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Abstract

This article aims to study the mobile positioning method 
of mobile educational robots indoors. In order for robots to 
be able to unblocked indoors, they can avoid obstacles well. 
Vision sensors are the direct source of information for the 
entire machine vision system, and are mainly composed of 
one or two graphics sensors, sometimes accompanied by 
light projectors and other auxiliary equipment. This paper 
presents an indoor positioning method for mobile educational 
robots based on visual sensors. Build some models to com-
pare which algorithm is more in line with the positioning of 
indoor mobile educational robots. The experimental results 
in this paper show that the positioning accuracy of the optical 
flow meter and the odometer on the short-haired carpet is 
equivalent (both are less than the index 4.52%); the position-
ing error of the optical flowmeter on the long-haired carpet 
is the largest 7%, and the positioning error of the odometer 
is the largest it reached 83%. The error of the algorithm posi-
tioning method after the visual odometer fusion is obviously 
smaller than that of the optical flow method. This shows that 
the algorithm after visual process fusion is more suitable for 
indoor mobile educational robot positioning than this optical 
flow method.

Keywords: Visual sensor, Mobile educational robot, Indoor 
positioning, Visual odometer

1  Introduction

1.1 Background
Position and attitude estimation is a very important basic 

problem in the fields of mobile educational robots, unmanned 
driving, aerospace, navigation and other fields. Foreign re-
search on robot positioning involves the application of robot 
positioning in online maps and map construction. The most 
common absolute positioning is the global positioning sys-
tem. This positioning method is mature and can provide abso-
lute positioning without cumulative errors. However, weather 
conditions, obstacles, indoor environment and other factors 
will affect the GPS signal reception. In indoor scenarios, 
GPS-based absolute positioning methods are not applicable 
and have low accuracy; methods based on wireless signals 
or scene tags need to arrange scenes in advance, which is not 

highly scalable and difficult to promote. The relative posi-
tioning method is based on the initial position of the robot, 
and calculates the change of its position and posture accord-
ing to the movement of the robot at each moment. In order to 
better allow the mobile educational robot to move smoothly 
in indoor scenes, he can avoid obstacles according to his own 
judgment, so as to really help us.

1.2 Significance
The vision of a mobile robot is an important part of the 

robot system. When the robot has the function of visual per-
ception, the robot can obtain the image of the environment 
through the optical sensor in the vision system, and after a 
series of processing and analysis, it is converted into symbols 
that the robot can recognize, so that the robot can recognize 
objects based on this information. In many applications, such 
as deep-water exploration, space exploration, space opera-
tions, etc., there is no external sensor to provide the robot’s 
global information. Based on the robot’s own configuration 
of visual sensors, the robot’s position and posture can be 
evaluated online and the environment in which the robot is 
encountered is affected. It is of great significance to improve 
the operational capabilities of mobile robots these more dan-
gerous scientific research work can be done slowly instead of 
us, so that they will not bring life danger to the researchers, 
and they can also be used in our lives to help us answer chil-
dren’s questions and act as tutors Responsibilities and so on. 
It will become more intelligent in the future.

1.3 Related Work
Now more and more robots have entered our lives. In 

Karaahmetolu K’s research, their team proposed applying 
arduino educational robots to students’ computational think-
ing skills and their perception of Basic Stem skill levels. 
Although their experiments are very forward-looking, there 
are still some technical problems [1]. In X. Wang’s research, 
their team developed an improved RBPF algorithm based 
on a distributed sphere algorithm proposed by the fusion 
calculation of observation data (optical information or radar 
information) and odometer information to speed up optical 
image processing speed. In the experiment, their team’s con-
sideration was not comprehensive enough, which led to the 
controversy of the experimental results [2]. In L. Yao’s re-
search, their team proposed a method based on tight coupling 
and nonlinear optimization, combined with the measured val-
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ues of the pre-integrated inertial measurement unit, to obtain 
a high-precision vision positioning solution. Although their 
research is very forward-looking, there are still some flaws in 
the research. For example, the experimental process is more 
complex and not easy to operate [3]. In M. J. Lim’s research, 
they proposed to design a location information service sys-
tem based on the Internet of Things for a new generation of 
enjoying cultural life. However, in the process of experimen-
tal research, there are still some influencing factors that affect 
the results that have not been resolved, so the results obtained 
still have certain imperfections [4]. In Y. Song’s research, 
they proposed a wireless sensor network (WSN)-based sys-
tem scheme, using Atmega128L chip and TI’s low-power RF 
chip CC2530, to design the sink node and sensor node. Their 
research has great practical value, but their technology is not 
very mature yet and needs to be further strengthened [5]. In 
A. Bautista’s research, he pointed out that there are still some 
differences between mobile educational robots and offline 
educational robots, but they are still very helpful in helping 
children learn [6]. In Xiaobo Wu’s research, he proposed 
a thesis on a mobile robot composed of omnidirectional 
wheels, and analyzed the material structure and dynamics of 
the four-wheel omnidirectional robot. This experiment is very 
helpful to our current study and life, but it is obvious that 
there are still insufficient comprehensive problems, which 
need to be further strengthened and supplemented [7].

1.4 Innovation
According to the technical requirements of this project, 

this article is dedicated to improving the accuracy, reliability 
and real-time estimation of the robot’s posture, focusing on 
the rapid extraction of features, camera mapping and param-
eter calibration. The research results can be widely used in 
various mobile https://translate.google.cn/autonomous robots 
to improve the working ability of autonomous mobile train-
ing robots. When mobile educational robots combine the ap-
plication of visual sensors, they can help students solve more 
problems. However, Mobile education robots also have some 
shortcomings, such as in human intelligence is not good 
enough.

2  Various Technical Theories and 
Methods

2.1 Application of Vision Sensor
In the research of sensor technology, the development 

of vision technology is relatively mature compared to other 
functions, and the application on robots is relatively complete 
[8-9]. Poor performance or failure to meet the requirements 
will affect the robot [10]. The optical sensor is equivalent to 
the human eye. The structure diagram of the optical sensor in 
the mobile training robot is shown in Figure 1 [11].

Figure 1. The role of vision sensors in mobile educational robots

As shown in Figure 1, the mobile training robot is the most 
critical part of the entire SLAM system.

2.2 Various Key Theories
The apparent motion of this image brightness state is the 

luminous flux, and the luminous flux represents the change 
of the image [12]. The two-dimensional velocity vector is 
the projection of the three-dimensional velocity vector of the 
viewpoint on the scene of the imaging surface. Optical flow 
research has very important applications in robot fragmenta-
tion, recognition, tracking, navigation, and extraction of 3D 
structure and motion from visual flow [13]. The traditional 
optical flow meter is shown in Figure 2, and the frame rate of 
the image is the image taken per second by the camera of the 

optical flow meter. The higher the frame rate of the image, 
the lower the detectable low motion and the faster the recog-
nition speed [14]. Autonomous positioning is the core part of 
the mobile robot positioning and navigation system. Whether 
indoor or outdoor, mobile robots can complete upper-level 
tasks such as navigation, autonomous obstacle avoidance, 
path planning, image recognition, and autonomous driving 
through precise positioning. When the body is in a static 
state, it will also be interfered by factors such as zero drift, 
and when the mobile robot is in an indoor environment, sat-
ellite GPS cannot be used. At this time, the importance of the 
odometer based on the vision sensor is even more prominent.
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When navigating, the odometer uses actuator data to 
estimate changes in position over time. Although traditional 
odometer technology is useful for wheeled or tracked vehi-
cles, it is not suitable for non-standard robots. Optical odom-
etry uses continuous camera images to estimate the distance 
traveled to determine equivalent information [15]. Optical 
odometers allow robots or vehicles to use any type of mo-
tion on any surface to improve navigation accuracy. Optical 
odometer is an important part of SLAM optical system. The 
main difference between VO and v-slam is that VO only fo-
cuses on the positioning function, while the integrated closed 
system not only uses the VO position, but also uses post-op-
timization, mapping and loop detection functions [16]. The 
movement process of the carrier can be estimated by contin-
uously accumulating movement changes. Accompanying this 
process is the accumulation of errors caused by each estima-
tion, so the accuracy of the visual odometer will continue to 
decrease over time [17]. In a complete SLAM system, the 
main task of the loopback detection part is to reduce the error 
accumulation of the front-end visual odometer. The complete 
SLAM system block diagram is shown as in Figure 3.

The R200 is an optical stereo vision system that uses 
an active structure to calculate the depth. The stereo vision 
system consists of a left infrared camera, a right infrared 
camera and an infrared laser transmitter. The laser transmitter 
projects fringes into the environment to increase the texture 
complexity of the scene, and then the left and right infrared 
cameras collect binocular stereo images. Finally, the Specific 
Integrated module mounted on the R200 module calculates 
the parallax and outputs the depth map. The infrared laser 
transmitter greatly improves the R200’s ability to measure 
the depth of low-texture scenes. The working process of 
R200 is shown in Figure 4 [18]. When the characteristics 
of the projection light source are fixed, the size of the spot 
is proportional to the distance between the object and the 
camera, and the accuracy of the measurement is inversely 
proportional to the distance. Therefore, depth cameras based 
on active projection are generally used for close range mea-
surement. Moreover, it is only suitable for corresponding po-
sitioning indoors. Outdoors, because outdoor light will affect 
its judgment and cause relatively large errors, this camera is 
only suitable for indoor scenes [19-20].

Figure 2. Traditional optical flow meter

Figure 3. SLAM system block diagram

Figure 4. Working process of R200
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2.3 Establishment of Mobile Educational Robot System 
Model
In order to create a more systematic mobile training robot 

system and ensure the reliability and real-time performance 
of the system, this article uses rapid image optimization 
technology to process the collected images [21]. The divided 
image will have noise. This paper uses the method of remov-
ing image interference and defines the mathematical model 
of morphology. The Harris angle detection method based on 
the scale space theory is used in the construction process, 

which can ensure that the angle is not affected by the light 
conditions and the change of the camera position [22]. After 
the robot enters the area, it will match the positioning map, 
update the map according to the changes in the environment, 
and realize navigation. Electronic products, pre-school me-
dia, and educational robots are highly interactive, and can be 
used as children’s companions to relieve the loneliness of the 
only child to a certain extent, cultivate children’s innovative 
thinking, and contribute to the teaching of mathematics, engi-
neering and other subjects.

Figure 5. Mobile educational robot coordinate system

For the schematic information of the robot in the overall 
reference coordinate system, the relationship between the 
robot coordinate system and the global reference coordinate 
system needs to be determined, as shown in Figure 5. XGlob-
al, yglobal, xrobot, and yrobot are the axes of the coordinate 
system. The position of the robot in the reference coordinate 
system can be determined by the point P (x, y) and the angle. 
Therefore, their position can be represented by three vari-
ables X, y, θ.
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The mobile robot is driven by a two-wheel differential. 
The distance between the two wheels is L. The robot’s move-
ment is determined according to its speed (v) and angular 
speed (ω).
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So we can express the movement of the mobile educa-
tional robot by the following kinematic model as
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The kinematics model of the mobile robot can be ex-
pressed as follows:
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The model of the discretization post-processing system is 
as follows:
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2.4 The Establishment of the Visual Sensor Observation 
Model
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In the above formula, rv  and lv  are the translational 
speeds of the left and right wheels, v and ω are the linear ve-
locity and angular velocity of the robot center, respectively. 
Therefore, the observation model of the odometer is:
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After being transformed into:

kkencoder uxh +=kg .                                    (13)

2.5 Optical Flow Meter Measurement Model
Installing a sensor on the mobile robot to sense its po-

sition changes can also help it to make more scientific and 
effective judgments.

dtxvx ω=∆∆= / .                                      (14)
  

vtyvy =∆∆= / .                                          (15)

The installation position on the experimental platform is 
shown in Figure 6.

Figure 6. The installation position of the optical flow meter on the robot experimental platform
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So we can get that the observation model of the optical 
flow meter is:
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The corresponding observation model Jacobian matrix is:
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After a certain transformation, you can get:

kkflowopticalk vxhg += _ .                              (18)

2.6 IMU Measurement Model
For indoor mobile educational robots, the gyroscope only 

needs to measure the angular velocity of the mobile robot’s Z 
axis. So we can get the corresponding IMU angular velocity 
observation model as:

[ ] ωω == IMUIMUh .                                   (19)

The corresponding observation model Jacobian matrix is:

[ ] ωω == IMUIMUh .                                    (20)       

After a certain transformation, we get:

kkimu vxh +=kg .                                         (21)

By integrating the angular velocity, we can get the azi-
muth angle θ of the robot, and then we can    get the angle 
observation model of imu as:

hheading imudt� ��� � .                              (22)

[ ]00100hheading= .                       (23)

After simplification, we can get:

kkheadingk vxh +=g .                                   (24)

3  Error Analysis of Mobile Comparison 
Experiment

3.1 Experimental Equipment
Now more and more intelligent robots have entered our 

more and more homes. An ordinary intelligent robot was 
randomly selected for this experiment. On the robot platform, 
we open programming interfaces to users for experimental 
mobile the main performance of educational robots is shown 
in Table 1.

Table 1. Various performance introduction
Parameter Numerical value
Overall size Diameter 645.32mm, height 

300mm
Axle length 345mm
Wheel diameter 99mm
Encoder pulse number 708.2/rev
Serial port baud rate 115200Bd/s
Wheel speed range -500 ~ 500mm/s

We build the same physical map environment as the sim-
ulation map. We use the existing robot platform and two-di-
mensional laser technology to build the environment map 
by installing IMU modules, optical flow sensors, Bluetooth 
modules, controllers, and camera modules on the experimen-
tal robot platform. And embedded R16 platform to meet the 
positioning requirements of indoor mobile educational ro-
bots. The odometer information is obtained by directly read-
ing the left and right encoder pulses. The hardware platform 
structure diagram of the mobile educational robot is shown in 
Figure 7.

Figure 7. Hardware platform structure diagram of mobile educational robot
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3.2 Move Experiment on Different Materials
In order to compare the actual performance of the optical 

flow meter and the odometer on the surface of different ma-
terials, this experiment will be carried out on the short-haired 
carpet and the long-haired carpet on the surface of two differ-
ent materials, and the actual displacement of the robot and the 
fusion of the optical flow meter will be recorded respectively. 
The trajectory displacement fused with the odometer (this 
experiment uses the distance of the robot’s forward direction 

as the recorded value). The experimental requirements are 
for manually controlling the robot to advance a specified dis-
tance. When moving on the short-haired carpet, his trajectory 
diagram is shown in Figure 8, and the coordinate points and 
error analysis are shown in Table 2.

The fusion trajectory of the robot on the long-haired car-
pet is shown in Figure 9, and the coordinate point recording 
and error analysis are shown in Table 3.

       

                                           (a) The first experiment                                             (b) The second experiment
Figure 8. Comparison experiment of fusion trajectory of short wool blanket

Table 2. Short-haired carpet fusion coordinates and errors
Number of 
experiments

Actual 
displacement

Optical flow meter 
fusion

Error Odometer 
fusion

Error

The first time 1720 1779 59 (3.4%) 1788 68 (4.0%)
The second time 1750 1764 14  (0.8%) 1786 36 (2.1%)
The third time 1780 1820 40  (4%) 1799 21  (1.6%)

      

                     (a) The first experiment                                               (b) The second experiment
Figure 9. Comparative experiment of long-haired carpet fusion trajectory

Table 3. Long-haired carpet fusion coordinates and errors
Number of 
experiments

Actual 
displacement

Optical flow meter 
fusion

Error Odometer 
fusion

Error

The first time 1800 1946 146  (7%) 2999 1199 (68%)
The second time 1800 1870 66  (4%) 3310 1510 (83%)
The third time 1800 1899 99  (5%) 3210 1410 (82.6%)
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3.3 Analysis of Experimental Results
Using the motion estimation method, the position and 

direction of the camera with better robustness can be finally 
obtained, and the camera is the vision camera of the robot, 
so the result obtained is the pose information of the robot. In 
order to make the final positioning result have high accuracy 
and good real-time performance, high-precision point ex-
traction, more accurate feature combinations, more accurate 
and smaller feature point pairs, and better motion estimation 
methods are required. These papers carried out research and 
simulation experiments on the last point, and compared the 
research results with the simulation experiments and verified 
them. The system has high positioning efficiency, good re-
al-time performance and good stability.

From the comparison results of Table 2 and Table 3, it 
can be seen that the positioning accuracy of the optical flow 
meter and the odometer on the short-haired carpet are equiv-
alent (both are less than the index 4.52%); the positioning 
error of the optical flow meter on the long-haired carpet is 
the largest 7%, and the maximum positioning error of the 
odometer reaches 83%. On the other hand, the trajectories in 
Figure 8 and Figure 9 also conform to the actual trajectory 
shape. Therefore, the experimental results confirm that the 
optical flow meter can provide more accurate positioning in-
formation on different material surfaces, while the odometer 
is almost in a state of failure on the long-haired carpet (in the 
case of slipping) and cannot provide positioning information. 
On the other hand, it shows that the scale information of the 
relative position sensor on the surface of different materials 
is different, but the scale information of the optical flow me-
ter is more stable. So far, the positioning problem of indoor 
robots is still one of the core problems in the current robotics 
research field, and the focus of future work is to improve the 
positioning accuracy of the robot and fully realize the auton-
omous positioning of the robot, and improve the application 
of the positioning algorithm stability, rapidity and effective-
ness. Robot positioning adopts the SLAM method to imple-
ment real-time construction of unknown environment maps, 
which are applied to map matching positioning, and the study 

of more efficient resampling and adaptive sampling particle 
filter positioning algorithms has a good application prospect. 
On the whole, the whole process is relatively smooth, but the 
efficiency of the experiment is not high enough, hope the ex-
perimental efficiency can be improved in the future.

4  Results Discussion

4.1 Visual Odometer Positioning Estimation Trajectory
It can be seen from Figure 10 that it can be intuitively 

seen from the figure that when the movement is just started, 
the local map is initialized, and the time flow method and the 
real trajectory are not large when walking in a straight line. 
The visual fusion with the feature point matching algorithm 
makes the position estimation more effective. However, when 
the robot turns, the pose information estimated by the optical 
flow method is quite different from the real situation at this 
time, and the advantages of algorithm fusion are reflected. As 
shown in the two more obvious inflection points in the above 
figure, the position estimated by the optical flow method is 
farthest away from the true position by 0.15m, and the error 
accumulation tends to become larger as time goes by. How-
ever, due to the existence of a local map, the feature point 
matching between the frame and the key frame can be re-
garded as a strong motion estimation constraint, eliminating 
errors as much as possible, bringing the estimated position 
close to the real trajectory again, and passing it as the ini-
tial value to the algorithm fusion at the next moment Stage 
to avoid accumulation of errors. The result of the fusion is 
more detailed than the simple feature point matching and 
positioning algorithm, and can provide more information, 
especially when the texture is not obvious, the optical flow 
tracking method can be used to realize the positioning. Cor-
respondingly, compared with the pure optical flow method, 
because the feature point matching algorithm is introduced as 
a correction, the robot turning out angle estimation is more 
accurate, and the feature point matching can be used to assist 
positioning when the light intensity changes greatly.

(a) Visual odometer fusion algorithm positioning resul  (b) Visual odometer position estimation in indoor scene
Figure 10. Visual odometer positioning estimated trajectory
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4.2 Errors of Different Visual History Algorithms
As shown in Figure 11, when we have a time guarantee, 

in order to further analyze the accuracy and reliability of the 
visual fusion algorithm, we will now analyze the error curve 
of the algorithm. The error curve is the Euclidean distance 
between the position of the mobile robot obtained by the 
visual mileage calculation method and the motion capture 
system (true value). It can be seen that the linear walking 
time flow method provides a fast positioning method under 
the condition of ensuring accuracy. When a turn occurs, the 
positioning accuracy error after the correction of the visual 
odometer fusion algorithm is significantly smaller than the 
error caused by the optical flow method. This shows that the 
visual odometer fusion algorithm has a more accurate appli-
cation effect than the optical flow method.

4.3 Visual Inertial Fusion Framework
As shown in Figure 12, using the characteristics of ROS, 

the program functions are decoupled, and the image data 

is processed in a separate node feature_tracker. The node 
completes the feature point extraction of the visual part and 
restores the camera movement, and then sends the paired 
feature point information to another node vins_estimator in 
the form of a ROS message. Another node vins_estimator 
subscribes to the IMU data from the sensor, and then pre-in-
tegrates the data to constructthe residual error of the IMU 
item; at the same time subscribes to the message sent by the 
feature_tracker to construct the reprojection error item of the 
feature point. Then, use Google ceres-solver to solve the ob-
jective function, iterative optimization is the smallest objec-
tive function, and the output result is the carrier pose. Since 
the visual and inertial fusion has more system states, in order 
to limit the scale of the optimization problem, the optimiza-
tion of the system adopts an optimization strategy based on a 
sliding window. The key to the visual fusion algorithm is in 
fusion, that is, the fusion use of various visual optimization 
methods and strategies.

 

      

                                  (a) Optical flow method                                                         (b) Visual fusion algorithm
Figure 11. Errors of different visual history algorithms

Figure 12. Visual-inertial fusion framework
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5  Conclusions

With the development of the times, the era of highly intel-
ligent mobile robots has arrived. This paper studies the posi-
tioning of mobile educational robots based on vision sensors. 
The positioning method based on the fusion of vision and 
inertia can be adapted to a wider range of sensor types. The 
experimental results verify the performance and effectiveness 
of the visual inertial odometer, indicating that it is a practi-
cal indoor positioning method. Multiple sensor information 
sources make the system more accurate. The performance of 
the hardware restricts the overall performance of the system 
more severely. Especially the performance of the gyroscope 
will affect the performance of the system during rotation. The 
limitations of the positioning environment, positioning ac-
curacy, and real-time performance still need to be improved. 
The research results prove that in the future, the application 
of visual sensors in the field of more and more widely in mo-
bile educational robots.
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