
IDHUP: Incremental Discovery of High Utility Pattern 135

*Corresponding Author: Yining Liu; E-mail: ynliu@guet.edu.cn
DOI: 10.53106/160792642023012401013

Abstract

As a sub-problem of pattern discovery, utility-oriented
pattern mining has recently emerged as a focus of research-
ers’ attention and offers broad application prospects. Con-
sidering the dynamic characteristics of the input databases,
incremental utility mining methods have been proposed,
aiming to discover implicit information/ patterns whose
importance/utility is not less than a user-specified threshold
from incremental databases. However, due to the explosive
growth of the search space, most existing methods perform
unsatisfactorily under the low utility threshold, so there is
still room for improvement in terms of running efficiency and
pruning capacity. Motivated by this, we provide an effective
and efficient method called IDHUP by designing an indexed
partitioned utility list structure and employing four pruning
strategies. With the proposed data structure, IDHUP can not
only dynamically update the utility values of patterns but also
avoid visiting non-occurred patterns. Moreover, to further
exclude ineligible patterns and avoid unnecessary explora-
tion, we put forward the remaining utility reducing strategy
and three other revised pruning strategies. Experiments on
various datasets demonstrated that the designed IDHUP al-
gorithm has the best performance in terms of running time
compared to state-of-the-art algorithms.

Keywords: Pattern discovery, Incremental mining, Utility
mining, Dynamic data

1 Introduction

The prevalence of big data not only promotes rapid
economic and social development, but also brings a lot of
convenience to our lives. Managers from all walks of life use
data mining and data analysis to extract potentially useful
information from a large amount of data to assist intelligent
decision-making. For example, pattern mining algorithms
are widely used in market basket analysis, urban traffic
congestion analysis, agrometeorological forecast, disease
risk assessment, etc. [1]. The most common tasks of pattern
mining are frequent pattern mining (FPM) and association
rule mining (ARM). Apriori [2] and FP-growth [3] are two
of the well-known methods for addressing these tasks. As the

first step of ARM, FPM measures the usefulness or insight-
fulness of patterns based on co-occurrence frequency. Under
this framework, all the items/objects are regarded as equally
important, while other connotational factors such as weight,
utility, or risk of items are ignored, thus losing the applicabil-
ity of dealing with complex tasks.

Therefore, researchers have paid more attention to new
pattern mining methods that integrate subjective metrics (e.g.,
weight, unit profit, and user preferences) and objective met-
rics (e.g., quantity and frequency) to enhance the usability
and interest of the extracted patterns. Unlike the traditional
frequency-based framework, HUPM focuses on the utility
of patterns, which incorporates quantitative information and
weights of items rather than only considering existence or
confidence. In this way, HUPM can extract valuable and high
profitable patterns for retailers and business managers, and is
thus successfully used at the intersection of business and data
science. Generally, utility is an ubiquitous concept in real
life that is not limited to measuring the profit of patterns, but
can also measure other subjective views of users on patterns,
such as risk, usability, importance, satisfaction, and so on.
Nowadays, utility mining plays an important role in the field
of data analysis, and many studies have focused on mining
efficiency, such as Two-Phase [4], HUI-Miner [5], FHM [6],
HUP-Miner [7], mHUIMiner [8], and EFIM [9].

However, the above-mentioned methods are only suitable
for dealing with static transaction databases. In order to adapt
to the real world, various extension topics based on HUPM
are concerned [10-11]. Incremental high utility pattern min-
ing (IHUPM), as one of these hot topics, aims to effectively
process the data continuously generated by various applica-
tions, avoiding the processing from scratch like static meth-
ods whenever new data is added. For example, assuming
100 new transactions are inserted into an original database
containing 100,000 transactions, traditional static approaches
would process 100,100 transactions, while IHUPM methods
simply process 100 new transactions to achieve the same
result. In the past few decades, many approaches have been
developed to handle IHUPM tasks. According to [12], these
methods can be roughly divided into three categories, respec-
tively,

IDHUP: Incremental Discovery of High Utility Pattern

Lele Yu1, Wensheng Gan2, Zhixiong Chen3, Yining Liu1*

1 Guangxi Key Laboratory of Trusted Software, School of Computer Science and Information Security,
Guilin University of Electronic Technology, China

2 College of Cyber Security, Jinan University, China
3 Fujian Key Laboratory of Financial Information Processing, Putian University, China

yll101298@gmail.com, wsgan001@gmail.com, ptczx@126.com, ynliu@guet.edu.cn

136 Journal of Internet Technology Vol. 24 No. 1, January 2023

Table 1. Comparison of existing IHUPM methods
Category Algorithm Theoretical basis Limitations

Apriori-based
algorithms

FUP-HUI-INS [13] It relies on the FUP concept [22] and the
twu model [4].

Apriori-based algorithms require
multiple scans of the database
and generate a large number of
candidates.Pre-HUI-INS [14] It level-wisely mine HUPs as an

extension of literature [13].

Tree-based
algorithms

IHUP [15] It constructs a global tree and uses it to
mine HUPs. Tree-based algorithms require

frequent updating of tree nodes
and creation of subtree structures,
which is time-consuming.

iCHUM [16] It improves IHUP [15] and relies on the
twu model [4].

PIHUP [17] It relies on the pre-large concept from the
literature [14].

List-based
algorithms

HUI-list-Ins [18]
It calculates utility values with utility-
list structure and speeds up the algorithm
with EUCS structure.

The joining process of the utility-
list structure is inefficient.EIHI [19] It uses partitioned utility-list structure

and stores results in HUI-trie.

LIHUP [20] It updates the global utility list through a
novel reconstruction technique.

IIHUM [21]
It avoids inefficient intersection
operations through the indexed utility list
structure

It fails to take advantage of the
properties of incremental data to
simplify calculations.

They are Apriori-based methods [13-14], tree-based
methods [15-17], and list-based methods [18-21].

Although the existing IHUPM algorithms can be applied
to mining valuable patterns in dynamic environments, they
still face many challenges. First, the calculation of utility val-
ues comprehensively considers multiple factors, this is more
complicated than that of frequency. Second, utility does not
maintain downward closures, which can be used to prune in-
valid patterns in the search space in advance. This means that
traditional frequency-based pruning methods are not suitable
for utility mining, and substitute robust pruning strategies
must be used to effectively and efficiently exclude unqualified
patterns. Third, the insertion of additional transactions chang-
es the utility of patterns and may introduce some new items,
rendering the original information invalid. What growable
data structures are utilized to update the utility values without
processing from scratch like with static methods and to retain
identified patterns are key issues. Moreover, it is significant
to minimize the time and space complexity without discard-
ing qualified patterns and without reprocessing the original
database, which ensures mining tasks can be completed pre-
cisely under limited time and space resources.

To address the above challenges and for further efficiency
improvement, we designed a novel one-phase algorithm to
efficiently and fully discover valuable patterns from incre-
mental databases, called IDHUP (Incremental Discovery of
High Utility Pattern). Thanks to the proposed several pow-
erful pruning strategies and indexed partitioned utility list
structure, IDHUP can complete the IHUPM task without
generating many candidates. The main contributions of this
paper are threefold:

1. Relying on the proposed novel and compact indexed
partitioned utility list structure, the algorithm does not gen-
erate non-occurred patterns as candidates, and maintains the
utilities of patterns easily in an incremental environment.

2. Considering the computational complexity of existing
incremental algorithms, we investigate the Remaining Utility
Reducing pruning strategy to decrease the remaining utility
upper bound by subtracting the utilities of unpromising suc-
ceeding items. Furthermore, we adopt three complementary
strategies to discover unpromising succeeding items.

3. Experiments on real and synthetic datasets demon-
strated that IDHUP with all pruning strategies can discover
intact high utility patterns with acceptable memory consump-
tion and the shortest running time.

This paper is structured as follows. Section 2 reviews
some existing IHUPM methods. In Section 3, some basic
definitions are given. Then, we describe the proposed IDHUP
algorithm in Section 4. In Section 5, we evaluate the effec-
tiveness and efficiency of our method. Finally, we summarize
this paper.

2 Related Work

Many dynamic HUPM methods have been studied re-
cently, especially incremental mining methods dealing with
databases with transactions insertion. A comparative summa-
ry of existing IHUPM methods is presented in Table 1.

As shown in Table 1, IHUPM algorithms are classified
as Apriori-based [13-14], Tree-base [15-17], and List-based
[18-21], depending on the data structure they use. FUP-
HUI-INS [13], as an Apriori-based approach, combines the
concepts of FUP [22] and twu [4] to divide all patterns in the
database into four categories, and reduces some unnecessary
processing by classification and discussion. Pre-HUI-INS
[14], an extension of FUP-HUI-INS, presents the concept of
pre-large to divide patterns into nine categories to further im-
prove efficiency. However, Apriori-based algorithms require
multiple scans of the database. To solve this problem, tree-

IDHUP: Incremental Discovery of High Utility Pattern 137

based algorithms such as IHUP [15], iCHUM [16], and PIH-
UP [17] have been proposed. But all the above algorithms are
two-stage algorithms that would generate lots of candidate
itemsets instead of finding HUPs directly. Thus, inspired by
HUI-Miner [4], many one-stage algorithms without candidate
generation are proposed, such as HUI-list-Ins [18], EIHI [19],
LIHUP [20], and IIHUM [21]. EIHI uses a global structure
HUI-trie to store previously obtained results and acceler-
ates exploration by classifying patterns by their presence or
absence in incremental data. Through the developed utility
lists reconstruction mechanism, LIHUP achieves effective
mining with only a single scan of incremental data. However,
the above algorithms based on traditional utility lists suffer
from inefficient joining processes. IIHUM overcomes it with
a novel indexed utility list structure, but still leaves room
for improvement in filtering invalid patterns and fails to take
advantage of the property of incremental data to simplify
calculations. Recently, Liu et al. proposed the incremental al-
gorithm Id2HUP+ [23]. Note that the mining objective of this
algorithm differs from previous algorithms in that its mining
results do not contain the HUPs in the original database,
while other incremental algorithms update the utility of these
patterns and output them. In other words, Id2HUP+ cannot
obtain the complete set of HUPs and their corresponding ac-
tual utility values in the entire database.

In addition to the above incremental algorithms for
mining HUPs, there are many incremental algorithms for
different mining purposes, such as IncCHUI [24] for mining
closed high utility patterns, and HUIPRED [25] for handling
database where transactions are deleted. Moreover, there
are many methods for other dynamic scenarios. For exam-
ple, M- PM [26] and SOHUPDS [27] for dealing with data
streams, iMEFIM [28] and CHUI-Power [29] for processing
the dynamic unit profit databases. As the common and basic
situation of dynamic change, incremental high utility mining
is still our focus. For further efficiency improvement, we pro-
pose our IDHUP algorithm.

3 Preliminaries

Let 1 2{ , ,..., }mI i i i= be a set of m distinct products/ items.

Given an original database 1 2{ , ,..., }nOGD T T T= containing
n transactions and an additional database db+ consisting of k
transactions that need to be inserted into OGD, the entire up-
d a t e d d a t a b a s e t o b e m i n e d i s r e p r e s e n t e d a s
D OGD db+= ∪ . Each transaction in D has a unique identi-
fier called tid and is a subset of I. In addition, each item i in
a transaction rT is associated with a non-binary value

(,)rq i T that records occur quantity and a positive number
()pr i that measures unit profit/weight. Tables 2 and Table 3

show examples of an entire incremental database and a unit
profit table.

Table 2. Example of incremental transaction database
tid Transaction tu

OGD

1T (: 3), (:1), (: 3), (: 2)a b c d $22

2T (:1), (: 3), (: 2), (: 3), (:1)b c d e f $23

3T (: 5), (: 2), (: 3), (: 2)b d e f $41

4T (: 2), (: 2), (: 3), (:1)a c d e $15

db+
5T (:1), (: 3), (: 2)c d e $9

6T (: 3), (:1)d f $7

7T (: 3)a $9

Table 3. Example of static unit profit database

Item a b c d e f
Unit profit $3 $5 $2 $1 $2 $4

Definition 1: The utility of a pattern X in a transaction rT

is (,)ru X T and can be calculated as in equation (1), where
(,)ru i T is the utility of item i X∈ in rT and obtained by

multiplying (,)rq i T and ()pr i .

(,) (,) { (,) () }r r r
i X i X

u X T u i T q i T pr i
∈ ∈

= = ×∑ ∑ . (1)

Definition 2: The total utility of pattern X in the entire
database D , denoted as ()Du X , is calculated as in equation
(2).

() (,)D r
X T T Dr r

u X u X T
⊆ ∧ ∈

= ∑ . (2)

F o r e x a m p l e , t h e u t i l i t y o f i t e m a i n 1T i s

1 1(,) = (,) () = 3 $3 = $9u a T q a T pr a× × . Further, utility of

p a t t e r n { , , }a b c i n 1T c a n b e c a l c u l a t e d a s

1 1 1 1({ , , },) = (,) (,) (,)u a b c T u a T u b T u c T+ + = $9 + $5 + $6 =

$20. Similarly, 1({ , },) = 1 $5 3 $2 = $11u b c T × + × , and the

utility of pattern { , }b c in the updated database D is

1 2({ , }) = ({ , },) ({ , },) = $11 $11 = $22Du b c u b c T u b c T+ + .
Definition 3: Given a minimum utility threshold minUtil

defined by an experienced decision maker, if the utility of
pattern X in D is not less than minUtil , then X is called
high utility pattern (HUP) in D , otherwise it is a low utility
pattern in it. That is,

{ | () , }DHUPs X u X minUtil X I= ≥ ⊆ . (3)

For example, if the minUtil set as 30, then the pattern
{ , }b c is a low utility pattern since ({ , }) = 22 < 30Du b c while

p a t t e r n { }b i s a H U P i n D b e c a u s e ({ }) =Du b

138 Journal of Internet Technology Vol. 24 No. 1, January 2023

1 2 3({ },) ({ },) ({ },) = $5 $5 $25 = 35 > 30u b T u b T u b T+ + + + .

Definition 4: The utility of a transaction rT , denoted as
()rtu T and is calculated as,

() = (,)r r
i Tr

tu T u i T
∈
∑ . (4)

Definition 5: The transaction weighted utilization (twu
[4]) of a pattern X in the updated database D is the sum of the
utilities of transactions containing X, and is defined by,

 () ()
r r

D r
X T T D

twu X Ttu
⊆ ∧ ∈

= ∑ . (5)

For example, the utility of 1T is 1()tu T = 1(,)u a T +

1 1 1(,) (,) (,)u b T u c T u d T+ + = 3 $3 1 $5 3 $2 2 $1× + × + × + × =
$9 $5 $6 $2 = $22+ + + . The utility of each transaction in the
example database of Table 2 is given in i t . Then,

1 4 7({ }) = () () () $22 $15 $9 $46Dtwu a tu T tu T tu T+ + = + + =

and 1({ , }) = () = $22Dtwu a b tu T .
Property 1 (Overestimation and downward closure of

twu): The twu of pattern X is not less than its utility, that is,

 () ()twu X u X≥ . (6)

In addition, it satisfies downward closure property, that is,
the twu of X is not less than the twu of any of its super pat-
terns. Combined, the following property holds.

() () (), twu X twu Y u Y if X Y≥ ≥ ⊆ . (7)

Definition 6: Generally, items in a database are assumed
to be sorted in a certain order, which is denoted as total order
 . In particular, the total order used in the designed IDH-
UP algorithm is obtained as follows: Items in the first OGD
database are sorted by OGDtwu ascending order. For subse-
quent batches, this order is maintained, and items that have
never appeared before always succeed these sorted items.

Definition 7: The remaining utility of a pattern X in a
transaction rT is defined by,

()
(,) = (,)r r

i X i j j Tr

ru X T u j T
∀ ∈ ∧ ∈
∑

. (8)

Definition 8: The remaining utility of pattern X in the
entire database D , is denoted as ()Dru X .

() = (,)D r
X T T Dr r

ru X ru X T
⊆ ∧ ∈
∑ . (9)

For example, OGDtwu of items a, b, c, d, e, f are 37, 86,
60, 101, 79, 64, respectively, thus the total order is set as:
a c f e b d . In addition, the remaining utility of

pattern { }ab in 1T is 1 1({ },) = ({ },) =ru ab T u d T 2 $1 = $2× .

And the remaining utility of { }ab in D is ({ }) =Dru ab

1({ },) = $2ru ab T .
Property 2 (Pruning by remaining utility): For pattern X

, define its extensions as the patterns obtained by appending
such an item j to X , where ,i j i X∀ ∈

. If the sum calcu-
l a t e d b y equation (10) is less than minUtil , then all
extensions of X are not HUPs.

() = () ()reu X u X ru X+ . (10)

Problem statement. Given an original transaction data-
base OGD, a static unit profit table, a user-specified mini-
mum utility threshold (minUtil), and a set of transactions db+
are inserted into OGD. The incremental part db+ and the orig-
inal database OGD together form an updated database D to
be mined. The goal of IHUPM is to output all HUPs in the
currently updated database D.

4 Proposed IDHUP Algorithm

This section presents a novel algorithm for addressing the
IHUPM task, called IDHUP. IDHUP first scans the original
database or the additional database to set up a total order of
items, then constructs global lists structure of single items ac-
cording to the total order to maintain the utility information,
and finally recursively mines high utility patterns and stores
them in the HUI-Tire. The framework of the proposed IDH-
UP algorithm is presented in Figure 1. Details of the indexed
partitioned utility list structure, pruning strategies, and the
main procedure of IDHUP are respectively described below.

4.1 Proposed Indexed Partitioned Utility List Structure
Several utility list-based methods have been proposed

to achieve IHUPM task without multiple scans. However,
the traditional utility list structure is constructed through
time-consuming intersection operations. The utility-list*
structure in the static algorithm HUI-miner* [30] directly
points to the element to be intersected to solve this prob-
lem, but its corresponding dynamic maintenance and update
mechanism has not been proposed. Therefore, in the pro-
posed IDHUP algorithm, the utility-list* is modified to adapt
to incremental environments. Furthermore, also inspired by
the partitioned structure, the indexed partitioned utility list
structure is defined below. For convenience, we abbreviate
the indexed partitioned utility list of pattern X as X.ipul.

Definition 9: The X.ipul consists of the pattern name
(name), utility (sumU), remaining utility (sumRU), a set of
tuples associated with transactions containing X in the origi-
nal database OGD (X.ipul.OGD), and such tuples associated
with transactions in the additional database db+ (X.ipul. db+).
A tuple is defined as < next, tid, item, iutil > for each transac-
tion rT containing X.

next : a pointer to the next tuple associated with rT .

tid : the transaction identifier of rT .

IDHUP: Incremental Discovery of High Utility Pattern 139

item : the last item in pattern X.
iutil : the utility of X in rT , i.e., (,)ru X T .

are processed. For example, in the above process, when the
t u p l e bt i s p r o c e s s e d , 3 3(,) = (,) = 2ru b T u d T a n d

3(,) = 25u b T can be obtained, thus add 2 to the sumRU of
b.ipul and add 25 to the sumU of b.ipul.

Property 3: Given a pattern X and X.ipul, then sumU and
sumRU in X.ipul calculated by the utility and remaining utili-
ty of the tuples are respectively equivalent to ()Du X and

()Dru X .
Proof: each tuple in .X ipul is associated with a transac-

tion containing X, hence the sum of the iutil values of tuples

in . .X ipul OGD and in . .X ipul db+ is equals to,

Figure 1. Flowchart of the IDHUP algorithm

Figure 2. Global list of each 1-item

In addition, IDHUP links the i-th element in a table called
T-Header to the tuple corresponding to the last item in the i-th
transaction according to the total order . Figure 2 shows
the ipuls of all single items (1-itemsets) in the running exam-
ple with T-header. IDHUP builds them horizontally and pro-
cesses them in reverse order. For example, consider 3T in
Table 2. According to the Def. 6, the total order we adopt is
a c f e b d . Then, when 3T is processed, IDHUP

f i r s t s t o r e s a t u p l e : : 3, : , :)2(dt tid item d iutil i n
. .d ipul OGD and links the 3-rd component in T-Header to dt ,

secondly stores a tuple : : 3, : , : 25()bt tid item b iutil in
. .b ipul OGD and links the next field of dt to bt ; Then it up-

dates the lists of remaining items in 3T in turn. Note that the
summary information, such as sumU and sumRU, are calcu-
lated during the building process and updated after all tuples

140 Journal of Internet Technology Vol. 24 No. 1, January 2023

= (,) (,)

= () ()

= ().

r k
X T T ODG X T T dbr r k k

OGD db

D

sumU
u X T u X T

u X u X

u X
+

+⊆ ∧ ∈ ⊆ ∧ ∈

+

+

∑ ∑
 (11)

Similarly, we have,

() () = ().OGD Ddb
sumRU ru X ru X ru X+= + (12)

IDHUP horizontally constructs the ipuls of 1-extensions
of a single item x (2-itemsets) by traversing x.ipul. Suppose
the tuple being traversed is the u -th tuple in .x ipul called ut

and . =ut tid k . It first locates the tuple 1t based on the k -th

component in the T-Header related to .x ipul . Then, starting

from 1.t next , a sequence of tuples 1 2, ,..., mt t t until ut can be

derived by following .it next (1 i m≤ ≤). For each it , IDH-

UP will construct a new ipul for pattern { , .ix t item } and

store a new tuple xit : : , : , :(. .)i ut iutiltid u item i iut t iuil til+

in its OGD or db+ . Simultaneously, IDHUP updates the
next field of these new tuples in sequence and links the first
constructed tuple to the u -th component in a new T-Header.
In addition, the summary information of these new ipuls are
calculated during the building process.

Take the second tuple 2t : (4, ,6)a in . .a ipul OGD in Fig-
ure 2 as an example, IDHUP traces a sequence of tuples
(4, ,3)d , (4, , 2)e and (4, , 4) . Thus, new tuples (2, ,3 6)d + ,
(2, , 2 6)e + and (2, , 4 6)c + are stored in the ad.ipul.OGD,
ae.ipul.OGD and ac.ipul.OGD, respectively. Simultaneously,
IDHUP updates their summary information by adding
(9, 0)sumU sunRU+ + i n a d . i p u l , a d d i n g
(8, 3)sumU sunRU+ + i n a e . i p u l , a n d a d d i n g
(10, 5)sumU sunRU+ + in ac.ipul, respectively. Where 3 is

the iutil of tuple (4, ,3)d and 5 is summed by 3 and the iutil

of tuple (4, , 2)e , i.e., 3 2+ . In addition, IDHUP connects
these tuples in sequence and links the second component in a
new T-Header to (2, ,9)d . Figure 3 shows the result of con-
structed ipuls of all 1-extensions of {a}.

Figure 3. The ipuls of all 1-extensions of {a}

The construction of the ipuls of k-itemsets (3k ≥) is sim-
ilar to that of 2-itemsets. For k - 1 pattern X and its prefix pat-
tern P, assume that the tuple being traversed is the u-th tuple
in .X ipul called ut and . =ut tid z . Compared with the above

construction process, the only difference is that, for each it

in sequence derived by ut , IDHUP constructs a new ipul for

pattern { , .iX t item } and stores a new tuple Xit : (tid: u ,

item: i , iutil: . .i ut iutil t iutil preUtil+ −) in area OGD or

db+ of it. Where preUtil is the utility of P in the transac-

tion associated with ut and can be obtained by . =ut tid z

without traversing .P ipul , since the iutil of the z-th tuple in
.P ipul is equal to preUtil . For example, the ipuls of 1-ex-

tensions of pattern {ac} are shown in Figure 4.

Figure 4. The ipuls of all 1-extensions of {ac}

4.2 Pruning Strategies
Similar to the previous studies [5-6], a set enumeration

tree is used to represent the complete search space for mining
HUPs. This tree structure represents all possible subsets of

1 2= { , ,..., }mI i i i , where each node represents a pattern and
its children nodes represent extensions of this pattern [31].
Note that this tree structure is not real, it is used to facilitate
the description of the search space and strategies for filtering
unqualified patterns, and is not actually constructed during
the mining process. In the worst case, there may be 2m candi-
date patterns (i.e., all the subsets of I), corresponding to 2m
nodes in the enumeration tree, which indicates a huge search
space, thus showing the difficulty and complexity of mining.
Therefore, it is necessary to use several effective pruning
strategies to find the unqualified patterns in advance and ter-
minate exploration early. Key pruning strategies used in this
paper are described below.

Lemma 1 (Extension upper bound): The extension upper
bound of a pattern X can be calculated as:

(,)>0
() = [(,) (,)]r r

X T ru X Tr r

extUB X u X T ru X T
⊆ ∧

+∑ . (13)

If () <extUB X minUtil , then all extensions of X are not
HUPs and do not need to extend pattern X further. A com-
plete proof of this lemma can be referred to [32].

Strategy 1 (EUB-Prune) For each pattern, IDHUP cre-
ates a new summary information field called sumU’ in X.ipul.
During the horizontal construction of X.ipul, IDHUP deter-
mines whether the remaining utility of the tuple ti being
stored is zero. If it is not zero, then add ti.iutil to the sumU
and sumU’ fields in X.ipul, otherwise add it to sumU only.
While performing a depth-first search, for any pattern/node
X in the search space, if (X .ipul.sumU' + X .ipul.sumRU) <

minUtil, then no further extension for X is needed. Because
all its children nodes/patterns are not HUPs, and these un-
promising patterns can be directly pruned. Conversely, X

IDHUP: Incremental Discovery of High Utility Pattern 141

should be further extended.
For example, as .a ipul shown in Figure 2, the

() = 9 6 = 15sumU a′ + since the remaining utility of the tuple
(,7, ,9)a− i s z e r o , a n d () = ()extUB a sumU a′ +

() = 15 22 = 37 > = 30sumRU a minUtil+ implies that further
expansion of {a} is needed.

Lemma 2 (EUCS Structure [6]): The Estimated Utility
Co-Occurrence Structure (EUCS) is a triangular matrix to
stores the twu values of all pairs of items and is defined as,

= {(; ; ({ })) | , }EUCS a b twu ab a I b I∈ ∈ . (14)

If the twu of a 2-pattern is less than minUtil , then all of
its supersets are not HUP according to the property 1.

Strategy 2 (EUCS-Prune) While constructing the ipuls
for all 1-extensions of pattern X as described in Sec. 4.1, for
e a c h t u p l e it d e r i v e d b y t u p l e ut i n .X ipul , i f

(. , .) <u itwu t item t item minUtil is obtained from EUCS, then

the extens ion pa t te rn { , . }iX t item as a superse t of
{ . , . }u it item t item is not a HUP. Thus, instead of constructing

a new ipul for { , . }iX t item , we ignore .it item and skip tu-

ple it .

For example, during the construction of ipuls for all
1-extensions of {a} from Figure 2, IDHUP locates the first
component in the T-Header and traces a sequence of tuples
(1, , 2)d , (1, ,5)b and (1, ,6)c . Since (,) = 31 30twu a d > ,

(,) = 22 < 30twu a b and (,) = 31 > 30twu a c , IDHUP creates

new ipuls for patterns {ad} and {ac}, and respectively stores

tuples (1, ,11(2 9))d = + and (1, ,15(6 9))c = + in them, but

ignores pattern {ab} and skips tuple (1, ,5)b . The construc-
tion result with EUCS-prune is shown in Figure 5.

Figure 5. An example of EUCS-prune

Lemma 3 (Absent pattern): Given the entire incremental
database =D OGD db+∪ , a pattern X is called an absent

pattern if it appears only in OGD but not in db+ . The utility
of an absent pattern in D remains the same as that in OGD,
that is, () = ()D OGDu X u X . And two situations are consid-
ered.

1. If an absent pattern X is a HUP in OGD, then X is
also a HUP in D that should be output.

2. If an absent pattern X is not a HUP in OGD, then it
is also not a HUP in D and can be pruned directly.

Strategy 3 (ABS-Prune) IDHUP stores HUPs into a
global structure HUI-trie [19], and these stored patterns are
regarded as the HUPs in the OGD when the next additional
database db+ arrives. On the one hand, the absent patterns in
situation (1) have been stored in the global HUI-trie structure
and can be output directly from it. On the other hand, the ab-
sent patterns in situation (2) are hopeless patterns that can be
excluded. Therefore, those patterns whose ipul.db+ are empty
(i.e., absent patterns) can be ignored during depth-first search
or be skipped in the process of constructing ipuls for exten-
sions.

Definition 10: An item is said to be unpromising if none
of its super-patterns are HUPs. For a subtree of pattern X
in the set enumeration tree, items that not contained in the
HUPs on the subtree are called locally unpromising items.

Lemma 4 (Remaining utility reducing) We propose a
compact remaining utility by reducing the utilities of locally
unpromising items for X . That is,

()
() = () (,)r

X T X i i LUI Xr

rur X ru X u i T
⊆ ∧ ∧ ∈

− ∑

, (15)

where LUI(X) is the set of unpromising items on the subtree
rooted at node X.

Proof: Since LUI(X) is the set of locally unpromising
items of X, the HUPs generated from X must not contain the
items in LUI(X) according to Def. 10, thus the items in LU-
I(X) do not contribute any utility to the HUPs in the exten-
sions of X. So, the locally unpromising items and their utili-
ties can be discarded when calculating the remaining utility
upper bound.

Property 4: For i tem i X∈ and i tem j X∉ , i f
(,) <twu i j minutil , then ()j LUI X∈ .

Rationale: If (,) <twu i j minutil , by property 1, the sup-
erset { X ∪ j } of { i ∪ j } and any pattern generated from {
X ∪ j } have utility values less than minutil and are not
HUP, thus ()j LUI X∈ according to Def. 10.

Strategy 4 (RUR-Prune) Owing to the above proper-
ty, during the constructing process of ipuls for extensions,
IDHUP algorithm decreases remaining utilities of extension
patterns by utilities of locally unpromising items found by
EUCS-Prune. Put another way, instead of adding the utilities
of these items to the remaining utilities of the following tu-
ples, IDHUP simply skips them without updating the remain-
ing utilities in the sequence.

For example, as shown in Figure 6, when updating the re-
maining utility of {ac}, the utilities of items {b} and {e} in
the sequence that are pruned by EUCS-Prune are not taken
into account, and () = 2 3 = 5sumRU ac + . Similarly, since
the supersets of absent patterns are also excludable absent
patterns, for other extended patterns, absent items do not con-
tribute to their utilities and thus can be directly skipped with-
out updating the remaining utilities.

142 Journal of Internet Technology Vol. 24 No. 1, January 2023

Figure 6. An example of RUR-prune

4.3 IDHUP
The pseudocode of the main procedure of IDHUP is giv-

en in Algorithm 1. It takes as input the original database
OGD, the additional database db+, and the user-specified
threshold minUtil and outputs the complete set of HUPs in
the current entire incremental database (OGD ∪ db+). In
order not to duplicate processed data, IDHUP initializes HUI-
trie, GIPULs, and EUCS as global variables if it is the first
time (Line 1). It first scans each transaction in OGD or db+
to: (1) calculate the twu value of all individual items in the
database, which is used to specify the total order to im-
prove mining efficiency;

Algorithm 1. The IDHUP algorithm
1: Global variables: a tree structure for storing HUPs

(HUI-trie), the Estimated Utility Co-Occurrence
Structure (EUCS), a set of ipuls for single items
(GIPULs).

2: Initialize Global variables for the first time;
3: Scan OGD or db+ to calculate twu(i) for each I

and specify the total order ;
4: Scan OGD or db+ once again in total order to

build i.ipul for each i, add to GIPULs;
5: Update the sumU , sumRU and sumU ′ field of

each ipul synchronously; //EUB-Prune
6: Call Search(∅ , GIPULs, minUtil) and insert

results into HUI-trie;
7: Extract HUPs from HUI-trie;
8: for each ipu ∈GIPULs do
9: Merge entries in ipul.db+ into ipul.OGD;
10: ipul.db+=∅ ;
11: return HUPs;

 (2) Update the global EUCS for subsequent pruning
(Lines 2-3). After rearranging the OGD or db+ in order ,
the revised database is re-scanned once to build ipuls for all
individual items (Line 4). During this process, the summary
information of each ipul is updated simultaneously (Line 5).
After that, IDHUP recursively searches for HUPs by calling
the Search procedure that traverses the set enumeration tree
with a Depth-First-Search strategy (Lines 6-7). Finally, IDH-
UP merges the db+ area of each ipul into ipul.OGD in prepa-
ration for the next execution (Lines 8-10).

Algorithm 2. The Search procedure
1: for each ipul ∈ IPULs do
2: Obtain ipul.name pattern X;
3: if X.ipul.db+ == null or twu(X.lastItem) <

minUtil then
4: continue; //ABS-prune
5: if X.ipul.sumU ≥minUtil then
6: insert X into HUI-trie;
7: if X.ipul.sumU′ + X.ipul.sumRU ≥ minUtil

then //EUB-prune
8: Call Construct(X.ipul, IPULs, preList) →

exULs with T-headernew

9: If . 2exULs size ≥ then
10: Call Search(X, X.ipul, exULs, minUtil);
11: Else If . == 1exULs size then
12: Get the unique ipul and its name Y in exULs;
13: If .Y sumU minUtil≥ then
14: insert Y into HUI-trie;
15: return HUI-trie;

The details of our Search procedure are presented in Al-
gorithm 2. It takes four inputs: a prefix pattern P, the ipul of
P, a set of ipuls of 1-extensions of P with T-Header named
IPULs and the minUtil threshold. For each ipul in IPULs, the
Search procedure first gets its corresponding pattern X by

.ipul name (Lines 1-2). Next, it aims to explore X and all ex-
tensions of X, finding HUPs in them (Lines 3-14). For effi-
ciency, we apply ABS-Prune (Strategy 3) and the overestima-
tion property of twu (Property 1) to exclude absent patterns
and unpromising patterns (Lines 3-4). Next, we check the
utility of X by . .X ipul sumU , and if () >u X minUtil , then X
is inserted into HUI-trie as HUP (Lines 5-6). After that, we
apply EUB-Prune (Strategy 1) to avoid unnecessary explora-
tion by calculating the sum of ipul.sumU’ and ipul.sumRU. If
the sum is not less than minUtil, then further exploration of X
is achieved by calling the Construct procedure and recursive-
ly performing the Search procedure (Lines 7-10). Otherwise,
those extensions of X and their descendant nodes are regard-
ed as low utility, and they are moved in this step. To enhance
the flexibility of the algorithm, we count the number of ex-
tensions returned by the Construct procedure. If this number
is 1, instead of further recursion, we directly output or delete
the returned extension by judging its utility (Lines 11-14).
When no candidates are generated, the method terminates
and returns the HUI-trie back to the main procedure.

The Construct procedure is designed to build all 1-ex-
tensions and their ipuls for the pattern Px whose prefix is P.
It takes P.ipul, Px.ipul and the set of ipuls of sibling patterns
of Px with a T-Header as input. The Construct procedure
operates as follows: First, it initializes the expected output:
exULs and a new T-Header associated with exULs (Line 1).
Next, for the input Px.ipul , we adopt the ABS-prune (Strategy
3) to expand its db+ part first (Lines 2-21), and then perform
similar operations on Px.ipul.OGD (Lines 22-37).

IDHUP: Incremental Discovery of High Utility Pattern 143

Algorithm 3. The Construct procedure
1: Initialize exULs =∅ , T-headernew =∅ ;
2: for each tuple ut ∈ px.ipul.db+ do
3: Initialize tTemp = null, remaining utility = 0;
4: Locate the tuple tmid associated with the component

pointed to by tu.tid in the IPULs.T-header;

5: while tmid != null do
6: Obtain twu(tmid.item, tu.item) from EUCS;
7: if twu(tmid.item, tu.item) < minUtil then
8: tmid = tmid.next;
9: Keep remaining utility unchanged;
10: Continue;
11: if exULs does not contain ipul of pattern Px ∪

tmid.item then
12: Create a new ipul for pattern Px ∪ tmid.item

and append it to exULs ;
13: Set PreUtil ← P.length == 0? 0: preList.db+.

get(tu.tid - preList.OGD.size-1).iutil
14: Set unew ← u+1 + Px.ipul.OGD.size();
15: Tuple tnew ← (unew, tmid.item, tu.iutil + tmid.iutil -

preUtil)
16: Associate the first created tnew to the unew-th

component of T-headernew

17: Append tnew to the ipul of pattern Px ∪ tmid.item;
18: Add the remaining utility to sumRU , add the

tnew.iutil to sumU and update sumU’ ;
19: remaining utility += (tmid.iutil - PreUtil);
20: tTemp.next = tnew; tTemp = tnew;
21: tmid = tmid.next;
22: for each tuple vt ∈ px.ipul.OGD do
23: Initialize a temporary tuple tTemp = null, remaining

utility = 0
24: Locate the tuple tmid associated with the component

pointed to by tv.tid in the IPULs.T-header;
25: while tm != null do
26: if exULs does not contain ipul of pattern Px ∪

tm.item then
27: tm = tm.next;
28: Continue; // ABS-prune
29: Set PreUtil ← P.length == 0? 0: preList.db+.

get(tv.tid - 1).iutil
31: Tuple tnew ← (v+1, tmid.item, tv.iutil + tm.iutil -

preUtil)
32: Associate the first created tnew to the v+1-th

component of T-headernew

33: Append tnew to the ipul of pattern Px ∪ tm.item;
34: Add the remaining utility to sumRU , add the

tnew.iutil to sumU and update sumU’ ;
35: tTemp.next = tnew; tTemp = tnew;
36: tm = tm.next;
37: return exULs with T-headernew

5 Experiments

1　 https://www.philippe-fournier-viger.com/spmf/
2　 http://fimi.ua.ac.be/data/
3　 http://www.Almaden.ibm.com/cs/quest/syndata/

Notice that many studies already exist on the topic of
incremental mining HUPs. In addition, in recent studies, the
EIHI algorithm [19] significantly outperforms HUI-list-Ins
[18], and IIHUM [21] outperforms LIHUP [20] under certain
conditions, but there is no literature comparing the IIHUM
with the EIHI algorithm. Therefore, the state-of-the-art al-
gorithms EIHI, LIHUP, and IIHUM are executed to provide
benchmarks to validate the performance of our IDHUP algo-
rithm.

Experimental configuration: The code of EIHI was
from the open-source library SPMF1, and since the codes of
LIHUP and IIHUM are unavailable, these two algorithms
were implemented by us. All the compared algorithms were
implemented in Java language and developed in the Eclipse
IDE (2021). Meanwhile, all the experiments were performed
on a personal computer with an Intel(R) Core (TM) i7-7700
CPU @ 3.60GHz processor, 8 GB of RAM, and with 64-bit
Windows 10 OS.

Parameter settings: In the experiments, algorithms were
tested on different datasets with two varying parameters,
i.e., minUtil and IR, to evaluate their performance. Where IR
represents the insertion ratio, which means the ratio of the
number of transactions in the additional database db+. For ex-
ample, for a database of size 200, IR = 10% implies that there
are 20 transactions per insertion and ten updates in total.

5.1 Data Preprocessing
Our experiments were conducted on three publicly avail-

able real-world datasets (retail, foodmart, and mushroom2)
and one synthetic dataset (T10I4D100K). These datasets
cover common data features (e.g., sparse or dense, long or
short) in real-life scenarios, each with its own characteristics.
Details on the characteristics of the datasets are described be-
low.

1. retail : it consists of 88,162 customer transactions from
an anonymous Belgian store, including 16,470 distinct items,
with an average transaction length of 10.3. It is a moderately
long and sparse dataset.

2. foodmart: this dataset is obtained from the Microsoft
SQL-Server 2000 and contains 4141 transactions with 1559
distinct items. It is a small and sparse dataset.

3. mushroom : it consists of 8124 transactions with 119
distinct items. Its average transaction length is 23 and density
is 19.33%, implying that it is a dense dataset with long trans-
actions.

4. T10I4D100K : it is synthesized by the IBM Quest
Dataset Generator 3, which has 100K transactions with 870
distinct items, and the average transaction length is 10.1.

In these datasets, only the transactions of foodmart carry
real utility information, that is, the quantitative and profit
information are real. In consideration of this, we used a sim-
ulation model, which has been widely employed in several
studies [5, 9], to synthesize external and internal utility val-
ues respectively in the [0.01, 1000] and [1, 5] intervals for

144 Journal of Internet Technology Vol. 24 No. 1, January 2023

items in retail and mushroom.

5.2 Effect of the minUtil Threshold
In this section, we first evaluated the performance of the

proposed IDHUP algorithm on each dataset under a decreas-
ing minimum utility threshold with a fixed insertion ratio of
5%. We ran all algorithms and recorded the accumulated exe-
cution time and peak memory usage after 20 updates on each
dataset.

Figure 7 depicts the accumulated running time of the four
algorithms on each dataset. Clearly, the IDHUP algorithm
is significantly faster than other algorithms in any case. For
example, for dataset retail with minUtil = 1500, IDHUP
takes 10.89 seconds, EIHI takes 39.67 seconds, LIHUP takes
697.15 seconds, and IIHUM takes 35.58 seconds. It shows
that IDHUP is three to four times faster than the EIHI and II-
HUM algorithms, and even an order of magnitude faster than
LIHUP. Moreover, the IHDUP algorithm is more adaptable
than others. Generally, when minUtil is small, the runtime of
utility mining algorithms increases sharply due to the growth
of the actual search space. For dense dataset mushroom
as shown in Figure 7(c), IDHUP works well even for low
minUtil values, whereas the performance of the other

Figure 7. Runtime under varied minUtil

Figure 8. Memory under varied minUtil

algorithms degrades considerably. In contrast, for sparse
datasets retail and foodmart as shown in Figure 7(a) and
Figure 7(b), with the decrease of minUtil, the running time of
IDHUP increases more slowly than that of the others. IDHUP
also outperforms other algorithms on synthetic dataset
T10I4D100K as shown in Figure 7(d). This demonstrates that
the designed IDHUP algorithm is capable of significantly
improving the performance in terms of running time.

Figure 8 presents the peak memory usage for all algo-
rithms on the test datasets. As shown, the IDHUP algorithm
performs poorly on other datasets except the foodmart data-
set. The reason is that the construction of global structures,
EUCS and HUI-trie, inevitably makes IDHUP consume addi-
tional memory. In addition, the size of the memory-consum-
ing T-header list in the ipul structure is closely related to the
number of transactions in datasets. Therefore, IDHUP per-
forms poorly on large datasets retail and T10I4D100K. For
dense dataset, the peak memory usage of IDHUP is compara-
ble to that of IIHUM and more than the other two algorithms.
In contrast, LIHUP and IIHUM have higher peak memory us-
age than IDHUP in small dataset foodmart, as this drawback
of IDHUP is balanced by the quantitative disparity of visited
candidates. It can be concluded that the designed IDHUP al-
gorithm with EUCS-prune and ABS-prune provides a trade-
off between running time and memory usage. Nevertheless,
the designed IDHUP algorithm is still able to complete all
mining tasks with less than 1 GB of memory consumption,
making it more suitable for deployment in systems with
strong real-time requirements and sufficient memory.

5.3 Effect of the Insertion Ratio
We further conducted experiments under increasing IR

and a fixed minUtil. The minUtil of retail, foodmart, mush-
room, and T10I4D100K are 4500, 1200, 300K, and 5K, re-
spectively. The total execution time and peak memory usage
are presented in Figure 9 and Figure 10.

From Figure 9, it can be observed that the IDHUP algo-
rithm has the best performance on four datasets under various
IR with a fixed minUtil. In some cases, IDHUP is two orders

Figure 9. Runtime under varied IR

IDHUP: Incremental Discovery of High Utility Pattern 145

Figure 10. Memory under varied IR

of magnitude faster than LIHUP. In addition, the time spent
by the IDHUP algorithm is relatively stable when the IR
gradually decreases, while the other algorithms increase
faster, indicating that IDHUP is insensitive to the changes
in IR and therefore has better adaptability. Similar to the
findings of the previous experiments, the designed IDHUP
algorithm indeed shows a noticeable improvement in running
time.

Figure 10 shows the peak memory consumption on the
four datasets. IDHUP consumes more memory than the
other algorithms on datasets, e.g., retail, mushroom, and
T10I4D100K. Such results agree with our intuition. Similar
to the previous analysis, our approach makes a compromise
between runtime and memory. Fortunately, all mining tasks
can be completed by IDHUP in less than 1 GB of memory,
which is within acceptable limits.

6 Conclusions

In this paper, we present a novel and efficient method
called IDHUP for discovering high utility patterns from in-
cremental databases. To reduce unnecessary scanning and
exploration of the database, we propose the ipul structure that
stores utility information vertically and constructs extension
lists horizontally. In addition, we employ four pruning strat-
egies, namely EUB-prune, EUCS-prune, ABS-prune, and
RUR-prune, to enhance the algorithm’s ability to filter useless
patterns by tightening the utility upper bound and excluding
unpromising patterns. IDHUP was compared with EIHI, LI-
HUP and IIHUM, which are the state-of-the-art algorithms
for incremental mining HUPs. Experiments showed that our
IDHUP algorithm is more robust than existing algorithms
and brings significant improvements in running time. In some
cases, IDHUP is even three to four times faster than EIHI and
IIHUM, and an order of magnitude faster than LIHUP.

Acknowledgements

This work was supported in part by the Natural Science
Foundation of China under grant No. 62072133, Natural

Science Foundation of Guangdong Province of China under
grant No. 2022A1515011861, and Fujian Key Laboratory of
Financial Information Processing (Putian University) (No.
JXC202201).

References

[1] W. Gan, J. C.-W. Lin, P. Fournier-Viger, H.-C. Chao, V.
S. Tseng, P. S. Yu, A Survey of Utility-Oriented Pattern
Mining, IEEE Transactions on Knowledge and Data
Engineering, Vol. 33, No. 4, pp. 1306-1327, April,
2021.

[2] R. Agrawal, R. Srikant, Fast algorithms for mining
association rules in Large Databases, 20th International
Conference on Very Large Data Bases (VLDB), Santiago
de Chile, Chile, 1994, pp. 487-499.

[3] J. Han, J. Pei, Y. Yin, R. Mao, Mining Frequent Patterns
without Candidate Generation: A Frequent-Pattern Tree
Approach, Data mining and knowledge discovery, Vol.
8, No. 1, pp. 53-87, January, 2004.

[4] Y. Liu, W.-K. Liao, A. Choudhary, A two-phase
algorithm for fast discovery of high utility itemsets, 9th
Pacific-Asia Conference on Knowledge Discovery and
Data Mining (PAKDD), Hanoi, Vietnam, 2005, pp. 689-
695.

[5] M. Liu, J. Qu, Mining high utility itemsets without
candidate generation, 21st ACM international
conference on Information and knowledge management
(CIKM), Maui, Hawaii, USA, 2012, pp. 55-64.

[6] P. Fournier-Viger, C.-W. Wu, S. Zida, V. S. Tseng, FHM:
Faster high-utility itemset mining using estimated utility
co-occurrence pruning, 21st International symposium on
methodologies for intelligent systems (ISMIS), Roskilde,
Denmark, 2014, pp. 83-92.

[7] S. Krishnamoorthy, Pruning strategies for mining high
utility itemsets, Expert Systems with Applications, Vol.
42, No. 5, pp. 2371-2381, April, 2015.

[8] A. Y. Peng, Y. S. Koh, P. Riddle, mHUIMiner: A fast
high high utility itemset mining algorithm for sparse
datasets, 21st Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), Jeju, South
Korea, 2017, pp. 196-207.

[9] S. Zida, P. Fournier-Viger, J. C.-W. Lin, C.-W. Wu, V.
S. Tseng, EFIM: a fast and memory efficient algorithm
for high-utility itemset mining, Knowledge and
Information Systems, Vol. 51, No. 2, pp. 595-625, May,
2017.

[10] Y. Baek, U. Yun, H. Kim, J. Kim, B. Vo, T. Truong, Z.
H. Deng, Approximate high utility itemset mining in
noisy environments, Knowledge-Based Systems, Vol.
212, Article No. 106596, January, 2021.

[11] L. T. T. Nguyen, V. V. Vu, M. T. H. Lam, T. T. M.
Duong, L. T. Manh, T. T. T. Nguyen, B. Vo, H. Fujita,
An efficient method for mining high utility closed
itemsets, Information Sciences, Vol. 495, pp. 78-99,
August, 2019.

[12] H. Cheng, M. Han, N. Zhang, X. Li, L. Wang, A Survey
of incremental high-utility pattern mining based on
storage structure, Journal of intelligent & fuzzy systems,

146 Journal of Internet Technology Vol. 24 No. 1, January 2023

Vol. 41, No. 1, pp. 841-866, August, 2021.
[13] C.-W. Lin, G.-C. Lan, T.-P. Hong, An incremental

mining algorithm for high utility itemsets, Expert
Systems with Applications, Vol. 39, No. 8, pp. 7173-
7180, June, 2012.

[14] C.-W. Lin, T.-P. Hong, G.-C. Lan, J.-W. Wong, W.-Y.
Lin, Incrementally mining high utility patterns based on
pre-large concept, Applied intelligence, Vol. 40, No. 2,
pp. 343-357, March, 2014.

[15] C. F. Ahmed, S. K. Tanbeer, B.-S. Jeong, Y.-K. Lee,
Efficient Tree Structures for High Utility Pattern Mining
in Incremental Databases, IEEE Transactions on
Knowledge and Data Engineering, Vol. 21, No. 12, pp.
1708-1721, December, 2009.

[16] H.-T. Zheng, Z. Li, iCHUM: An Efficient Algorithm
for High Utility Mining in Incremental Databases,
8th International Conference on Knowledge Science,
Engineering and Management (KSEM), Chongqing,
China, 2015, pp. 212-223.

[17] J. Lee, U. Yun, G. Lee, E. Yoon, Efficient incremental
high utility pattern mining based on pre-large concept,
Engineering Applications of Artificial Intelligence, Vol.
72, pp. 111-123, June, 2018.

[18] J. C.-W. Lin, W. Gan, T.-P. Hong, B. Zhang, An
Incremental High-Utility Mining Algorithm with
Transaction Insertion, The Scientific World Journal, Vol.
2015, Article No. 161564, February, 2015.

[19] P. Fournier-Viger, J. C.-W. Lin, T. Gueniche, P. Barhate,
Efficient Incremental High Utility Itemset Mining,
Proceedings of the ASE BigData & Social Informatics
2015, Kaohsiung, Taiwan, 2015, pp. 1-6.

[20] U. Yun, H. Ryang, G. Lee, H. Fujita, An efficient
algorithm for mining high utility patterns from
incremental databases with one database scan,
Knowledge-Based Systems, Vol. 124, pp. 188-206, May,
2017.

[21] U. Yun, H. Nam, G. Lee, E. Yoon, Efficient approach for
incremental high utility pattern mining with indexed list
structure, Future Generation Computer Systems, Vol.
95, pp. 221-239, June, 2019.

[22] D. W. Cheung, J. Han, V. T. Ng, C. Wong, Maintenance
of discovered association rules in large databases: An
incremental updating technique, 12th International
Conference on Data Engineering (ICDE), New Orleans,
LA, USA, 1996, pp. 106-114.

[23] J. Liu, X. Ju, X. Zhang, B. C. M. Fung, X. Yang, C. Yu,
Incremental mining of high utility patterns in one phase
by absence and legacy-based pruning, IEEE Access,
Vol. 7, pp. 74168-74180, July, 2019.

[24] T.-L. Dam, H. Ramampiaro, K. Norvag, Q.-H. Duong,
Towards efficiently mining closed high utility itemsets
from incremental databases, Knowledge-Based Systems,
Vol. 165, pp. 13-29, February, 2019.

[25] U. Yun, H. Nam, J. Kim, H. Kim, Y. Baek, J. Lee,
E. Yoon, T. C. Truong, B. Vo, W. Pedrycz, Efficient
transaction deleting approach of pre-large based high
utility pattern mining in dynamic databases, Future
Generation Computer Systems, Vol. 103, pp. 58-78,
February, 2020.

[26] U. Yun, D. Kim, E. Yoon, H. Fujita, Damped window

based high average utility pattern mining over data
streams, Knowledge-Based Systems, Vol. 144, pp. 188-
205, March, 2018.

[27] B. P. Jaysawal, J-W. Huang, SOHUPDS: a single-pass
one-phase algorithm for mining high utility patterns
over a data stream, Proceedings of the 35th Annual
ACM Symposium on Applied Computing (SAC'20),
Brno, Czech Republic, 2020, pp. 490-497.

[28] L. T. Nguyen, P. Nguyen, T. D. Nguyen, B. Vo, P.
Fournier-Viger, V. S. Tseng, Mining high-utility itemsets
in dynamic profit databases, Knowledge-Based Systems,
Vol. 175, pp. 130-144, July, 2019.

[29] L. T. T. Nguyen, D.-B. Vu, T. D. D. Nguyen, B. Vo,
Mining Maximal High Utility Itemsets on Dynamic
Profit Databases, Cybernetics and Systems, Vol. 51, No.
2, pp. 140-160, February, 2020.

[30] J.-F. Qu, M. Liu, P. Fournier-Viger, Efficient Algorithms
for High Utility Itemset Mining Without Candidate
Generation, in: P. Fournier-Viger, J. W. Lin, R.
Nkambou, B. Vo, V. Tseng (Eds), High-Utility Pattern
Mining: Theory, Algorithms and Applications. Studies
in Big Data, Vol. 51, Springer, Cham, 2019, pp. 131-
160.

[31] R. Rymon, Search through systematic set enumeration,
3rd International Conference on Principles of
Knowledge Representation and Reasoning (KR 92),
Cambridge, MA, 1992, pp. 539-550.

[32] B. P. Jaysawal, J.-W. Huang, DMHUPS: Discovering
Multiple High Utility Patterns Simultaneously,
Knowledge & Information Systems, Vol. 59, No. 2, pp.
337-359, May, 2019.

Biographies

Lele Yu received the B.S. degree in
Computer Science from Guangdong
University of Technology, Guangzhou,
China in 2020. She is currently a master
student with Guilin University of Electronic
Technology, Guilin, China. Her research
interests include data mining, utility mining
and big data.

Wensheng Gan received the Ph.D. in
Computer Science and Technology, Harbin
Institute of Technology (Shenzhen), China
in 2019. He is currently an Associate
Professor with the College of Cyber
Security, Jinan University, Guangzhou,
China. His research interests include data
mining, big data, cybersecurity, artificial

intelligence, and blockchain.

Zhixiong Chen received the Ph.D. degree
in cryptography from Xidian University in
2006. He is currently a Professor with the
School of Mathematics and Finance, Putian
University. His research interests include
finite fields and their applications, stream
ciphers, and Boolean functions.

IDHUP: Incremental Discovery of High Utility Pattern 147

Yining Liu received the Ph.D. degree
in mathematics from Hubei University,
Wuhan, China in 2007. He is currently a
professor with school of Computer and
Information Security, Guilin University
of Electronic Technology, Guilin, China.
His research interests include data privacy,
security and privacy in VANETs, data

mining, and machine learning.

