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Abstract

The sparrow search algorithm (SSA) is a novel intelligent 
optimization algorithm that simulates the foraging and 
anti-predation behavior of sparrows. The sparrow search 
algorithm (SSA) can optimize continuous problems, but in 
reality many problems are binary problems. In this paper, 
the binary sparrow search algorithm (BSSA) is proposed to 
solve binary optimization problems, such as feature selection. 
The transfer function is crucial to BSSA and it directly 
affects the performance of BSSA. This paper proposes 
three new transfer functions to improve the performance 
of BSSA. Mathematical analysis revealed that the original 
SSA scroungers position update equation is no longer 
adapted to BSSA. This paper improves the position update 
equation. We compared BSSA with BPSO, BGWO, and 
BBA algorithms, and tested on 23 benchmark functions. 
In addition, statistical analysis of the experimental results, 
Friedman test and Wilcoxon rank-sum test were performed to 
verify the effectiveness of BSSA. Finally, the algorithm was 
used to successfully implement feature selection and obtain 
satisfactory results in the UCI data set.

Keywords: Sparrow search algorithm, Transfer function, 
Benchmark function, Feature selection

1  Introduction

The meta-heuristic algorithms use empirical methods 
to solve some optimization problems by modeling and 
exploiting phenomena in nature [1-4]. The swarm intelligence 
optimization algorithm is part of the meta-heuristic 
algorithm [5-8]. The population is made up of many simple 
individuals, and the behavior of individuals in the group is 
microscopic or straightforward. Individuals in the population 
communicate with each other, cooperate, and there are both 
individual behaviors and group behaviors [9-14]. In addition, 
the behavior of the population will also be affected by 
external environments. The swarm intelligence optimization 
algorithms include: Particle Swarm Optimization Algorithm 
(PSO) to simulate bird foraging to find the optimal solution 
[15-18], Grey Wolf Optimization Algorithm (GWO) to 
simulate grey wolf foraging behavior [19-20], Sparrow 
Search Algorithm (SSA) to simulate sparrow foraging 

and anti-predation behavior [21], Whale Optimization 
Algorithm (WOA) to simulate whale foraging behavior [22-
24], Bat Algorithm (BA) to simulate bat echolocation [25-
26] and Quasi Affine Transformation Evolution Algorithm 
(QUATRE) [27-29].

The amount of information generated in all areas of 
society today has skyrocketed [30-31]. Thousands of pieces 
of information lead to the creation of large, high-dimensional 
data sets. These data sets contain a large number of features. 
However, not all features have classification value. In 
addition to valuable related features, these high-dimensional 
data sets also have many irrelevant, redundant, and noisy 
features. These irrelevant, redundant, and noisy features 
cause interference to other features suitable for classification, 
and reduce the classification ability of the data set. It is 
therefore essential to extract relevant features from the 
original features, and to remove the interference of irrelevant, 
redundant, and noisy features [32-34].

With the rise and development of machine learning, 
neural networks and data mining, feature selection has 
become particularly important [35-40]. By training the 
model with this fraction of features it is possible to obtain 
most of the predictive performance. Feature selection is the 
selection of the smallest subset of representative features 
from all the features that can approximately represent all the 
features. Feature selection is a challenging task that becomes 
increasingly difficult as the number of features increases. 
Feature selection is a typical NP-hard problem [41-43]. It is 
impractical to find all possible solutions to the problem by 
enumerating methods. The swarm intelligence optimization 
algorithm used to solve the combinatorial optimization 
problem is proved to be effective [44-47]. In recent years, 
studies have shown that swarm intelligence optimization 
algorithms are practical for feature selection. There are 
already binary swarm intelligence optimization algorithms 
applied to feature selection problems, such as the Binary 
Salp Swarm Algorithm (bSSA) [48], multi-objective binary 
genetic algorithm integrating an adaptive operator selection 
mechanism (MOBGA-AOS) [49], improved sticky binary 
PSO (ISBPSO) [50], Binary Symbiotic Organiss Search 
(BSOS) [51].

Feature selection is a binary problem. To solve this binary 
problem, the original algorithm needs to be changed to a 
binary version [52-54]. There are already binary versions of 
other algorithms used for discrete optimization problems and 
have achieved good results [55-56]. SSA is a new intelligent 
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optimization algorithm that simulates the foraging and anti-
predation behavior of sparrows. This algorithm is effective 
in solving continuous optimization problems. This paper 
proposes a binary SSA algorithm for feature selection. The 
main contributions proposed in this paper are as follows: 

(1) Three new transfer functions are proposed.
(2) The scavengers position update equation has been 

improved.
(3) The validity of BSSA is proved by the benchmark 

function.
(4) The BSSA algorithm successfully implemented 

feature selection in the UCI data set.
Other arrangements for the rest of the paper are 

as follows. Section 2 introduces the principles and 
implementation of the original SSA. Section 3 introduces 
the principle and implementation of BSSA and the three 
new transfer functions proposed. Section 4 verifies the 
effectiveness of the proposed BSSA algorithm through 
benchmark functions. Section 5 introduces the use of BSSA 
to implement feature selection on the UCI data set. Section 
6 summarises the work in this paper and provides an outlook 
for future research.

2  Related Work 

The sparrow search algorithm is a new swarm intelligence 
optimization algorithm introduced by J. K. Xue and B. Shen 
[21]. This section will introduce the basic principles and 
implementation of the original SSA.

2.1 Principle of the Sparrow Search Algorithm
Through years of research and observation of sparrow 

foraging and anti-predatory behavior researchers have 
discovered the mechanisms of intelligence in sparrow 
populations [57]. Within the sparrow population there 
are two identities, producers and scroungers. Producers 
are responsible for finding food-rich areas for sparrow 
populations. The identity of producers and scroungers is 
dynamic, but the proportion of people in the producer and 
the population in the population is fixed. Every sparrow has 
the potential to become a producer. Scavengers in sparrow 
populations can always spot the position of producers and 
move after them. The movement of sparrow populations is 
also influenced by predators. The sparrow will flee its current 
location when it realizes the danger.

2.2 Implementation of the Sparrow Search Algorithm
To make the model  clearer  and simpler,  in the 

implementation of the algorithm we only consider the 
position information of each sparrow. Before the algorithm 
starts, each sparrow is randomly assigned to a location 
separately. The sparrow position information is shown in Eq. 
(1).
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In Eq. (1), where n is the size of the sparrow population 
and D is dimension. Xi,j represents the information about the 
position of the ith sparrow in the jth dimension. The fitness of 
the sparrow is calculated from Eq. (2).
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Producers make up about 20% of the sparrow population. 
The update of the producers position can be represented by 
Eq. (3).
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In Eq. (3), t is the number of generations of ith and 

,
t
i jx  is the position information of the ith sparrow in the jth 

dimension at the t iteration, j=1, 2, ... , d. i=1, 2, ... , n. D is 
the maximum number of iterations, which is a constant. La 
is a 1xd matrix where all elements are 1, W is a normally 
distributed random number with expectation 0 and variance 
1. Ra is the alert value and S is the safety value, Ra is usually 
taken as 0.8 and S ∈  [0.5, 1.0]. 

As soon as scroungers discover that a producer has found 
better position, they immediately move closer to the producer. 
The position update of the scavengers can be represented by 
Eq. (4).
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In Eq. (4), where Xpbest represents the best position 
currently occupied by the producers, Xworst is the current 
global worst position. La is a matrix whose values are all 
1. W has the same meaning as W in Eq. (3). B+ = BT(BBT)−1,  
where B is a matrix of d and the elements of the matrix are 
all 1 or 0. When i > n/2 , it means that these sparrows are in a 
poor position in the population and need to move away from 
the worst position. Conversely, it means that these sparrows 
are closer to the producer and need to follow the producer for 
a better source of food.

,

1
, ,

,

 

( )  
( )

t t t
best i j best i g

t t t
i j i j worstt

i j i g
i w

X X X if f f

X X X
X K if f f

f f

β

ε

+

 + ⋅ − >
=  −

+ ⋅ =
− +

.           (5)

It is assumed that sparrows aware of the danger make 
up 20% of the total number of sparrows. The position of the 
aware danger sparrow is calculated from Eq. (5). where Xbest 
is the current global optimum position and β is a random 
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number with the same distribution as W in Eq. (3), which 
represents the step size of the move. The function of ε is 
to prevent the denominator from being 0, and it is a very 
small number. K is a random number between 0 and 1. fi is 
the fitness of the ith individual, fw is the current global worst 
fitness, and  fg is the current global best fitness. 

When fi > fg, it indicates that the sparrow aware of the 

danger is not the sparrow in the center of the population 
and that it needs to move towards its current optimal 
position. When fi = fgbest, it indicates that the sparrow in the 
centre of the population needs to move elsewhere. Based 
on the description of the above model, the pseudo-code to 
implement SSA is shown in Algorithm 1.

Algorithm 1. SSA pseudo code
1: Set the maximum number of iterations D to 100
2: Set the proportion of producers to 20%
3: Set the population size N to 30
4: Set the proportion of sparrows aware of danger to 20%
5: Set other related parameters
6: Randomly initialize the position of each sparrow
7: for t = 1 to D do 
8:      Use Eq. (3) to update the producers position
9:      Use Eq. (4) to update the scavengers position

10:      Use Eq. (5) to update the position of the aware of danger sparrows
11:      Get the current new position
12:      If the new position is better than before, update it 
13: end for

3  Binary Sparrow Search Algorithm

The previous section introduced the principle of the 
original SSA, this section will introduce the proposed BSSA. 
SSA has strong exploration and exploitation capabilities. 
Based on the above advantages of SSA, we propose a binary 
version of SSA. 

In the original SSA, as the sparrows search space was 
continuous, the sparrow could theoretically reach any 
position in the search space. In the binary algorithm, the 
search space is restricted to 0 or 1. Therefore the search 
space of the sparrow in the binary version of the sparrow 
search algorithm must also be limited to 0 or 1. As there is 
no velocity variable in SSA, it is not possible to use velocity 
to implement binary in the search space as BPSO does. We 
have adopted a strategy to implement a binary version of 
SSA. Suppose each sparrow is set with a binary state tag in 
addition to its original position information on the continuous 
space, and the value of the tag is 0 or 1. Limit the search 
space on its continuous space to a range (in this paper, limit 
the position of the sparrow to [-6, 6]). Get its binary status tag 
by putting its position information into the transfer function. 
The fitness is calculated through its status tag information.

3.1 New Transfer Function
The implementation of the binary algorithm requires 

a transfer function. It converts a continuous value into a 
binary value of 0 or 1. The transfer function controls the rate 
of switching between 0 and 1. The efficiency of the binary 
algorithm is closely related to the choice of transfer function. 
Therefore, the selection of a suitable transfer function is 
crucial for the performance of the BSSA algorithm.

This paper proposes three new transfer functions. Table 
1 and Figure 1 show their detailed information. Figure 2 and 
Figure 3 show their comparison with the original transfer 
function. It is known experimentally that the absolute value 
of x is larger at the beginning of the iteration. From Figure 2, 
we know that the absolute value of x of the original transfer 
function VO1 does not change much within the range of [2, 
6], which means that the probability of position update does 
not change much. It is either always 0 or always 1, which is 
not conducive to Exploration and development within this 
range. In the later stages of search, the absolute value of x 
is small, and the original transfer function VO1 has a larger 
slope in the range of [0, 2], which may miss the optimal 
solution late in the search. The improved transfer function 
V1 increases the probability of updating the absolute value 
of x in the range [2, 6], improving the algorithm ability to 
claim and develop in the early stages. The slope of the [0, 
2] range is reduced, reducing the probability of missing the 
optimal solution in the later stages of the algorithm. When x 
reaches a boundary value, the maximum value of the transfer 
function should be close to 1, so that the probability of it 
becoming 0 is close to 100%. However, from Figure 3 we 
know that when x is the boundary value, the original transfer 
function has a value of 0.83 and even if the function reaches 
its maximum value, there is a certain probability that it will 
not be 1. Therefore, it is essential to improve the original 
transfer function so that the probability of becoming 1 when 
it reaches the maximum value is infinitely close to 100%.
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Algorithm 2. BSSA pseudo code
1: Set the maximum number of iterations D to 100
2: Set the proportion of producers to 20%
3: Set the population size N to 30
4: Set the proportion of sparrows aware of danger to 20%
5: Set other related parameters
6: Randomly initialize the position and binary tag of each sparrow
7: for t = 1 to D do
8:       Use Eq. (3) to update the producers position and use transfer function update the binary tag
9:       Use Eq. (6) to update the scavengers position and use transfer function update the binary tag

10:       Use Eq. (5) to update the position of the aware of danger sparrows and use transfer function update the binary tag 
11:       Get the current new position 
12:       If the new position is better than before, upload it 
13: end for

 Table 1. Details of the new transfer function
Function Function details

V1 tanh( )
7

xπ

V2
arctan( )

2
2 tanh( 3)

xππ

×

V3
495 tanh( )
50 arctan( )

7
x

×

Figure 1. Three new transfer functions   
 

 

Figure 3. Compare transfer functions        

 

Figure 2. Compare transfer functions

       Figure 4. Standard normal distribution
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Table 2. Unimodal test functions
No Function Space Dim  Fmin

F1 
2

1 1( ) num
l lF x x== Σ [-100, 100] 30 0

F2 2 1 1( ) num num
l l l lF x x x= == Σ +Π [-10, 10] 30 0

F3 
2

3 1 1( ) ( )num i
l j jF x x= == Σ Σ [-100, 100] 30 0

F4 4 ( ) max { ,1 }l lF x x l num= ≤ ≤ [-100, 100] 30 0

F5 
1 2 2 2

5 1 1( ) [100( ) ( 1) ]num
l l l lF x x y y−
= += Σ − + − [-30, 30] 30 0

F6 [ ]( )2
6 1( ) 0.5num

l lF x y== Σ + [-100, 100] 30 0

F7  
2

7 1( ) [0,1)num
l lF x kx Rand== Σ + [-1.28, 1.28] 30 0

3.2 Improved Updating Equation for Scavengers 
In this paper the population size is 30 and the range of 

positional variation is [-6, 6]. Figure 4 shows that the values 
of the standard normal distribution are overwhelmingly 
distributed between [-3, 3]. We perform a mathematical 
analysis of the update Eq. (4) for the original position of the 
scavengers. When i > n/2, the absolute value of its position 
varies between approximately 0 and 3. The probability is 
that Sparrow will not be able to search for ranges between 
3 and 6, which can significantly reduce the efficiency of the 
search. Therefore Eq. (4) can no longer be adapted to the 
sparrows search for advantage in BSSA, and an improvement 
to the equation is required. In order to adapt the Scavengers 
position update equation to the sparrows search in BSSA, 
we adapted the original equation for the case i > n/2. The 
adjustment strategy is to stretch it to [-6, 6] by multiplying 
by a factor p, which is a constant value of 2. The improved 
equation is Eq. (6).
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3.3 Implementation of Binary Sparrow Search Algorithm
The sparrow population needs to be initialized before 

executing the algorithm. In BSSA not only the position of the 
sparrow is initialized, but also its binary tag. To be fair, the 
probability of the initialized label value being either 0 or 1 is 
set to 50% for both, as shown in Eq. (7).
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In Eq. (7), Yi,j represents the binary tag information of 
the  ith sparrow on the jth dimension, and rand() is a random 
number between 0 and 1.
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In Eq. (9), F(x) is the transfer function, and ,
t

i jY  is the 
binary state tag on the tth generation, ith sparrow, jth dimension. 
We use Eq. (3), Eq. (5) and Eq. (6) to update the position of 
the sparrow. After updating the position each time, use Eq. 
(8) to get its binary status tag information. Eq. (9) is used to 
calculate the fitness of individuals in BSSA. The pseudo-code 
for BSSA is shown in Algorithm 2.

4   Simulation Experiments

In  this  sect ion,  the  a lgori thm is  s imulated for 
experimentation. This paper tests the exploration capabilities 
of the proposed BSSA using 23 benchmark functions [18]. 
Table 2, Table 3, and Table 4 show the detailed information 
of these 23 test functions. Where Fmin, space, and Dim 
represent the theoretical minimum value, search space, and 
dimension of the test function respectively.

The seven test functions in Table 2 are unimodal test 
functions, the six test functions in Table 3 are multimodal 
test functions, and the ten test functions in Table4 are mixed-
dimensional test functions. The unimodal test function only 
needs to consider a global optimal solution, which can well 
verify the convergence performance and development ability 
of BSSA. Compared with the unimodal test function, the 
multimodal test function has multiple local optimal solutions. 
It can verify the global search capability of BSSA. The 
fixed-dimension test function has multiple local optimal 
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Table 3. Multimodal test functions

No Function Space Dim  Fmin

F8 8 1( ) sin( )num
l l lF x x x== Σ − [-500, 500] 30 -12569

F9 
2

9 1( ) 10cos(2 ) 10num
l l lF x x xπ=  = Σ − +  [-5.12, 5.12] 30 0
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2
10 1

1

1( ) 20exp( 0.2 )

1exp( cos(2 ) 20 2.718)

num
l l
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F x x
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x
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=

=

= − − Σ −

Σ + +
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11 1

1
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F x x

x
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=
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Σ

[-50, 50] 30 0

solutions and multiple global optimal solutions. Use the 
Fixed-dimension test function to verify the performance 
of the BSSA more comprehensively. In order to verify the 
performance of BSSA, compare BSSA with other three 
algorithms. The details of the algorithms are shown in Table 
5. The parameters of BSSA are set as follows: producers 
are 20% of the population size, avoiding the population 
clustering at a certain point. The population aware of the 
danger is 10%, improving the ability of the sparrow to jump 
out of the local optimum solution. Ra = 0.8, most producers 
can perform a large scale search, improving the exploration 
ability of the algorithm. If the population size is too large, 
some individuals in the population will lose their value 
later in the iteration, if the population size is too small, the 
population will lack diversity, so the population size is set to 

30. The algorithm runs independently 50 times, each iteration 
100 times. 

4.1 Experimental Results 
The experimental data is rounded to three decimal 

places. Table 6 shows the comparison of the mean, standard 
deviation (std) and minimum value (min) of the three BSSA 
and BPSO, BGWO, and BBA.

To demonstrate the significance of the experimental 
results in statistics, the Wilcoxon rank-sum test and the 
Friedman test were performed on the results. Table 7 shows 
the results of Friedman test. Table 8 shows the results of the 
Wilcoxon rank-sum test. The experimental data in Table 7 
and Table 8 were recorded by scientific counting method.
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Table 4. Fixed-dimension test functions

No Function Space Dim Fmin  

 F14

1

25
14 1 2

1

1 1( )
500 ( )l

j j jl

F x
l z a

−

=
=

 
= Σ  + Σ − 

[-65, 65] 2 1

F15 
22

11 1 2
15 1 2

3 4

( )
( ) l l

l l
l l

x c b x
F x a

c c x x=

 +
= Σ − + + 

[-5, 5] 4 0.0003

F16 
2 4 6 2 4

16 2 2 2
1( ) 4 2.1 4 4
3l l l iF x x x x x x x= − + + − + [-5, 5] 2 -1.0316

F17 

2
2

17 2 2

5.1 5( ) 6
4

110(1 )cos 10
8

l l

l

F x x x x

x

ππ

π

 = − + − + 
 

− +

[-5, 5] 2 0.398

F18 

2 2
18 1 2 1 1

2 2
2 2 1 2 1 2

2 2
1 1 2 2 1 2

( ) 1 ( ) (19 14 3

14 6 3 ) 30 (2 3 ) (18

32 12 48 36 27 )

F x x x l x x

x x x x x x

x x x x x x

= + + + × − + −
 + + × + − × 

− + + − + 

[-2, 2] 2 3

F19 ( )( )24 3
19 1 1( ) expi l l lj j ljF x c a x p= == −Σ × −Σ − [1, 3] 3 -3.86

F20  ( )( )24 6
20 1 1( ) expi l j lj j ljF x c a x p= == −Σ × −Σ − [0, 1] 6 -3.32

F21 ( )( )
1

5
21 1( ) M

l l l lF x x a x a c
−

=
 = −Σ − − +  [0, 10] 4 -10.1532

F22 ( )( )
1

7
22 1( ) M

l l l lF x x a x a c
−

=
 = −Σ − − +  [0, 10] 4 -10.4028

F23 ( )( )
1

10
23 1( ) M

l l l lF x x a x a c
−

=
 = −Σ − − +  [0, 10] 4 -10.5363

Table 5. The details of the algorithm
Name Transfer function

BSSA-V1 tanh( )
7

xπ

BSSA-V2 
arctan( )

2
2 tanh( 3)

xππ

×

BSSA-V3
495 tanh( )
50 arctan( )

7
x

×
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Table 6. Performance comparison of the algorithm on 23 test functions

Function BPSO BGWO BBA
MEAN STD MIN MEAN STD MIN MEAN STD MIN

F1 4.980 0.769 3.000 3.060 1.300 0.000 0.000 0.000 0.000 
F2 5.120 0.799 3.000 2.980 1.152 1.000 0.000 0.000 0.000 
F3 205.520 64.162 58.000 84.680 78.341 1.000 0.000 0.000 0.000 
F4 1.000 0.000 1.000 1.000 0.000 1.000 1.000 0.000 1.000 
F5 489.180 64.117 406.000 22.380 55.335 0.000 0.000 0.000 0.000 
F6 17.780 1.565 13.500 13.740 2.576 7.500 7.500 0.000 7.500 
F7 61.497 10.269 31.543 32.100 18.805 0.000 0.001 0.001 0.000 
F8 -21.003 0.679 -22.720 -25.244 0.000 -25.244 -25.244 0.000 -25.244 
F9 5.040 0.755 3.000 3.320 1.115 0.000 0.000 0.000 0.000 
F10 1.562 0.099 1.409 1.226 0.283 0.717 0.000 0.000 0.000 
F11 0.162 0.025 0.106 0.145 0.049 0.058 0.000 0.000 0.000 
F12 2.462 0.133 2.121 2.190 0.227 1.669 1.669 0.000 1.669 
F13 0.500 0.078 0.300 0.000 0.000 0.000 0.000 0.000 0.000 
F14 12.671 0.000 12.671 12.671 0.000 12.671 12.671 0.000 12.671 
F15 0.148 0.000 0.148 0.148 0.000 0.148 0.148 0.000 0.148 
F16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F17 27.703 0.000 27.703 27.703 0.000 27.703 27.703 0.000 27.703 
F18 600.000 0.000 600.000 600.000 0.000 600.000 600.000 0.000 600.000 
F19 -0.335 0.000 -0.335 -0.334 0.005 -0.335 -0.335 0.000 -0.335 
F20 -0.166 0.000 -0.166 -0.147 0.036 -0.166 -0.166 0.000 -0.166 
F21 -5.055 0.000 -5.055 -5.055 0.000 -5.055 -5.055 0.000 -5.055 
F22 -5.088 0.000 -5.088 -5.088 0.000 -5.088 -5.088 0.000 -5.088 
F23 -5.128 0.000 -5.128 -5.128 0.000 -5.128 -5.128 0.000 -5.128 

Table 6 (continued). Performance comparison of the algorithm on 23 test functions

Function BSSA-V1 BSSA-V2 BSSA-V3
MEAN STD MIN MEAN STD MIN MEAN STD MIN

F1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F3 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F4 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F6 7.500 0.000 7.500 7.500 0.000 7.500 7.500 0.000 7.500 
F7 0.002 0.002 0.000 16.385 7.455 0.692 0.013 0.038 0.000 
F8 -25.244 0.000 -25.244 -25.244 0.000 -25.244 -25.244 0.000 -25.244 
F9 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F10 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F11 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F12 1.669 0.000 1.669 1.669 0.000 1.669 1.669 0.000 1.669 
F13 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F14 12.671 0.000 12.671 12.671 0.000 12.671 12.671 0.000 12.671 
F15 0.148 0.000 0.148 0.148 0.000 0.148 0.148 0.000 0.148 
F16 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
F17 27.703 0.000 27.703 27.703 0.000 27.703 27.703 0.000 27.703 
F18 600.000 0.000 600.000 600.000 0.000 600.000 600.000 0.000 600.000 
F19 -0.335 0.000 -0.335 -0.335 0.000 -0.335 -0.335 0.000 -0.335 
F20 -0.166 0.000 -0.166 -0.166 0.000 -0.166 -0.166 0.000 -0.166 
F21 -5.055 0.000 -5.055 -5.055 0.000 -5.055 -5.055 0.000 -5.055 
F22 -5.088 0.000 -5.088 -5.088 0.000 -5.088 -5.088 0.000 -5.088 
F23 -5.128 0.000 -5.128 -5.128 0.000 -5.128 -5.128 0.000 -5.128 
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Table 7. Freedman test results
SS DF P

F1 888 349 9.65E-61
F2 898.5 349 2.46E-61
F3 900 349 3.59E-61
F4 1050 349 8.18E-62
F5 685 349 8.81E-50
F6 890 349 7.71E-61
F7 1400 349 2.92E-49
F8 525 349 8.18E-62
F9 889.5 349 8.20E-61
F10 897.5 349 4.43E-61
F11 900 349 3.61E-60
F12 885 349 4.84E-60
F13 525 349 8.18E-62
F14 0 349 1
F15 0 349 1
F16 0 349 1
F17 0 349 1
F18 0 349 1
F19 10.5 349 0.4232
F20 157.5 349 3.03E-17
F21 0 349 1
F22 0 349 1
F23 0 349 1

Table 8. Wilcoxon rank-sum test results
BSSA-V1 BSSA-V2 BSSA-V3 

BPSO BGWO BBA BPSO BGWO BBA BPSO BGWO BBA
F1 1.28E-20 2.26E-20 2.26E-20 1.09E-20 9.21E-20 - 1.09E-20 9.21E-20 -
F2 1.28E-20 2.26E-20 - 1.28E-20 2.26E-20 - 1.28E-20 2.26E-20 -
F3 3.30E-20 3.30E-20 - 3.30E-20 3.30E-20 - 3.30E-20 3.30E-20 -
F4 2.63E-23 2.63E-23 2.63E-23 2.63E-23 2.63E-23 2.63E-23 2.63E-23 2.63E-23 2.63E-23
F5 3.28E-20 0.0035 - 3.28E-20 0.0035 - 3.28E-20 0.0035 -
F6 1.25E-20 9.16E-20 - 1.25E-20 9.16E-20 - 1.25E-20 9.16E-20 -
F7 7.07E-18 2.99E-05 7.07E-18 7.07E-18 1.35E-16 0.2237 7.07E-18 1.07E-16 0.0235
F8 1.10E-20 - - 1.10E-20 - - 1.10E-20 - -
F9 1.26E-20 7.74E-20 - 1.26E-20 7.74E-20 - 1.26E-20 7.74E-20 -
F10 8.60E-21 2.52E-20 - 8.60E-21 2.52E-20 - 8.60E-21 2.52E-20 -
F11 3.31E-20 3.31E-20 - 3.31E-20 3.31E-20 - 3.31E-20 3.31E-20 -
F12 3.04E-20 4.48E-19 - 3.04E-20 4.48E-19 - 3.04E-20 4.48E-19 -
F13 8.76E-21 - - 8.76E-21 - - 8.76E-21 - -
F14 - - - - - - - - -
F15 - - - - - - - - -
F16 - - - - - - - - -
F17 - - - - - - - - -
F18 - - - - - - - - -
F19 - 0.3271 - - 0.3271 - - 0.3271 -
F20 - 3.18E-05 - - 3.18E-05 - - 3.18E-05 -
F21 - - - - - - - - -
F22 - - - - - - - - -
F23 - - - - - - - - -
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Table 9. The time consumption of the BSSA
BSSA-V1 BSSA-V2 BSSA-V3

F1 0.0779 0.0795 0.0761
F2 0.0763 0.0768 0.0776
F3 0.1124 0.1072 0.1087
F4 0.0921 0.0788 0.0757
F5 0.0819 0.0782 0.0810
F6 0.0819 0.0755 0.0764
F7 0.0825 0.0774 0.0782
F8 0.0889 0.0778 0.0780
F9 0.0835 0.0796 0.0849
F10 0.0834 0.0857 0.0746
F11 0.0890 0.0836 0.0790
F12 0.1443 0.1281 0.1228
F13 0.1456 0.1257 0.1203
F14 0.1301 0.1133 0.1118
F15 0.0458 0.0369 0.0352
F16 0.0332 0.0294 0.0292
F17 0.0332 0.0294 0.0290
F18 0.0305 0.0299 0.0296
F19 0.0407 0.0359 0.0349
F20 0.0446 0.0397 0.0386
F21 0.0472 0.0399 0.0385
F22 0.0471 0.0410 0.0399
F23 0.0463 0.0440 0.0433

Table 10. Details of the data set

Datasets Instances Number of class-
es Number of features Size of classes

Wine 178 3 13 59,71,48
Wdbc 569 2 30 357,212
WBC 683 2 9 444,239
Vowel 871 6 4 72,89,172,151,207,180
Thyroid 215 3 5 150,35,30
Sonar 208 2 60 97,111
Seeds 210 3 7 70,70,70
Jain 373 2 2 276,97
Ionosphere 351 2 34 126,225
Diabetes 768 2 8 268,500
CMC 1473 3 9 629,333,511
Bupa 345 2 6 145,200
Aggregation 788 7 2 170,34,273,102,130,45,34
Appendicitis 106 2 7 21,85
Austra 690 2 14 222,468
Australian 690 2 14 222,468
Breast 277 2 9 196,81
Ecoli_label 335 2 2 223,112
Glass_gy 214 6 9 29,76,70,17,13,9
Segmentation 210 7 18 30,30,30,30,30,30,30
Weather 22 2 4 10,22
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Table 11. Comparison of fitness
Datasets BSSA-V1 BSSA-V2 BSSA-V3 BPSO BGWO BBA
Wine 0.012692308 0.011015385 0.013280769 0.019319231 0.015461538 0.033969231
Wdbc 0.028889872 0.028725 0.028148205 0.032120897 0.032943846 0.037876282
WBC 0.021360106 0.023264273 0.02179016 0.025361879 0.026805437 0.027860047
Vowel 0.135172787 0.133571475 0.135838197 0.139392459 0.135156557 0.152385628
Thyroid 0.04004 0.04004 0.03912 0.05312 0.05088 0.06012
Sonar 0.116984762 0.112779048 0.108640952 0.129357143 0.1309 0.154370476
Seeds 0.041231429 0.041514286 0.040574286 0.050671429 0.053428571 0.065114286
Jain 0.01 0.01 0.01 0.01 0.01 0.016587179
Ionosphere 0.001428571 0.000742857 0.001428571 0.017523571 0.035007857 0.043043
Diabetes 0.214384277 0.215338994 0.217869182 0.223822956 0.219611006 0.239996541
CMC 0.474872494 0.470396702 0.472666115 0.493217619 0.492797467 0.502314397
Bupa 0.298597667 0.29607 0.297030333 0.314979 0.301492 0.349173667
Aggregation 0.01 0.010713571 0.01 0.01072 0.010353571 0.098807143
Appendicitis 0.89685 0.897910714 0.900453571 0.918064286 0.912925 0.934546429
Austra 0.30201352 0.310119133 0.307104847 0.333241837 0.332656378 0.349002296
Australian 0.290336735 0.287819898 0.288424745 0.310589031 0.316669898 0.328214796
Breast 0.514968713 0.509681579 0.520173041 0.548138363 0.556144269 0.587008889
Ecoli_label 0.194140217 0.194068478 0.194283696 0.194427174 0.194176087 0.19818913
Glass_gy 0.964051111 0.964051111 0.964051111 0.970388254 0.979163492 0.978065714
Segmentation 0.904697895 0.898308421 0.901075639 0.960173383 0.961984812 0.967615489
Weather 0.2995 0.2995 0.3094 0.3307 0.2916 0.4505

4.2 Analysis of Experimental Results
Among the seven unimodal test functions, the proposed 

BSSA performs quite well and can basically reach or 
approach the theoretical optimal value stably. BBA has the 
closest performance to BSSA, while BPSO and BGWO 
perform poorly. Table 6 shows that in the F1- F5 test function, 
BSSA can reach the theoretical optimal value stably. 
Although  F6 and F7  cannot reach the theoretical minimum 
value, they are closer to the minimum value than the result 
of the other algorithms. The performance of BBA in the 
unimodal test function is basically the same as that of BSSA 
except for F4.

Among the six multimodal test functions, the proposed 
BSSA can reach the theoretical minimum value at F8, F9  and 
F11. BGWO and BPSO do not reach the theoretical optimum 
in all of the multimodal test functions and deviate from the 
optimum by a large margin. Although BSSA did not give 
the best theoretical results for the remaining multimodal test 
functions, the difference between them was small.

Table 6 shows that these algorithms performed 
approximately the same in the remaining test functions. 
In the Fixed-dimension test function, the difference of 
the algorithm is not obvious. This is because in the case 
of low dimensionality, the difference in performance 
between algorithms is not easy to find due to the impact of 
dimensionality. The above experimental results show that the 
BSSA outperforms the three comparison algorithms on the 
twenty-three test functions. This means that the improved 
position update equation in this paper for the binary version 
of the SSA algorithm are valid. As well as demonstrating 

that the three new transfer functions proposed have excellent 
transformation capabilities, which results in a stronger 
performance of BSSA. The performance of BSSA in the 
Fixed-dimension test function did not meet the expected 
results, but its overall results are acceptable. 

Table 7 shows the results of the Friedman test. Except 
for F14- F19, F21- F23 the p-values for the rest of the samples 
are less than 0.05, so the original hypothesis is overturned. 
The results of the rank-sum test in Table 8 also illustrate this 
point.

The time complexity of the original sparrow search 
algorithm is O( T * dim * ( N * (F ) + EQT ) ). The binary 
sparrow search algorithm adds the calculation of the transfer 
function, and the time complexity of the binary sparrow 
search algorithm is O( T * dim ( N * (F + TF ) + EQT ) ), 
where T is the number of iteration，dim is the dimension，N 
represents the population size, F implies the time consumed 
to calculate the fitness, TF indicates the time consumed 
by the transfer function，EQT is the time consumed to 
update the equation. Table 9 indicates the average running 
time of the algorithm in seconds. BSSA-V1, BSSA-V2 and 
BSSA-V3 do not differ significantly in average running 
time. This is because only the transfer functions differ for the 
proposed algorithms.

5 Application to Feature Selection

In most machine learning tasks, the selection of features 
determines the upper limit of the learning algorithm. However, 
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Table 12. Comparison of accuracy rates
Datasets BSSA-V1 BSSA-V2 BSSA-V3 BPSO BGWO BBA
Wine 0.992307692 0.993846154 0.992179487 0.985769231 0.971282051 0.971282051
Wdbc 0.975397436 0.975833333 0.977897436 0.973884615 0.966858974 0.966858974
WBC 0.982464539 0.981214539 0.982030142 0.979095745 0.977021277 0.977021277
Vowel 0.873562842 0.875180328 0.87289071 0.869300546 0.855502732 0.855502732
Thyroid 0.964 0.964 0.965333333 0.952 0.945333333 0.945333333
Sonar 0.858761905 0.851619048 0.863714286 0.821142857 0.818857143 0.818857143
Seeds 0.961238095 0.960952381 0.962190476 0.952857143 0.94 0.94
Jain 1 1 1 1 1 1
Ionosphere 1 1 1 0.986166667 0.960966667 0.960966667
Diabetes 0.789510832 0.788546471 0.785485674 0.778714186 0.763892383 0.763892383
CMC 0.524146751 0.52821882 0.525702016 0.50651419 0.497774459 0.497774459
Bupa 0.7031 0.707 0.706366667 0.6879 0.654033333 0.654033333
Aggregation 1 0.999279221 1 0.999272727 0.909285714 0.909285714
Appendicitis 0.099285714 0.098214286 0.095357143 0.077857143 0.061785714 0.061785714
Austra 0.69710034 0.689634354 0.692967687 0.667721088 0.651079932 0.651079932
Australian 0.709183673 0.711581633 0.711692177 0.69002551 0.673520408 0.673520408
Breast 0.483421053 0.489210526 0.476368421 0.451263158 0.412 0.412
Ecoli_label 0.808949275 0.809021739 0.808804348 0.80865942 0.805869565 0.805869565
Glass_gy 0.027333333 0.027333333 0.027333333 0.022952381 0.016095238 0.016095238
Segmentation 0.087333333 0.094 0.09152381 0.034380952 0.027714286 0.027714286
Weather 0.7 0.7 0.69 0.67 0.55 0.55

among the many features, which ones are valuable and which 
ones are redundant are unknown. These redundant features 
will lead to inefficient learning algorithms. Feature selection 
is the process of extracting valuable features from all the 
features to improve the efficiency of the learning algorithm. 
Feature selection is significant for machine learning. 

5.1 Feature Selection
In reality, an object usually has many features.  Irrelevant 

and redundant features will interfere with the classification 
and reduce the efficiency of the learning algorithm. The task 
of feature selection is to select a subset of features with as 
few features as possible, the effect of the model will not 
decrease significantly, and the category distribution of the 
result is as close to the real situation as possible. Feature 
selection mainly includes four processes: (1). Generation 
process. (2). Evaluation function. (3). Stop condition. (4). 
Verification process.

5.2 Data Set Description
21 data sets were selected for the experiment.  These 

datasets are from UCI Machine Learning [58] and they have 
different attributes and examples, as detailed in Table 10.

The K-nearest neighbour (KNN) classification algorithm 
is one of the most widely used methods in data mining 
classification techniques [59]. Its guiding ideology is to infer 
your category by your neighbors. It works by using samples 
that have been correctly classified as a reference to classify 
samples from unknown categories. The unknown samples 

and the K nearest known samples were grouped into one 
category.

( ) ( )2(1) (2) (1) (2)

1
, ( ) ( )

n

l
Dist x x x l x l

=

= −∑ .                 (10)

( )(1) (2) (1) (2)

1
, ( ) ( )

n

l
Dist x x x l x l

=

= −∑ .                        (11)      

According to the characteristics of distance in the KNN 
algorithm, the most commonly used calculation equations 
are Euclidean distance and Manhattan distance. Eq. (10) is 
the equation for the Euclidean distance and Eq. (11) is the 
equation for the Manhattan distance. In Eq. (10) and Eq. 
(11), x(1) is the training set, x(2) is the test set, n represents the 
number of features, and i represents the ith feature. 

Cross-validation is a commonly used statistical method 
for generalization capability of a data set, which is mainly 
used to prevent over-fitting caused by overly complex 
models. In machine learning, the number of data set samples 
is not always sufficient. The training data were randomly 
divided into K groups and any one of them was chosen as 
the test set and the rest as the training set. K-fold validation 
is not repeated for each sample selection, which ensures that 
each sample point is assigned to the training set or the test 
machine only once in each iteration.
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Table 13. Comparison of feature number
Datasets BSSA-V1 BSSA-V2 BSSA-V3 BPSO BGWO BBA
Wine 6.6 6.4 7.2 6.8 7.2 7.2
Wdbc 13.6 14.4 18.8 18.8 15.2 15.2
WBC 3.6 4.2 3.6 4.2 4.6 4.6
Vowel 3 3 3 3 2.8 2.8
Thyroid 2.2 2.2 2.4 2.8 3 3
Sonar 18 17.6 17 29 32.6 32.6
Seeds 2 2 2.2 2.8 4 4
Jain 2 2 2 2 2 2
Ionosphere 5 2.6 5 13.4 15.4 15.4
Diabetes 4.8 4.8 4.4 3.8 5 5
CMC 3.4 3 2.8 4.2 4.6 4.6
Bupa 2.8 3.6 3.8 3.6 4 4
Aggregation 2 2 2 2 1.8 1.8
Appendicitis 3.6 3.6 3.4 3.6 4 4
Austra 3 4 4.4 6 5 5
Australian 3.4 3.2 4.2 5.2 7 7
Breast 3.2 3.6 1.6 4.4 4.4 4.4
Ecoli_label 1 1 1 1 1.2 1.2
Glass_gy 1 1 1 2.8 3.6 3.6
Segmentation 2.2 2.6 3.2 8 9.6 9.6
Weather 1 1 1 1.6 2 2

The result of feature selection is not only the accuracy but 
also the number of features. The aim is to get a high accuracy 
rate with a low number of features by feature selection. 
Therefore, the evaluation standard should take into account 
both of these indicators. The evaluation function used in this 
paper is Eq. (12).

          1 2
S

Fit c err c
AL

= × + × .                                         (12)

In Eq. (12), err is the number of errors in the classification 
as a proportion of the total, S is the set of extracted features, 
AL denotes the sum of the features to be extracted in the data 
set, and c1 and c2 are coefficients, 0,99 and 0.01 respectively.

5.3 Analysis of Experimental Results
In the experimental simulation, BSSA was compared 

with BGWO, BPSO and BBA respectively. The algorithm 
runs independently on each data set 20 times, the number of 
population iterations is set to 100, and the population size is 
set to 30. 

Table 11 shows the statistical results of fitness calculated 
by Eq. (12). It can be seen from Table 11 that BSSA-V1, 
BSSA-V2, and BSSA-V3 are basically better than the three 
algorithms compared. It can be seen from the statistics 
of fitness in Table 11 that BSSA-V1 has 18 better than 
comparison algorithms, BSSA-V2 has 19 better than 
comparison algorithms, and BSSA-V3 has 19 better than 
comparison algorithms.

Table 12 and Table 13 respectively show the accuracy and 
the number of selected features. Mark the ones that are better 
than all comparison algorithms in the Table in red. Table 12 
and Table 13 shows that BSSA performs better than BPSO, 
BGWO, and BBA in most data sets. BSSA selects fewer 
features in the case of higher accuracy. In the Jain data set, 
BSSA-V1, BSSA-V2, BSSA-V3 did not perform differently 
from the comparison algorithm. This may be due to the 
small size of the categories in the Jain data set resulting in 
insignificant differences. The difference between BSSA-V2 
and BPSO in the Aggregation data set is not obvious, and the 
reason may also be that the data set has fewer categories. The 
experimental results show that BSSA is applied to feature 
selection is effective.

6  Conclusions

This paper proposes a binary version of SSA to solve 
the binary problem. Through the image analysis of transfer 
functions, this paper proposes three new transfer functions. 
In addition, mathematical analysis knows that the original 
position update equation can no longer be adapted to the 
binary version of the algorithm, which is improved in 
this paper. In order to verify the performance of BSSA, 
three types of benchmark functions were selected for 
testing and comparing with BPSO, BGWO and BBA. The 
experimental results prove that the performance of BSSA is 
better than the other three comparison algorithms. We also 
performed Friedman test and rank-sum test to further verify 
the performance of BSSA. Finally, we applied the BSSA 
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algorithm to feature selection. Experimental results show 
that BSSA can maintain good classification accuracy while 
choosing fewer features. The algorithm will be applied to 
more fields in future research, such as knapsack problem and 
traveling salesman problem.

References

[1] P. C. Song, S.-C. Chu, J.-S. Pan, H. M. Yang, Simplified 
Phasmatodea population evolution algorithm for 
optimization, Complex & Intelligent Systems, pp. 1-19 
June, 2021.

[2] M. Mavrovouniotis, C. Li, S. Yang, A survey of swarm 
intelligence for dynamic optimization: Algorithms and 
applications, Swarm and Evolutionary Computation, 
Vol. 33, pp. 1-17, April, 2017.

[3] X. Kou, J. Feng, Matching Ontologies through Compact 
Monarch Butterfly Algorithm, Journal of Network 
Intelligence, Vol. 5, No. 4, pp. 191-197, November, 
2020.

[4] E. Hopper, B. C. H. Turton, An empirical investigation 
of meta-heuristic and heuristic algorithms for a 2D 
packing problem, European Journal of Operational 
Research, Vol. 128, No. 1, pp. 34-57, January, 2001.

[5] X. S. Yang, Flower Pollination Algorithm for Global 
Optimization, in: J. Durand-Lose, N. Jonoska (Eds.), 
Lecture Notes in Computer Science, Vol. 7445, Springer, 
Berlin, Heidelberg, 2012, pp. 240-249.

[6] S. Chakraborty, A. K. Saha, R. Chakraborty, M. 
Saha, An enhanced whale optimization algorithm for 
large scale optimization problems, Knowledge-Based 
Systems, Vol. 233, pp. 107543, December, 2021.

[7] Z. Barta, A. Liker, F. Monus, The effects of predation 
risk on the use of social foraging tactics, Animal 
Behaviour, Vol. 67, No. 2, pp. 301-308, February, 2004.

[8] M. Dorigo, G. D. Caro, Ant colony optimization: a 
new meta-heuristic, Proceedings of the 1999 Congress 
on Evolutionary Computation-CEC99 (Cat. No. 
99TH8406), Vol. 2, Washington, DC, USA, 1999, pp. 
1470-1477.

[9] H. Robles-Berumen, A. Zafra, H. M. Fardoun, S. 
Ventura, LEAC: An efficient library for clustering with 
evolutionary algorithms, Knowledge-Based Systems, 
Vol. 179, pp. 117-119, September, 2019.

[10] J.-S. Pan, T. T. Nguyen, T. K. Dao, T. S. Pan, S.-C. Chu, 
Clustering Formation in Wireless Sensor Networks: A 
Survey, Journal of Network Intelligence, Vol. 2, No. 4, 
pp. 287-309, November, 2017.

[11] T. K. Dao, T. S. Pan, J.-S. Pan, A multi-objective 
optimal mobile robot path planning based on whale 
optimization algorithm, 13th IEEE International 
Conference on Signal Processing (ICSP), Chengdu, 
China, 2016, pp. 337-342. 

[12] X. P. Wang, J.-S. Pan, S.-C. Chu, A Parallel Multi-
Verse Optimizer for Application in Multilevel Image 
Segmentation, IEEE Access, Vol. 8, pp. 32018-32030, 
February, 2020.

[13] J.-S. Pan, Z. Y. Meng, S.-C. Chu, H. R. Xu, Monkey 
King Evolution: an enhanced ebb-tide-fish algorithm 

for global optimization and its application in vehicle 
navigation under wireless sensor network environment, 
Telecommunication Systems, Vol. 65, No. 3, pp. 351-
364, July, 2017.

[14] H. C. Huang, S.-C. Chu, J.-S. Pan, C. Y. Huang, B. Y. 
Liao, Tabu Search Based Multi-watermarks Embedding 
Algori thm with Mult iple Descript ion Coding, 
Information Sciences, Vol. 181, No. 16, pp. 3379-3396, 
August, 2011.

[15] J. Kennedy, R. Eberhart, Particle swarm optimization, 
Proceedings of ICNN’95-International Conference on 
Neural Networks, Vol. 4, Perth, WA, Australia, 1995, 
pp. 1942-1948.

[16] M. S. Kiran, Particle swarm optimization with a new 
update mechanism, Applied Soft Computing, Vol. 60, 
pp. 670-678, November, 2017.

[17] S. Mirjalili, A. Lewis, S-shaped versus V-shaped transfer 
functions for binary Particle Swarm Optimization, 
Swarm and Evolutionary Computation, Vol. 9, pp. 1-14, 
April, 2013.

[18] R. Poli, J. Kennedy, T. Blackwell, Particle swarm 
optimization, Swarm intelligence, Vol. 1, No. 1, pp. 33-
57, June, 2007.

[19] S. Mirjalili, S. M. Mirjalili, A. Lewis, Grey wolf 
optimizer, Advances in Engineering Software, Vol. 69, 
pp. 46-61, March, 2014.

[20] H. Faris, L. Aljarah, M. A. Al-Betar, S. Mirjalili, 
Grey wolf optimizer: a review of recent variants and 
applications, Neural Computing and Applications, Vol. 
30, No. 2, pp. 413-435, July, 2018.

[21] J. K. Xue, B. Shen, A novel swarm intelligence 
optimization approach: sparrow search algorithm, 
Systems Science & Control Engineering, Vol. 8, No. 1, 
pp. 22-34, 2020.

[22] J. Nasiri, F. M. Khiyabani, A. Yoshise, A whale 
optimization algorithm (WOA) approach for clustering, 
Cogent Mathematics & Statistics, Vol. 5, No. 1, Article 
No. 1483565, 2018.

[23] S. Mirjalili, A. Lewis, The Whale Optimization 
Algorithm, Advances in Engineering Software, Vol. 95, 
pp. 51-67, May, 2016.

[24] H. L. Chen, Y. T. Xu, M. J. Wang, X. H. Zhao, A 
balanced whale optimization algorithm for constrained 
engineering design problems, Applied Mathematical 
Modelling, Vol. 71, pp. 45-59, July, 2019.

[25] A. H. Gandomi, X. S. Yang, A. H. Alavi, S. Talatahari, 
Bat algorithm for constrained optimization tasks, Neural 
Computing and Applications, Vol. 22, No. 6, pp. 1239-
1255, May, 2013.

[26] S. Yilmaz, E. U. Kucuksille, Y. Cengiz, Modified bat 
algorithm, Elektronika ir Elektrotechnika, Vol. 20, No. 
2, pp.71-78, 2014.

[27] N. X. Liu, J.-S Pan, S.-C. Chu, A Competitive Learning 
QUasi Affine TRansformation Evolutionary for Global 
Optimization and Its Application in CVRP, Journal of 
Internet Technology, Vol. 21, No. 7, pp. 1863-1883, 
December, 2020.

[28] Z. Meng, J.-S. Pan, QUasi-Affine TRansformation 
Evolution with External ARchive (QUATRE-EAR): 
an enhanced structure for differential evolution, 



Binary Sparrow Search Algorithm for Feature Selection   231

Knowledge-Based Systems, Vol. 155, pp. 35-53, 
September, 2018.

[29] S.-C. Chu, Z. J. Zhuang, J. B. Li, J.-S. Pan, A Novel 
Binary QUasi-Affine TRansformation Evolutionary 
(QUATRE) Algorithm, Applied Sciences, Vol. 11, No. 5, 
Article No. 2251, March, 2021.

[30] B. Xue, M. J. Zhang, W. N. Browne, Particle swarm 
optimization for feature selection in classification: 
A multi-objective approach, IEEE transactions on 
cybernetics, Vol. 43, No. 6, pp. 1656-1671, December, 
2013.

[31]  F. L. Chen, F. C. Li, Combination of feature selection 
approaches with SVM in credit scoring, Expert systems 
with applications, Vol. 37, No. 7, pp. 4902-4909, July, 
2010.

[32]  A. L. Marques, V. Garcia, J. S. Sanchez, Exploring 
the behaviour of base classifiers in credit scoring 
ensembles, Expert Systems with Applications, Vol. 39, 
No. 11, pp. 10244-10250, September, 2012.

[33]  S. Yu, W. M. Tan, C. M. Zhang. Y. Fang. C. Tang. D. 
Hu, Research on hybrid feature selection method of 
power transformer based on fuzzy information entropy, 
Advanced Engineering Informatics, Vol. 50, Article No. 
101433, October, 2021.

[34] J. Cai, J. W. Luo, S. L. Wang, S. Yang, Feature 
selection in machine learning: A new perspective, 
Neurocomputing, Vol. 300, pp. 70-79, July, 2018.

[35] Z. Chen, M. Pan, Z. X. Zhao, S. N. Li, R. Miao, Y. F. 
Zhang, X. Y. Feng, X. Feng, Y. X. Zhang, M. Y. Duan, 
L. Huang, F. F. Zhou, Feature selection may improve 
deep neural networks for the bioinformatics problems, 
Bioinformatics, Vol. 36, No. 5, pp. 1542-1552, March, 
2020. 

[36] S. C. Yusta, Different metaheuristic strategies to solve 
the feature selection problem, Pattern Recognition 
Letters, Vol. 30, No. 5, pp. 525-534, April, 2009.

[37] L. Y. Yang. Z. S. Xu, Feature extraction by PCA and 
diagnosis of breast tumors using SVM with DE-based 
parameter tuning, International Journal of Machine 
Learning and Cybernetics, Vol. 10, No. 3, pp. 591-601, 
March, 2019.

[38] B. Agarwal, N. Mittal, Prominent feature extraction 
for review analysis: an empirical study, Journal of 
Experimental & Theoretical Artificial Intelligence, Vol. 
28, No. 3, pp. 485-498, 2016.

[39] G. Q. Li, J. Zhao, V. Murray, C. Song, L. C. Zhang, Gap 
analysis on open data interconnectivity for disaster risk 
research, Geo-Spatial Information Science, Vol. 22, No. 
1, pp. 45-58, January, 2019.

[40] A. Tiernan, L. Drennan, J. Nalau, E. Onyango, L. 
Morrissey, B. Mackey, A review of themes in disaster 
resilience literature and international practice since 
2012, Policy design and practice, Vol. 2, No. 1, pp. 53-
74, 2019.

[41] M. Hidalgo-Herrero, P. Rabanal,, I. Rodriguez, F. 
Rubio, Comparing problem solving strategies for NP-
hard optimization problems, Fundamenta Informaticae, 
Vol. 124, No. 1-2, pp. 1-25, January, 2013. 

[42] P. Toth, Optimization engineering techniques for the 
exact solution of NP-hard combinatorial optimization 

problems, European journal of operational research, 
Vol. 125, No. 2, pp. 222-238, September, 2000. 

[43] I. M. Ali, D. Essam, K. Kasmarik, Novel binary 
differential evolution algorithm for knapsack problems, 
Information Sciences, Vol. 542, pp. 177-194, January, 
2021.

[44] I. Aljarah, M. Mafarja, A. A. Heidari, H. Faris, S. 
Mirjalili, Clustering analysis using a novel locality-
informed grey wolf-inspired clustering approach, 
Knowledge and Information Systems, Vol. 62, No. 2, pp. 
507-539, February, 2020.

[45] X. J. Zhao, C. Wang, J. X. Su, J. Z. Wang, Research and 
application based on the swarm intelligence algorithm 
and artificial intelligence for wind farm decision system, 
Renewable energy, Vol. 134, pp. 681-697, April, 2019. 

[46] J. Z. Wang, P. Du, T. Niu, W. D. Yang, A novel hybrid 
system based on a new proposed algorithm—Multi-
Objective Whale Optimization Algorithm for wind 
speed forecasting, Applied energy, Vol. 208, pp. 344-
360, December, 2017. 

[47] L. Wang, L. Peng, S. R. Wang, S. Liu, Advanced 
backtracking search optimization algorithm for a new 
joint replenishment problem under trade credit with 
grouping constraint, Applied Soft Computing, Vol. 86, 
Article No. 105953, January, 2020.

[48] S. S. Shekhawat, H. Sharma, S. Kumar, A. Nayyar, B. 
Qureshi, bSSA: Binary Salp Swarm Algorithm With 
Hybrid Data Transformation for Feature Selection, 
IEEE Access, Vol. 9, pp. 14867-14882, January, 2021.

[49] Y. Xue, H. K. Zhu, J. Y. Liang, A. Stowik, Adaptive 
crossover operator based multi-objective binary 
genetic algorithm for feature selection in classification, 
Knowledge-Based Systems, Vol. 227, Article No. 
107218, September, 2021.

[50] A. D. Li, B. Xue, M. J. Zhang, Improved binary particle 
swarm optimization for feature selection with new 
initialization and search space reduction strategies, 
Applied Soft Computing, Vol. 106, Article No. 107302, 
July, 2021.

[51] H. Mohmmadzadeh, F. S. Gharehchopogh, An efficient 
binary chaotic symbiotic organisms search algorithm 
approaches for feature selection problems, The Journal 
of Supercomputing, Vol. 77, pp. 9102-9144, August, 
2021.

[52] L. F. Chen, C. T. Su, K. H. Chen, An improved particle 
swarm optimization for feature selection, Intelligent 
Data Analysis, Vol. 16, No. 2, pp. 167-182, March, 
2012. 

[53] J.-S. Pan, P. Hu, S.-C. Chu, Binary fish migration 
optimization for solving unit commitment, Energy, Vol. 
226, Article No. 120329, July, 2021. 

[54] R. Algin, A. F. Alkaya, M. Agaoglu, Feature selection 
via computational intelligence techniques, Journal of 
Intelligent & Fuzzy Systems, Vol. 39, No. 5, pp. 6205-
6216, November, 2020. 

[55] J.-S. Pan, A. Q. Tian, S.-C. Chu, J. B. Li, Improved 
binary pigeon-inspired optimization and its application 
for feature selection, Applied Intelligence, Vol. 51, No. 
12, pp. 8661-8679, December, 2021. 

[56] P. Hu, J.-S. Pan, S.-C. Chu, Improved Binary Grey Wolf 



232  Journal of Internet Technology Vol. 24 No. 2, March 2023

Optimizer and Its Application for Feature Selection, 
Knowledge-Based Systems, Vol. 195, Article No. 
105746, May, 2020. 

[57] C. J. Barnard, R. M. Sibly, Producers and scroungers: 
a general model and its application to captive fl ocks of 
house sparrows, Animal behaviour, Vol. 29, No. 2, pp. 
543-550, May, 1981. 

[58] D. Dua, C. Graff, UCI machine learning repository 
University of California, Irvine, School of Information 
and Computer Sciences, 2017.

[59] R. Harun, K. C. Pelangi, Y. Lasena, Penerapan Data 
Mining untuk Menentukan Potensi Hujan Harian 
dengan Menggunakan Algoritma K Nearest Neighbor 
(KNN), Jurnal Manajemen Informatika dan Sistem 
Informasi, Vol. 3, No. 1, pp. 8-15, January, 2020.

Biographies

Xu Yuan received his B.S.degree from 
Liaocheng university,  Liaocheng, China, in 
2021. He is currently pursuing the master 
degree with the Shandong University of 
Science and Technology, Qingdao, China. 
His recent research interests are Swarm 
Intelligence and Intelligent Computing.

Jeng-Shyang Pan  received the B.S. 
degree in electronic engineering from the 
National Taiwan University of Science and 
Technology in 1986, the M.S. degree in 
communication engineering from National 
Chiao Tung University, Taiwan, in 1988, and 
the Ph.D. degree in electrical engineering 
f rom the  Un ive r s i ty  o f  Ed inburgh , 

U.K., in 1996. He is currently the Director of the Fujian 
Provincial Key Lab of Big Data Mining and Applications, 
and an Assistant President with the Fujian University of 
Technology. He is also the Professor with the Harbin Institute 
of Technology. He is the IET Fellow, U.K., and has been 
the Vice Chair of the IEEE Tainan Section. He was off ered 
Thousand Talent Program in China in 2010.

Ai-Qing Tian received his B.S. degree 
from Taishan College of Science and 
Technology, Taian, China, in 2019. He is 
currently pursuing the master degree with 
the Shandong University of Science and 
Technology, Qingdao, China. His recent 
research interests are swarm intelligence and 
artifi cial neural networks.

Shu-Chuan Chu received the Ph.D. degree 
in 2004 from the School of Computer 
Science, Engineering and Mathematics, 
Flinders University of South Australia. She 
joined Flinders University in December 
2009 after 9 years at the Cheng Shiu 
University, Taiwan. She is the Research 
Fellow in the College of Science and 

Engineering of Flinders University, Australia from December 
2009. Currently, She is the Research Fellow with PhD 
advisor in the College of Computer Science and Engineering 
of Shandong University of Science and Technology from 
September 2019. Her research interests are mainly in Swarm 
Intelligence, Intelligent Computing and Data Mining.


