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Abstract

DV-HOP algorithm for wireless sensor network (WSN) 
has the disadvantage of large node positioning error and low 
accuracy. Firstly, the node localization model is elaborated, 
secondly, Fuch chaotic opposition learning is used in the 
initialization of the whale optimization algorithm population 
to improve the initial position diversity, an adaptive strategy 
is used for the parameters in the encircling predation 
behavior to avoid the algorithm falling into local optimum 
prematurely, Gaussian perturbation is used to update the 
individual positions during the iterative search to improve 
the global search capability, and finally IWOA is solved 
for the optimal value of the node localization objective 
function. The performance of IWOA algorithm is verified 
in simulation experiments, and the solution accuracy and 
solution quality are improved in different degrees. The IWOA 
algorithm demonstrates good localization results in terms of 
comparative data results of node localization unknown nodes, 
reference nodes, node density, communication radius aspects 
and area of the region.

Keywords: Node localization, Fuch chaos, Adaptive strategy

1 Introduction

With the increasing maturity of wireless communication 
technologies as well as computer software, the cost of 
embedded devices with functions such as sensing targets, 
processing data and communication has been greatly 
reduced, and the application scenarios and scales have been 
expanded, facilitating the rapid development of WSNs [1]. 
In WSNs, how to perform node localization has been one 
of the important research directions in wireless sensing 
networks. In recent years, better results have been achieved 
using metaheuristic algorithms for node localization, such 
as the Ant Colony Optimization (ACO) [2], Particle Swarm 
Optimization (PSO) [3], Artificial Fish Swarm Algorithm 
(AFSA) [4], Artificial Bee Colony (ABC) [5], etc. In 2016, 
an Australian scholar, Mirjalili Seyedali, constructed a new 
algorithm-Whale Optimization Algorithm (WOA) [6], which 
consists of three parts: encircling predation, bubble attack, 
and foraging. In the algorithm, the humpback whale is set as 
a candidate solution of the optimization problem in the search 

space, and the global optimal solution of the optimization 
problem is determined by updating the candidate solution 
through continuous optimization of the humpback whale. The 
WOA has a simple structure and has good results in dealing 
with multipeaked low-dimensional functions. However, the 
algorithm, like all metaheuristics, has the disadvantage of 
easily falling into a local optimum and converging quickly. In 
this paper, new solution strategies are proposed. Strategy 1: 
To address the problem of lack of diversity in the population, 
this paper uses Fuch chaos in the WOA initialization, which 
can better initialize the individuals of the algorithm and 
maximize the diversity of the solutions. Strategy 2: The 
parameter setting in the spiral position update of WOA causes 
the individual humpback whales to easily fall into the local 
optimum. In order to solve this problem, this paper uses an 
adaptive strategy method to cause the individual humpback 
whales to swim in a more reasonable way, thus avoiding 
the algorithm falling into the local optimum. Strategy 3: In 
order to improve the global search ability of the algorithm, 
the introduction of Gaussian perturbation method idea in this 
paper can effectively avoid this situation, which can improve 
the quality of the global solution of the humpback whale.

This paper is organized as follows: In section 1, the 
current problems of node localization and metaheuristic 
algorithms are described. Section 2 describes the current 
research work. Section 3 describes the node localization 
model. Section 4 describes the node localization strategy 
based on the improved whale algorithm. Section 5 simulates 
the experiments. Section 6 offers the conclusions reached in 
this paper.

2 Related Work

Range-Based and Range-Free localization are two types 
of methods that have been studied by researchers. Therefore, 
our study starts with the DV-HOP algorithm for node 
localization without ranging, and the DV-Hop localization 
algorithm is divided into three steps.

Step 1: Record the minimum number of hops between 
the beacon node and the unknown node. All anchor 
nodes transmit their position information and initial hop 
number (initial hop number is 0) to all nodes within their 
communication radius, and the receiving node records the 
hop number from each beacon node and compares the hop 
number size, and only keeps the data group from the beacon 
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node with the minimum hop number, adds 1 to the hop 
number and forwards it to other nodes.

Step 2: Obtain the distance between the anchor node 
and the unknown node. The anchor node uses the position 
information and minimum hop count of other anchor nodes 
obtained in step 1 to calculate its own average distance 
per hop and transmits this information to the network by 
broadcasting. The unknown node receives and records the 
average distance per hop from the first anchor node and 
then rejects such information from other anchor nodes. The 
unknown node calculates the distance to each beacon node 
from the existing hop count information and the average 
distance per hop information.

Step 3: The unknown node calculates its own position. 
The unknown node calculates its own position by using the 
known distance to the anchor node and using the coordinates 
of 3 or more beacon nodes.

S. Kumar et al. [7] proposed an optimized DV-Hop 
algorithm for wireless sensing networks, simulation results 
show that the algorithm outperforms the DV-Hop algorithm 
and the improved DV-Hop algorithm in all considered 
scenarios; Y. Hu et al. [8] proposed a threshold-based DV-
HOP algorithm and uses the weighted average hop distance 
within the threshold to estimate the position of the node, 
simulation experiments illustrate that this algorithm has 
better localization effect compared to the traditional DV-
Hop; S. Tomic et al. [9] proposes three DV-Hop node 
localization algorithms, simulation experiments illustrate 
that the third algorithm has better results; P. Wang et al. [10] 
proposed a multi-objective DV-Hop localization algorithm 
based on NSGA-II, simulation experimental results illustrate 
that this algorithm is better than other algorithms in terms 
of localization effect; X. Chen et al. [11] proposed a 
weighted approach to the average hop distance to improve 
the localization accuracy of unknown nodes, simulation 
experiments illustrating the effectiveness of this method; S. 
Kumar et al. [12] proposed better localization accuracy by 
minimizing the error term of the estimated distance between 
the anchor node and the unknown node in the DV-Hop 
algorithm; Q. Qian et al. [13] proposes a DV-Hop localization 
algorithm based on the optimal node, simulation experiments 
illustrate the improved localization effect of this algorithm.

V. Kanwar [14] and S. P. Singh et al. [15] proposed using 
different optimized particle swarm optimizations for node 
localization and improved the node localization effect by 
these optimized algorithms; Z. H. Cui et al. [16] and X. Yu 
et al. [17] used different optimized cuckoo search algorithms 
for node localization in DV-Hop, and simulation experiments 
illustrated that the cuckoo search algorithm has better results; 
Y. Liu [18] proposed the use of different optimized bat 
algorithms for node localization in DV-Hop; their simulation 
experiments show that the algorithm shows more significant 
advantages compared to DV-Hop; J. Li et al. [19] proposed 
the use of the cat colony algorithm for node localization. 
By optimizing the cat swarm algorithm to different degrees, 
the improved cat swarm algorithm achieves better results in 
node localization; R. Rajakumar et al. [20] proposes a node 
localization model based on the grey wolf algorithm. This 
uses the grey wolf algorithm to optimize the node positions in 
the DV-Hop algorithm and simulation experiments show that 

the algorithm achieves better results in the metrics of node 
localization. S. Arora et al. [21] proposes a node localization 
algorithm based on the butterfly optimization algorithm.

Among these methods, some of them improve the 
localization accuracy but increase the hardware cost and 
energy consumption at the same time, and some of them use 
metaheuristic algorithms that have the disadvantage that the 
algorithm is easy to fall into local convergence, leading to 
the reduction of algorithm performance, which can improve 
the node localization accuracy but the improvement effect 
is not enough. In this paper, we introduce WOA in the node 
localization of DV-HOP algorithm to improve the localization 
accuracy because WOA is a relatively new metaheuristic 
algorithm that has been widely used in recent years, and in 
addition, we optimize three aspects of WOA to improve the 
algorithm performance and can play a better role in node 
localization.

3 Node Positioning Model

DV-Hop is a widely used and adopted non-ranging 
algorithm with the advantages of simple implementation and 
high localization accuracy. It mainly uses the least squares 
method to calculate the unknown node coordinates, but the 
positioning accuracy is affected by the cumulative error 
factors. In this paper, we take the two-dimensional plane as 
an example to study, establishing the node positioning model, 
and analysing the generated errors. Setting ( , )x y  as the 

unknown node coordinates, ( , )i ix y  as the reference node 

coordinates, and the corresponding distance between the 

unknown node and the reference node as id , the expression 

is as follows.
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Subtracting the first n - 1 equations from the last equation 
gives the following equation:
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Using a linear system of equations to represent QL b=
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In the actual environmental process, there are some 
definite error factors ε , which bring a great deal of 
disturbance to node positioning. Thus, the above linear 
equation system must be considered to be modified to 
QL bε+ = , which is expressed by the least squares method 
as follows.

1( )T TL Q Q Q b−= .                                                      (6)

From Eq. (6), it is found that the parameter b  is the key 
to solving for L , while the factor affecting the parameter b  

is nd . When the value of nd  is relatively large, the least 

squares method used to calculate the coordinates of specific 
nodes cannot be applied [22]. To address this problem, the 
localization problem in an error-laden environment is 
converted to an optimization problem with functional 
constraints, and the distance measurement error between 
nodes is expressed as follows.

| |i i ir d ε− < .                                                                (7)

iε  is the ranging error between the nodes, while ir  is the 

actual distance between the reference node and the unknown 
node in the wireless sensing network, [1, ]i n∈ , so the 
optimization problem is converted to the following 
expression.
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We let 2 2 2

1
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denoting the measurement error between the unknown node 
and the reference node and therefore defining the objective 
function ( , )f x y  as
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where a smaller value of ( , )f x y  means that the solved 
coordinate value is closer to the actual value. Therefore, the 
node localization problem in wireless sensing networks is 
converted into a multidimensional constrained optimization 
equation, and the properties of the metaheuristic algorithm to 
find the optimal value are used to solve the obtained node-
specific location, gradually iterating to the minimum 
difference value until the best value is obtained.

4 Node Localization Based on Improved 
Whale Optimization Algorithm

4.1 Whale Optimization Algorithm
The WOA is a metaheuristic intelligent optimization 

algorithm that imitates the prey-hunting activity of cetaceans 
in the natural ocean, and its core idea consists of three main 
behaviours: encircling predation, bubble attack, and prey 
finding. In the whale algorithm, the size of the whole whale 
population is set as N , and the optimal solution is searched 
in the D -dimensional search space. The position of the i th 
whale  in  the  D -dimensional  space is  denoted as 

1 2( , ,......, )D
i i i iX X X X= , 1, 2,...,i N= , and the position 

of the prey is the global optimal solution of the corresponding 
problem.
4.1.1 Encircle and Prey

In the initial stage of the algorithm, the whales are able 
to identify the location of the prey and surround it, but the 
algorithm does not set the global optimal location in advance, 
so the optimal location in the current population is set as that 
of the prey to be captured, and the other individuals whales 
in the population are guided to approach the current optimal 
individual to hunt, using Equation (10) to update the location 
of individuals:

( 1) ( ) | ( ) ( ) |p pX t X t A C X t X t+ = − × × − ,       (10)

w h e r e  t  i s  t h e  n u m b e r  o f  c u r r e n t  i t e r a t i o n s ,  
1 2( ) ( , , )D

p p p pX t X X X=   is the local optimal solution, 

| ( ) ( ) |pA C X t X t−   is  the enclosing step, and the 

parameters A  and C  are expressed as follows:

 12A a rand a= × − ,                                                 (11)
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 22C rand= × ,                                                          (12)

where 1rand  and 2rand  denote random numbers between 

(0, 1) and a  is a convergence factor whose value decreases 
linearly from 2 to 0 along with the gradual increase in the 
number of iterations. a  is expressed as 

max2 2a t t= − ,                                                        (13)

where maxt  is the maximum number of iterations.

4.1.2 Bubble Attack
The whale is able to achieve the goal of localized whale 

advantage seeking by contracting the envelope and spiral 
to update the position to simulate the behaviour of whales 
hunting and spitting out bubbles to catch food.
(1) Contraction encirclement mechanism

According to Eqs. (11) and (13), the whales are simulated 
to perform shrinkage encirclement, and when | | 1A < , the 
individual whale approaches another individual whale located 
at the current optimal position, and the larger the value of 
| |A , the greater the swimming pace of the individual whale; 
otherwise, the pace decreases.
(2) Spiral update position

The individual whale calculates the distance between 
it and the whale at the current optimal position to search 
for prey in a spiral way, and the expression of the spiral 
wandering method is shown as follows:

'( 1) cos(2 ) ( )lb
pX t D e l X t+ = × × + ,              (14)

where ' | ( ) ( ) |pD X t X t= −  denotes the distance between 

the i th individual whale and the whale at the optimal 
position, b  denotes the constant used to bound the 
logarithmic spiral shape, and l  denotes a random number 
with the value [-1, 1]. The probability of choosing the 
shrinkage envelope mechanism and the spiral position update 
in the optimization process are the same, both taking the 
value of 0.5.
4.1.3 Prey Hunting

The above behaviours are all ways in which the whale 
can perform a local range of solution finding; in fact, the 
whale algorithm can also randomly find the current individual 
whale for global optimization with the expression

( 1) ( ) | ( ) ( ) |rand randX t X t A C X t X t+ = − × − ,  (15)

where ( )randX t  is the location of a randomly selected 

individual whale in the current population.

4.2 Improved Whale Optimization Algorithm
Like most metaheuristic algorithms, the whale algorithm 

suffers from the disadvantages of being prone to local 
optima and slow convergence. In order to better improve the 
effectiveness of the whale algorithm in node localization. The 
algorithm is improved in the following three aspects: using 
Fuch chaotic opposition learning to improve the diversity of 
whale initial locations; avoiding the algorithm from falling 
into local optimum too early by a nonlinear strategy; and 
mitigating the decay of whale location diversity by Gaussian 
perturbation for individual screening.
4.2.1 Population Initialization

In this paper, we propose an optimization strategy based 
on the Fuch chaotic opposition initialization. The purpose of 
the redundant chaos idea in the metaheuristic algorithm is to 
exploit the characteristics of periodicity and non-repetition 
of chaotic variables so as to search the entire solution 
space and avoid the traditional random search relying on 
probability, thus producing uniformly distributed individuals 
and improving the quality of the initialized solution. The 
literature [23] illustrates that Fuch mapping is superior 
to Logistic and Tent mappings having stronger chaotic 
properties, therefore, in this paper, Fuch mapping is used as 
the mapping function for chaotic search with the following 
mathematical expressions.

2
1 cos(1 )i ic c+ = ,                                                       (16)

where ic  is the chaotic variable.

Set 1 2( , ,..., )i i i i
Dx x x x=  to denote the vector waiting to 

be optimized, D  to denote the dimension, min max[ , ]i
k k kx x x∈  

, min
kx  and max

kx  to denote the minimum and maximum 
values of the dimension, respectively, so that the chaotic 
individual is represented as follows.

min max min 1( )( 1) / 2i i
new k k k kx x x x c += + − + .                (17)

To further ensure that more of the better solutions are 
retained in the search space maximally and evenly distributed 
in the search space when searching for the current and 
the opposing solutions. We used the opposition learning 
[24] strategy in our initialization. We used the following 
mathematical model of dyadic learning.

max min

max min

( ) / 2, 0
( ) / 2, 0

i i
i

i i

X X X X
OP

X X X X

− + − ≥= 
− − − <

.          (18)

In Equation (18), iX  denotes the current initial solution, 
minX  and maxX  denote the minimum and maximum values 

of the initial solution, respectively.
The steps for using chaos and dyadic learning in the 

initialization of the population are as follows.
Step 1: Chaos generation of chaotic vector sequence 

using Eq. (16)
Step 2: Load the chaotic vectors into the original solution 
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space using Equation (17) to generate the initial solution iX  

Step 3: Calculate the initial solution iX  according to 

Equation (18) and the corresponding opposing solution iOP  

Step 4: The initial solution iX  and the opposing solution 
iOP  are ranked according to the fitness value, and the top N 

solutions are selected as the population initialization 
solutions.
4.2.2 Parameter Optimization

In the whale algorithm, parameters A  and C  determine 
the update of individual whale positions, while another 
parameter a  directly determines the change in value of A . 
Since the value of parameter a  in the algorithm is set to a 
linear change range between 2 and 0, it cannot effectively 
reflect the process of individual search of the algorithm to a 
certain extent, which easily leads to the local search of the 
algorithm at a later stage and prolongs the search time of the 
algorithm. To cause the individual to enter the local search 
phase as soon as possible, a nonlinearly varying strategy is 
proposed for the parameter a , with the following equation.

max

1 sin( )ta
t

= − .                                                      (19)

From Formula (19), it is found that the nonlinear change 
strategy can cause the value of parameter a  to decrease 
rapidly in the early stage of the algorithm, which causes the 
individual whale to enter the local search phase as early as 
possible and improves the algorithm solution accuracy and 
convergence rate, while the other parameter C  is just a (0, 2) 
random number in the whale algorithm. According to the 
inspiration of the particle swarm algorithm about the position 
update, the optimization parameter C  in the global phase of 
the whale can reduce the search uncertainty, make the 
individual whale position update adaptive, and better 
maintain the ability of regional search and local exploration. 
Therefore, in this paper, the following optimization is 
performed for the parameter C .

min min

max max

ave ave

ave ave

C f f f f
C

C f f f f
+ ≤

=  − >
,                    (20)

where minC  and max  denote the minimum and maximum 

values of the parameters, respectively, f  denotes the current 

fitness value of the individual whale, and minf  and avef  

denote the minimum and average values of the fitness values, 
respectively.
4.2.3 Individual Update Based on Gaussian Perturbation

In the later stage of the search, the WOA algorithm is 
prone to the problem of group aggregation, which causes 
the algorithm to fall into the local extreme value in the 
later stage. Reference [25] shows that the use of Gaussian 

perturbation algorithm in the bat algorithm can strengthen 
the global search ability of the algorithm and improve the 
accuracy of understanding. Since both the bat algorithm 
and the whale optimization algorithm are multi-swarm 
algorithms, Gaussian disturbance is used in the whale 
optimization algorithm in this paper. The probability density 
function of the Gaussian distribution is expressed as follows:

2

2

1 ( )( ) exp( )
22

xf x µ
σπσ
−

= − .                          (21)

In formula (21), the larger the value of σ , the smaller 
the probability value of the position x , which means that the 
smoother the curve, the more scattered the probability 
distribution, on the contrary, when the value of σ  is smaller, 
the curve is steeper, then It shows that the probability 
distribution is relatively concentrated. Therefore, we take σ  
value of 1 here, which can ensure that the algorithm can solve 
efficiently and avoid premature convergence, so the update of 
the individual is as follows:

( 1) ( ) ( ) ( )p pX t X t X t f t+ = + × .                         (22)

In formula (22), A represents a random number with a 
mean of 0 and a variance of 1 obeying a Gaussian distribution
4.2.4 Algorithm Step

Step 1: Establish the correspondence between the node 
location in the wireless sensor network and the whale 
algorithm. That is, the whale algorithm treats each solution in 
the node localization problem as a whale individual. In each 
iteration of the whale algorithm, the quality of the current 
whale is judged by the set fitness function, and finally the 
optimal whale individual is found to obtain the best node 
positioning. The expression of the fitness function of the 
whale algorithm adopts formula (9);

Step 2: Initialize the relevant parameters of the whale 
algorithm and the relevant parameters of node positioning, 
and set the maximum number of iterations;

Step 3: According to Section 4.2.1, use Fuch-based 
chaotic oppositional learning population initialization;

Step 4: According to the formula (19-20) in Section 4.2.2, 
the formula (10-11) is updated for the encircling and preying 
behavior;

Step 5: Execute the bubble attack behavior;
Step 6: Perform individual update according to Section 

4.2.3;
Step 7: Determine whether the optimization has reached 

the maximum number of iterations, and if so, find the optimal 
whale individual, which is the approximate value of the 
optimal position of the node to be tested, otherwise go to 
Step 4, and add 1 to the number of iterations.

5. Simulation Experiments

To further verify the effectiveness of the IWOA in node 
localization accuracy, ACO, PSO and WOA are selected for 
comparison in this paper. The hardware platform chosen 
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contains a Core I5 CPU, 16 GB DDR4 memory, 2T hard disk, 
MATLAB 2012 simulation software, and Win10 operating 
system. The number of iterations is set to 1000.

5.1 Algorithm Performance Comparison
In this paper, six benchmark test functions in CEC2017 

(Table 1) are selected to judge the performance of the 
algorithms in this paper, and four indicators of minimum, 
maximum, mean and standard deviation are chosen. The 
parameters of the four algorithms are shown in Table 2, and 
the simulation results are shown in Table 3.

Table 1. Benchmark test function

No Function name Benchmark function

F1 Sphere 2

1
( )

n

i
i

f x x
=

=∑

F2 Schwefel 1.2
1 1

( ) ( )
n i

j
i j

f x x
= =

=∑ ∑

F3 Rosenbrock
1

2 2 2
1

1
( ) [100( ) ( 1) ]

n

i i i
i

f x x x x
−

+
=

= − + −∑

F4 Ackley 2

1 1

1 1 1( ) 20exp( ) exp( cos(2 ))
5

n n

i i
i i

f x x x
n n

π
= =

= − −∑ ∑

F5 Rastrigin 2

1
( ) ( 10cos(2 ) 10)

n

i i
i

f x x xπ
=

= − +∑

F6 Schewfel 2.21 ( ) max( ( ))if x abs x=

Table 2. Main parameters of the 4 algorithms
Algorithm Description

ACO [2] The pheromone is set to 0.01, the volatility coefficient is 
set to 0.01, and the path selection probability is set to 0.5

PSO [3] The inertia weight is set at 0.1, and the learning factor is 
2.

WOA [6] a  is [2, 0] linearly non-decreasing

IWOA a  is [2, 0] linearly non-decreasing, the b value is 1.5, 
and c is 1

Table 3 shows the test results of the four algorithms under 
four metrics with different dimensions of the six classical 
test functions. From the numerical results of these metrics 
tests, the algorithms in this paper achieve better numerical 
results in all the classical functions, which shows that the 
improved strategies are effective. Therefore, we believe that 
these six test functions have well tested the algorithm of 
this paper. In test functions F1-F3, IWOA has better results 
compared with the other three algorithms in testing the 
standard index results, and the advantage of data testing is 
very obvious, especially in the F1-F4 functions. When the 
value of dimension is 2, the minimum value of this paper’s 
algorithm is 0, which shows that this paper’s algorithm has 
good solution quality. This indicates that the IWOA performs 
better overall. Through the above results, it is found that this 
algorithm has better results in the test function compared with 
the other three algorithms (especially the WOA algorithm). 
It shows better results in different dimensions, which also 

shows that the performance of the algorithm in this paper is 
indeed significantly improved by the Fuch chaotic population 
initialization, adaptive strategy and Gaussian perturbation 
improvement, and the solution quality effect is further 
enhanced.

Table 3. Optimization results of the four algorithms in 
different benchmark functions

Function Dimension Algorithm Minimum 
value

Maximum 
value

Mean Standard 
deviation

F1

2

ACO 0.0205 16478.500 1990.67892 4985.5318
PSO 6.1472E-11 0.0042617 0.000140519 0.0004011
WOA 1.4521E-14 2.824E-07 1.3141E-07 4.4852E-07
IWOA 0 1.1368E-67 2.6216E-69 1.7134E-68

5

ACO 0.3706 30482.1835 4561.47157 8649.6718
PSO 0.0034 4.1852 1.01395105 1.3256
WOA 2.1561E-08 5.3161E-03 5.912E-04 1.1831E-03
IWOA 3.9718E-55 8.2136E-41 1.9561E-42 1.2528E-41

30

ACO 27124.2624 134125.416 70170.8017 35173.8124
PSO 1452.3613 6299.0228 3637.5227 1211.7122
WOA 2.649E-03 1.041E+01 1.8021E+00 2.221E+00
IWOA 5.6743E-43 1.7644E-31 4.9137E-33 2.6423E-32

F2

2

ACO 0.211709 89.1365 9.28170 25.3572
PSO 4.6115E-07 0.0099 0.0010 0.0011
WOA 1.9131E-07 5.807E-03 3.915E-04 9.2271E-04
IWOA 0 5.187E-42 3.272E-43 1.1521E-42

5

ACO 0.847483 16849.7207 798.049 2888.386
PSO 0.0049 1.3204 0.2272 0.2597
WOA 1.3171E-04 1.8182E-01 3.8121E-02 3.9022E-02
IWOA 1.2781E-32 6.7831E-26 2.3462E-27 1.0281E-26

30

ACO 44550.64 1.6697E+20 3.4185E+18 2.3659E+19
PSO 15.0176 67.9770 33.4899 11.0343
WOA 1.2381E-01 8.9183E+00 3.2161E+00 3.0819E+00
IWOA 3.2393E-28 2.5221E-21 2.2287E-22 5.6991E-22

F3

2

ACO 0.0322 270.422 38.92631 88.32911
PSO 4.0806E-11 0.0017 9.8150E-05 0.0003
WOA 6.7901E-11 2.2252E-04 2.1898E-05 3.7841E-05
IWOA 0 3.7892E-10 3.6754E-11 7.0909E-11

5

ACO 0.021984 1018.44312 96.20109 271.8118
PSO 9.3079E-11 0.0014 0.0002 0.0003
WOA 8.4593E-07 3.381E-03 2.7712E-04 5.1443E-04
IWOA 1.2137E-12 5.9615E-09 5.9052E-10 1.2255E-09

30

ACO 0.1603 13059.0257 761.43718 2834.95721
PSO 8.9233E-11 0.0416 0.0021 0.0061
WOA 3.7177E-05 9.5211E-02 1.3132E-02 1.8931E-02
IWOA 4.5790E-11 2.8173E-07 2.8142E-08 5.0604E-08

F4

2

ACO 0.15782 98.8934 40.9021 43.4112
PSO 2.3389E-05 0.1167497 0.0079 0.01815393
WOA 9.1739E-07 2.3493E-01 1.9032E-02 4.2301E-02
IWOA 0 3.7892E-15 1.4087E-16 5.1258E-16

5

ACO 3.9816 98.9013 77.0836 28.6501
PSO 0.0517 4.4858 0.8580 0.8908
WOA 2.9321E-02 7.4451E-01 2.1729E-01 1.3387E-01
IWOA 2.3214E-13 3.0698E-02 1.2890E-03 4.8835E-03

30

ACO 86.1713 99.7146 97.1821 2.7163
PSO 15.8714 39.9832 26.7036 4.8160
WOA 6.4403E-01 1.7071E+00 1.3721E+00 2.2463E-01
IWOA 3.7050E-02 6.2034E-01 4.3133E-01 1.5607E-01

F5

2

ACO 71231.1722 79962.92 7491773.86 22744721.52
PSO 4.5371E-07 7.80186 0.345358 1.191631
WOA 7.9036E-08 2.3132E+00 7.9053E-02 3.3269E-01
IWOA 7.1633E-11 4.5806E-04 1.6821E-05 6.7930E-05

5

ACO 18.8482 12.7512 10.0172 9.1782
PSO 1.73915 1732.363 167.49165 360.13007
WOA 8.2972E-01 6.5381E+00 3.8721E+00 1.3091E+00
IWOA 1.6695E-03 3.0681E+00 9.7833E-01 8.4284E-01

30

ACO 51342.0331 77689.3512 14453.2914 27245.4923
PSO 13718.400 29065.250 84826.368 63480.300
WOA 2.922E+01 9.806E+02 2.946E+02 2.602E+02
IWOA 2.7621E+01 2.8936E+01 2.9186E+01 4.0376E-01

F6

2

ACO 0.03691920 16748.3712 1670.5606 4641.1354
PSO 2.2516E-10 0.00458124 0.00036729 0.00089128
WOA 5.704E-10 9.926E-04 6.431E-05 1.951E-04
IWOA 1.4320E-14 6.0278E-08 4.7190E-09 1.2007E-08

5

ACO 0.9832 0.9268 0.7122 0.7732
PSO 0.0004 12.3665 1.1243 2.1209
WOA 8.9971E-04 2.9293E-01 4.1243E-02 4.7751E-02
IWOA 1.3182E-07 2.5106E-02 9.6304E-03 4.8154E-02

30
ACO 2.1263 9.8212 7.9713 2.1209
PSO 1364.9936 7575.0923 3644.1280 1313.5267
WOA 1.7143E+00 1.3154E+01 4.183E+00 2.131E+00
IWOA 3.1915E-01 2.6013E+00 1.4156E+00 6.1832E-01

5.2 Comparison of Localization Metrics
To test the localization effect of the algorithm in this 

paper, two other improved whale optimization algorithms, 
namely, the Chaotic whale optimization algorithm (CWOA) 
[26] and Levy whale optimization Algorithm (LWOA) 
[27], are selected in this paper. The main contents of the 
experimental comparison are unknown node localization, 
reference node ratio, node density, communication radius 
and area in a total of six aspects. The environment-related 
parameters in the wireless sensing network are shown in 
Table 4.
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Table 4. Simulation environment parameters
Parameter name Parameter values
Area size/m×m 10×10
Total number of nodes/pc 50
Number of reference nodes/pc 20
Communication radius/m 30
Node distribution Random distribution

The error results are averaged in the simulation 
experiments to compare the advantages and disadvantages of 
the performance of the three positioning algorithms, and the 
average positioning error equation is as follows.

2 2

1
( ) ( )

N

i i i i
i

average

x x y y
E

N R

− + −
=

×

∑ .                             (23)

where ( , )i ix y  is the estimated coordinate, ( , )i ix y  is the 

actual coordinate, N  is the number of unknown nodes, and 

R  is the communication radius.

(1) Effect of unknown node localization
Figure 1 shows the results of the average localization 

error variation of the three algorithms with different numbers 
of unknown nodes. As the number of unknown nodes 
gradually increases, all three algorithms show dramatic 
fluctuations, which indicates that the number of unknown 
nodes has a greater influence on node localization, but 
from the values of the whole curve, IWOA has a smaller 
average localization error range than CWOA and LWOA. 
This indicates that IWOA plays a better role in solving 
node localization compared with CWOA and LWOA with 
improvements of 10.8% and 8.38%, respectively.
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Figure 1. Comparison of unknown node positioning errors

(2) Effect of reference node ratio
Figure 2 shows the effect of the change in the average 

positioning error of the three algorithms at different reference 
node ratios. This shows the importance of the number of 
reference nodes in wireless sensing networks. From the 
results of the curves in the figure, the curve of IWOA 
decreases faster than the other two curves, especially under 
the same proportion of reference nodes. The localization 
accuracy of IWOA has a significant advantage compared 
with the CWOA algorithm and LWOA algorithm by 13.03% 
and 9.6%, respectively.
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Figure 2. Comparison of reference node scale positioning 
error

(3) Effect of node density
Figure 3 shows the effect of localization error changes 

of the three algorithms at different node densities. With 
the gradual increase of node density, the errors of the three 
localization algorithms are reduced by different degrees, and 
the localization accuracy of the IWOA algorithm is improved 
by 10.2% and 9.24% compared with the CWOA and LWOA 
algorithms, respectively. In particular, the IWOA algorithm 
error decreases most significantly when the proportion of 
nodes is between 5% and 30%. When the proportion of nodes 
increases to 40%, the localization error does not decrease 
significantly, and the curve stabilizes, which is mainly due 
to the increase in node density. This increases the mutual 
communication between nodes, but the energy consumption 
of nodes also increases, so the selection of the number of 
nodes to reduce the error according to the actual situation 
is a factor that should not be ignored. Especially in the case 
of low node density, the IWOA algorithm still has a good 
localization effect, which indicates that the IWOA algorithm 
is more stable than the other two algorithms. The IWOA 
algorithm can effectively improve the localization accuracy 
in terms of node density.
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Figure 3. Comparison of positioning error under node 
density

(4) Effect of communication radius
Figure 4 shows the effect of the three algorithms on 

the variation in node localization error under different 
communication radii of nodes, from which it is found that 
the average node localization error of the three algorithms 
shows a decreasing trend as the communication radius 
of nodes gradually increases. When the communication 
radius is between [10, 20], the decrease in the curves of 
the three algorithms is faster, and when the communication 
radius is between [20, 30], the decrease in the curves of the 
three algorithms is gentler, which shows that the gradual 
increase in the communication radius has little effect on the 
three algorithms to relieve the localization error in node 
localization. However, from the whole process, the IWOA 
still has obvious advantages over the CWOA algorithm and 
LWOA algorithm. The localization accuracy of the IWOA is 
improved by 9.1% and 7.1% compared with the CWOA and 
LWOA algorithms, respectively.
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Figure 4. Comparison of positioning error with commu-
nication radius

(5) Effect of area
Figure 5 shows the effect of the three algorithms on the 

variation of the localization error under different areas. With 
the gradual expansion of the area, the average localization 
error of the three algorithms increases to different degrees 
because the expansion of the area affects the accuracy of 
node localization. This shows that the IWOA can effectively 
adapt to an environment with a larger localization area and 
broaden the application area of node localization. IWOA is 
improved by 15.3% and 8.2% compared with the CWOA and 
LWOA algorithms, respectively.
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Figure 5. Comparison of positioning error under different 
areas

(6) Effect of the number of nodes
Figure 6 shows the effect of the change of localization 

error of the three algorithms at different numbers of nodes. 
The IWOA algorithm has a 7.1% and 7.3% reduction 
compared to CWOA and LWOA, respectively. This shows 
that the number of nodes has little influence on the algorithm 
of this paper.
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Figure 6. Comparison of positioning error with different 
number of nodes

6. Conclusion

Aiming at the shortcomings of large error and low 
accuracy of least-squares node localization in wireless 
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sensing networks, this paper proposes an IWOA algorithm 
combining a node localization model and an improved whale 
algorithm, Fuch chaotic opposition learning is used in the 
initialization of the whale optimization algorithm population 
to improve the initial position diversity, an adaptive strategy 
is used for the parameters in the encircling predation 
behavior to avoid the algorithm falling into local optimum 
prematurely, Gaussian perturbation is used to update the 
individual positions during the iterative search to improve the 
global search capability, and finally achieves a better position 
search effect. In the simulation experiments, the algorithm is 
able to achieve better results in terms of the node localization 
index.
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