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Abstract

As a sub-problem of pattern discovery, utility-oriented 
pattern mining has recently emerged as a focus of research-
ers’ attention and offers broad application prospects. Con-
sidering the dynamic characteristics of the input databases, 
incremental utility mining methods have been proposed, 
aiming to discover implicit information/ patterns whose 
importance/utility is not less than a user-specified threshold 
from incremental databases. However, due to the explosive 
growth of the search space, most existing methods perform 
unsatisfactorily under the low utility threshold, so there is 
still room for improvement in terms of running efficiency and 
pruning capacity. Motivated by this, we provide an effective 
and efficient method called IDHUP by designing an indexed 
partitioned utility list structure and employing four pruning 
strategies. With the proposed data structure, IDHUP can not 
only dynamically update the utility values of patterns but also 
avoid visiting non-occurred patterns. Moreover, to further 
exclude ineligible patterns and avoid unnecessary explora-
tion, we put forward the remaining utility reducing strategy 
and three other revised pruning strategies. Experiments on 
various datasets demonstrated that the designed IDHUP al-
gorithm has the best performance in terms of running time 
compared to state-of-the-art algorithms.

Keywords: Pattern discovery, Incremental mining, Utility 
mining, Dynamic data

1  Introduction

The prevalence of big data not only promotes rapid 
economic and social development, but also brings a lot of 
convenience to our lives. Managers from all walks of life use 
data mining and data analysis to extract potentially useful 
information from a large amount of data to assist intelligent 
decision-making. For example, pattern mining algorithms 
are widely used in market basket analysis, urban traffic 
congestion analysis, agrometeorological forecast, disease 
risk assessment, etc. [1]. The most common tasks of pattern 
mining are frequent pattern mining (FPM) and association 
rule mining (ARM). Apriori [2] and FP-growth [3] are two 
of the well-known methods for addressing these tasks. As the 

first step of ARM, FPM measures the usefulness or insight-
fulness of patterns based on co-occurrence frequency. Under 
this framework, all the items/objects are regarded as equally 
important, while other connotational factors such as weight, 
utility, or risk of items are ignored, thus losing the applicabil-
ity of dealing with complex tasks. 

Therefore, researchers have paid more attention to new 
pattern mining methods that integrate subjective metrics (e.g., 
weight, unit profit, and user preferences) and objective met-
rics (e.g., quantity and frequency) to enhance the usability 
and interest of the extracted patterns. Unlike the traditional 
frequency-based framework, HUPM focuses on the utility 
of patterns, which incorporates quantitative information and 
weights of items rather than only considering existence or 
confidence. In this way, HUPM can extract valuable and high 
profitable patterns for retailers and business managers, and is 
thus successfully used at the intersection of business and data 
science. Generally, utility is an ubiquitous concept in real 
life that is not limited to measuring the profit of patterns, but 
can also measure other subjective views of users on patterns, 
such as risk, usability, importance, satisfaction, and so on. 
Nowadays, utility mining plays an important role in the field 
of data analysis, and many studies have focused on mining 
efficiency, such as Two-Phase [4], HUI-Miner [5], FHM [6], 
HUP-Miner [7], mHUIMiner [8], and EFIM [9]. 

However, the above-mentioned methods are only suitable 
for dealing with static transaction databases. In order to adapt 
to the real world, various extension topics based on HUPM 
are concerned [10-11]. Incremental high utility pattern min-
ing (IHUPM), as one of these hot topics, aims to effectively 
process the data continuously generated by various applica-
tions, avoiding the processing from scratch like static meth-
ods whenever new data is added. For example, assuming 
100 new transactions are inserted into an original database 
containing 100,000 transactions, traditional static approaches 
would process 100,100 transactions, while IHUPM methods 
simply process 100 new transactions to achieve the same 
result. In the past few decades, many approaches have been 
developed to handle IHUPM tasks. According to [12], these 
methods can be roughly divided into three categories, respec-
tively, 
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Table 1. Comparison of existing IHUPM methods
Category Algorithm Theoretical basis Limitations

Apriori-based 
algorithms

FUP-HUI-INS [13] It relies on the FUP concept [22] and the 
twu model [4].

Apriori-based algorithms require 
multiple scans of the database 
and generate a large number of 
candidates.Pre-HUI-INS [14] It level-wisely mine HUPs as an 

extension of literature [13].

Tree-based 
algorithms

IHUP [15] It constructs a global tree and uses it to 
mine HUPs. Tree-based algorithms require 

frequent updating of tree nodes 
and creation of subtree structures, 
which is time-consuming.

iCHUM [16] It improves IHUP [15] and relies on the 
twu model [4].

PIHUP [17] It relies on the pre-large concept from the 
literature [14].

List-based 
algorithms

HUI-list-Ins [18]
It calculates utility values with utility-
list structure and speeds up the algorithm 
with EUCS structure.

The joining process of the utility-
list structure is inefficient.EIHI [19] It uses partitioned utility-list structure 

and stores results in HUI-trie.

LIHUP [20] It updates the global utility list through a 
novel reconstruction technique.

IIHUM [21]
It avoids inefficient intersection 
operations through the indexed utility list 
structure

It fails to take advantage of the 
properties of incremental data to 
simplify calculations.

They are Apriori-based methods [13-14], tree-based 
methods [15-17], and list-based methods [18-21]. 

Although the existing IHUPM algorithms can be applied 
to mining valuable patterns in dynamic environments, they 
still face many challenges. First, the calculation of utility val-
ues comprehensively considers multiple factors, this is more 
complicated than that of frequency. Second, utility does not 
maintain downward closures, which can be used to prune in-
valid patterns in the search space in advance. This means that 
traditional frequency-based pruning methods are not suitable 
for utility mining, and substitute robust pruning strategies 
must be used to effectively and efficiently exclude unqualified 
patterns. Third, the insertion of additional transactions chang-
es the utility of patterns and may introduce some new items, 
rendering the original information invalid. What growable 
data structures are utilized to update the utility values without 
processing from scratch like with static methods and to retain 
identified patterns are key issues. Moreover, it is significant 
to minimize the time and space complexity without discard-
ing qualified patterns and without reprocessing the original 
database, which ensures mining tasks can be completed pre-
cisely under limited time and space resources. 

To address the above challenges and for further efficiency 
improvement, we designed a novel one-phase algorithm to 
efficiently and fully discover valuable patterns from incre-
mental databases, called IDHUP (Incremental Discovery of 
High Utility Pattern). Thanks to the proposed several pow-
erful pruning strategies and indexed partitioned utility list 
structure, IDHUP can complete the IHUPM task without 
generating many candidates. The main contributions of this 
paper are threefold:

1.  Relying on the proposed novel and compact indexed 
partitioned utility list structure, the algorithm does not gen-
erate non-occurred patterns as candidates, and maintains the 
utilities of patterns easily in an incremental environment.

2.  Considering the computational complexity of existing 
incremental algorithms, we investigate the Remaining Utility 
Reducing pruning strategy to decrease the remaining utility 
upper bound by subtracting the utilities of unpromising suc-
ceeding items. Furthermore, we adopt three complementary 
strategies to discover unpromising succeeding items.

3.  Experiments on real and synthetic datasets demon-
strated that IDHUP with all pruning strategies can discover 
intact high utility patterns with acceptable memory consump-
tion and the shortest running time.

This paper is structured as follows. Section 2 reviews 
some existing IHUPM methods. In Section 3, some basic 
definitions are given. Then, we describe the proposed IDHUP 
algorithm in Section 4. In Section 5, we evaluate the effec-
tiveness and efficiency of our method. Finally, we summarize 
this paper.

2  Related Work

Many dynamic HUPM methods have been studied re-
cently, especially incremental mining methods dealing with 
databases with transactions insertion. A comparative summa-
ry of existing IHUPM methods is presented in Table 1.

As shown in Table 1, IHUPM algorithms are classified 
as Apriori-based [13-14], Tree-base [15-17], and List-based 
[18-21], depending on the data structure they use. FUP-
HUI-INS [13], as an Apriori-based approach, combines the 
concepts of FUP [22] and twu [4] to divide all patterns in the 
database into four categories, and reduces some unnecessary 
processing by classification and discussion. Pre-HUI-INS 
[14], an extension of FUP-HUI-INS, presents the concept of 
pre-large to divide patterns into nine categories to further im-
prove efficiency. However, Apriori-based algorithms require 
multiple scans of the database. To solve this problem, tree-
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based algorithms such as IHUP [15], iCHUM [16], and PIH-
UP [17] have been proposed. But all the above algorithms are 
two-stage algorithms that would generate lots of candidate 
itemsets instead of finding HUPs directly. Thus, inspired by 
HUI-Miner [4], many one-stage algorithms without candidate 
generation are proposed, such as HUI-list-Ins [18], EIHI [19], 
LIHUP [20], and IIHUM [21]. EIHI uses a global structure 
HUI-trie to store previously obtained results and acceler-
ates exploration by classifying patterns by their presence or 
absence in incremental data. Through the developed utility 
lists reconstruction mechanism, LIHUP achieves effective 
mining with only a single scan of incremental data. However, 
the above algorithms based on traditional utility lists suffer 
from inefficient joining processes. IIHUM overcomes it with 
a novel indexed utility list structure, but still leaves room 
for improvement in filtering invalid patterns and fails to take 
advantage of the property of incremental data to simplify 
calculations. Recently, Liu et al. proposed the incremental al-
gorithm Id2HUP+ [23]. Note that the mining objective of this 
algorithm differs from previous algorithms in that its mining 
results do not contain the HUPs in the original database, 
while other incremental algorithms update the utility of these 
patterns and output them. In other words, Id2HUP+ cannot 
obtain the complete set of HUPs and their corresponding ac-
tual utility values in the entire database.

In addition to the above incremental algorithms for 
mining HUPs, there are many incremental algorithms for 
different mining purposes, such as IncCHUI [24] for mining 
closed high utility patterns, and HUIPRED [25] for handling 
database where transactions are deleted. Moreover, there 
are many methods for other dynamic scenarios. For exam-
ple, M- PM [26] and SOHUPDS [27] for dealing with data 
streams, iMEFIM [28] and CHUI-Power [29] for processing 
the dynamic unit profit databases. As the common and basic 
situation of dynamic change, incremental high utility mining 
is still our focus. For further efficiency improvement, we pro-
pose our IDHUP algorithm.

3  Preliminaries

Let 1 2{ , ,..., }mI i i i= be a set of m distinct products/ items. 

Given an original database 1 2{ , ,..., }nOGD T T T=  containing 
n transactions and an additional database db+ consisting of k 
transactions that need to be inserted into OGD, the entire up-
d a t e d  d a t a b a s e  t o  b e  m i n e d  i s  r e p r e s e n t e d  a s 
D OGD db+= ∪ . Each transaction in D has a unique identi-
fier called tid and is a subset of I. In addition, each item i  in 
a transaction rT  is associated with a non-binary value 

( , )rq i T  that records occur quantity and a positive number 
( )pr i  that measures unit profit/weight. Tables 2 and Table 3 

show examples of an entire incremental database and a unit 
profit table. 

Table 2. Example of incremental transaction database
tid Transaction tu

OGD

1T ( : 3),  ( :1),  ( : 3),  ( : 2)a b c d  $22

2T ( :1),  ( : 3),  ( : 2),  ( : 3),  ( :1)b c d e f $23

3T ( : 5),  ( : 2),  ( : 3),  ( : 2)b d e f    $41

4T ( : 2),  ( : 2),  ( : 3),  ( :1)a c d e   $15

db+
5T ( :1),  ( : 3),  ( : 2)c d e  $9

6T ( : 3),  ( :1)d f  $7

7T ( : 3)a $9

Table 3. Example of static unit profit database

Item a b c d e f
Unit profit $3 $5 $2 $1 $2 $4

Definition 1: The utility of a pattern X in a transaction rT  

is ( , )ru X T  and can be calculated as in equation (1), where 
( , )ru i T  is the utility of item i X∈  in rT  and obtained by 

multiplying ( , )rq i T  and ( )pr i .

( , ) ( , ) { ( , ) ( ) }r r r
i X i X

u X T u i T q i T pr i
∈ ∈

= = ×∑ ∑ .             (1) 

Definition 2: The total utility of pattern X  in the entire 
database D , denoted as ( )Du X , is calculated as in equation 
(2). 

( ) ( , )D r
X T T Dr r

u X u X T
⊆ ∧ ∈

= ∑ .                                     (2)               

F o r  e x a m p l e ,  t h e  u t i l i t y  o f  i t e m  a  i n  1T  i s 

1 1( , ) = ( , ) ( ) = 3 $3 = $9u a T q a T pr a× × . Further, utility of 

p a t t e r n  { , , }a b c  i n  1T  c a n  b e  c a l c u l a t e d  a s 

1 1 1 1({ , , }, ) = ( , ) ( , ) ( , )u a b c T u a T u b T u c T+ +  = $9 + $5 + $6 = 

$20. Similarly, 1({ , }, ) = 1 $5 3 $2 = $11u b c T × + × , and the 

utility of pattern { , }b c  in the updated database D  is 

1 2({ , }) = ({ , }, ) ({ , }, ) = $11 $11 = $22Du b c u b c T u b c T+ + .
Definition 3: Given a minimum utility threshold minUtil  

defined by an experienced decision maker, if the utility of 
pattern X  in D  is not less than minUtil , then X  is called 
high utility pattern (HUP) in D , otherwise it is a low utility 
pattern in it. That is, 

{ | ( ) , }DHUPs X u X minUtil X I= ≥ ⊆ .               (3)

For example, if the minUtil  set as 30, then the pattern  
{ , }b c is a low utility pattern since ({ , }) = 22 < 30Du b c  while 

p a t t e r n  { }b  i s  a  H U P i n  D  b e c a u s e  ({ }) =Du b  
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1 2 3({ }, ) ({ }, ) ({ }, ) = $5 $5 $25 = 35 > 30u b T u b T u b T+ + + + .

Definition 4: The utility of a transaction rT , denoted as 
( )rtu T  and is calculated as,

( ) = ( , )r r
i Tr

tu T u i T
∈
∑ .                                                 (4)

Definition 5: The transaction weighted utilization ( twu  
[4]) of a pattern X in the updated database D is the sum of the 
utilities of transactions containing X, and is defined by,

 ( ) ( )
r r

D r
X T T D

twu X Ttu
⊆ ∧ ∈

= ∑ .                                   (5)

For example, the utility of 1T  is 1( )tu T = 1( , )u a T +  

1 1 1( , ) ( , ) ( , )u b T u c T u d T+ + = 3 $3 1 $5 3 $2 2 $1× + × + × + ×  = 
$9 $5 $6 $2 = $22+ + + . The utility of each transaction in the 
example database of  Table 2 is  given in i t .  Then, 

1 4 7({ }) = ( ) ( ) ( ) $22 $15 $9 $46Dtwu a tu T tu T tu T+ + = + + =

and 1({ , }) = ( ) = $22Dtwu a b tu T .
Property 1 (Overestimation and downward closure of 

twu): The twu  of pattern X is not less than its utility, that is,

 ( ) ( )twu X u X≥ .                                                    (6)                 

In addition, it satisfies downward closure property, that is, 
the twu  of X  is not less than the twu of any of its super pat-
terns. Combined, the following property holds. 

( ) ( ) ( ),   twu X twu Y u Y if X Y≥ ≥ ⊆ .                     (7)

Definition 6: Generally, items in a database are assumed 
to be sorted in a certain order, which is denoted as total order 
 . In particular, the total order   used in the designed IDH-
UP algorithm is obtained as follows: Items in the first OGD 
database are sorted by OGDtwu  ascending order. For subse-
quent batches, this order is maintained, and items that have 
never appeared before always succeed these sorted items.

Definition 7: The remaining utility of a pattern X  in a 
transaction rT  is defined by,

( )
( , ) = ( , )r r

i X i j j Tr

ru X T u j T
∀ ∈ ∧ ∈
∑


.                           (8)           

Definition 8: The remaining utility of pattern X  in the 
entire database D , is denoted as ( )Dru X .

( ) = ( , )D r
X T T Dr r

ru X ru X T
⊆ ∧ ∈
∑ .                               (9)           

For example, OGDtwu  of items a, b, c, d, e, f  are 37, 86, 
60, 101, 79, 64, respectively, thus the total order   is set as: 
a c f e b d     . In addition, the remaining utility of 

pattern { }ab  in 1T  is 1 1({ }, ) = ({ }, ) =ru ab T u d T  2 $1 = $2× . 

And the remaining utility of { }ab  in D  is ({ }) =Dru ab  

1({ }, ) = $2ru ab T .
Property 2 (Pruning by remaining utility): For pattern X

, define its extensions as the patterns obtained by appending 
such an item j  to X , where ,i j i X∀ ∈

. If the sum calcu-
l a t e d  b y equation (10) is less than minUtil , then all 
extensions of X are not HUPs. 

( ) = ( ) ( )reu X u X ru X+ .                                    (10)                 

Problem statement. Given an original transaction data-
base OGD, a static unit profit table, a user-specified mini-
mum utility threshold (minUtil), and a set of transactions db+ 
are inserted into OGD. The incremental part db+ and the orig-
inal database OGD together form an updated database D  to 
be mined. The goal of IHUPM is to output all HUPs in the 
currently updated database D.

4  Proposed IDHUP Algorithm

This section presents a novel algorithm for addressing the 
IHUPM task, called IDHUP. IDHUP first scans the original 
database or the additional database to set up a total order of 
items, then constructs global lists structure of single items ac-
cording to the total order to maintain the utility information, 
and finally recursively mines high utility patterns and stores 
them in the HUI-Tire. The framework of the proposed IDH-
UP algorithm is presented in Figure 1. Details of the indexed 
partitioned utility list structure, pruning strategies, and the 
main procedure of IDHUP are respectively described below.

4.1 Proposed Indexed Partitioned Utility List Structure
Several utility list-based methods have been proposed 

to achieve IHUPM task without multiple scans. However, 
the traditional utility list structure is constructed through 
time-consuming intersection operations. The utility-list* 
structure in the static algorithm HUI-miner* [30] directly 
points to the element to be intersected to solve this prob-
lem, but its corresponding dynamic maintenance and update 
mechanism has not been proposed. Therefore, in the pro-
posed IDHUP algorithm, the utility-list* is modified to adapt 
to incremental environments. Furthermore, also inspired by 
the partitioned structure, the indexed partitioned utility list 
structure is defined below. For convenience, we abbreviate 
the indexed partitioned utility list of pattern X as X.ipul.

Definition 9: The X.ipul consists of the pattern name 
(name), utility (sumU), remaining utility (sumRU), a set of 
tuples associated with transactions containing X in the origi-
nal database OGD ( X.ipul.OGD ), and such tuples associated 
with transactions in the additional database db+ ( X.ipul. db+ ). 
A tuple is defined as < next, tid, item, iutil > for each transac-
tion rT  containing X. 

next : a pointer to the next tuple associated with rT .

tid : the transaction identifier of rT . 
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item : the last item in pattern X. 
iutil : the utility of  X in rT , i.e., ( , )ru X T . 

are processed. For example, in the above process, when the 
t u p l e  bt  i s  p r o c e s s e d ,  3 3( , ) = ( , ) = 2ru b T u d T  a n d 

3( , ) = 25u b T  can be obtained, thus add 2 to the sumRU  of  
b.ipul and add 25 to the sumU of b.ipul.

Property 3: Given a pattern X and X.ipul, then sumU and 
sumRU in X.ipul calculated by the utility and remaining utili-
ty of the tuples are respectively equivalent to ( )Du X  and 

( )Dru X . 
Proof: each tuple in .X ipul  is associated with a transac-

tion containing X, hence the sum of the iutil  values of tuples 

in . .X ipul OGD  and in . .X ipul db+  is equals to,

Figure 1. Flowchart of the IDHUP algorithm

Figure 2. Global list of each 1-item

In addition, IDHUP links the i-th element in a table called 
T-Header to the tuple corresponding to the last item in the i-th 
transaction according to the total order  . Figure 2 shows 
the ipuls of all single items (1-itemsets) in the running exam-
ple with T-header. IDHUP builds them horizontally and pro-
cesses them in reverse order. For example, consider 3T  in 
Table 2. According to the Def. 6, the total order we adopt is 
a c f e b d     . Then, when 3T  is processed, IDHUP 

f i r s t  s t o r e s  a  t u p l e  :  : 3,  : ,  : )2(dt tid item d iutil  i n 
. .d ipul OGD  and links the 3-rd component in T-Header to dt , 

secondly stores a tuple : : 3, : , : 25( )bt tid item b iutil  in 
. .b ipul OGD  and links the next field of dt  to bt ; Then it up-

dates the lists of remaining items in 3T  in turn. Note that the 
summary information, such as sumU and sumRU, are calcu-
lated during the building process and updated after all tuples 
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= ( , ) ( , )

= ( ) ( )

= ( ).

r k
X T T ODG X T T dbr r k k

OGD db

D

sumU
u X T u X T

u X u X

u X
+

+⊆ ∧ ∈ ⊆ ∧ ∈

+

+

∑ ∑
             (11) 

Similarly, we have,

( ) ( ) = ( ).OGD Ddb
sumRU ru X ru X ru X+= +                     (12)        

IDHUP horizontally constructs the ipuls of 1-extensions 
of a single item x (2-itemsets) by traversing x.ipul. Suppose 
the tuple being traversed is the u -th tuple in .x ipul  called ut  

and . =ut tid k . It first locates the tuple 1t  based on the k -th 

component in the T-Header related to .x ipul . Then, starting 

from 1.t next , a sequence of tuples 1 2, ,..., mt t t  until ut  can be 

derived by following .it next  (1 i m≤ ≤ ). For each it , IDH-

UP will construct a new ipul  for pattern { , .ix t item } and 

store a new tuple xit : : , : , :( . . )i ut iutiltid u item i iut t iuil til+  

in its OGD  or db+ . Simultaneously, IDHUP updates the 
next field of these new tuples in sequence and links the first 
constructed tuple to the u -th component in a new T-Header. 
In addition, the summary information of these new ipuls  are 
calculated during the building process.

Take the second tuple 2t : (4, ,6)a  in . .a ipul OGD  in Fig-
ure 2 as an example, IDHUP traces a sequence of tuples 
(4, ,3)d , (4, , 2)e  and (4, , 4) . Thus, new tuples (2, ,3 6)d + , 
(2, , 2 6)e +  and (2, , 4 6)c +  are stored in the ad.ipul.OGD, 
ae.ipul.OGD and ac.ipul.OGD, respectively. Simultaneously, 
IDHUP updates their summary information by adding 
( 9, 0)sumU sunRU+ +  i n  a d . i p u l ,  a d d i n g 
( 8, 3)sumU sunRU+ +  i n  a e . i p u l ,  a n d  a d d i n g 
( 10, 5)sumU sunRU+ +  in ac.ipul, respectively. Where 3 is 

the iutil of tuple (4, ,3)d  and 5 is summed by 3 and the iutil 

of tuple (4, , 2)e , i.e., 3 2+ . In addition, IDHUP connects 
these tuples in sequence and links the second component in a 
new T-Header to (2, ,9)d . Figure 3 shows the result of con-
structed ipuls of all 1-extensions of {a}.

Figure 3. The ipuls of all 1-extensions of {a}

The construction of the ipuls  of k-itemsets ( 3k ≥ ) is sim-
ilar to that of 2-itemsets. For k - 1 pattern X and its prefix pat-
tern P, assume that the tuple being traversed is the u-th tuple 
in .X ipul  called ut  and . =ut tid z . Compared with the above 

construction process, the only difference is that, for each it  

in sequence derived by ut , IDHUP constructs a new ipul  for 

pattern { , .iX t item } and stores a new tuple Xit : (tid: u , 

item: i , iutil: . .i ut iutil t iutil preUtil+ − ) in area OGD  or 

db+  of it. Where preUtil  is the utility of P  in the transac-

tion associated with ut  and can be obtained by . =ut tid z  

without traversing .P ipul , since the iutil  of the z-th tuple in 
.P ipul  is equal to preUtil . For example, the ipuls of 1-ex-

tensions of pattern {ac} are shown in Figure 4.

Figure 4. The ipuls of all 1-extensions of {ac}

4.2 Pruning Strategies
Similar to the previous studies [5-6], a set enumeration 

tree is used to represent the complete search space for mining 
HUPs. This tree structure represents all possible subsets of 

1 2= { , ,..., }mI i i i , where each node represents a pattern and 
its children nodes represent extensions of this pattern [31]. 
Note that this tree structure is not real, it is used to facilitate 
the description of the search space and strategies for filtering 
unqualified patterns, and is not actually constructed during 
the mining process. In the worst case, there may be 2m candi-
date patterns (i.e., all the subsets of I), corresponding to 2m 
nodes in the enumeration tree, which indicates a huge search 
space, thus showing the difficulty and complexity of mining. 
Therefore, it is necessary to use several effective pruning 
strategies to find the unqualified patterns in advance and ter-
minate exploration early. Key pruning strategies used in this 
paper are described below.

Lemma 1 (Extension upper bound): The extension upper 
bound of a pattern X  can be calculated as:

( , )>0
( ) = [ ( , ) ( , )]r r

X T ru X Tr r

extUB X u X T ru X T
⊆ ∧

+∑ .  (13)

If ( ) <extUB X minUtil , then all extensions of X are not 
HUPs and do not need to extend pattern X further. A com-
plete proof of this lemma can be referred to [32]. 

Strategy 1 (EUB-Prune) For each pattern, IDHUP cre-
ates a new summary information field called sumU’ in X.ipul. 
During the horizontal construction of X.ipul, IDHUP deter-
mines whether the remaining utility of the tuple ti being 
stored is zero. If it is not zero, then add ti.iutil to the sumU 
and sumU’ fields in  X.ipul, otherwise add it to sumU only. 
While performing a depth-first search, for any pattern/node 
X  in the search space, if  (X .ipul.sumU' + X .ipul.sumRU) < 

minUtil, then no further extension for X is needed. Because 
all its children nodes/patterns are not HUPs, and these un-
promising patterns can be directly pruned. Conversely, X 
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should be further extended. 
For  example,  as  .a ipul  shown in  Figure 2,  the 

( ) = 9 6 = 15sumU a′ +  since the remaining utility of the tuple 
( ,7, ,9)a−  i s  z e r o ,  a n d ( ) = ( )extUB a sumU a′ +  

( ) = 15 22 = 37 > = 30sumRU a minUtil+  implies that further 
expansion of {a} is needed.

Lemma 2 (EUCS Structure [6]): The Estimated Utility 
Co-Occurrence Structure (EUCS) is a triangular matrix to 
stores the twu  values of all pairs of items and is defined as,

= {( ; ; ({ })) | , }EUCS a b twu ab a I b I∈ ∈ .           (14)    

If the twu  of a 2-pattern is less than minUtil , then all of 
its supersets are not HUP according to the property 1. 

Strategy 2 (EUCS-Prune) While constructing the ipuls 
for all 1-extensions of pattern X as described in Sec. 4.1, for 
e a c h  t u p l e  it  d e r i v e d  b y  t u p l e  ut  i n  .X ipul ,  i f 

( . , . ) <u itwu t item t item minUtil  is obtained from EUCS, then 

the  extens ion  pa t te rn  { , . }iX t item  as  a  superse t  of 
{ . , . }u it item t item  is not a HUP. Thus, instead of constructing 

a new ipul  for { , . }iX t item , we ignore .it item  and skip tu-

ple it .

For example, during the construction of ipuls  for all 
1-extensions of {a} from Figure 2, IDHUP locates the first 
component in the T-Header and traces a sequence of tuples 
(1, , 2)d , (1, ,5)b  and (1, ,6)c . Since ( , ) = 31 30twu a d > , 

( , ) = 22 < 30twu a b  and ( , ) = 31 > 30twu a c , IDHUP creates 

new ipuls  for patterns {ad} and {ac}, and respectively stores 

tuples (1, ,11( 2 9))d = +  and (1, ,15( 6 9))c = +  in them, but 

ignores pattern {ab} and skips tuple (1, ,5)b . The construc-
tion result with EUCS-prune is shown in Figure 5.

Figure 5. An example of EUCS-prune

Lemma 3 (Absent pattern): Given the entire incremental 
database =D OGD db+∪ , a pattern X is called an absent 

pattern if it appears only in OGD but not in db+ . The utility 
of an absent pattern in D remains the same as that in OGD, 
that is, ( ) = ( )D OGDu X u X . And two situations are consid-
ered. 

1.  If an absent pattern X  is a HUP in OGD, then X  is 
also a HUP in D  that should be output. 

2.  If an absent pattern X  is not a HUP in OGD, then it 
is also not a HUP in D  and can be pruned directly. 

Strategy 3 (ABS-Prune) IDHUP stores HUPs into a 
global structure HUI-trie [19], and these stored patterns are 
regarded as the HUPs in the OGD when the next additional 
database db+ arrives. On the one hand, the absent patterns in 
situation (1) have been stored in the global HUI-trie structure 
and can be output directly from it. On the other hand, the ab-
sent patterns in situation (2) are hopeless patterns that can be 
excluded. Therefore, those patterns whose ipul.db+ are empty 
(i.e., absent patterns) can be ignored during depth-first search 
or be skipped in the process of constructing ipuls for exten-
sions. 

Definition 10: An item is said to be unpromising if none 
of its super-patterns are HUPs. For a subtree of pattern X 
in the set enumeration tree, items that not contained in the 
HUPs on the subtree are called locally unpromising items. 

Lemma 4 (Remaining utility reducing) We propose a 
compact remaining utility by reducing the utilities of locally 
unpromising items for X . That is, 

( )
( ) = ( ) ( , )r

X T X i i LUI Xr

rur X ru X u i T
⊆ ∧ ∧ ∈

− ∑


,          (15)   

where LUI(X) is the set of unpromising items on the subtree 
rooted at node X. 

Proof: Since LUI(X) is the set of locally unpromising 
items of X, the HUPs generated from X must not contain the 
items in LUI(X) according to Def. 10, thus the items in LU-
I(X) do not contribute any utility to the HUPs in the exten-
sions of X. So, the locally unpromising items and their utili-
ties can be discarded when calculating the remaining utility 
upper bound.

Property 4:  For i tem i X∈  and i tem j X∉ ,  i f 
( , ) <twu i j minutil , then ( )j LUI X∈ . 

Rationale: If ( , ) <twu i j minutil , by property 1, the sup-
erset { X ∪  j } of { i ∪  j } and any pattern generated from { 
X ∪  j } have utility values less than minutil  and are not 
HUP, thus ( )j LUI X∈  according to Def. 10.

Strategy 4 (RUR-Prune) Owing to the above proper-
ty, during the constructing process of ipuls for extensions, 
IDHUP algorithm decreases remaining utilities of extension 
patterns by utilities of locally unpromising items found by 
EUCS-Prune. Put another way, instead of adding the utilities 
of these items to the remaining utilities of the following tu-
ples, IDHUP simply skips them without updating the remain-
ing utilities in the sequence. 

For example, as shown in Figure 6, when updating the re-
maining utility of {ac}, the utilities of items {b} and {e} in 
the sequence that are pruned by EUCS-Prune are not taken 
into account, and ( ) = 2 3 = 5sumRU ac + . Similarly, since 
the supersets of absent patterns are also excludable absent 
patterns, for other extended patterns, absent items do not con-
tribute to their utilities and thus can be directly skipped with-
out updating the remaining utilities.
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Figure 6. An example of RUR-prune

4.3 IDHUP
The pseudocode of the main procedure of IDHUP is giv-

en in Algorithm 1. It takes as input the original database 
OGD, the additional database db+, and the user-specified 
threshold minUtil and outputs the complete set of HUPs in 
the current entire incremental database ( OGD ∪  db+ ). In 
order not to duplicate processed data, IDHUP initializes HUI-
trie, GIPULs, and EUCS as global variables if it is the first 
time (Line 1). It first scans each transaction in OGD or db+ 
to: (1) calculate the twu  value of all individual items in the 
database, which is used to specify the total order   to im-
prove mining efficiency; 

Algorithm 1. The IDHUP algorithm
1: Global variables: a tree structure for storing HUPs 

(HUI-trie), the Estimated Utility Co-Occurrence 
Structure (EUCS), a set of ipuls for single items 
(GIPULs).

2: Initialize Global variables for  the first time;
3: Scan OGD or db+ to calculate twu(i) for each I 

and specify the total order  ;
4: Scan  OGD  or  db+  once  again  in  total  order to 

build i.ipul for each i, add to GIPULs;
5: Update the sumU , sumRU and sumU ′ field of 

each ipul synchronously;     //EUB-Prune
6: Call Search(∅ , GIPULs, minUtil) and insert 

results into HUI-trie;
7: Extract HUPs from HUI-trie; 
8: for each ipu ∈GIPULs do
9:     Merge entries in ipul.db+ into ipul.OGD;
10:     ipul.db+=∅ ;
11: return HUPs;

 (2) Update the global EUCS for subsequent pruning 
(Lines 2-3). After rearranging the OGD or db+ in order  , 
the revised database is re-scanned once to build ipuls for all 
individual items (Line 4). During this process, the summary 
information of each ipul is updated simultaneously (Line 5). 
After that, IDHUP recursively searches for HUPs by calling 
the Search procedure that traverses the set enumeration tree 
with a Depth-First-Search strategy (Lines 6-7). Finally, IDH-
UP merges the db+ area of each ipul into ipul.OGD in prepa-
ration for the next execution (Lines 8-10).

Algorithm 2. The Search procedure
1: for each ipul ∈ IPULs do
2:    Obtain ipul.name pattern X;
3:        if X.ipul.db+ == null or twu(X.lastItem) < 

minUtil then
4:       continue;        //ABS-prune
5:    if X.ipul.sumU ≥minUtil then
6:        insert X into HUI-trie;
7:   if X.ipul.sumU′ + X.ipul.sumRU ≥ minUtil   

then       //EUB-prune
8:      Call Construct(X.ipul, IPULs, preList) →  

exULs with T-headernew

9:    If . 2exULs size ≥  then
10:        Call Search(X, X.ipul, exULs, minUtil);
11:        Else If . == 1exULs size  then
12:        Get the unique ipul and its name Y in exULs;
13:        If .Y sumU minUtil≥  then
14:                insert Y into HUI-trie;
15: return HUI-trie;

The details of our Search procedure are presented in Al-
gorithm 2. It takes four inputs: a prefix pattern P, the ipul of 
P, a set of ipuls  of 1-extensions of P with T-Header named 
IPULs and the minUtil threshold. For each ipul in IPULs, the 
Search procedure first gets its corresponding pattern X by 

.ipul name  (Lines 1-2). Next, it aims to explore X and all ex-
tensions of X, finding HUPs in them (Lines 3-14). For effi-
ciency, we apply ABS-Prune (Strategy 3) and the overestima-
tion property of twu (Property 1) to exclude absent patterns 
and unpromising patterns (Lines 3-4). Next, we check the 
utility of X by . .X ipul sumU , and if ( ) >u X minUtil , then X 
is inserted into HUI-trie as HUP (Lines 5-6). After that, we 
apply EUB-Prune (Strategy 1) to avoid unnecessary explora-
tion by calculating the sum of ipul.sumU’ and ipul.sumRU. If 
the sum is not less than minUtil, then further exploration of X 
is achieved by calling the Construct procedure and recursive-
ly performing the Search procedure (Lines 7-10). Otherwise, 
those extensions of X and their descendant nodes are regard-
ed as low utility, and they are moved in this step. To enhance 
the flexibility of the algorithm, we count the number of ex-
tensions returned by the Construct procedure. If this number 
is 1, instead of further recursion, we directly output or delete 
the returned extension by judging its utility (Lines 11-14). 
When no candidates are generated, the method terminates 
and returns the HUI-trie back to the main procedure. 

The Construct procedure is designed to build all 1-ex-
tensions and their ipuls for the pattern Px whose prefix is P. 
It takes P.ipul, Px.ipul and the set of ipuls of sibling patterns 
of Px with a T-Header as input. The Construct procedure 
operates as follows: First, it initializes the expected output: 
exULs and a new T-Header associated with exULs (Line 1). 
Next, for the input Px.ipul , we adopt the ABS-prune (Strategy 
3) to expand its db+ part first (Lines 2-21), and then perform 
similar operations on Px.ipul.OGD (Lines 22-37). 
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Algorithm 3. The Construct procedure
1: Initialize exULs =∅ , T-headernew =∅ ;
2: for each tuple ut ∈  px.ipul.db+ do
3:     Initialize tTemp = null, remaining utility = 0;
4:   Locate the tuple tmid associated with the component 

pointed to by tu.tid in the IPULs.T-header; 

5:    while tmid  != null do
6:        Obtain twu(tmid.item, tu.item) from EUCS; 
7:        if twu(tmid.item, tu.item) < minUtil then
8:           tmid = tmid.next;
9:           Keep remaining utility unchanged;
10:           Continue; 
11:      if exULs does not contain ipul of pattern Px ∪

tmid.item  then
12:            Create a new ipul for pattern Px ∪  tmid.item 

and append it to exULs ;
13:       Set PreUtil ←  P.length == 0? 0:  preList.db+.

get( tu.tid - preList.OGD.size-1).iutil
14:       Set unew ←  u+1 + Px.ipul.OGD.size(); 
15:       Tuple tnew ←  (unew, tmid.item, tu.iutil + tmid.iutil - 

preUtil)
16:       Associate the first created tnew to the unew-th 

component of T-headernew

17:       Append tnew to the ipul of pattern Px ∪ tmid.item;
18:       Add the remaining utility to sumRU , add the 

tnew.iutil to sumU and update sumU’ ; 
19:       remaining utility += (tmid.iutil - PreUtil);
20:       tTemp.next = tnew; tTemp = tnew;
21:       tmid = tmid.next;
22: for each tuple vt ∈  px.ipul.OGD do
23:    Initialize a temporary tuple tTemp = null, remaining 

utility = 0
24:    Locate the tuple tmid associated with the component 

pointed to by tv.tid in the IPULs.T-header;
25:    while tm  != null do
26:        if exULs does not contain ipul of pattern Px ∪

tm.item then
27:              tm = tm.next;
28:             Continue;        // ABS-prune
29:           Set PreUtil ←  P.length == 0? 0:  preList.db+.

get( tv.tid - 1).iutil
31:          Tuple tnew ←  (v+1, tmid.item, tv.iutil + tm.iutil - 

preUtil)
32:          Associate the first created tnew to the  v+1-th 

component of T-headernew

33:          Append tnew to the ipul of pattern Px ∪  tm.item;
34:          Add the remaining utility to sumRU , add the        

tnew.iutil to sumU and update sumU’ ; 
35:          tTemp.next = tnew; tTemp = tnew;
36:          tm = tm.next;
37: return exULs with  T-headernew

5  Experiments

1　 https://www.philippe-fournier-viger.com/spmf/
2　 http://fimi.ua.ac.be/data/
3　 http://www.Almaden.ibm.com/cs/quest/syndata/

Notice that many studies already exist on the topic of 
incremental mining HUPs. In addition, in recent studies, the 
EIHI algorithm [19] significantly outperforms HUI-list-Ins 
[18], and IIHUM [21] outperforms LIHUP [20] under certain 
conditions, but there is no literature comparing the IIHUM 
with the EIHI algorithm. Therefore, the state-of-the-art al-
gorithms EIHI, LIHUP, and IIHUM are executed to provide 
benchmarks to validate the performance of our IDHUP algo-
rithm.

Experimental configuration: The code of EIHI was 
from the open-source library SPMF1, and since the codes of 
LIHUP and IIHUM are unavailable, these two algorithms 
were implemented by us. All the compared algorithms were 
implemented in Java language and developed in the Eclipse 
IDE (2021). Meanwhile, all the experiments were performed 
on a personal computer with an Intel(R) Core (TM) i7-7700 
CPU @ 3.60GHz processor, 8 GB of RAM, and with 64-bit 
Windows 10 OS.

Parameter settings: In the experiments, algorithms were 
tested on different datasets with two varying parameters, 
i.e., minUtil and IR, to evaluate their performance. Where IR 
represents the insertion ratio, which means the ratio of the 
number of transactions in the additional database db+. For ex-
ample, for a database of size 200, IR = 10% implies that there 
are 20 transactions per insertion and ten updates in total. 

5.1  Data Preprocessing
Our experiments were conducted on three publicly avail-

able real-world datasets (retail, foodmart, and mushroom2) 
and one synthetic dataset (T10I4D100K). These datasets 
cover common data features (e.g., sparse or dense, long or 
short) in real-life scenarios, each with its own characteristics. 
Details on the characteristics of the datasets are described be-
low. 

1. retail : it consists of 88,162 customer transactions from 
an anonymous Belgian store, including 16,470 distinct items, 
with an average transaction length of 10.3. It is a moderately 
long and sparse dataset. 

2. foodmart: this dataset is obtained from the Microsoft 
SQL-Server 2000 and contains 4141 transactions with 1559 
distinct items. It is a small and sparse dataset. 

3. mushroom : it consists of 8124 transactions with 119 
distinct items. Its average transaction length is 23 and density 
is 19.33%, implying that it is a dense dataset with long trans-
actions. 

4.  T10I4D100K : it is synthesized by the IBM Quest 
Dataset Generator 3, which has 100K transactions with 870 
distinct items, and the average transaction length is 10.1. 

In these datasets, only the transactions of foodmart carry 
real utility information, that is, the quantitative and profit 
information are real. In consideration of this, we used a sim-
ulation model, which has been widely employed in several 
studies [5, 9], to synthesize external and internal utility val-
ues respectively in the [0.01, 1000] and [1, 5] intervals for 
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items in retail and mushroom.

5.2  Effect of the minUtil Threshold
In this section, we first evaluated the performance of the 

proposed IDHUP algorithm on each dataset under a decreas-
ing minimum utility threshold with a fixed insertion ratio of 
5%. We ran all algorithms and recorded the accumulated exe-
cution time and peak memory usage after 20 updates on each 
dataset. 

Figure 7 depicts the accumulated running time of the four 
algorithms on each dataset. Clearly, the IDHUP algorithm 
is significantly faster than other algorithms in any case. For 
example, for dataset retail with minUtil = 1500, IDHUP 
takes 10.89 seconds, EIHI takes 39.67 seconds, LIHUP takes 
697.15 seconds, and IIHUM takes 35.58 seconds. It shows 
that IDHUP is three to four times faster than the EIHI and II-
HUM algorithms, and even an order of magnitude faster than 
LIHUP. Moreover, the IHDUP algorithm is more adaptable 
than others. Generally, when minUtil is small, the runtime of 
utility mining algorithms increases sharply due to the growth 
of the actual search space. For dense dataset mushroom 
as shown in Figure 7(c), IDHUP works well even for low 
minUtil values, whereas the performance of the other 

Figure 7. Runtime under varied minUtil

Figure 8. Memory under varied minUtil

algorithms degrades considerably. In contrast, for sparse 
datasets retail and foodmart as shown in Figure 7(a) and 
Figure 7(b), with the decrease of minUtil, the running time of 
IDHUP increases more slowly than that of the others. IDHUP 
also outperforms other algorithms on synthetic dataset 
T10I4D100K as shown in Figure 7(d). This demonstrates that 
the designed IDHUP algorithm is capable of significantly 
improving the performance in terms of running time.

Figure 8 presents the peak memory usage for all algo-
rithms on the test datasets. As shown, the IDHUP algorithm 
performs poorly on other datasets except the foodmart data-
set. The reason is that the construction of global structures, 
EUCS and HUI-trie, inevitably makes IDHUP consume addi-
tional memory. In addition, the size of the memory-consum-
ing T-header list in the ipul structure is closely related to the 
number of transactions in datasets. Therefore, IDHUP per-
forms poorly on large datasets retail and T10I4D100K. For 
dense dataset, the peak memory usage of IDHUP is compara-
ble to that of IIHUM and more than the other two algorithms. 
In contrast, LIHUP and IIHUM have higher peak memory us-
age than IDHUP in small dataset foodmart, as this drawback 
of IDHUP is balanced by the quantitative disparity of visited 
candidates. It can be concluded that the designed IDHUP al-
gorithm with EUCS-prune and ABS-prune provides a trade-
off between running time and memory usage. Nevertheless, 
the designed IDHUP algorithm is still able to complete all 
mining tasks with less than 1 GB of memory consumption, 
making it more suitable for deployment in systems with 
strong real-time requirements and sufficient memory.

5.3  Effect of the Insertion Ratio
We further conducted experiments under increasing IR 

and a fixed minUtil. The minUtil of retail, foodmart, mush-
room, and T10I4D100K are 4500, 1200, 300K, and 5K, re-
spectively. The total execution time and peak memory usage 
are presented in Figure 9 and Figure 10.

From Figure 9, it can be observed that the IDHUP algo-
rithm has the best performance on four datasets under various 
IR with a fixed minUtil. In some cases, IDHUP is two orders

Figure 9. Runtime under varied IR
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Figure 10. Memory under varied IR

of magnitude faster than LIHUP. In addition, the time spent 
by the IDHUP algorithm is relatively stable when the IR 
gradually decreases, while the other algorithms increase 
faster, indicating that IDHUP is insensitive to the changes 
in IR and therefore has better adaptability. Similar to the 
findings of the previous experiments, the designed IDHUP 
algorithm indeed shows a noticeable improvement in running 
time. 

Figure 10 shows the peak memory consumption on the 
four datasets. IDHUP consumes more memory than the 
other algorithms on datasets, e.g., retail, mushroom, and 
T10I4D100K. Such results agree with our intuition. Similar 
to the previous analysis, our approach makes a compromise 
between runtime and memory. Fortunately, all mining tasks 
can be completed by IDHUP in less than 1 GB of memory, 
which is within acceptable limits. 

6  Conclusions

In this paper, we present a novel and efficient method 
called IDHUP for discovering high utility patterns from in-
cremental databases. To reduce unnecessary scanning and 
exploration of the database, we propose the ipul structure that 
stores utility information vertically and constructs extension 
lists horizontally. In addition, we employ four pruning strat-
egies, namely EUB-prune, EUCS-prune, ABS-prune, and 
RUR-prune, to enhance the algorithm’s ability to filter useless 
patterns by tightening the utility upper bound and excluding 
unpromising patterns. IDHUP was compared with EIHI, LI-
HUP and IIHUM, which are the state-of-the-art algorithms 
for incremental mining HUPs. Experiments showed that our 
IDHUP algorithm is more robust than existing algorithms 
and brings significant improvements in running time. In some 
cases, IDHUP is even three to four times faster than EIHI and 
IIHUM, and an order of magnitude faster than LIHUP. 
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