzzy itemset. If sumFu(X) in ful(X)
is higher than or equal to minUtil, we suppose X is an HFUI.
Otherwise, it is a low fuzzy utility itemset [16].

Property 3. Let X be a fuzzy itemset. If the sum of sumFu
and sumRfu of X in ful(X) is less than minUtil, we assume all
the supersets of X are low fuzzy utility itemsets [16].

Property 4. Given two different fuzzy itemsets X and Y, if

()

()

((,) (,))

((,) (,))
j

j j

T ful X j j

T ful X Y T j j

fu X T rfu X T

fu X T rfu X T
∈

∈ ∧ ⊆

+

− +

∑
∑

is less than minUtil, then the fuzzy super-itemset XY and all
its extensions cannot be HFUIs [16].

Due to the space limitation of this paper, the proof details
of Properties 2, 3 and 4 are provided in Ref. [16].

4.2 The Fuzzy-List Buffer Structure
In the FUIM algorithm, joining fuzzy-lists is a significant

step to obtain fuzzy utility information about fuzzy k-itemsets
(where k is higher than 1). The key part of joining operation
is locating identical Tids in fuzzy-lists. FUIM adopts a binary
search method on fuzzy-lists to check whether there are ele-
ments with the same Tid. The time complexity is O(mlogn),
where m and n are the size of two joined fuzzy-lists. Howev-
er, joining operation is costly in terms of runtime. Especially,
the algorithm has to maintain massive fuzzy-lists until all of
them have already been compared. Therefore, the memory
usage of FUIM is also intolerable. Then, we propose a fuzzy-
list buffer data structure to solve this issue.

Definition 8: The fuzzy-list buffer is like a memory pipe-
line, it is defined as

 FLBuf = {e|e ∈ ful (X)}, (14)

where X is a fuzzy itemset, and e is a tuple of fuzzy-list of X.
We call the tuple of buffer structure as data segment [12].

Definition 9: To quickly find identical Tids in FLBuf, we
also adopt index segment structure [12]. Given a fuzzy item-
set X, the index segment of X is a summary fuzzy-list (SL(X))
which records the index information of X in FLBuf. An index
segment of X is a tuple (X, startPos, endPos, sumFu, sumR-
fu). In addition, all the SL(X) can also be stored in a memory
pipeline as the same as FLBuf.

The FLBuf and SL structures are shown in Figure 3. Take
fuzzy item D.Middle as an example, the summary informa-
tion of D.Middle consists of the following information: the
item is D.Middle, its start position index and end position in-
dex in the lists are 6 and 12, the summation of its fuzzy utili-
ty is $84, and the summation of its remaining fuzzy utility is
$0. It is also efficient to obtain a fuzzy-list stored in the FL-
Buf using the SL structure. For instance, after accessing the
summary fuzzy-list of fuzzy item D.Middle, its fuzzy-list can
be read directly in the FLBuf structure from the SL({D.Mid-

dle}).startPos to SL({D.Middle}).endPos (in blue segment in
Figure 3 (up)).

Figure 3. The FLBuf (up) and SL (down) structures of two
fuzzy 1-itemsets

4.3 The Estimated Fuzzy Utility Co-occurrence Structure
Definition 10: Let I* be a set of high fuzzy utility upper

bound 1-itemset, and the elements of I* are sorted in ≺ order.
The new structure consists of several triples of the form (x
∈ I*, y ∈ I*, z ∈ R). A triple (x, y, z) indicates that FUUBxy =
z. The EFuCS can be implemented by hashmap where z ≥
minUtil and z ≠ $0.

Property 5. Let Px and Py are two different fuzzy
itemsets. In EFuCS structure, if

xyPz FUUB= is less than
minUtil, the new fuzzy itemset Pxy and all its supersets are
low fuzzy utility itemsets. The proof details directly follow
from Property 1.

4.4 Efficient Pruning Strategies
Due to the utilized data structures are more complex than

simple fuzzy-list, adopting efficient pruning strategies to
avoid degrading the mining performance is urgency. In our
novel algorithm, we utilize the following pruning strategies.

Strategy 1. Consider the Property 1, if FUUB of a fuzzy
itemset is less than minUtil, we can safely prune the fuzzy
itemset and its supersets during the following process.

We notice that high fuzzy upper bound 1-itemsets
(FUUB1) are computed after the first-time database scans.
Consider the Strategy 1, the algorithm only needs to con-
struct FLBuf of FUUBI1, and the search space during mining
becomes smaller than before. Then, the following pruning
strategies can be optimized with the same manner.

Strategy 2. Consider the Property 5, the estimated fuzzy
utility of itemset to prune strategy (EF2P) is declared as
follows. If the FUUB value of two different fuzzy itemsets is
no less than minUtil, then we assume the combination of two
fuzzy itemsets is a potential HFUI. Otherwise, we can prune
the search space to speed up the mining process.

The EFuCS structure can reduce the useless joining oper-
ation times of fuzzy itemsets when certain requirements are
satisfied. The EFuCS structure and its corresponding EF2P
strategy therefore can decrease a number of candidates.

Strategy 3. According to the Property 3 , if the
summation of sumFu and sumRfu values of a fuzzy itemset is
less than minUtil, then we prune this fuzzy itemset as well as
its supersets to reduce the search space.

Strategy 4. Based on the Property 4, if the inequality is
true, it is no need to generate the high-level fuzzy itemsets by
joining two related fuzzy itemsets.

Inspired by the study [29], the early abandoning strategy

262 Journal of Internet Technology Vol. 24 No. 2, March 2023

(EA) is applied to exit the fuzzy-list construction process in
advance when specific conditions are satisfied. The EA strat-
egy is introduced in the following.

Strategy 6. Let EAMeasure be the sum of sumFu and
sumRfu of two distinct fuzzy itemsets. When constructing a
fuzzy-list, the approach subtracts the sum of fu and rfu from
EAMeasure for those transactions whose Tids are not equal.
If the EAMeasure value is less than minUtil, the construction
process can quit early, and the rest of transactions will be
abandoned.

4.5 The FLBuf Reusing Memory Construct Method
 Now we give the introduction of the FLBuf structure. In

FUIM, after constructing a fuzzy-list of a certain fuzzy item-
set, the fuzzy-list may no longer be used. This causes a waste
of the memory allocated for storing the fuzzy-list of the fuzzy
itemset. A novel method for constructing the fuzzy-list buffer
is shown in Algorithm 1. The main operations for memory
re-utilization are shown as follows. If a fuzzy itemset is no
longer used to explore the search space, then the allocated
memory that is used to store fuzzy-list will be reused for the
next promising fuzzy itemset. In addition, new memory is
allocated only when the FLBuf is at capacity (lines 17-26).
Furthermore, based on Strategy 6, the EA strategy is applied
to the construction of FLBuf using the variable EAMeasure.
The detailed implementation is shown in Algorithm 1.

4.6 Proposed FS-IUM Algorithm
The Algorithm 2 is the search procedure. It takes six input

parameters: 1) a prefix fuzzy itemset P, 2) a set of extension
fuzzy items of P ExtensionsOfP, 3) a user-specified minimal
utility minUtil, 4) the EFuCS structure, 5) the FLBuf struc-
ture, and 6) the summary fuzzy-list SL. For each fuzzy item-
set X ∈ ExtensionsOfP, X is firstly checked to learn whether
it is an HFUI (lines 2-4). Then, according to Strategy 3, if
the sum of sumFu and sumRfu of X is no less than minUtil,
the fuzzy super-itemsets of X are regarded as potential HFUIs
and should be further examined (line 5). Then, in line 7, the
procedure checks each fuzzy itemset Y ∈ ExtensionsOfP (X ≺
Y) because all 1-itemsets in FLBuf are sorted with FUUB-as-
cending order. The algorithm checks whether there exists
two fuzzy itemsets in EFuCS that their FUUB value is no
less than minUtil (line 8). If there exists one, the procedure
will call the FLBuf-Construct method (cf. Algorithm 1) to
construct the fuzzy-list segment of Pxy by joining the fuzzy-
list segments of P, X and Y (line 9). According to Strategy
4, if the sumFu value of XY in SL is higher than 0, then the
procedure will combine X with Y to create a high-level fuzzy
itemset Pxy and add it to the extensions of X (lines 10-13).
Finally, the procedure recursively calls itself until there are
no HFUIs generated (line 18).

Based on previous introduction, the main pseudocode is
shown in Algorithm 3. The input parameters are 1) a quanti-
tative transaction database D, 2) a pre-defined membership
function R, and 3) a user-specified fuzzy utility minUtil. The
outcome is a set of HFUIs. The main algorithm carries out
the following steps. At the first time, it scans D to compute
the FUUB value of all items xi in Tj ∈ D by the member-
ship function R in line 1. Next, based on the FUUB values, it
builds the promising set I*, which consists of all fuzzy items

meet condition (i.e., FUUB ≥ minUtil) (line 2). Then, the
algorithm sorts all xi ∈ I* by the FUUB-ascending order (line
3). The main algorithm scans the database D for the second
time to construct the FLBuf, SL, and EFuCS structures in line
4. At last, when the mining process terminates, the algorithm
calls a recursive method (cf. Algorithm 2) to find all HFUIs
and output the results (lines 5 and 6).

Algorithm 1. FLBuf-Construct procedure
Input:
FLBuf, SL: buffer structure;
P, Px, Py: fuzzy itemsets;
minUtil: user-given minimal utility threshold.
Output:
Status of updating FLBuf, SL with fuzzy itemset Pxy;

1: let PPnt, PxPnt, PyPnt be three pointers that initially
 point to FLBuf at positions SL(P).StartPos, SL(Px).Start
 Pos, SL(Py).StartPos, respectively;
2: let EAMeasure=SL(Px).sumFu + SL(Px).sumRfu +
 SL(Py).sumFu + SL(Py).sumRfu;
3: let insertPos = SL.Last.EndPos;
4: while PxPnt ≠ SL(Px).EndPos and PyPnt ≠
 SL(Py).EndPos do
5: if Tids[PxPnt] < Tids[PyPnt] then
6: PxPnt++;
7: subtract EAMeasure by (fus[PxPnt] +
 rfus[PxPnt]);
8: else if Tids[PxPnt] > Tids[PyPnt] then
9: PyPnt++;
10: subtract EAMeasure by (fus[PyPnt] + rfus[PyPnt]);
11: else
12: if SL(P) ≠ null then
13: while PPnt ≠ SL(P).EndPos and

Tids[PPnt] ≠ Tids[PxPnt] do
14: PPnt++;
15: end
16: end
17: if insertPos ≥ |FLBuf| then
18: FLBuf.Tids[Tids.count+] = Tids[PxPnt];
19: FLBuf.fus[fus.count+] = fus[PxPnt]
+ fus[PyPnt] – fus[PPnt];
20: FLBuf.rfus[rfus.count+] = rfus[PyPnt];
21: else
22: insertPos++; /* reuse memory */
23: FLBuf.Tids[insertPos] = Tids[PxPnt];
24: FLBuf.fus[insertPos] = fus[PxPnt] +

fus[PyPnt] – fus[PPnt];
25: FLBuf.rfus[insertPos] = rfus[PyPnt];
26: end
27: PxPnt++;
28: PyPnt++;
29: end
30: end
31: if EAMeasure < minUtil then
32: return false
33: end
34: update SL(Pxy);
35: return true

Explainable Itemset Utility Maximization with Fuzzy Set 263

Algorithm 2. The search procedure
Input:
P: a prefix fuzzy itemset;
ExtensionsOfP: a set of extension fuzzy items of P;
minUtil: a user-specified minimal utility threshold;
EFuCS: the estimated fuzzy utility co-occurrence structure;
FLBuf: the fuzzy-list buffer structure;
SL: the summary fuzzy-list.

1: for X ∈ ExtensionsOfP do
2: if SL(X).sumFu ≥ minUtil then
3: HFUIs ← X;
4: end
5: if SL(X).sumFu + SL(X).sumRfu ≥ minUtil then
6: initialize ExtensionsOfX as null;
7: for Y after X in ExtensionsOfP do
8: if ∃ (X, Y, z) ∈ EFuCS and z ≥ minUtil then
9: if FLBuf-Construct(FLBuf, SL, P, X, Y,

minUtil) == true then
10: Pxy ← X ⋃ Y;
11: if SL(Pxy).sumFu > 0 then
12: ExtensionsOfX ← ExtensionsOfX ⋃ Pxy;
13: end
14: end
15: end
16: end
17: Px ← P ⋃ X;
18: call Search(Px, ExtensionsOfX, minUtil,

EFuCS, FLBuf, SL);
19: end
20: end

Algorithm 3. The FS-IUM algorithm
Input:
D: a quantitative transaction database;
R: a pre-defined membership function;
minUtil: a user-specified minimal utility threshold.
Output:
HFUIs: A set of high fuzzy utility itemsets;

1: scan D to compute the FUUB of all items xi by R;
2: let I* be the set of fuzzy items x, where FUUBx ≥ minUtil;
3: sort all xi ∈ I* by FUUB-ascending order;
4: scan D again to build FLBuf, SL, and EFuCS;
5: call Search (ϕ, I*, minUtil, EFuCS, FLBuf, SL);
6: return HFUIs

5 Performance Evaluation

In this section, we describe various experiments to assess

the performance of the proposed FS-IUM algorithm. We se-
lect several compared algorithms in the following. We had
compared the performance of FS-IUM with FUIM [16] and
two well-known HUIM algorithms (FHMeucst and ULB-Min-
er [12]) in terms of runtime and memory usage. We modify
EUCS structure of FHM [10] as similar to EFuCS in our al-
gorithm. To further assess the efficiency of the EFuCS struc-
ture, a various version named FLB-Miner is utilized, which

yields HFUIs without utilizing the EFuCS structure and EF2P
strategy. Each experiment was tested at least three times. In
addition, if the tested algorithm runs out of 600,000 seconds,
we suppose the algorithm cannot get the right results. Hence,
we use “-” to represent it in tables.

5.1 Experimental Setup

The experimental algorithms were implemented with
Java language, and the experiments were conducted on the
Windows 10 (64-bit) Professional Edition system with an In-
tel Core i7 processor of 2.5 GHz and 16 GB of RAM.

In our experiments, we used eight different real and syn-
thetic datasets. All datasets can be freely downloaded from
the SPMF library (http://www.philippe-fournier-viger.com/
spmf/index.php). The external utility of each item was creat-
ed randomly from 1 to 10,000 by using a log-normal distri-
bution approach. And the internal utility of each item in each
transaction was randomly created within a range (1-6) for
the Foodmart dataset, and within a range (1-5) for the other
datasets. Table 3 shows more details of all datasets, includ-
ing the type of all datasets, the number of transactions and
distinct items, as well as the maximum and average length of
all transactions. We assumed all items have the same mem-
bership function with three fuzzy regions (Low, Middle, and
High). The membership function is shown in Figure 4.

Figure 4. Membership function in the experiments

Table 3. Characteristics of experimental datasets
Dataset #Trans #Items Sig-

nature (MS)
AvgLen MaxLen #Type

Retail 88,163 16,471 10.3 76 Sparse

Foodmart 4,141 1,559 4.4 11 Sparse

BMSPOS 515,367 1,658 6.5 164 Sparse

T10I4D100K 100,000 1,001 10.1 29 Sparse

Chess 3,196 75 37 37 Dense

Accident 340,183 468 33.8 49 Dense

Mushroom 8,124 119 23 23 Dense

T40I10D100K 100,00 1,001 39.6 77 Dense

5.2 Runtime Cost Analysis
To better understand the runtime of the tested algorithms,

we compared their runtime in all datasets under various
thresholds (δ). As shown in Figure 5, our proposed FS-IUM
algorithm performs significantly better than other algorithms.
In particular, the advantage of our novel algorithm is more
obvious while the threshold decreases. In the meanwhile, the
HUIM algorithms, FHMeucst and ULB-Miner, often run out of
time. For example, on the Retail dataset, FS-IUM only takes
half of running time of FUIM to discover a complete set of
HFUIs, but all HUIM algorithms run out of time. Moreover,
it can be observed that FLB-Miner also spends less runtime
compared to FUIM in general. Thanks to the fuzzy-list buffer

264 Journal of Internet Technology Vol. 24 No. 2, March 2023

structure and its efficient auxiliary technique, as well as the
pruning strategies we adopted like the EF2P strategy, FS-
IUM can strikingly reduce the execution time. Furthermore,
we notice that ULB-Miner performs better than FS-IUM in
some cases. The main reason we suppose is that ULB-Miner
generates fewer candidates than FS-IUM does in these data-
sets. That is why the rest HUIM algorithms yield numerous
candidates and oftentimes run out of time. In a word, the
proposed FS-IUM algorithm can efficiently mine HFUIs and
outperforms the compared algorithms in all datasets.

5.3 Memory Usage Analysis
 We compare the maximum memory usage of the test-

ed algorithms on all datasets (the thresholds δ are the same
as Figure 5), and the details are shown in Table 4. It can be
observed that the proposed novel algorithm outperforms the
other algorithms in most cases. The tested HUIM algorithms
are still unable to complete the mining process on some
datasets, so we do not list their results on these datasets. For
example, on the Mushroom dataset, the peak memory usag-
es of FUIM, FLB-Miner, and FS-IUM are 325.8 MB, 395.6
MB, and 102.5 MB, respectively. This indicates that FS-
IUM uses about three times less memory than that of FUIM
and FLB-Miner. Since the fuzzy-list buffer structure and the
FLBuf construct method are capable of reusing memory, the
memory consumption of maintaining information in FLBuf
which is no longer used will be recalled and reused for other
high-level fuzzy itemsets. Hence, as mentioned above, even
though FS-IUM may create more candidates than that of
FUIM, FS-IUM can still reduce memory usage in most cases.
And the FS-IUM algorithm decreases memory consumption
dramatically. In a word, massive memory is saved and re-
duced in FS-IUM, and thus FS-IUM costs less memory than
other compared algorithms.

Figure 5. Runtime comparison with various δ

Table 4. Compare the peak memory (MB)
Dataset FHMeucst ULB-Miner FUIM FLB-Miner FS-IUM

Retail - - 652.3 1411.3 520.3

Foodmart 160.5 268.6 110.7 244.8 61.7

BMSPOS 1107.1 1148.5 1079.6 1100.1 979.7

T10I4D100K 787.1 583.5 446.7 832.8 514.6

Chess - - 298.1 339.9 106.2

Accident - - 1205.6 498 491.7

Mushroom - - 325.8 395.6 102.5

T40I10D100K 1195.6 1252.8 1211.7 1155.9 1190

5.4 Scalability Analysis
In the last subsection, we conduct experiments to com-

pare the scalability of FUIM, FLB-Miner and the proposed
FS-IUM on a real-life dataset (i.e., Accident). In each test, the
dataset size (|D|) is 40k, 55k, 70k, 85k, and 100k transactions
when δ is fixed to 1% (“k” is equal to 1,000). The experimen-
tal results in terms of runtime and memory usages are shown
in Figure 6. It can be observed that, along with the dataset
size increases, both the runtime and memory consumption
of FS-IUM increase more smoothly than those of other algo-
rithms. The proposed algorithm has almost linear scalability
when the dataset size increases in terms of runtime usage. In
summary, FS-IUM outperforms other compared algorithms
on the scalability test.

Figure 6. The scalability test under varied |D|

6 Conclusions

Existing fuzzy-list-based algorithms for mining high

fuzzy utility itemsets are efficient and easy to implement.
However, they require a large amount of memory for main-
taining fuzzy-lists. To solve this problem, in this paper, we
proposed a novel memory reuse structure called fuzzy-list
buffer. This paper presents an efficient algorithm called FS-
IUM for high fuzzy utility itemset mining. The new algo-
rithm combines the fuzzy-list buffer structure with efficient
techniques for building fuzzy-list segments to decrease the
runtime and memory consumption. The FLBuf structure and
its ancillary structure (SL) help to locate and retrieve the
fuzzy-list quickly. According to the efficient EFuCS structure
and EF2P strategy, FS-IUM can significantly reduce runtime
consumption compared to the state-of-the-art algorithms. In
addition, FS-IUM decreases memory usage by the fuzzy-list
buffer construction method for reusing memory. Finally, we
have conducted an extensive experiment on eight datasets to
compare the performances of FHMeucst, ULB-Miner, FUIM,
FLB-Miner, and FS-IUM. Our experimental results demon-
strate that the proposed FS-IUM algorithm improves the effi-
ciency of mining.

In future work, we plan to further improve the effective-

Explainable Itemset Utility Maximization with Fuzzy Set 265

ness of FS-IUM, such as applying more efficient pruning
strategies and investigating other optimization techniques.
Furthermore, since data stream mining has become a popular
research topic in many domains recently, how to apply the
fuzzy-list buffer structure to tackle the data stream mining
issue will be an interesting and challenging task.

Acknowledgement

This work was partially supported by the National Natural
Science Foundation of China (Grant Nos. 61902079 and
62002136), Guangzhou Basic and Applied Basic Research
Foundation (Grant Nos. 202102020928 and 202102020277).

References

[1] R. Agrawal, R. Srikant, Fast algorithms for mining
association rules in Large Databases, Proceedings of the
20th ACM International Conference on Very Large Data
Bases, Santiago de Chile, Chile, 1994, pp. 487-499.

[2] J. Han. J. Pei, Y. Yin, Mining frequent patterns without
candidate generation, ACM SIGMOD Record, Vol. 29,
No. 2, pp. 1-12, June, 2000.

[3] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, D. Yang,
H-Mine: Fast and space-preserving frequent pattern
mining in large databases, IIE Transactions, Vol. 39,
No. 6, pp. 593-605, March, 2007.

[4] W. Gan, J. C. W. Lin, P. Fournier-Viger, H. C. Chao, V.
S. Tseng, P. S. Yu, A survey of utility-oriented pattern
mining, IEEE Transactions on Knowledge and Data
Engineering, Vol. 33, No.4, pp. 1306-1327, April, 2021.

[5] T. Hutchison, A. Marshall, C. Guillebaud, Reviews:
Principles of economics, The Economic History Review,
Vol. 15, No. 3, pp. 558-560, April, 1963.

[6] Y. Shen, Z. Zhang, Q. Yang, Objective-oriented utility-
based association mining, Proceedings of the 2nd IEEE
International Conference on Data Mining, Maebashi,
Japan, 2002, pp. 426-433.

[7] H. Yao, H. J. Hamilton, C. J. Butz, A foundational
approach to mining itemset utilities from databases,
Proceedings of the 4th SIAM International Conference
on Data Mining, Lake Buena Vista, Florida, USA, 2004,
pp. 482-486.

[8] Y. Liu, W. K. Liao, A. Choudhary, A two-phase
algorithm for fast discovery of high utility itemsets,
Proceedings of the 9th Pacific-Asia Conference on
Knowledge Discovery and Data Mining, Hanoi,
Vietnam, 2005, pp. 689-695.

[9] M. Liu, J. Qu, Mining high utility itemsets without
candidate generation, Proceedings of the 21st
ACM International Conference on Information and
Knowledge Management, Maui, Hawaii, USA, 2012,
pp. 55-64.

[10] P. Fournier-Viger, C. W. Wu, S. Zida, V. S. Tseng, FHM:
Faster high-utility itemset mining using estimated
utility co-occurrence pruning, Proceedings of the
21st International Symposium on Methodologies for
Intelligent Systems, Roskilde, Denmark, 2014, pp. 83-
92.

[11] W. Gan, S. Wan, J. Chen, C. M. Chen, L. Qiu, TopHUI:
Top-k high-utility itemset mining with negative utility,
Proceedings of the 8th IEEE International Conference
on Big Data, Atlanta, GA, USA, 2020, pp. 5350-5359.

[12] Q. H. Duong, P. Fournier-Viger, H. Ramampiaro, K.
Nørvåg, T. L. Dam, Efficient high utility itemset mining
using buffered utility-lists, Applied Intelligence, Vol. 48,
No. 7, pp. 1859-1877, July, 2018.

[13] L. A. Zadeh, Fuzzy Sets, Fuzzy Sets, Fuzzy Logic, and
Fuzzy Systems, World Scientific Publishing Company,
1996, pp. 394-432.

[14] C. M. Wang, S. H. Chen, Y. F. Huang, A fuzzy
approach for mining high utility quantitative itemsets,
Proceedings of the 18th IEEE International Conference
on Fuzzy Systems, Jeju, Korea (South), 2009, pp. 1909-
1913.

[15] G. C. Lan, T. P. Hong, Y. H. Lin, S. L. Wang, Fuzzy
utility mining with upper-bound measure, Applied Soft
Computing, Vol. 30, pp. 767-777, May, 2015.

[16] S. Wan, W. Gan, X. Guo, J. Chen, U. Yun, FUIM: Fuzzy
utility itemset mining, October, 2021. https://arxiv.org/
abs/2111.00307

[17] C. C. Aggarwal, M. A. Bhuiyan, M. A. Hasan, Frequent
pattern mining algorithms: A survey, in: C. Aggarwal, J.
Han (Eds.), Frequent Pattern Mining, Springer, Cham,
2014, pp. 19-64.

[18] M. J. Zaki, Scalable algorithms for association
mining, IEEE Transactions on Knowledge and Data
Engineering, Vol. 12, No. 3, pp. 372-390, June, 2000.

[19] V. S. Tseng, C. W. Wu, B. E. Shie, P. S. Yu, UP-Growth:
an efficient algorithm for high utility itemset mining,
Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
Washington, DC, USA, 2010, pp. 253-262.

[20] C. F. Ahmed, S. K. Tanbeer, B. S. Jeong, Y. K. Lee,
Efficient tree structures for high utility pattern mining
in incremental databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 21, No. 12, pp.
1708-1721, December, 2009.

[21] V. S. Tseng, B. E. Shie, C. W. Wu, P. S. Yu, Efficient
algorithms for mining high utility itemsets from
transactional databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 25, No. 8, pp.
1772-1786, August, 2013.

[22] J. C. W. Lin, T. Li, P. Fournier-Viger, J. Zhang, X. Guo,
Mining of high average-utility patterns with item-level
thresholds, Journal of Internet Technology, Vol. 20, No.
1, pp. 187-194, January, 2019.

[23] S. Wan, J. Chen, Z. Qi, W. Gan, L. Tang, Fast RFM
model for customer segmentation, Companion
Proceedings of the 34th Web Conference, Lyon, France,
2022, pp. 965-972.

[24] S. Wan, J. Chen, P. Zhang, W. Gan, T. Gu, Discovering
top-k profitable patterns for smart manufacturing,
Companion Proceedings of the 34th Web Conference,
Lyon, France, 2022, pp. 956-964.

[25] G. C. Lan, T. P. Hong, Y. H. Lin, S. L. Wang, Fast
discovery of high fuzzy utility itemsets, Proceedings
of the 27th IEEE International Conference on Systems,
Man, and Cybernetics, San Diego, CA, USA, 2014, pp.

266 Journal of Internet Technology Vol. 24 No. 2, March 2023

2764-2767.
[26] W. M. Huang, T. P. Hong, G. C. Lan, M. C. Chiang, J.

C. W. Lin, Temporal-based fuzzy utility mining, IEEE
Access, Vol. 5, pp. 26639-26652, November, 2017.

[27] T. P. Hong, C. Y. Lin, W. M. Huang, K. S. M. Li, L. S.
L. Wang, J. C. W. Lin, Using tree structure to mine high
temporal fuzzy utility itemsets, IEEE Access, Vol. 8, pp.
153692-153706, August, 2020.

[28] T. P. Hong, C. Y. Lin, W. M. Huang, S. M. Li, S. L.
Wang, J. C. W. Lin, A one-phase tree-structure method
to mine high temporal fuzzy utility itemsets, Applied
Sciences, Vol. 12, No. 6, Article No. 2821, March, 2022.

[29] Q. H. Duong, B. Liao, P. Fournier-Viger, T. L. Dam,
An efficient algorithm for mining the top-k high utility
itemsets, using novel threshold raising and pruning
strategies, Knowledge-Based Systems, Vol. 104, pp.
106-122, July, 2016.

Biographies

Guotao Xu is an undergraduate student
at Guangdong University of Technology,
Guangzhou, China, majoring in information
security. His research interests include data
mining and privacy preservation.

Jiahui Chen (Member, IEEE) received the
MS and PhD degrees from South China
University of Technology, China. He
joined National University of Singapore
as a research scientist for one year. He
is currently an associate professor in
Guangdong University of Technology. His
research interests include post-quantum

cryptography and information security.

Shicheng Wan received the B.S. degree in
Gnanan Normal University, Ganzhou, China
in 2020. He is currently a postgraduate
with the Department of Computer Sciences,
Guangdong Technology Univers i ty,
Guangdong, China. His research interests
include data mining, utility mining, and big
data.

Cuiwei Peng, is an undergraduate student
at Computer Science and Technology from
Guangdong University of Technology,
Guangzhou, China. Her research interests
include big data and data mining.

Yu Liu is an undergraduate student at
Guangdong University of Technology,
Guangzhou, China, majoring in information
security. His research interests include
data mining, blockchain technology, and
blockchain consensus mechanisms.

