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Abstract

With regards to the lack of crisp edges and a poor re-
covery of high frequency information such as details in 
deblurred motion pictures, this research proposes a multi-
scale adversarial deblurring network with gradient guidance 
(MADN). The algorithm uses the classical generative adver-
sarial network (GAN) framework, consisting of a generator 
and a discriminator. The generator includes a multi-scale 
convolutional network and a gradient feature extraction net-
work. The multi-scale convolutional network extracts image 
features at different scales with a nested connection residual 
codec structure to improve the image edge structure recovery 
and to increase the perceptual field. This gradient network 
incorporates with intermediate scale features to extract the 
gradient features of blurred images to obtain their high fre-
quency information. The generator combines the gradient and 
multiscale features to recover the remaining high-frequen-
cy information in a deblurred image. The loss function of 
MADN is formed in this research combining adversarial loss, 
pixel L2-norm loss and mean absolute error. Compared to 
those experimental results obtained from current deblurring 
algorithms, our experimental results indicate visually clearer 
images retaining more information such as edges and details. 
This MADN algorithm enhances the peak signal-to-noise 
ratio by an average of 3.32dB and the structural similarity by 
an average of 0.053.

Keywords: Motion deblurring, Multi-scale network, Nested 
residual connection, GAN, Gradient feature extraction

1 Introduction

Image deblurring technique is getting an increasing pop-
ularity in recent years in fields like transportation, medicine 
and remote sensing, even in artificial intelligence. Image 
deblurring algorithms improve image quality and recover lost 
features in blurred images. Image deblurring technology also 
lays the foundation for subsequent computer vision tasks, 
such as target detection [1-2]. General motion blurs occur 
when images are captured in daily life with objects in rela-
tive motions. Camera shaking and scene depth changes come 
next. 

 Image deblurring aims at a sharper image over the 

blurred one. Current recovery methods fall within two cat-
egories, namely, non-blind and blind deblurring, depending 
on whether the blur kernel is known. The majority of early 
researches [3-4] concentrate on non-blind deblurring, predict-
ing the blur kernel and implementing the deblurring through 
a deconvolution operation. Non-blind methods primarily 
introduce a prior knowledge as a regularization term to solve 
the mathematical model, and iteratively estimate the blurring 
kernel. Despite good recovery results, non-blind methods 
mostly occur in uniform blurred images, and are compu-
tationally intensive and prone to ringing on other blurred 
images [5]. Most real-world blurred images are non-uniform 
with multiple scales of blur kernels. Chakrabarti [6] uses a 
Convolutional Neural Network (CNN) to estimate the fuzzy 
kernel by predicting their fourier coefficients in the frequen-
cy domain, which functions well only for uniform motion 
fuzzy image recovery and is time-consuming. On account 
of the fuzzy kernel’s unknown nature, blind image recovery 
approaches have been more widely used [7-8]. Besides, tra-
ditional blind recovery approaches focus on blurs caused by 
simple target motion, camera translation, and other factors. 
Blurs in real-world dynamic scenes are so complex that tra-
ditional blind recovery methods have a very limited role to 
play here. Kotera et al. [9] introduce a super-Laplacian prior 
as well as L0 parametric constraints, but these models do not 
fully express the edge sparsity characteristics of natural im-
ages, resulting in inaccurate estimations of blur kernels.

With its ever-increasing computational power of neural 
networks, deep learning extends applications to image pro-
cessing tasks, including image debluring and classification 
[10]. Furthermore, image datasets have progressed from man-
ual syntheses to real-world images, closer to the genesis blur-
ring origin, so datasets also drive the advancement of image 
deblurring algorithms. Blind image deblurring algorithms are 
mainly classified into CNNs, GANs and regularization-based 
approaches. Most CNN-based image blind deblurring algo-
rithms [11-12] only extract image features at a single scale, 
and insufficiently make use of multi-scale image features. 
With growing artificial intelligence, GAN [13] finds an in-
creasingly wider range of applications in image processing, 
from super-resolution reconstructions [14] to image deblur-
ring tasks.

Since the solution of the blind recovery model is not 
unique, certain prior conditions are required to constrain the 
model. The regularization-based blind image recovery algo-
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rithm uses regular terms to constrain the prior information 
and further constructs regularization models. Natural images 
contain rich details and features, so selecting suitable regular 
terms to constrain these features can help recover these de-
tails and features. Currently, a variety of priors are proposed, 
such as gradient sparse priors [15] and low-rank prior [16], 
among which algorithms using gradient prior have a wide 
range of applications.

A MADN algorithm is proposed in this research, based 
on gradient guidance for a partial feature loss in motion im-
age deblurring tasks caused by multiscale networks. A gradi-
ent feature extraction network is created, drawing on gradient 
sparse prior to help recover features such as details. The work 
covers the following four points:

(1) A multi-scale network (SN) is proposed based on the 
characteristics of non-uniform motion blurred imag-
es. In order to capture effective multi-scale features, 
SN adds cross-scale [17] connections to share net-
work weights.

(2) A gradient feature extraction network (GN) is added 
to the generator, considering the fact that sharing 
weights may cause high-frequency information loss, 
unfavorable for image detail recovery. Next, the scale 
features are coupled with GN to reconstruct the gra-
dient map, avoiding over-reliance on blurred images 
when extracting features.

(3) A nested residual-connected network is constructed 
in the codec structure to prevent problems like gra-
dient disappearance. This approach makes full use 
of the underlying features to accelerate the network 
convergence while reducing the artifacts brought by 
feature stacking.

(4) The proposed loss function’s effectiveness is verified 
through ablation experiments. MADN is trained and 
tested on the GoPro dataset, in comparison with cur-
rent deblurring ones. 

2 Related Work

The image degradation model is introduced first in this 
section, followed by a brief review to different learning-based 
methods for blind image deblurring, mostly in two catego-
ries: CNN methods, and GAN methods. Also investigated 
are methods related to gradient prior. MADN research is ac-
cordingly conducted with a reference to the above-mentioned 
methods. 

2.1 Degradation Model
The fuzzy image degradation process is obtained through 

a convolution operation of a clear image with a fuzzy kernel 
plus noise. The mathematical model is expressed as follows: 

              
  .f k g n= ∗ +                                                 (1)

 
Where f is the blurred image, k is the fuzzy kernel, also 

known as the point spread function, g is the clear image, 
n is the additive noise, and * is the convolution operation. 
Two-dimensional filter matrices, namely, the convolution ker-
nel and the CNN fuzzy kernel extract image features through 

layer-by-layer convolution changes, resulting in a spatial 
mapping of blurred images to sharp images.

2.2 Learning-based Methods
CNN used for computer vision tasks has been extensively 

studied with the development of deep learning. Due to the 
remarkable feature extraction ability of CNN, its application 
has even expanded to the field of integrated Internet of things 
in recent years [18]. Blind deblurring methods for motion 
images take advantage of the local weights sharing to process 
high-dimension data in a convolutional operation. Sun et 
al. [19] adopt CNN to remove non-uniform blurring on real 
blurred images with a poor recovery, as the dataset is artifi-
cially synthesized uniform blurred images. For this reason, 
Nah et al. [20] propose a dataset with sharp blurred image 
pairs-GoPro. This approach follows the multi-scale mecha-
nism in traditional methods for blurring in dynamic scenes 
and obtained better results. However, independent parameters 
at each scale in the network result in a complex structure and 
slow convergence. To address the problem, a scale recurrent 
network model is proposed with shared parameters to achieve 
a desirable effect by Tao et al. [21]. With fewer parameters, 
this model is simpler to implement. Based on Tao et al., 
Zhang et al. [22] propose a deep hierarchical multi-patch net-
work, greatly improving the running speed.

Parameter sharing causes significant scale feature losses, 
unfavorable to detail recovery. Thus, CNN alone in unfit to 
eliminate motion blurs and recover details, besides the arti-
facts resulted from ablation trials. Sharp images are known 
to be rich in textural and structural features, hence image 
recovery tasks necessitate a network with advanced feature 
extraction capabilities. Based on game theory principles, the 
GAN-based image motion deblurring method improves pa-
rameter fitting accuracy, restoring more realistic outcomes. 

 GAN is first used by Radford et al. [23] for image gener-
ation to construct deep convolutional generative adversarial 
network models in 2010s. Richer details and higher subjec-
tive visual quality are achieved in DeblurGAN algorithm 
based on paired datasets, but the texture structure recovery 
is less effective [24]. To solve the above problem, Deblur-
GAN-v2 [25] is proposed to better recover texture structure, 
taking spatial pyramids as the backbone network. Lately, a 
self-referential deblurring GAN is designed by Gong et al. 
[26], which is better at recovering locally blurry images. 

In brief, being data-driven, GAN is difficult to obtain 
sharp-blurry image pairs of the same real scenes, causing 
self-adaptability deficiency with regards to non-uniform 
blurs. That is why the generator in this research combines 
scale features and shares weights across distinct scales to in-
crease the capacity of handling non-uniform blurry feature.

2.3 Gradient-based Methods
Most neural network methods integrated with traditional 

image prior fail to recover details and textures. Researches 
[27-29] decompose blurry images to extract features from 
each layer separately, and guide the blurry image recovery 
with gradient low-rank prior. Gradient feature has been uti-
lized in previous work [30-31]. 

It has been demonstrated in the field of image super-res-
olution that using gradients as a prior to guide image res-
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toration better preserve edge features and generate sharper 
high-resolution images. 

Under the guidance of the edges extracted by off-the-
shelf edge detector, Yang et al. [32] introduce a recurrent 
residual network to reconstruct fine details, aiming to recover 
high-frequency components. Structure-Preserving Super Res-
olution Network (SPSR) proposed by Ma et al. [33] experi-
mentally verifies the feasibility of generating rich texture and 
detail in an adversarial training manner guided by gradient 
features. However, when paired with the incoming features 
from the super-resolution encoder, the gradient network in 
SPSR relies heavily on the specific blurry image, resulting in 
ineffective gradient maps. In summary, those models com-
bined with gradient prior are able to help to restore sharper 
edges and smoother details. Thus, an introduction of a gra-
dient feature extraction network becomes the focus for high 
frequency information recovery such as details.

Based on the above discussion, a multi-scale adversarial 
deblurring network is designed with gradient guidance, ac-
cording to motion blur image characteristics. The generator 
(G) consists of a Scale-Network (SN) and a Gradient Net-
work (GN) (See 3.2). Gradient features are combined with 
the multiscale features to recover a sharp image with high 
frequency information. What’s more, a loss function consist-
ing of content loss and adversarial loss is designed to extract 
effective features.

 
3 The Proposed Method

 This section first presents the formula transformation and 
the architectural design of the proposed model. It then sepa-
rately elaborates on the detailed compositions of SN and GN.

3.1 Transformed Formula
According to Zhu’s modeling idea [34], we have derived 

the following formula. The convolution operation is de-
scribed by matrix multiplication, then Equation 2 is written 
as follows:

 

1 .

F K H N
NH F

K K

= ⋅ +
−

= ⋅ +
                                         (2)

Where F, K, H, N are represented as a fuzzy image, a 
fuzzy kernel, a sharp image and noise in matrix form respec-
tively. The operation in Equation 2 is then expressed as a 
convolution operation, which is written as Equation 3:

.g W f B= ∗ +                                              (3)

Where W denotes the weight parameter of the neural net-
work and B denotes the network bias. W can be defined by 
the fuzzy kernel matrix, B is related to the noise:

                        
1

.
  

W K
B N




∝



              

The fuzzy kernel k is converted into the weights W that 
the neural network needs to learn.

G takes the blurry image Xb as input and generates the de-
blurred image ˆ

bX  based on the sharp image Xt. In this re-
search, the image deblurring problem is converted into an 
image generation problem. G is trained to learn the mapping 

( )g ⋅ from the blurry image to the clear one without estimat-

ing the blurring kernel. ( )g ⋅  is obtained according to Equa-
tion 3:
 

  ˆ ( ) .b b bX g X W X B= = ∗ +                            (4)
 

In order to learn ( )g ⋅ , G needs to update its own parame-
ter θg during the training process, thus, Equation 4 can be 
re-written as:

ˆ ( ; ).b b gX g X θ=                                            (5)

Regularization theory [35] is a widely-used algorithm in 
image blind recovery, whose basic concept is to select a suit-
able regularization term to constrain the prior information. 
The traditional image restoration method utilizes a gradient 
sparse prior to extract image edges, combined with a matrix 
low-rank prior to suppress noise interference [36]. Equation 
6 represents the gradient sparse prior, and Equation 7 adds 
a matrix low-rank prior to Equation 6 for the noise suppres-
sion:

2 2

22 0ˆ ,

ˆ̂arg min .
b

b b b
X k

X k X k Xδ ρ∗ − + +     (6)

2 2* *
22ˆ ,

0 ,*

ˆ̂( , ) arg min

ˆ̂ .
b

i

b b b
X k

b i b w

X k X k X k

X Xζ

δ

ρ

= ∗ − +

+ + ∇∑
   (7)

Here, δ, ρ, ζ are regularization parameters, ∥∙∥w,∗ is 
weighted nuclear norm. Since bias B is related to noise n, 
which, in analogy to traditional low-rank prior, acts as a noise 
suppressor in neural networks.

Since image deblurring is an ill-posed problem, the solu-
tion process for the optimal solution θg

* is combined with the 
natural image priors described above, and the following mod-
el is proposed:

*
1

arg min ( ; ) .
g

g b g t gradg X X L
θ

θ θ µ= − +      (8)

Lgrad is a regularization term based on gradient sparse pri-
or, while μ is the regularization parameter. In this research, 
Sobel operator is adopted to extract the image gradient [37]. 
In this way, the above formula derivation manifests the gen-
eral MADN design principle.
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3.2 Overall Network Structure
Motivated by Equation 8, the architecture of MADN is 

designed as shown in Figure 1. A generative network is de-
signed containing SN and GN. Where G learns the mapping 
from the blurry image to the recovered one and generates a 
sharp result, visually closer to the target. D discriminates be-
tween the generated results and the real-world images.

Here, ˆ
gX denotes the gradient reconstruction map output 

by G, M(Xt) denotes the sharp gradient map, I_i denotes the 
scale features, grad_f denotes the gradient features, while 
Lpixel, 

GB
contentL , G

contentL , Ladv and Ld stand for pixel loss, content 
loss of GN, content loss of G, adversarial loss of G and dis-

features at the lower layer are combined with the features at 
the higher layer.

The specific parameters in the model are set as follows. 
As shown in Figure 2, each SN level consists of one input 
block (InBlock), two encoding blocks (EBlock), two 
decoding blocks (DBlock) and one output block (OutBlock). 
InBlock and EBlock contain one convolutional layer and four 
residual blocks (ResBlock), while DBlock and OutBlock 
contain four residual blocks and one deconvolutional layer 
sequentially. The convolutional kernel size used in the image 
restoration method is usually 5×5 or 7×7. Considering the 
training cost and the parameter number, the convolutional 
kernel size is set to 3×3 in this research. It’s widely accepted 
that two 3×3 convolutional kernels are used instead of one 
5×5 convolutional kernel to ensure the same perceptual field. 
The activation functions of all layers are rectified linear units 
(ReLU). The blurred image is first input to the encoder, 
which outputs a compressed feature map after down-
sampling operation with a step size of 2. The decoder 
performs up-sampling operation on the feature map to 
gradually recover the image to its original size. The final 
convolution operation uses a convolution kernel of size 1×1 
to achieve the fusion of features obtained from different 
channels. According to the relevant experimental verification 
[19-20], the recovery effect is better when the scale is taken 
as 3.

Figure 2. The architecture of the designed Generator

criminant loss respectively. The solid black line indicates the 
feature transmission while the dashed line indicates the back 
propagation of the loss function’s gradient.

The specific deblurring process is to input the blurry im-
ages into G in batches, after which they are fed straight into 
the SN network, whose gradient map serves as the input to 
GN. The scale features are connected to GN in a hierarchical 
manner to guide the gradient image reconstruction. Final-
ly, gradient features are merged with scale features for an 
up-sampling operation to recover the final deblurred images. 
During the training procedure, G and D are optimized ac-
cording to their own loss functions in an alternative manner 
until the loss function values reach equilibrium. 

 
Figure 1. The architecture of the proposed MADN

3.3 Design of the Generator
Inspired by Tao et al. [21] and Ma et al. [33], the gen-

erator model G is composed of SN and GN (Figure 2). GN 
first feeds the acquired multi-scale features into its own en-
coder in a hierarchical manner, then it combines the gradient 
features with scale features to up-sample the final deblurred 
image (output). 
3.3.1 Design of Multi-scale Structure 

In this project, SN is designed with the traditional coarse-
to-fine concept image deblurring to obtain features at dif-
ferent scales. In order to reduce parameter numbers in SN, 
a recurrent connection is added, that is, the previous layer’s 
output is adopted as the next layer’s input to increase the 
training speed in a weight-sharing way. The specific steps 
are to input the minimum scale blurry image blur_3 for de-
blurring. A sharp latent image I_3 is obtained, then I_3 is 
up-sampled to the same scale as blur_2. They are fed into the 
next scale together to obtain I_2. Similarly, the final sharp 
latent image I_1 is obtained from SN.

The same codec structure is utilized at each scale [38]. 
The encoder maps the input image to the low-dimensional 
space through a down-sampling operation, while the decoder 
maps the compressed image to the output layer through an 
up-sampling operation. Skip connection is also added to solve 
those problems, such as the loss of characteristics during 
decoding. That is, the encoder passes the image features to 
the decoder through a cross-layer skip connection, so that the 
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The specific parameters in the model are set as follows. 
As shown in Figure 2, each SN level consists of one input 
block (InBlock), two encoding blocks (EBlock), two 
decoding blocks (DBlock) and one output block (OutBlock). 
InBlock and EBlock contain one convolutional layer and four 
residual blocks (ResBlock), while DBlock and OutBlock 
contain four residual blocks and one deconvolutional layer 
sequentially. The convolutional kernel size used in the image 
restoration method is usually 5×5 or 7×7. Considering the 
training cost and the parameter number, the convolutional 
kernel size is set to 3×3 in this research. It’s widely accepted 
that two 3×3 convolutional kernels are used instead of one 
5×5 convolutional kernel to ensure the same perceptual field. 
The activation functions of all layers are rectified linear units 
(ReLU). The blurred image is first input to the encoder, 
which outputs a compressed feature map after down-
sampling operation with a step size of 2. The decoder 
performs up-sampling operation on the feature map to 
gradually recover the image to its original size. The final 
convolution operation uses a convolution kernel of size 1×1 
to achieve the fusion of features obtained from different 
channels. According to the relevant experimental verification 
[19-20], the recovery effect is better when the scale is taken 
as 3.

Figure 2. The architecture of the designed Generator

3.3.2 Design of the Gradient Network
The gradient network is based on the U-Net structure [39] 

with skip connection, as shown in Figure 2, where gradient 
features are extracted through sampling operations. The basic 
module composition in GN remains the same as in SN. The 
input of GN is a fuzzy gradient map. A concat layer is added 

         (a) Original Resblock       (b) Designed Resblock 
Figure 4. Comparison of different Resblock structures

3.4 Design of the Discriminator
The image source is discriminated with the discriminator. 

In order to recover richer details, D in this research abandons 
pooling layers. Each convolution layer uses a Leaky Rec-
tified Linear Unit (LeakyReLU) with a slope of 0.2 as the 
activation function. The structure is shown in Figure 5, where 
g_out denotes the generated result and gt denotes the ground 
truth, i.e. the real sharp image.

Figure 5. The architecture of the designed Discriminator

after each EBlock to superimpose the corresponding scale 
features from the SN output. The decoding section outputs 
the reconstructed gradient image though up-sampling. Final-
ly, the gradient features are combined with the multi-scale 
features, and then input to the up-sampling block for generat-
ing the final restored image.

3.3.3 Design of the Residual Blocks
To take full advantage of the features of different network 

layers and expand the perceptual field, this research extends 
the residual block connection [40] to a nested connection, as 
shown in Figure 3.

Figure 3. The method of nested residual linking

The residual network structure is expressed as follows:

3 1 2 1( ) ( ( )).n n n n nP P R P R P R P+ = + + +             (9)

Where Pn denotes the input to the current nth layer of the 
network, where R( ) denotes the residual connection, R1(Pn) = 
Pn+1. Residual network’s input enters the interior of the Res-
Block on one side and is connected to the convolutional layer 
of the current ResBlock as the next ResBlock’s input on the 
other side [41]. The output of the current ResBlock is used as 
the next ResBlock’s input through nested connections. This 
kind of nested connection can effectively exploit the features 
between different ResBlocks, which not only reduces param-
eter numbers, and prevents gradient disappearance as well. 

Since the multi-scale structure in this research uses a 
scaling factor of size 0.5, the BN layer is removed from the 
ResBlock to increase the network’s flexibility during training. 
In addition, removing the rectified linear unit before the final 
layer can speed up the model’s convergence. A comparison of 
internal structure with the original residual block is shown in 
Figure 4’s (a), (b).
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The input is compressed by down-sampling, then the 
channel is compressed by two dimensionally invariant 1×1 
convolutions, followed by a Dense Layer. The output is 
mapped between 0 and 1, using sigmoid activation function. 
The output is judged to be sharp when it is greater than 0.5, 
and fuzzy otherwise. The specific network hierarchy and pa-
rameter settings are shown in Table 1.

Table 1. Parameter settings
Layer Kernel size Channel Strides
Conv_1~2
Conv_3~4
Conv_5~6
Conv_7~8
Conv_9~10
Conv_11~12
Dense_1
Dense_2

3x3
3x3
3x3
3x3
3x3
3x3
3x3
-

64
64
128
256
512
1
1024
1

2
2
2
2
2
2
1
-

 
4  The Proposed Loss Function

A loss function is used to guide the training direction of 
the model. In this research, the total loss function consists of 
content loss and adversarial loss. The content loss consists of 
pixel loss and the mean absolute error (MAE). MAE is con-
strained between the generated result and the baseline image 
in both image and gradient domains.

To optimize SN, pixel loss is used based on L2 norm for 
the output and the sharp image, which helps to correct the 
color and texture features. Theoretically, blurred images’ 
edges are irregular and sharp images’ edges are prominent, 
gradient L1 loss is introduced to enrich the edge features and 
structural features.

In addition, Lim et al. [42] show that for many image 
restoration tasks, MAE loss outperforms mean squared error 
(MSE) loss, which smooths out edges and local details in the 
reconstructed image and influences the feature accuracies 
obtained by the gradient network. Therefore, for the gradient 
domain, this research employs a MAE-based content loss.

4.1 The Loss Function of the Generator
The target of G is to deceive D as much as possible so 

that D cannot distinguish the image sources, i.e. the training 
goal of G is to maximize the probability that D will discrim-
inate the generated output as a real image. This research uses 
the joint content loss and adversarial loss as the loss function 
of G:

.G content advL L Lλ= +                                    (10)

Where Lcontent is the content loss, Ladv is the adversarial 
loss and λ is the weighting factor for the adversaria loss.

Content Loss:  To ensure the generated image’s 
authenticity, this research uses content loss constraints in 
both the gradient and image domains. Lcontent includes pixel 
loss Lpixel  and mean absolute error LMAE (Equation 11):

.content pixel MAEL L Lα= ⋅ +                              (11)

Where α is the weighting factor, the specific expression 
for Lpixel is shown in Equation 12:

2

1 2
.

2

i
k out true

pixel i iii

wL I I
N=

= −∑                   (12)

Where i is the scale level, wi is the weight at scale, Ni is 
the number of elements normalized at scale i, out

iI  and true
iI

are the output of the model at scale i and the real image re-
spectively. LMAE is expressed as:

          

1 2

1 1

2 1 1

2 1

( ) ( )

( ( ) ( ( ))

( ) ).
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g

g

GB G
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t b

t b

b t

L L L

M X G X

M X M G X

G X X

θ

θ

θ

φ φ

φ

φ β

β

= ⋅ + ⋅

= ⋅ −

+ ⋅ −

+ −

              (13)

Where GB
contentL  constrains between the gradient recon-

struction map and the sharp baseline gradient map with 
weight coefficient ϕ1, 

G
contentL  constrains the final deblurred 

image and its gradient map with weight coefficient ϕ2, β1 and 
β2 are the weight coefficients of the L1 loss. M denotes the 
operation of extracting image gradients, θgb denote the pa-
rameters of GN, while ( )

g bG Xθ  and ( )
gb bG Xθ respectively de-

note the final generated deblurred image and the reconstruct-
ed gradient map.

This research uses bicubic interpolation to avoid jagged-
ness when changing the image size. The deblurred image has 
smoother edges and higher quality of detail recovery.

Adversarial Loss: The adversarial loss Ladv is used to 
constrain the output of G to a sharp image that is 
discriminated as true by D. The expression for the adversarial 
loss is shown in Equation 14, where G

advL  (Equation 15) 
denotes the adversarial loss in the image domain, represented 
by, and GB

advL  (Equation 16) denotes the adversarial loss in the 
gradient domain.

.G GB
adv adv advL L L= +                                         (14)

[log( ( ( )))].
b blur g

G
adv X P bL E D G Xθ= −



            (15)

[log( ( ( ( ))))].
b blur gb

GB
adv X P bL E D G M Xθ= −



    (16)

E denotes the mathematical expectation, Pblur denotes the 
data distribution of blurred images in the training set, 

( ( ))
g bD G Xθ denotes the discriminatory result on the de-

blurred image, and ( ( ( )))
gb bD G M Xθ  denotes the discrimina-
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tory result on the gradient reconstructed image. The adversar-
ial loss minimized entails a maximized probability that D 
discriminates the generator’s output as true. In summary, 
generator’s loss function can be written as the following 
equation:

             

1

2 .

G content adv
G GB

pixel MAE adv adv

GB
pixel content

G G GB
content adv adv

L L L

L L L L

L L

L L L

λ

α

α φ

φ

= +

= ⋅ + + +

= ⋅ + +

+ ⋅ + +

               (17) 

4.2 The Loss Function of the Discriminator
D aims to distinguish between the real image and the gen-

erated image. D is optimized in parallel with G. The task of 
D is to keep the discriminant close to 1 for the sharp image 
and close to 0 for the generated image. The internal parame-
ters of D are continuously optimized according to its loss Ld, 
denoted by Equation 18. G

dL  for the deblurred image is denot-

ed by Equation 19. GB
dL  for the gradient reconstruction map 

is denoted by Equation 20.
                   

.G GB
d d dL L L= +                                             (18)

ˆ

[log( ( ))]

ˆ[log(1 ( ))].
t gt d

db Pg

G
d X P t

bX

L E D X

E D X

θ

θ

= −

− −




                    (19)

 

ˆ

[log( ( ( )))]

ˆ[log(1 ( ))].
t gt d

db

GB
d X P t

gX Pg

L E D M X

E D X

θ

θ

= −

− −





              (20)

Where Pgt stands for the data distribution of real sharp 
images in the training set, Pg denotes the data distribution 
learned by G and θd denotes D’s parameter. The image do-
main [log( ( ))]

t gt dX P tE D Xθ

 denotes the discriminant expecta-

tion of D on the real image, and ˆ
ˆ[log(1 ( ))]

db g bX PE D Xθ−


 de-

notes the discriminant expectation of D on the generator 
result, while ˆ ( )

gb bX G Xθ=  is the generated image. The gra-

dient domain, similarly, ˆ ( )
gbg bX G Xθ=  is the reconstructed 

gradient map.

4.3 Training Algorithm
The general training procedure aims to minimize the gen-

erator’s loss LG and the discriminator’s loss Ld. To optimize 
the G and D, Adaptive Momentum (Adam) [43] is adopted 
with parameters β1 = 0.9, β2 = 0.999, ∈ = 10−8. Algorithm 1 
shows the specific process of Adam’s algorithm to update the 
internal parameters of G and D.

Algorithm 1. Adam-based training algorithm
Require: t: updated steps
               ε: learning rate
Require: f1(θg): Equation 10; f2(θd): Equation 18
Require: θ0: initialized parameter vector
              tgθ : G’s parameter at t step

              tdθ : D’s parameter at t step
              0t ←

Input: training_set { }
1

, ,
Ni i

b t i
X X

=

            hyperparameters:
            8

1 20.9,  0.999,  10β β ε −= = =

while 
tgθ ,  

tdθ  not converged do

         step 1: sample batch { }
1

,
Mi i

b t i
X X

=

         step 2: calculate the gradient of G and D
                    11 ( )

g tt gg fθ θ
−

←∇

                    12 ( )
d tt dd fθ θ

−
←∇

         step 3: calculate step 2’s first order moments 
                    1 1 1(1 )t t tm m gβ β−← ⋅ + − ⋅

                    1 1 1(1 )t t tp p dβ β−← ⋅ + − ⋅
         step 4: calculate step2’s second order moments
                    2

2 1 2(1 )t t tv v gβ β−← ⋅ + − ⋅

                    2
2 1 2(1 )t t tq q dβ β−← ⋅ + − ⋅

         step 5: calculate step 2’s offset correction 
                    1 1ˆ̂ / (1 ) / (1 )t t

t t t tm m p pβ β← − ← −

                    2 2ˆ̂ / (1 ) / (1 )t t
t t t tv v v vβ β← − ← −

         step 6: update parameters
                    

1 1ˆ̂ / ( )
t t

t
g g t tm vθ θ ε β

−
← − ⋅ +

                    
1 1ˆ̂ / (

t t

t
d d t tp qθ θ ε β

−
← − ⋅ +

Return ,
t tg dθ θ

5  Experiments

In this section, the experiment environment configuration 
is presented first, followed by research tests and result analy-
ses to two different datasets.

 
5.1 Implementation Details

The basic experimental parameters are set as follows: 
batchsize 16, initial learning rate of 0.0001 for G and 0.0004 
for D. The learning rate is reduced to 0 after 2000 epochs ap-
plying a polynomial decay method. Since SN involves recur-
rent connections, gradient clipping is employed to prevent the 
gradient disappearance, setting the minimum value to 1e-5 
and the maximum value to 2. Table 2 shows the experimental 
environment configuration. 

After repeated experiments, an order of magnitude bal-
ance is achieved between the values of the different loss 



250  Journal of Internet Technology Vol. 24 No. 2, March 2023

terms when the weighting factor takes the value: λ = 0.05, ϕ1 
= 0.5, ϕ2 = 1, α = 0.01, β1 = 0.01, β2 = 1.

 
Table 2. Experimental environment configuration
Hardware environment Single NVIDIA 3090Ti GPU

Ubuntu 21.10
video memory 24G

Software environment TensorFlow 2.4
Python 3.6
Opencv-python 3.3.0.10
Numpy 1.16.0

5.2 GoPro Dataset
GoPro dataset is used to train the model, which contains 

3214 pairs of blurred and sharp images. Of these, 2103 pairs 
are used for training and 1111 pairs are used to evaluate 
image performance, with all images having a resolution of 
1280×720. In order to meet the network’s input requirement, 
RGB images are randomly cropped to 256×256 for training 
and testing. The input and output resolutions at each scale are 
64×64, 128×128, 256×256. MADN is first compared with 
other currently used deblurring algorithms in both quanti-
tative and qualitative terms. Then ablation experiments are 
conducted to verify the effectiveness of the designed loss 
function based on GoPro dataset. 

5.2.1 Qualitative Analysis
Since our model deals with general camera shake and 

object motion, it is reasonable to compare with traditional 
non-uniform deblurring methods. The method of Whyte et al. 
[44] is selected as a representative traditional non-uniform 
method. So, MADN is first compared with it. As is seen from 
the images, Whyte’s model fails to resolve the blurring, even 
worse than the input. This is because the traditional model 
is solely based on the sparse edge characteristics of natural 
images combined with a super Laplacian prior modeling. It 
does not accurately model the real blur kernel, generating a 
model that is not suitable for dynamic deblurring tasks. Sun’s 
method [19] first applies CNN to image deblurring. Nah [20] 
first proposes a multi-scale framework to remove blur and 
the effect is good. MADN’s main framework is a multiscale 
framework based on convolutional neural networks, so the 
above algorithms are selected for comparison. Sun’s model 
is trained on a synthetic training set with a slightly clearer 
image over the input. Results are somewhat better in Nah’s 
method, but minute blurring still exists in edge outlines. 
Benefiting from a well-designed structure and a suitable loss 
function, results in our model are closer to a real sharp one 
with good texture details for visual perception. The ingenious 
use of gradient features makes our algorithm perform better 
in recovering digital text patterns. A comparison of the differ-
ent methods is shown in Figure 6. 

(a) Input images: Crowds, Road, Car, Store

(b) Whyte’s [44]

(c) Sun’s [19]

(d) Nah’s [20]

(e) Ours
Figure 6. Experimental results for each algorithm on the GoPro dataset
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5.2.2 Quantitative Analysis
Peak signal-to-noise ratio (PSNR) and structural similari-

ty (SSIM) [45] are taken as algorithm performance measures 
in this research. Based on the four sample images in Figure 
6, metric values are computed for each method separately, 
as shown in Table 3. The histograms in Figure 7 and Figure 
8 more intuitively reflect the proposed algorithm’s effec-
tiveness. Then the average metric values are measured on 
GoPro’s test set, as shown in the Table 4. Sun’s MRF CNN 

model slightly improves on the SSIM metric compared to 
Whyte’s traditional approach [44]. Compared to the previous 
two, Nah’s Multi-scale CNN has a significant enhancement in 
metric values, as it uses a multi-scale approach to refine the 
image features layer by layer. However, Nah’s model suffers 
from too large parameters and a high training time cost. With 
fewer parameters than in Nah’s model, our research method 
improves on PSNR and SSIM by 1.1dB and 0.0223 respec-
tively.

Table 3. PSNRs and SSIMs of the results in Figure 6
Methods Evaluation Crowds Road Car Store Average
Whyte’s [44] PSNR (dB) 27.296 21.560 25.419 25.913 25.047

SSIM 0.8924 0.6595 0.7067 0.8781 0.7842
Sun’s [19] PSNR (dB) 27.388 21.718 25.678 26.442 25.307

SSIM 0.9030 0.6678 0.7414 0.8727 0.7962
Nah’s [20] PSNR (dB) 30.438 22.960 27.717 28.247 27.341

SSIM 0.9041 0.7869 0.7526 0.8887 0.8331
Ours PSNR (dB) 31.498 24.361 28.780 29.972 28.653

SSIM 0.9052 0.8170 0.8542 0.8897 0.8665

Figure 7. PSNR of different methods Figure 8. SSIM of different methods

Table 4. GoPro dataset evaluation results
Method PSNR (dB) SSIM
Whyte’s [44] 24.53 0.8458
Sun’s [19] 24.64 0.8429
Nah’s [20] 29.08 0.9135
Ours 30.18 0.9312

5.2.3 Investigation of Different Loss Function Terms
Comparative experiments are carried out in this section, 

using different combinations of loss function terms (Figure 
9). SN is able to complete basic deblurring with pixel loss 
and content loss, but the deblurred results are not sufficiently 
detailed and even distorted, as shown in sample picture 2, 
where color distortion emerges in the background buildings. 
Adding the adversial loss improves the the deblurred results 
in detail and solves the chromatic aberration. Both the con-
tent loss and the adversial loss are restricted in the gradient 
domain, and the results have richer details and clearer edge 
contours, which are in line with human eye observation char-
acteristics. In summary, the loss function designed in this 
research outperforms on the deblurring task. 

5.3 Lai Dataset
Lai dataset [46] is composed of real-world blur images, 

completely representing the real-world motion blur complex-
ity. Test results on face2 in Lai dataset can only be observed 
visually, for its lack of a corresponding sharp image as a 
comparison. In order to meet the network’s requirement, 
RGB images are also randomly cropped to 256×256 for 
testing. Our method noticeably excels other ones, especially 
in the eyes and necklace areas (Figure 10). The girl’s eyes 
restored by our algorithm are clearer, and the edges of the 
necklace are sharper than other methods without distortion 
and artifact.

6  Conclusion

This research proposes a multi-scale adversarial deblur-
ring network with gradient guidance (MADN) algorithm 
to address the lack of sharp edges and unsatisfactory detail 
recovery in motion deblurred images. The generator in the 
MADN consists of a scale network SN and a gradient feature 
extraction network GN. By utilizing image features of differ-
ent scales, MADN reduces the deblurred image artifacts and 
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preserves the edge structures. The SN intermediate features 
are connected to the GN encoding network for guiding the 
gradient image reconstruction, recovering high frequency 
information such as details. Experimental results on GoPro 
and Lai dataset show that this proposed model has a powerful 
deblurring capability, and its visual quality and evaluation 
metrics are significantly better than those of other current 
learning-based deblurring models. However, MADN’s pa-

rameters have reached more than 29 million, making it diffi-
cult to train. The background area of the blurred image is not 
recovered well enough.

Our future researches would focus on new algorithm 
explorations to design a relatively lightweight structure with 
attention mechanism to recover higher quality images from a 
global feature extraction perspective.

Figure 9. Results of different loss function terms

                       Blurry input   Whyte’s [44]         Sun’s [19]                Nah’s [20]                    Ours 
Figure 10. Experimental results from each algorithm on Lai dataset
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