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Abstract

Aiming at the parking space heterogeneity problem in 
shared parking space management, a multi-objective optimi-
zation model for parking space allocation is constructed with 
the optimization objectives of reducing the average walking 
distance of users and improving the utilization rate of park-
ing spaces, a real-time allocation method for shared parking 
spaces based on deep reinforcement learning is proposed, 
which includes a state space for heterogeneous regions, an 
action space based on policy selection and a reward function 
with variable coefficients. To accurately evaluate the model 
performance, dynamic programming is used to derive the the-
oretical optimal values. Simulation results show that the im-
proved algorithm not only improves the training success rate, 
but also increases the Agent performance by at least 12.63% 
and maintains the advantage for different sizes of parking 
demand, reducing the user walking distance by 53.58% and 
improving the parking utilization by 6.67% on average, and 
keeping the response time less than 0.2 seconds. 

Keywords: Shared parking, Deep reinforcement learning, 
Space allocation model

1  Introduction

According to the data of the Ministry of Public Security 
Traffic Administration, by 2021, the number of motor 
vehicles in China will reach 395 million, but the number of 
parking spaces is only 131 million. Facing such a huge gap, 
it is difficult to solve it by increasing the number of parking 
spaces, and it is more important to improve the utilization 
of existing parking spaces. Therefore, with the support of 
technologies such as Internet of Things and big data [1], 
a shared parking platform [2-4] is established to share the 
private parking spaces in the community that are idle due to 
residents going to work and other reasons during free hours 
for those in demand to alleviate parking demand. However, 
compared with professional parking lots, communities cover 
a larger area, parking spaces are sparsely distributed, and 
each shared parking space has a different sharing period, 
thus giving rise to the problem of optimizing the resource 
allocation of shared parking spaces.

1.1 Related Work
In recent years, a large number of studies on parking 

space management have focused on two aspects: parking 
space pricing strategy and parking resource allocation 
strategy. 

Around the aspect of parking space pricing, literature [5] 
designed an auction-based uniform pricing strategy, which 
effectively improved the platform revenue; for the dynamic 
pricing problem [6], literature [7] constructed a multi-period 
noncooperative two-tier model to describe the interactive 
competition among parking agencies and designed a non-
myopic approximate dynamic programming (ADP) approach 
to solve it; while literature [8] used a distributed framework 
to construct an adaptive pricing strategy based on virtual 
voting. 

In terms of parking space allocation, many scholars 
construct shared parking space allocation models with 
optimization objectives such as space utilization [9], social 
welfare [10], parking walking distance [11] and platform 
revenue [12], and solve them using multiple classes of 
intelligent algorithms, including genetic algorithms [13-14], 
ant colony algorithms [15] and particle swarm algorithms 
[16]. In addition, to ensure the robustness of parking space 
allocation, the literature [17] constructs a many-to-many 
structured recurrent neural network to achieve accurate 
prediction of parking space status; while the literature [18] 
constructs a time-of-day based parking probability function 
for random factors such as untimely parking.

Deep reinforcement learning, as a branch of machine 
learning, is widely recognized as a powerful way to solve 
Markov Decision Process (MDP). In recent years, many 
scholars have used reinforcement learning to allocate parking 
resources. In literature [19], the parking waiting model is 
described as a Markov queue in continuous time; in literature 
[20], a two-layer online optimization model based on 
reinforcement learning is constructed to reduce users’ parking 
waiting time; in literature [21], a deep reinforcement learning 
model is constructed to estimate the parking status with high 
efficiency and accuracy.

1.2 Contribution
In this paper, with the background of shared parking and 

with the help of deep reinforcement learning, we research the 
mechanism of shared parking space allocation based on real-
time demand and space heterogeneity. The contribution of 

Real-time Allocation of Shared Parking Spaces Based on 
Deep Reinforcement Learning

Minghai Yuan*, Chenxi Zhang, Kaiwen Zhou, Fengque Pei

College of Mechanical and Electrical Engineering, Hohai University, China
ymhai@hhu.edu.cn, 2624176205@qq.com, 1134357020@qq.com, fq_pei@163.com



36  Journal of Internet Technology Vol. 24 No. 1, January 2023

this paper can be summarized as follows:
1) A multi-objective shared parking space real-time 

allocation model is constructed and transformed into a 
Markov decision process.

2) A two-stage variable coefficient DQN algorithm is 
proposed for model training, and a dynamic planning-based 
evaluation strategy is designed.

3) The performance of the proposed algorithm and model 
are validated, which shows that the model can effectively 
reduce walking distance of users and improve the utilization 
of parking spaces.

The rest of this paper is organized as follows. Section 2 
builds a multi-objective optimization mathematical model for 
the parking space allocation problem. Section 3 transforms 
the mathematical model into a Markov decision process and 
designs an improved algorithm based on DQN for model 
training. Section 4, simulation and verification. Section 5, 
conclusion.

2  Problem Formulation

Compared with professional parking lots, shared parking 
lots have two significant problems: the shared parking spaces 
are more sparsely distributed and the spatial heterogeneity 
problem is more prominent, leading to the walking distance 
after parking becoming an important factor affecting user 
satisfaction; each parking space is shared for different time 
periods, leading to the need for the allocation model to focus 
on temporal sequencing. The model considered in this paper 
is based on real-time allocation, which means that parking 
requests and parking space allocation are made in real time. 
Based on this, the parking space scheduling platform is able 
to optimize the parking space allocation scheme in real time 
according to the different demands of each parking order, and 
improve the average user satisfaction and the utilization rate 
of shared parking spaces.

Parking 
spaces

Target 
Points

Parking 
Orders

Matching

Figure 1. Parking space matching

More specifically, as shown in Figure 1, for a shared 
parking lot with n spaces and p target points, each space is 
shared during its respective sharing period ( ~ )st ed

i iT T , and 
the space allocation system accepts a parking order every 
time interval orderT . The information of each order includes 
the demanded parking length kl  and the parking target point 

kh . The system matches spaces according to an intelligent 
policy so that the average walking distance of all users is 
reduced and the space Utilization rate. When the user’s 

parking length demand cannot be met, the system can match 
multiple parking spaces for the user in different time slots to 
meet the user’s needs as much as possible. The research 
problem is based on the following assumptions: parking 
spaces are free at the start of sharing; parking is prohibited 
beyond the sharing period; parking orders are generated at a 
fixed interval; and all users strictly comply with the platform 
scheduling for parking.

Therefore, this paper takes minimizing the average 
walking distance of users and maximizing the utilization rate 
of parking spaces as the optimization objectives, as shown in 
Equations (1) and (2), where kb  is whether to assign a 

parking space to an order, ijd  is the distance from the parking 

space i  to the target point j , and '
kl  is the actual parking 

duration. Specifically, the constructed multi-objective shared 
parking real-time allocation model is as follows:
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Equation (3) represents the set of currently assignable 
parking spaces for order k , where ie  is the state of the 
parking space i ; Equation (4) restricts the values of ie , kb ,the 
target point and the parking position; Equation (5) indicates 
whether the parking space can be assigned to order k , 
depending on whether the available parking space is non-zero 
and whether the parking duration exceeds the maximum 
shared period; Equation (6) indicates that the actual parking 
duration cannot exceed the reserved duration and the shared 
duration of the parking space, but the parking overtime is 
allowed not to exceed the specified duration L .

3  Problem Solution

In this section, the real-time allocation model of shared 
parking spaces is transformed into a Markov decision 
process; a DQN-based training method and a dynamic 
programming-based evaluation method are designed.
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3.1 Construction of Markov Decision Process
In a dynamic shared parking environment, the Agent 

makes reasonable scheduling decisions based on real-time 
parking space information and order information, and since 
the future state depends only on the current state and the 
current policy, the original problem can be described as a 
Markov decision process. An MDP can consist of a five-tuple 
shown in Equation (7), where a

ssP ′  is the state transfer matrix; 
S  is the state space to describe the shared parking state; ( )A s  
is the action space to select parking spaces; a

sR  is the reward 
function to evaluate the Agent’s behavior; λ  is the discount 
factor to measure the importance between long-term reward 
and immediate reward.

          ,, ( ), , | , , ( )a a
ss sS A s P R s s S a A sλ′ ′< ∈ ∈ >  .                        (7) 

To reduce the dimensionality of the state space and action 
space and make the algorithm easy to converge, the parking 
lot is divided into multiple heterogeneous regions based on 
the location information of the shared parking spaces, and 
the space selection is transformed into region selection. The 
literature [22] shows that most drivers can tolerate walking 
distances of less than 200 m after stopping. Therefore, within 
200 m is defined as the dominant region, and for each target 
point, it is divided into three types of regions (A, B, and C) 
according to the distance from the target point [0, 50], [50, 
100], and [100, 200] m. Other parking spaces are classified 
as D regions. As shown in Figure 2, the zoning status of a 
shared parking lot with the number of target points of 3 is 
divided into 10 zones.

Region A

Region B

Region C

Region D

Parking spaces
Target Points

Figure 2. Area division

3.1.1 State Space
The observations in the state space include the following 

three items: the number of remaining spaces in each region, 
which serves as the basis for the Agent to evaluate the current 
space information; the information of the current order, 
including the target point kh  and the demanded parking time 

kl , which serves as the basis for the Agent to filter the 
executable actions and to measure the reward; and the current 
time nowT . The specific description is shown in Equation (8), 
where xc  is the number of free parking spaces in region x .

           ( )i k k now
i X

S c h l T
∈

= × × ×∏ .                                              (8) 

3.1.2 Action Space
In order to minimize the size of the action space, the 

action is divided into two steps: selecting a region and 
selecting a strategy. The action space  is as follows, where 
X denotes the selection of a region and U denotes the 

parking space selection strategy.

          A X U= ×  .                                                                 (9)  

U  contains the following three strategies, where xG  is 
the set of available parking spaces in region x .

a) The shortest walking distance:

    min
k
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c) Heterogeneous prominence strategy(most deviated 

spaces from other target points):
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In addition, to ensure the legitimacy of the action space, a 

mapping from A  to sA  needs to be established by filtering 
the action space according to each state S . The constraints of 

xG  are shown in Equation (13), and the legal state space A is 
shown in Equation (14).

    x x kG M B= ∩  .                                                          (13) 

 {( , ) | 0, }s xA A x c Uδ δ≠= ∩ ∈  .                                   (14)
 

3.1.3 Reward
The design of the payoff function takes the objective 

function as the main reference basis. For the multi-objective 
optimization problem studied in this paper, two payoff 
functions are designed for comparison.

a) Linear weighting strategy. By assigning corresponding 
weights to different objectives, it is transformed into a single 
objective 1 1 2 2f f fω ω= + , The corresponding payoff function:

1 2k ku h kldr ω ω= − +  .                                                     (15)

b) Two-stage variable coefficient strategy. Considering 
the problem that the weighting strategy is not easy to 
determine reasonable weights and leads to unstable training, 
variable coefficients and stages are used to make the training 
stable and efficient. In the first stage, no variable coefficients 
are introduced so that the Agent is initially trained with 1f as 
the main target; in the second stage, variable coefficients are 
introduced and the target 2f  is introduced into the training.
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The variable coefficient ϕ introduced is positively 
correlated with time and is used to guide the Agent’s 
understanding of the current time nowT as an observation in the 
environment, thus enabling the pursuit of parking space 
utilization, where β  is taken to be between 0.05 and 0.1.

3.2 Model Training Framework
The constructed DQN training framework is shown in 

Figure 3. Each time, order information, current time, and the 
number of free parking spaces in each area are input as the 
current state; the Agent selects the optimal action based on 
the current state, and gets the next state and reward by 
interacting with the environment; the sample 1,( , , )t t t ts a r s +  is 
sent to the experience pool [23] for disruption and storage; 
and then the samples are periodically taken out for model 
training. The three-layer feedforward network used in this 
paper describes the Q-value network of the Agent, as shown 
in Figure 4.

Current Time

Current Parking 
Order Information

Parking space 
occupancy status

Update current status

Sampling

TrainingState Space Action SpaceAgent

Experience 
Pool 

Select 
Strategy

Select 
Region

Walking 
distance

Utlization

Reward

1( , , , )t t t ts a r s +

Figure 3. Deep reinforcement learning training framework

kh
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arg max ( , )ta
Q s a

...

......
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Figure 4. Q-value network
   

Algorithm 1. Improved DQN
Input: batch size b, discount factor λ, learning rate α, exploration factor ϵ
Output: network parameters θ*

1: Initialize action-value function Q with random weights θ
2: Initialize target action-value function     with weights θ− = θ
3: for iteration = 1 to N do
4:      Initialize state cx = | Mx|, Tnow = min Ti

st

5:      while Tnow ≤ max Ti  do
6:           Input st, output Q value of each action, filter illegal actions 

Eq.: 14

7:           With probability ϵ select a random action, otherwise select 
8:           Execute  at , get the new state st+1 and reward rt

9:           Put (st, at, rt, st+1) into the experience pool
10:         if step % learn frequency = 0 then
11:              Get b samples from the experience pool as a mini batch
12:              Calculate the target Q value Eq.: 17

13:              Calculate the training loss with respect to Qtarget Eq.: 18

14:              Perform a gradient descent to update network parameters Eq.: 19

15:              Modify exploration factor ϵ = max{ϵmin, ϵ − Δϵ}      
16:          end if
17:          if learn episode > Number of training sessions in stage 1 then 
18:              Convert r in the experience pool, replace the reward function Eq.: 16

19:          end if 
20:          Every C learning steps set     ← θ
21:      end while
22: end for

Q̂

a Q s at a t= argmax *( , )

θ̂
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The designed state space, action space, and reward 
function are integrated into the DQN algorithm to obtain 
the specific learning steps, and the pseudo-code is shown in 
Algorithm 1.

Where STEP11-14 is the key step of model training, 
calculating the target Q-value as in Equation (17); calculating 
the mean squared loss with the predicted Q-value as in 
Equation (18); using the mini-batch gradient descent method 
for direction propagation, for a batch of samples of number b
, the update formula of the Q-value network parameters is 
obtained after deriving ( )iL θ  as in Equation (19), where α  is 
the learning rate.

  1
ˆmax ( , | )target t a tQ r Q s aγ θ+= +  .                                   (17)
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The innovations involved in the improved algorithm 
include the following:

Step 6, in order to ensure the legitimacy of Agent actions, 
a mask layer is added after the output of the value function to 
filter illegal actions according to the mapping relationship of 
Equation (13) and (14).

Step 15, a variable greedy−  strategy is adopted:  is 
large in the early stage of training to encourage the Agent to 
explore;   decays gradually in the later stage of training to 
accelerate convergence

Step 18, using a two-stage variable coefficient reward 
function: gradually introducing multiple optimization targets 
for training through the variable coefficient payoff function 
shown in Equation (16); and using phased training to ensure 
stability.

3.3 Evaluation Strategies
To evaluate the effectiveness of the improved DQN 

algorithm, a theoretical optimum is used for comparison. The 
theoretical optimal solution is derived using dynamic 
programming iterations with known information about all 
orders in a day, including the start time and departure time of 
each user from the parking space. This means that the state 
transfer matrix a

ssP ′  is completely deterministic, so *Q  can be 
reached by greedy selection for iteration. The iterative 
formula is given in Eq. (20), where kQ  is the Q-value 
function for the k-th iteration

  1 maxa a
k s ss a' k

s S
QQ R Pγ ′+

′∈

= + ∑ .                                        (20)

4  Simulation Analysis

4.1 Parameter Setting
Taking a university as an example (the spatial distribution 

is shown in Figure 5), three target points are established; 

parking spaces of different densities (300 by default) and 
order generation cycles of different lengths (72s by default) 
are generated according to the simulation requirements; the 
sharing start and end times of each parking space obey a 
uniform distribution from 7:00 to 9:00 and from 15:00 to 
17:00, respectively; the demanded parking duration of each 
order obeys a normal distribution; the maximum parking 
timeout is 0.5 h.

Figure 5. Spatial distribution map of a university

The training hyperparameters of the improved DQN 
algorithm are shown in Table 1. The discount factor is 
calculated using the empirical formula 1/0.1 tλ = , and the 
number of steps in a single round in this problem is about 
300, resulting in 0.99λ ≈ ; the learning rate is linearly 
decayed, α α γ= ⋅ , the initial value is set to 310− , and every 
learning 1000 times reduced to 0.9; exploration factor 

{ , }minmax= − ∆    , initial value is 0.1, reduced 610−∆ =  
after each sampling. The fully connected network is set to 
have an input layer of size 13, two implicit layers of sizes 64 
and 32, and an output layer of size 20.

Table 1. Simulation hyperparameters
Hyperparameters Value

Maximum number of training sessions ( N ) 2000
Update period of the target network ( C ) 50
Learning frequency 20
Discount factor ( λ ) 0.99
Initial value of learning rate (α ) 10-3

Number of training sessions in stage 1 500
Experience pool size ( E ) 3000
Batch size ( b ) 32
Initial value of  0.1

4.2 Algorithm Comparison
The algorithm comparison includes three DQN-based 

car space matching algorithms and a theoretical optimal 
algorithm for evaluating intelligent decisions: the improved 
DQN algorithm, which uses segmented training with the 
training process shown in Algorithm 1; Single-objective 
algorithms, trained only for the objective of walking distance; 
the linear weighting algorithm, which uses a linear weighting 
method to transform the multi-objective problem into a 
single-objective problem and uses the payoff function shown 
in Equation (15) for model training; and the theoretical 
optimal algorithm, which uses dynamic programming to 
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calculate the optimal value, based on Equation (20). Figure 
6 and Figure 7 show the test results for the average distance 
traveled and space utilization, and Figure 8 shows the 
training process.

It can be seen from Figure 6: After training using the 
single-objective algorithm, the results of the Agent car space 
assignment are highly fluctuating; the Agent trained with the 
linear weighting algorithm has a more stable performance, 
and the average walking distance is controlled between 151 
The average distance traveled is between 151 m and 184 m, 
with a mean value of 166.37 m. The average distance traveled 
by the Agent trained with the improved DQN algorithm is 
between 138 m and 153 m, with a mean value of 145.35 
m. Compared with the first two groups, the performance 
is improved by at least 12.63%, which is the closest to the 
theoretical optimal value and the training results are relatively 
stable. As seen in Figure 7, the improved DQN algorithm is 
higher than the other algorithms in terms of space utilization, 
and the difference with the theoretical optimal value is less 
than 2.5%.
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Figure 7. Comparison of parking space utilization

It can be seen from Figure 8: When the linear weighting 
algorithm was used for training, it took more than 1000 
rounds of training to converge， which is significantly slower 
than the other two groups, and the final performance is not 
as good as the other groups; the single-objective algorithm 
is used to perform well in this training, but comparing with 
Figure 6, it can be seen that the final performance gap of each 
training is larger due to the small exploration range in the 
pre-training period, which relies too much on the selection of 
initial values. The analysis can be obtained that the improved 

DQN algorithm with phased processing makes the Agent 
have stronger search ability in the early stage and can learn 
the allocation strategy quickly, and focus on the utilization 
rate of the parking space and converge quickly after the 
introduction of variable parameters in the later stage, so 
that the Agent learns incrementally throughout the training 
process and the convergence speed and model performance 
are stable.
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Figure 8. Comparison of training process

4.3 Model Performance Comparison
This section focuses on verifying the superiority and 

effectiveness of the intelligent parking space allocation model 
compared with greedy allocation strategy of the «first-come, 
first-served» and the theoretical optimal value for different 
number of parking spaces and different order generation 
cycles. The greedy allocation strategy scheme assigns the 
closest parking space to the target point each time.

Firstly, we test the influence of the number of parking 
spaces on the allocation of parking spaces by considering six 
cases with 100, 200, 300, 400, 500 and 600 parking spaces, 
and test each case 20 times. Figure 9(a) and Figure 9(b) show 
the average walking distance and space utilization rate under 
different number of parking spaces, and it can be seen that as 
the number of shared parking spaces increases, the average 
walking distance after using real-time intelligent allocation 
decreases significantly, and the average difference with the 
theoretical optimal value is less than 6.25%. Compared 
with the greedy allocation strategy, the average walking 
distance is reduced by 53.58% and the average parking space 
utilization rate is increased by 6.67%; and the smaller the 
number of parking spaces, the more significant the advantage 
of intelligent allocation in terms of parking space utilization. 
Figure 9(c) shows the percentage of users walking distance 
less than 200 m. It can be seen that when the number of 
parking spaces reaches 400, 95.80% of users’ walking 
distance is controlled within 200 m, which basically meets 
the tolerance distance of most users.

In addition, the effect of the order generation cycle on 
the parking space allocation was tested for 20 groups at 2 s 
intervals in the interval of 20 to 140 s. The results are shown 
in Figure 10. It can be seen that the intelligent allocation 
is stable in all cases, with an average deviation of less than 
7.81%, and the gap with the theoretical optimal value is not 
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higher than 8.66%; with the growth of the order generation 
period, the gap with the theoretical value slightly widens, but 
the advantage over the greedy strategy is still obvious.

Order generation cycle/(s)
50

100

150

200

250

300

350

400 Intelligent Distribution
Greedy Strategy
Theoretical value

20 40 60 80 100 120 140

Figure 10. Comparison under different order generation 
cycles

Finally, the system response time is tested. The response 
time is defined as the time interval between an order being 
accepted and being assigned a parking space, which mainly 
includes the time for the two parts of environment status 
update and parking space selection. The parameters that 
determine the size of the research problem include the 
number of parking spaces, the number of target points, and 
the order generation cycle, but the order generation cycle 
does not affect the single-step response time. Therefore, this 
paper tests the performance of the model response time under 
different number of parking spaces and number of target 
points. As shown in Figure 11, the response time increases 
with the number of parking spaces, and only when the 
number of parking spaces reaches the extreme case of 3200, 
the response time starts to increase significantly, but it is still 
lower than 0.2 seconds, which can meet the normal parking 
demand. As shown in Figure 12, the number of target points 
has no significant effect on the response time, and the model 
can maintain a fast response. From the results, it can be seen 
that although the response speed of the intelligent allocation 
model proposed in this paper is slightly slower than that of 
the greedy strategy, it can still meet the demand for parking 
space allocation of different sizes.
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Figure 11. Response time under different number of parking 
spaces
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Figure 12. Response time under different number of target 
points

5 Conclusion

To solve this multi-objective optimization problem, a 
deep reinforcement learning-based solution is proposed, 
which gives a state space for heterogeneous regions, an 
action space based on policy selection and a reward function 
with variable coefficients. In order to accurately evaluate 
the model performance, the theoretical optimal value is 
calculated using dynamic programming.

Simulation results show that compared with the greedy 
strategy, the real-time allocation model of shared parking 
spaces proposed in this paper can reduce the user walking 
distance by 53.58%, improve the utilization rate of parking 
spaces by 6.67% and stabilize the deviation within 7.81% 
under different number of parking spaces and different 
order acceptance frequency. In addition, the response time 
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Figure 9. Comparison under different number of parking spaces
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of the model is less than 0.2s. This shows that the real-
time allocation model proposed in this paper can cope with 
different sizes of parking scenes, effectively reduce users’ 
walking distance and improve parking space utilization, 
providing an effective solution to the real-time allocation 
problem of heterogeneous shared parking spaces.
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