
Joint Online Optimization of Task Rescheduling and Data Redistribution 11

*Corresponding Author: Liang Wang; E-mail: lwang20@buaa.edu.cn
DOI: 10.53106/160792642023012401002

Abstract

Wide-area distributed computing environment is the main
platform for storing large amounts of data and conducting
wide-area computing. Tasks and data are jointly scheduled
among multiple computing platforms to improve system
efficiency. However, large network latency and limited
bandwidth in wide-area networks may cause a large delay in
scheduling information and data migration, which brings low
task execution efficiency and a long time waiting for data.
Traditional works mainly focus on allocating tasks based on
data locality or distributing data replications, but optimizing
task allocation or data placement alone is insufficient from a
global perspective. To mitigate the impact of large network
latency and limited bandwidth on system performance, joint
online optimization of task rescheduling and data redistribu-
tion is proposed in this study. The task allocation and data
placement can be adjusted collaboratively during the system
running process through the task stealing and backfilling
mechanism and the data replication placement mechanism.
The experimental results indicate that compared with the
state-of-the-art method, the proposed method improves the
system throughput and computing resource utilization by
20.67% and 20.26% respectively, and can significantly re-
duce the global data migration costs.

Keywords: Distributed computing, Joint scheduling, Task
rescheduling, Data redistribution

1 Introduction

With the increase in data volume and computing demands
in various fields, companies and organizations have estab-
lished and organized large computing platforms such as data
centers and supercomputing centers to build wide-area dis-
tributed computing environments and jointly process widely
distributed data sets efficiently [1]. In the wide-area distrib-
uted computing environments such as XSEDE [2], EGI [3],
CNGrid [4], and multi-cloud systems [5], tasks and data are
jointly scheduled for better efficiency and user experience [6].
However, the large network latency and limited bandwidth
in the wide-area network (WAN) may cause a large delay in
scheduling information and data migration. The inefficient

scheduling schemes bring low task execution efficiency and
a long time waiting for data. To improve system throughput,
designing an online method to adjust and optimize the distri-
bution of tasks and data during the system running process is
necessary.

The existing optimization methods during the system
running process can be classified into task rescheduling
methods [7-10] and data redistribution methods [6, 11-14].
The task rescheduling methods tend to optimize the utiliza-
tion of computing resources by finding idle resources during
the system running process and enabling smaller tasks to run
in advance through the backfilling mechanism. However, the
data placement information is seldom considered in the task
rescheduling methods, and the advantages of data replication
in multiple data centers are not fully utilized [15], resulting
in limited resource utilization improvement and poor optimi-
zation effect. The data redistribution methods can reduce the
data migration cost through data redundancy placement based
on the data popularity and storage resource capacity. How-
ever, the neglect of the computing resource state may lead to
unbalanced data placement and task allocation in wide-area
environments, and reduce the computing efficiency. In recent
years, there have been several efforts to accomplish task re-
scheduling or data redistribution through machine learning
and heuristic algorithms, but again, they do not consider the
relationship between tasks and data [16-19]. To summarize,
the aforementioned optimization methods mainly focus on
optimization through one aspect of task rescheduling or data
redistribution rather than on a comprehensive approach,
which cannot meet the demands of global performance op-
timization. Therefore, they are not well applicable for im-
proving throughput during the system running process in the
wide-area distributed computing environment.

In this paper, we propose a Joint Online optimization
method of Task rescheduling and Data redistribution (JOTD).
The task allocation and data placement are adjusted collab-
oratively based on system feedback to optimize the global
resource utilization, thus improving the system throughput.
Compared with the existing methods, the proposed method
adjusts the task allocation and data placement collaborative-
ly, avoiding the problem of incomplete optimization in the
aforementioned methods. The JOTD jointly combined the
task stealing and backfilling mechanism and the data replica-
tion placement adjustment mechanism, improving the system
throughput which is influenced by the delayed scheduling

Joint Online Optimization of Task Rescheduling and Data Redistribution

Yao Song1,2, Limin Xiao1,2, Liang Wang1,2*, Wei Wei3, Jinquan Wang1,2

1 State Key Laboratory of Software Development Environment, Beihang University, China
2 School of Computer Science and Engineering, Beihang University, China

3 School of Computer Science and Engineering, Xi’an University of Technology, China
songyao@buaa.edu.cn, xiaolm@buaa.edu.cn, lwang20@buaa.edu.cn, weiwei@xaut.edu.cn, derekjqwang@buaa.edu.cn

12 Journal of Internet Technology Vol. 24 No. 1, January 2023

information and data migration.
The main contributions of this study are summarized as

follows:
	A Joint online optimization method of task rescheduling

and data redistribution is proposed, which can effectively
mitigate the large delay in scheduling information and data
migration caused by the large network latency and limited
bandwidth in WAN.

	A locality-aware wide-area task stealing and backfilling
mechanism is applied to optimize the utilization of com-
puting resources by perceiving data distribution character-
istics and resource idle state.

	A popularity- and cost-aware adaptive data replication
placement adjustment mechanism is applied to optimize
the utilization of storage resources by sensing the data ac-
cess popularity and data replication costs.

	The task allocation and data placement are adjusted col-
laboratively based on the system feedback to optimize
system performance.

	Through the evaluation of using real workload traces, the
proposed method can significantly improve the system
throughput compared to other optimization methods.

2 Related Works

To mitigate the system performance degradation caused
by limited network bandwidth and large latency in the WAN
environment, optimizing task allocation and data placement
during the system running process is an effective approach.
The goal of existing optimization methods is to achieve
reasonable task allocation to improve computing resource
utilization through task rescheduling methods such as task
backfilling, or to optimize the data placement based on sys-
tem feedback information to reduce data migration cost and
improve the execution process.

Task rescheduling methods have been widely used in job
management systems such as SLURM [20], TORQUE [21],
and PBSpro [22] to improve execution efficiency. Moreover,
in the wide-area distributed computing environment, it is par-
ticularly important to optimize task allocation through task
backfilling to solve the problem of low efficiency caused by
large scheduling information delays. Several task reschedul-
ing methods have been proposed in the past few decades [7-
10, 23-34]. In [7], basic strategies such as FCFS and SPTF
are integrated for task backfilling, scheduling system chooses
different rules for reordering and backfilling tasks in the
waiting queue to optimize computing resource utilization in
computing platforms. To obtain a more accurate task back-
filling strategy to further optimize the computing resource
utilization, Carastan-Santos [8] adopts a dynamic reschedul-
ing method based on simulation and machine learning. The
users’ history information in the system is collected, and the
task characteristics are analyzed through a nonlinear model
to predict the behavior of tasks. Thus, the task allocation can
be optimized more precisely with the proposed method. In
[16], authors propose GARLSched, which uses reinforce-
ment learning to take several task informations into account,
and can be optimized for different workloads. In [17], au-
thors propose an efficient running time prediction model,

referred to as online learning and KNN-based predictor with
correction mechanism, called OKCM. In [18], authors pro-
pose RLSchert, a job scheduler based on deep reinforcement
learning and remaining runtime prediction, which estimates
the state of the system by using a dynamic job remaining
runtime predictor and learns the best policy to select or kill
jobs based on the state by imitation learning and approximate
policy optimization algorithms. However, in the wide-area
distributed computing environment, data is often replicated
among multiple computing platforms to improve reliability
and access performance, while most task backfilling meth-
ods tend to ignore the performance improvement that can be
brought by using data replication placement [15, 24]. There-
fore, although task rescheduling methods can optimize the
computing resource utilization to some extent, the improve-
ment of system performance is still limited because the data
replication placement is not fully optimized and utilized.

The problem of large data migration costs in WAN envi-
ronments has always been a hot topic for researchers. Data
migration is often optimized through bandwidth allocation,
load balancing, and other data transmission mechanisms [35-
36]. Data replication placement is also a common technique
to improve data reliability and access performance in storage
systems [6, 11-14, 35-40]. Kosar [41] designed the STORK
storage resource management system to improve system
performance in large-scale data processing, and the efficient
access of storage resources is realized through the methods
of data replication placement and data transmission manage-
ment. In [6] and [13], the data placement method based on
data popularity feedback is proposed. The popularity of data
blocks, storage size required by data, and storage resource
capacity are considered comprehensively to optimize and
adjust the data placement in the system, and then task sched-
uling is carried out based on the data placement information.
In [11], four data replication policy is aggregated to support
efficient data access, and data replication placement is adjust-
ed dynamically and adaptively based on reliability, cost, and
popularity, optimizing storage resource utilizing and reducing
data migration cost. However, the data replication place-
ment methods usually only focus on the capacity and load of
storage resources, as well as data popularity, and pays little
attention to the state of computing resources. As a result, the
subsequent task scheduling based on data placement infor-
mation will cause unbalanced task allocation in the system,
reducing system throughput. In [19], the authors propose a
metaheuristic approach using a non-dominated sorting ge-
netic algorithm II in order to address the latency and traffic
differences between different hardware nodes and provide an
automated method to manage the transmission of data copies,
including their deployment in a fog cloud environment.

To summarize, the existing optimization methods during
the system running process mainly focus on optimization
through one aspect of task rescheduling or data redistribution
rather than on a comprehensive approach, which cannot meet
the demands of global performance optimization. Therefore,
this paper proposes a joint online optimization method for
task rescheduling and data redistribution. Compared with
the existing methods, the proposed method adjusts the task
allocation and data placement in the system running process
based on the collaborative application of task rescheduling

Joint Online Optimization of Task Rescheduling and Data Redistribution 13

and data redistribution mechanisms, avoiding the problem of
incomplete optimization in the aforementioned methods, and
effectively improving the system performance.

3 Joint Online Optimization

JOTD is an optimization method during the system run-
ning process based on dynamic task rescheduling and data
redistribution. The locality-aware wide-area task stealing
and backfilling mechanism is applied in JOTD to modify the
inefficient scheduling schemes caused by the delay of sched-
uling information. On the premise of making full use of data
locality, the appropriate tasks are selected by considering in-
formation such as task requirements and priority, and the task
stealing and backfilling mechanism among task queues in a
wide-area is carried out to optimize the utilization of com-
puting resources. Moreover, the popularity- and cost-aware
adaptive data replication placement adjustment mechanism
is applied to mitigate the long data waiting time caused by
delayed data migration. Based on the feedback on the data
replication cost and the data popularity, the evaluation model
of the data replication scheme is established, and the data
replication placement in a wide-area is adjusted adaptively to
optimize the utilization of storage resources. The framework
of JOTD is shown in Figure 1.

Figure 1. JOTD framework

The task allocation and data placement are adjusted col-
laboratively in JOTD. In terms of information coordination,
the two mechanisms share the resource information, the data
placement information, and the task allocation information,
and make decisions based on this shared information. In
terms of decision coordination, the adjustment of task allo-
cation will affect the data access popularity in the data repli-
cation placement adjustment mechanism and then affect the
data redistribution. Besides, the adjustment of data placement
will affect the data locality and migration cost in the task
stealing and backfilling mechanism, and then affect the task
rescheduling. JOTD avoids the problem of a single optimi-
zation direction in the aforementioned optimization methods,
and can effectively optimize the global resource utilization
during the system running process, thus improving the sys-
tem throughput.

3.1 Locality-aware Wide-area Task Stealing and Backfill-
ing Mechanism
Due to the delay in scheduling information in the WAN

environment, the scheduling scheme may not be accurate,

and the time costs such as task execution time, data migration
time, and queue waiting time may differ from the actual situ-
ation. To avoid the unbalanced task allocation caused by the
delayed scheduling information, we propose a task stealing
and backfilling mechanism based on data locality and re-
source state feedback in the wide-area distributed computing
environment. When a computing platform has idle resource
feedback, the task allocation is adjusted among multiple task
queues in the wide-area to improve the execution efficiency,
thus improving the system throughput. The overview of the
locality-aware wide-area task stealing and backfilling mecha-
nism is shown in Figure 2.

Figure 2. Locality-aware wide-area task stealing and
backfilling mechanism

3.1.1 Task Selection
When receiving feedback from the system, informing the

computing platform j has idle resources, the mechanism se-
lects tasks that are queuing in other computing platforms to
generate a task set by sensing data locality and global re-
source load. All tasks whose requirements can be met by
computing platform j, such as its computing capacity require-
ment and application deployment, are set as a task set Tall. In
Tall, all tasks whose required data replication are stored in
platform j are set as a task set Tdata. Once a task in Tdata is sto-
len and backfilled, it can be executed immediately without
going through the data migration process and queue waiting
process. Other tasks in Tdata are set as a task set Tcomp, which

means = −comp all dataT TT . Tasks in Tcomp need to undergo a data

migration process after stealing and backfilling, so the task
allocation can be adjusted with some data migration costs.

Since we need to select a suitable task for stealing in a
short time, task selection set T is defined from Tall to narrow

14 Journal of Internet Technology Vol. 24 No. 1, January 2023

the search domain. First, let = dataT T , and redefine = compT T

only when none of the tasks in T meet the filtering criteria.
That is, Tdata is an empty set or the target platform queue will
be affected if any task in T is stolen. To select a more suitable
task for stealing, we select the task with a higher priority in
the computing platform with a higher load, thus achieving a
higher resource utilization and balancing the load among
platforms. Besides, the data replication required by the se-
lected task should be afore stored in platform j to avoid the
data migration cost, reducing the network load and ensuring
the timeliness of task stealing and backfilling. For a task ∈t T
, its stealing adaptability parameter is:

 . (1)

In Eq. (1), priority indicates the priority of tasks, which is
defined based on the computing quantity of the task. In this
case, smaller tasks are preferentially selected to make full use
of idle resources and reduce the average waiting time in the
system. represents the idle state of the storage and
computing resources in the computing platform i which holds
task t. The larger the idle state is, the less likely the task t is
to be stolen.

 . (2)

Besides, when = compT T , data migration time ,trans tT
should be added to the filtering condition. When the data mi-
gration cost is higher, the task is less likely to be stolen, thus
avoiding a large amount of additional data migration.

In this mechanism, a mountain climbing algorithm is used
to find the sub-optimal solution in the task set T to improve
the search efficiency. In addition, to ensure the effectiveness
of task stealing and backfill mechanism, filtering conditions
should be set as follows:

∈

=0 arg max ()
t T

t F t . (3)

 <
0, ,exec t wait tT T . (4)

 <
0 0, ,trans t wait tT T . (5)

Task t0 represents the stealing target and task t represents
a task in the target idle computing platform. The filtering
condition in Eq. (4) ensures that the execution time of the
stolen task on target platform j is shorter than the expected
waiting time of any task t’ in platform j. In this case, when

the stolen task is backfilled, the waiting time for tasks on the
target platform will not be prolonged. Besides, it is necessary
to ensure that the data migration cost of the stolen task is less
than its original queue waiting time. Since

0,trans tT of the tasks
in Tdata is 0, this condition applies to the tasks in Tcomp.
3.1.2 Task Rescheduling

After a task t0 is selected, the resource information of
platform j is locked, the selected task t0 is added to the task
queue of the platform j, and task t0 is deleted from the origi-
nal task queue. If ∈0 compt T , the data required by t0 will be mi-
grated. The data may have multiple replications in the sys-
tem, and the scheme with the lowest data migration cost
should be selected. For platform j, although its task queue
may not be empty, the idle resources on it cannot meet the
needs of any task in the queue. Therefore, the task resched-
uled to the platform will be executed in advance without af-
fecting the queuing of the existing tasks, thus effectively im-
proving the utilization of computing resources. For the
selected task t0, the execution of the task will be advanced re-
gardless of whether the required data replication is stored in
platform j, thus improving the system efficiency.

The locality-aware wide-area task stealing and backfilling
mechanism is shown in Algorithm 1.

Algorithm 1. Locality-aware wide-area task stealing and
backfilling
Input: Task collection Tall

Output: Stolen task t0

1 for all i in computing platforms do
2 for all t in Tall do
3 // note the distinction of data distribution
4 calculate F(t) by Eq. (1);
5 end for
6 end for
7 F(t)max=0;
8 for all t in Tall do
9 if F(t) < F(t)max then
10 continue;
11 else if Texec,t < Twait and Ttrans,t < Twait,t then
12 t0=t;
13 F(t)max= F(t0);
14 end if
15 end for

The value of F(t) is first calculated for each platform with
each task, and it is important to note whether required data
exists in the current platform. Then a local optimal solution
is obtained using the hill climbing algorithm. The task of
this local optimal solution needs to satisfy the condition that
the task execution time is less than the waiting time of every
tasks in the backfill queue to avoid prolonging the tasks.

To summarize, when there are idle resources and small
tasks in the system, the locality-aware wide-area task stealing
and backfilling mechanism can optimize the task allocation,
thus improving the execution efficiency and the system
throughput.

Joint Online Optimization of Task Rescheduling and Data Redistribution 15

3.2 Popularity- and Cost-aware Adaptive Data Replica-
tion Placement Adjustment Mechanism
Due to the high latency and low bandwidth of WAN, data

migration may be unstable and slow, resulting in tasks long
time waiting for data. Data replication placement is a com-
mon method to improve data access performance in this case.
Replication and placement of hot data can effectively aggre-
gate WAN bandwidth, however, storage and network resourc-
es occupied by multiple replications may degrade system
performance to some extent. Therefore, the popularity- and
cost-aware adaptive data replication placement adjustment
mechanism is proposed. The number of data replications in
the wide-area distributed computing environment is adjusted
based on the tradeoff of data popularity and replication cost.
Moreover, the locations of replications are adjusted based on
the state of global computing resources to avoid an unbal-
anced load. Thus, data placement can be adjusted adaptively
to optimize the utilization of storage resources, reducing data
migration costs and improving system throughput. The over-
view of the popularity- and cost-aware adaptive data replica-
tion placement adjustment mechanism is shown in Figure 3.

Figure 3. Popularity- and cost-aware adaptive data
replication placement adjustment mechanism

3.2.1 Data Selection
The replication mechanism collects information on the

data popularity and replication cost in the system. When
storage resources in the system are idle, the replication mech-
anism periodically selects data whose replication placement
needs to be adjusted based on the system feedback. Firstly,
for data d, according to the collected data access information,
the data popularity is calculated and feedback to the system.
Data popularity is divided into global data popularity Pd and
local data popularity pi,d in platform i. Data popularity is de-
fined as:

 . (6)

 . (7)

In the definition, Data access ratio Fd is the ratio of the
access times of data d to global access times of all data, and
fi,d is the ratio of the access times of data d in platform i to
global access times of data d. Meanwhile, the data access
time interval is max-min normalized. When the data
access time interval is smaller and the access ratio is higher,
it indicates that the data is more popular.

Although data replication can effectively improve data
reliability and access performance, however, the maintenance
of multiple replications will cause network and storage costs,
which are defined as replication cost Cd. Replication cost
mainly consists of the replication storage cost, the data mi-
gration cost during replication creation, and the consistency
cost among multiple replications.

 = + +, , ,d stor d tran d cons dC C C C . (8)

As the costs are mainly considered from the perspective
of resource occupation, all costs in Eq. (8) are defined as the
product of occupied resource quantity and occupied time.
Assuming that there are n replications of data d in the system
and the existence time of the xth replication dx is , xdura dT , we
analyze the costs of each item.

The replication storage cost is mainly caused by the
occupation of storage resources by multiple replications.
However, the occupation of storage resources by data repli-
cations may affect the placement of other data. Therefore, an
inappropriately large number of replications may cause per-
formance degradation. The replication storage cost is defined
as:

=

= ×∑, ,
1

x

n

stor d d dura d
x

C S T . (9)

Where Sd represents the Size of data d.
The migration cost during replication creation is only

incurred at creation time. It is worth mentioning that for the
data without replications, the replication mechanism will be
triggered after it is migrated, to determine whether a perma-
nent replication of the data should be generated in the plat-
form according to the data popularity. Because the data mi-
gration is complete at this point, generating a replication can
reap the benefits of data replication while avoiding the extra
data migration cost. The migration cost during replication
creation is defined as:

= =

= × = ×∑ ∑, ,
2 2 , ,

x

x

n n
d

tran d d tran d d
x x i j d

S
C S T S

B . (10)

16 Journal of Internet Technology Vol. 24 No. 1, January 2023

Where , xtran dT represents the transmission time of the rep-

lication dx, and , , xi j dB represents the bandwidth between plat-
form i and j occupied by the migration of replication dx.

The consistency cost mainly comes from the cost of net-
work resources consumed by the consistency synchronization
between multiple replications. The broadcast protocol and
master-slave replication mechanism which are commonly
used in storage systems are applied in this case. After data is
changed, the changes are broadcasted to all replications of
the data for synchronization. It is assumed that data changes
of every τ time, then the consistency cost is calculated based
on the existence time , xdura dT .

 . (11)

Then, there needs to be a tradeoff between the global data
popularity Pd and the replication cost Cd. For data with high
popularity, this mechanism tends to maintain replications in
the system. Meanwhile, for data with high replication costs,
this mechanism tends to reduce the number of replications.

Max-min normalization is performed on the replication
cost Cd:

−

=
−

min
,

max min

d
d c

C C
C

C C . (12)

Where Cmax and Cmin are the maximum and minimum
replication costs of all data. The level of replication cost of
data d among all data is expressed by relative replication cost
Cd,c. Then the tradeoff score between global data popularity
and replication cost is defined as:

 = − − ,(1)d d d cScore P C . (13)

The tradeoff score is a value in the range of (0, 1). For
the data with relatively low replication cost and high data
popularity, the score is higher, and the mechanism is more
inclined to add the replication number in the system. The
upper and lower thresholds are set for the tradeoff score.
For the data exceeding the thresholds, the mechanism will
adjust the number and location of replications. The range
of tradeoff scores, which is (Scorel, Scoreu), is concluded
from experiments to ensure better performance of most
replications. The tradeoff scores are sorted from large to
small. The data whose tradeoff score is less than Scorel and
ranked in the bottom 20 percent, and the data whose tradeoff
score is greater than Scoreu and ranked in the top 20 percent
are selected for data redistribution.
3.2.2 Data Redistribution

In [11], a calculation formula for the appropriate number
of replications in the system is proposed according to the data
size, storage resource state, application parameters, and sta-
bility parameters. However, the delay of system information

in the wide-area environment may cause an inaccurate result,
and the large-scale adjustment of the replications may cause a
surge in network load. In this mechanism, we only implement
modest adjustment of replications, and the constant polling of
the replication mechanism makes the replication placement
in an appropriate state. We propose a solution named increase
and decrease of γ, that is, for a system with k computing plat-
forms, n replications of data d have been distributed in the
system, then γ is the number of replications added or reduced
in the data redistribution stage.

min , ,

2 2

,
2

d u

d l

n k n Score Score

n Score Score
γ

 − > =
 <

. (14)

The data replication placement is adjusted adaptively
based on local data popularity pi,d and the idle state of the
storage and computing resources , which are defined in
Eq. (7) and Eq. (2) separately. Data popularity is relevant
to the performance improvement brought by replication
placement. Besides, considering the load of storage and
computing resources can avoid the problem of unbalanced
task allocation in subsequent scheduling.

The data popularity and resource idle state are multi-ob-
jective rankings, and n’ computing platforms with the highest
rank are selected to generate a new replication scheme. QoS
checks are then performed, when the computing platforms
specified as replication locations by the users are not in the
scheme, the mechanism will replace the last ordered plat-
forms in the scheme with the specified platforms.

Popularity- and cost-aware adaptive data replication
placement adjustment mechanism is shown in Algorithm 2.

Firstly the algorithm calculates Pd and pi,d representing
global data access popularity and local data access popularity
by the frequency of data access, and calculates the cost
of data storage, data transmission, and data consistency
maintenance by the number of data replications, and later
synthesizes the replication cost Cd. After that, the maximum
and minimum values of data replication cost are searched,
and each replication cost value is normalized. Finally, the
increase and shrinkage policies of data are executed by the
thresholds set in advance, and the platforms that perform
special operations are specified by the local data access
popularity.

To summarize, when there are sufficient storage and
network resources in the system, the proposed mechanism
can bring a large performance improvement. Otherwise, the
mechanism may cause extre load on storage and network re-
sources. The popularity and cost-aware adaptive data replica-
tion placement adjustment mechanism can optimize the data
placement to reduce data migration costs and avoid long time
waiting for data, thus improving the system throughput.

Joint Online Optimization of Task Rescheduling and Data Redistribution 17

Algorithm 2. Popularity- and cost-aware adaptive data
replication placement adjustment
Input: Data information
Output: Data placement decision
1 for all data d do
2 calculate Pd by Eq. (6);
3 for all i in computing platforms do
4 calculated pi,d by Eq. (7);
5 end for
6 calculate Cstor,d for data d by Eq. (9);
7 calculate Ctrans,d for data d by Eq. (10);
8 calculate Ccons,d for data d by Eq. (11);
9 Cd = Cstor,d + Ctrans,d + Ccons,d;
10 end for
11 find the maximum and minimum values in Cd;
12 for all data d do
13 normalize Cd by Eq. (12);
14 calculate Scored by Eq. (13);
15 end for
16
17 for all data d do
18 if Scored > Scoreu then
19 Add data replications by Eq. (14) and pi,d;
20 else if Scored < Scorel then
21 Remove data replications by Eq. (14) and pi,d;
22 end if
23 end for

4 Experiments and Analysis

In this section, we evaluate the performance of JOTD and
the comparison methods in a simulation environment. The
Simgrid is used to simulate the wide-area distributed com-
puting environment and implement different optimization
methods in this platform. The system throughput, resource
utilization, and global data migration cost are evaluated.

4.1 Experimental Setup
The experimental environment is established based on

Simgrid [42], which simulates a wide-area distributed com-
puting environment consisting of 5 geographically distributed
computing platforms. Various parameters in the environment
are configured (shown in Table 1), including the computing
and storage capability of computing platforms, and network
capability between computing platforms.

Table 1. Computing platform configuration
Computing

platform
Core number Core computing

capability
Storage

capability
1 3500 22.89 GFlops 30 TB
2 3200 29.43 GFlops 25 TB
3 2600 14.55 GFlops 20 TB
4 2700 22.89 GFlops 10 TB
5 2800 16.55 GFlops 8 TB

The datasets used for the experiments are published real
workload traces from French Atomic Energy Commission

(CEA) [43] and Facebook [44]. The tasks in CEA trace have
the largest computing requirements, which can occupy nearly
the computing resources of a whole computing platform, so
it may impose a heavy burden on the system. Meanwhile, the
computing requirements of tasks in the Facebook trace are
relatively small and impose a steady load on the system.

In terms of optimization methods, runData [13], CAMS
[11] and GCSS [45] are chosen as the comparison methods.
The runData applies a dynamic data redistribution mechanism
and considers data locality in the task offloading process, but
does not make data replication. CAMS adopts a dynamic rep-
lication redistribution mechanism and tends to assign tasks to
the computing platform which has the required data replica-
tion and the highest computing performance. When no com-
puting platform meets the condition, then random scheduling
is adopted. GCSS is a collaborative scheduling of tasks and
data, which applies data replication and task rescheduling,
but does not carry out dynamic redistribution of replication.
JOTD is an optimization method during the system running
process based on dynamic task rescheduling and data redistri-
bution. Moreover, JOTD applies data replication and collabo-
rative scheduling of tasks and data. Moreover, the complexity
of each method is analyzed according to the published paper.
The characteristics of the methods being compared are shown
in Table 2.

Table 2. Characteristics of the methods being compared
Method runData CAMS GCSS JOTD

Data redistribution

Task rescheduling

Data replication

Collaborative scheduling

Complexity O(n2) O(n2) O(n2) O(n2)

4.2 Experimental Results
We analyze the experimental results in terms of system

throughput, resource utilization, and global data migration
cost. System throughput is the most important evaluation in-
dex we pay attention to, while resource utilization and global
data migration cost can also help analyze the impact of differ-
ent optimization mechanisms on system performance.
4.2.1 System Throughput

System throughput refers to the number of tasks com-
pleted during a certain period. We experiment in 20000 to
100000 seconds using Facebook trace and CEA trace as in-
put.

Figure 4 indicates that JOTD has the best system through-
put when replaying both Facebook trace and CEA trace.
When replaying Facebook trace for 100000 seconds, JOTD
outperforms runData, CAMS, and GCSS by 26.26%, 30.66%,
and 27.58%, respectively. Meanwhile, JOTD respectively
outperforms runData, CAMS, and GCSS by 26.64%, 33.19%,
and 20.67% when replaying the CEA trace. JOTD optimizes
the system performance through task rescheduling and data
redistribution and dynamically adjusts the task allocation
and data replication placement according to the information
feedback in the system. Meanwhile, JOTD pays attention to
cost, popularity, performance, and other objectives during
collaborative optimization to make the system more efficient.

18 Journal of Internet Technology Vol. 24 No. 1, January 2023

Therefore, JOTD achieves the highest system throughput.
The runData dynamically adjusts the data placement based
on data access information and resource load state during
the system running process, then runData reschedules tasks
to balance the load of each computing platform according
to data placement, so runData method can achieve higher
system throughput and performance than CAMS and GCSS.
Due to the lack of a data replication mechanism, the access
performance of hot data is limited, thus runData has a lower
throughput than JOTD. Meanwhile, CAMS and GCSS opti-
mize the system performance through data redistribution and
task rescheduling respectively. However, single optimization
direction leads to the limitation of optimization, CAMS gen-
erates random task scheduling schemes in some cases, and
the replication mechanism in GCSS cannot be dynamically
adjusted, so there is still room for improvement in the system
throughput of CAMS and GCSS.

It can also be observed that JOTD has a greater perfor-
mance improvement in system throughput when replaying
CEA Trace. After comparing the two traces, it can be ob-
served that the tasks in CEA Trace have larger core require-
ments, and some tasks require up to 2000 cores for running,
which means that there may be high-demand tasks waiting to
be executed in the system from time to time. Therefore, frag-
mented resources may exist in the system. These resources
cannot meet the requirements of tasks in queues of the local
computing platform but can meet the requirements of tasks in
queues of other computing platforms. In this case, the local-
ity-aware wide-area task stealing and backfi lling mechanism
introduced in section 3.1 can be triggered and brings a large
performance improvement.

Figure 4. System throughput observed for diff erent traces

4.2.2 Resource Utilization
Resource utilization is defined as the ratio of effective

resource usage to total resource usage. It is calculated as the
sum of all the used resources multiplied by their running time

divided by the total resources multiplied by the system run-
ning time. It is worth mentioning that in section 4.1, we set
the computing platform with suffi cient storage resources, that
is, the storage resource will not become the bottleneck, so we
only analyze the utilization of computing resources here.

Figure 5. Computing resource utilization observed for
diff erent traces

It can be observed from Figure 5 that the computing re-
source utilization of JOTD is not the highest when replaying
Facebook trace. However, when the system load is high,
that is, when replaying CEA Trace, JOTD achieves better
performance, outperforming runData, CAMS, and GCSS
by 20.26%, 44.21%, and 14.00% on average respectively.
When replaying Facebook trace, the load in the system is
relatively stable, and there are few tasks with large core re-
quirements, so the fragmented resources caused by resource
reservation for large tasks are rarely generated. Task stealing
and backfilling mechanism in JOTD is rarely triggered, so
the computing resource utilization of each methods is rela-
tively close. When replaying the CEA trace, as analyzed in
section 4.2.1, the task stealing and backfilling mechanism
in the JOTD method achieves good results as the load in the
system is high. The locality-aware wide-area task stealing
and backfi lling mechanism can be triggered by idle resources
in the system. In this case, the idle resources cannot meet the
requirements of tasks in the local queue but can meet the re-
quirements of tasks in queues of other computing platforms.
Through this mechanism, appropriate tasks are selected to be
stolen and backfi lled, and the selected tasks will not aff ect the
execution of other tasks in the computing platform with idle
resources, that is, the selected tasks are executed in advance,
while other tasks in the system will not be postponed. There-
fore, task stealing and backfi lling can eff ectively improve the
utilization of computing resources and system throughput in
the system. Similarly, GCSS with task stealing mechanism
also has a good performance in computing resource utili-

Joint Online Optimization of Task Rescheduling and Data Redistribution 19

zation. The runData and CAMS have poor performance in
computing resource utilization compared to other methods.
This occurs because the ignorance of data replication mech-
anism in runData may cause a long time waiting for data,
and CAMS do not consider the optimization of computing
resource utilization.
4.2.3 Global Data Migration Cost

We calculated the global data migration cost from the
time dimension, that is, the sum of the time spent on data
transmission during system running. We take 2500 tasks from
both Facebook trace and CEA trace as input. The global data
migration cost can refl ect the performance advantage of data
replication placement more intuitionistic than the storage re-
source utilization.

Figure 6. Global data migration cost observed for diff erent
traces

It can be observed From Figure 6 that the JOTD can sig-
nifi cantly reduce the global data migration cost in each case.
When replaying Facebook trace, JOTD outperforms run-
Data, CAMS, and GCSS by 94.94%, 95.21%, and 94.13%,
respectively. When replaying the CEA trace, JOTD outper-
forms runData, CAMS, and GCSS by 77.19%, 88.95%, and
83.01%, respectively. CAMS has the highest global data
migration cost in all cases. In the collaborative scheduling of
tasks and data process, CAMS prefers to schedule a task to
the computing platform with required replication and high
computing capability, and when no scheduling scheme can
meet the condition, random scheduling is adopted to balance
the load. Note that the schemes generated by random sched-
uling will cause remote data access, so the global data migra-
tion cost increases signifi cantly. On the other hand, runData
and GCSS consider data placement state and data locality
when scheduling tasks and data, thus both have less global
data migration cost than CAMS. However, data replication
mechanism is an eff ective way to optimize data migration in
WAN. The non-replicaiton mechanism and static replication

mechanism in runData and GCSS can still be optimized to
achieve a better performance in data migration. Meanwhile,
in JOTD, the data replication placement can be adjusted dy-
namically and adaptively according to the replication cost
and data popularity, so storage resources can be effectively
utilized and the global data migration cost can be greatly mit-
igated. In the case of suffi cient storage resources in the sys-
tem, it is even possible to make a full replication decision on
hot small data. Such data will not incur data migration costs
when accessed by tasks, but only the cost of maintaining rep-
lication consistency. Therefore, the global data migration cost
of JOTD is much lower than that of other methods.

5 Conclusion

This work proposes a joint online optimization of task
rescheduling and data redistribution. In this method, a local-
ity-aware wide-area task stealing and backfi lling mechanism
and popularity- and cost-aware adaptive data replication
placement adjustment mechanism is applied. The task alloca-
tion and data placement are adjusted collaborative during the
system running process to mitigate the impact of large net-
work latency and limited bandwidth on system performance.
The simulation results indicate that JOTD outperforms the
state-of-the-art methods in terms of system throughput, com-
puting resource utilization, and global data migration costs.
The current realization of JOTD does not take into account
the optimization of dynamic bandwidth allocation among
diff erent transport works. In the future, we would like to fur-
ther improve the system performance and optimize network
resource load through the bandwidth allocation methods.

Acknowledgements

This work was supported by the National Natural Science
Foundation of China under Grant No. 62104014 and Grant
No. 61772053, and the fund of the State Key Laboratory of
Software Development Environment under Grant No. SKLS-
DE-2022ZX-07. This job is also supported by Natural Sci-
ence Foundation of Shaanxi Province of China (2021JM-344)
and Shaanxi Key Laboratory of Intelligent Processing for Big
Energy Data (No. IPBED7).

References

[1] L. Cheng, Y. Wang, Q. Liu, D. H.-J. Epema, C. Liu, Y.
Mao, J. Murphy, Network-Aware Locality Scheduling
for Distributed Data Operators in Data Centers, IEEE
Transactions on Parallel and Distributed Systems, Vol.
32, No. 6, pp. 1494-1510, June, 2021.

[2] J. Towns, T. Cockerill, M. Dahan, I. Foster, K. Gaither,
A. Grimshaw, V. Hazlewood, S. Lathrop, D. Lifka, G.
D. Peterson, R. Roskies, J. R. Scott, N. Wilkins-Diehr,
XSEDE: Accelerating Scientifi c Discovery, Computing
in science and engineering, Vol. 16, No. 5, pp. 62-74,
September/ October, 2014.

[3] F. Gagliardi, The European Grid Infrastructure EGEE
Project, in: M. Dayde, J. Dongarra, V. Hernandez, M. L.

20 Journal of Internet Technology Vol. 24 No. 1, January 2023

M. Palma (Eds.), Proceedings of the 6th International
Conference on High Performance Computing for Com-
putational Science, Valencia, Spain, 2004, pp. 194-203.

[4] X. Xie, N. Xiao, Z. Xu, L. Zha, W. Li, H. Yu, CNgrid
software 2: service oriented approach to grid comput-
ing, Proceedings of the UK e-Science All Hands Meet-
ing, Nottingham, UK, 2005, pp. 701-708.

[5] S. Kang, B. Veeravalli, K. Aung, Dynamic scheduling
strategy with efficient node availability prediction for
handling divisible loads in multi-cloud systems, Journal
of Parallel and Distributed Computing, Vol. 113, pp.
1-16, March, 2018.

[6] C. Li, J. Bai, J. Tang, Joint optimization of data place-
ment and scheduling for improving user experience in
edge computing, Journal of Parallel and Distributed
Computing, Vol. 125, pp. 93-105, March, 2019.

[7] E. Gussier, J. Lelong, V. Reis, D. Trystram, Online Tun-
ing of EASY-Backfilling using Queue Reordering Pol-
icies, IEEE Transactions on Parallel and Distributed
Systems, Vol. 29, No. 10, pp. 2304-2316, October, 2018.

[8] D. Carastan-Santos, R. Y. De-Camargo, Obtaining dy-
namic scheduling policies with simulation and machine
learning, Proceedings of International Conference for
High Performance Computing, Networking, Storage
and Analysis, Denver, Colorado, USA, 2017, pp. 1-13.

[9] M. T. Chung, J. Weidendorfer, P. Samfass, K. Fuerlinger,
D. Kranzlmuller, Scheduling across Multiple Applica-
tions using Task-Based Programming Models, Proceed-
ings of 2020 IEEE/ACM Fourth Annual Workshop on
Emerging Parallel and Distributed Runtime Systems
and Middleware, Georgia, USA, 2020, pp. 1-8.

[10] Z. Li, V. Chang, H. Hu, H. Hu, C. Li, J. Ge, Real-Time
and Dynamic Fault-Tolerant Scheduling for Scientific
Workflows in Clouds, Information Sciences, Vol. 568,
pp. 13-39, August, 2021.

[11] M. Breitbach, D. Schafer, J. Edinger, C. Becker, Con-
text-Aware Data and Task Placement in Edge Com-
puting Environments, Proceedings of 2019 IEEE In-
ternational Conference on Pervasive Computing and
Communications, Kyoto, Japan, 2019, pp. 1-10.

[12] S. Wang, X. Zhang, K. Yang, L. Wang, W. Wang, Dis-
tributed edge caching scheme considering the tradeoff
between the diversity and redundancy of cached con-
tent, Proceedings of 2015 IEEE/CIC International Con-
ference on Communications in China, Shenzhen, China,
2015, pp. 1-5.

[13] Y. Jin, Z. Qian, S. Guo, S. Zhang, L. Jiao, S. Lu, runDa-
ta: Re-distributing Data via Piggybacking for Geo-dis-
tributed Data Analytics over Edges, IEEE Transactions
on Parallel and Distributed Systems, Vol. 33, No. 1, pp.
40-55, January, 2022.

[14] K. Qu, L. Meng, Y. Yang, A dynamic replica strategy
based on Markov model for hadoop distributed file sys-
tem (HDFS), Proceedings of the 2016 4th International
Conference on Cloud Computing and Intelligence Sys-
tems, Beijing, China, 2016, pp. 337-342.

[15] K. Wang, K. Qiao, I. Sadooghi, X. Zhou, T. Li, M. Lang,
I. Raicu, Load-balanced and locality-aware scheduling
for data-intensive workloads at extreme scales, Concur-
rency and computation: practice and experience, Vol.

28, No. 1, pp. 70-94, January, 2016.
[16] J. Li, X. Zhang, J. Wei, Z. Ji, Z. Wei, GARLSched:

Generative adversarial deep reinforcement learning task
scheduling optimization for large-scale high perfor-
mance computing systems, Future Generation Comput-
er Systems, Vol. 135, pp. 259-269, October, 2022.

[17] J. Li, X. Zhang, L. Han, Z. Ji, X. Dong, C. Hu, OKCM:
improving parallel task scheduling in high-performance
computing systems using online learning, The Journal
of Supercomputing, Vol. 77, No. 6, pp. 5960-5983, June,
2021.

[18] Q. Wang, H. Zhang, C. Qu, Y. Shen, X. Liu, J. Li,
RLSchert: An HPC Job Scheduler Using Deep Rein-
forcement Learning and Remaining Time Prediction,
Applied Sciences, Vol. 11, No. 20, Article No. 9448, Oc-
tober, 2021.

[19] J. Taghizadeh, M. Ghobaei-Arani, A. Shahidinejad, A
metaheuristic-based data replica placement approach
for data-intensive IoT applications in the fog computing
environment, Software: Practice and Experience, Vol.
52, No. 2, pp. 482-505, February, 2022.

[20] A. B. Yoo, M. A. Jette, M. Grondona, Slurm: Simple
linux utility for resource management, Proceedings of
Workshop on Job Scheduling Strategies for Parallel
Processing, Seattle, WA, USA, 2003, pp. 44-60.

[21] G. Staples, TORQUE resource manager, Proceedings
of the 2006 ACM/IEEE conference on Supercomputing,
Tampa, Florida, USA, 2006, pp. 8-es.

[22] B. Nitzberg, J. M. Schopf, J. P. Jones, In: J. Nabrzyski,
J. M. Schopf, J. Węglarz (Eds), PBS Pro: Grid comput-
ing and scheduling attributes, International Series in
Operations Research & Management Science, Vol. 64,
Springer, Boston, MA, 2004, pp. 183-190.

[23] P. Valledor, A. Gomez, P. Priore, J. Puente, Modelling
and Solving Rescheduling Problems in Dynamic Per-
mutation Flow Shop Environments, Complexity, Vol.
2020, pp. 1-17, July, 2020.

[24] W. Wei, X. Fan, H. Song, X. Fan, J. Yang, Imperfect In-
formation Dynamic Stackelberg Game Based Resource
Allocation Using Hidden Markov for Cloud Computing,
IEEE Transactions on Services Computing, Vol. 11, No.
1, pp. 78-89, January-February, 2018.

[25] Z. Zhong, J. He, M. A. Rodriguez, S. Erfani, R. Kotagiri,
R. Buyya, Heterogeneous Task Co-location in Contain-
erized Cloud Computing Environments, Proceedings of
the 23rd International Symposium on Real-Time Dis-
tributed Computing, Nashville, TN, USA, 2020, pp. 79-
88.

[26] T. J. Ikonen, K. Heljanko, I. Harjunkoski, Reinforce-
ment learning of adaptive online rescheduling timing
and computing time allocation, Computers & Chemical
Engineering, Vol. 141, pp. 1-17, October, 2020.

[27] A. Daoud, F. Balbo, P. Gianessi, G. Picard, ORNInA: A
decentralized, auction-based multi-agent coordination in
ODT systems, Ai Communications, Vol. 34, No. 1, pp.
37-53, 2021.

[28] Y. Guo, J. Zhao, V. Cave, V. Sarkar, SLAW: a scalable
locality-aware adaptive work-stealing scheduler for
multi-core systems, Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Paral-

Joint Online Optimization of Task Rescheduling and Data Redistribution 21

lel Programming, Bangalore, India, 2010, pp. 341-342.
[29] R. Yadav, W. Zhang, O. Kaiwartya, P. R. Singh, I. A. El-

gendy, Y. Tian, Adaptive Energy-aware Algorithms for
Minimizing Energy Consumption and SLA Violation
in Cloud Computing, IEEE Access, Vol. 6, pp. 55923-
55936, 2018.

[30] R. Yadav, W. Zhang, K. Li, C. Liu, M. Shafiq, N. K.
Karn, An adaptive heuristic for managing energy con-
sumption and overloaded hosts in a cloud data center,
Wireless Networks, Vol. 26, No. 3, pp. 1905-1919, April,
2020.

[31] R. Yadav, W. Zhang, K. Li, C. Liu, A. Laghari, Manag-
ing overloaded hosts for energy-efficiency in cloud data
centers, Cluster Computing, Vol. 24, pp. 2001-2015,
2021.

[32] R. Yadav, W. Zhang, MeReg: Managing Energy-SLA
Tradeoff for Green Mobile Cloud Computing, Wireless
Communications and Mobile Computing, Vol, 2017, Ar-
ticle No. 6741972, December, 2017.

[33] R. Yadav, W. Zhang, H. Chen, T. Guo, MuMs: Ener-
gy-Aware VM Selection Scheme for Cloud Data Center,
2017 28th International Workshop on Database and Ex-
pert Systems Applications (DEXA), Lyon, France, 2017,
pp. 132-136.

[34] G. Muthusamy, S.-R. Chandran, Cluster-based Task
Scheduling Using K-Means Clustering for Load Bal-
ancing in Cloud Datacenters, Journal of Internet Tech-
nology, Vol. 22, No. 1, pp. 121-130, January, 2021.

[35] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, I. Sto-
ica, Managing data transfers in computer clusters with
orchestra, ACM SIGCOMM Computer Communication
Review, Toronto, Ontario, Canada, 2011, pp. 98-109.

[36] L. Wang, Y. Zhang, J. Xu, G. Xue, MAPX: Controlled
Data Migration in the Expansion of Decentralized Ob-
ject-Based Storage Systems, Proceedings of the 18th
USENIX Conference on File and Storage Technologies,
Santa Clara, CA, USA, 2020, pp. 1-11.

[37] G. Zhang, Z. Huang, X. Ma, S. Yang, Z. Wang, W.
Zheng, RAID+: Deterministic and balanced data distri-
bution for large disk enclosures, Proceedings of the 16th
USENIX Conference on File and Storage Technologies,
Oakland, CA, USA, 2018, pp. 279-294.

[38] D. Sun, G. Zhang, S. Gao, Data Management across
Geographically-Distributed Autonomous Systems: Ar-
chitecture, Implementation, and Performance Evalua-
tion, 2019 IEEE 21st International Conference on High
Performance Computing and Communications; IEEE
17th International Conference on Smart City; IEEE 5th
International Conference on Data Science and Systems
(HPCC/SmartCity/DSS), Zhangjiajie, China, 2019, pp.
2284-2292.

[39] S. Kadekodi, F. Maturana, S. J. Subramanya, J. Yang,
K. V. Rashmi, G. R. Ganger, PACEMAKER: Avoiding
HeART attacks in storage clusters with disk-adaptive
redundancy, Proceedings of the 14th USENIX Sympo-
sium on Operating Systems Design and Implementation,
Virtual Event, 2020, pp. 369-385.

[40] W. Zhang, R. Yadav, Y. Tian, S. K. S. Tyagi, I. A. Eel-
gendy, O. Kaiwartya, Two-Phase Industrial Manufactur-
ing Service Management for Energy Efficiency of Data

Centers, IEEE Transactions on Industrial Informatics,
February, 2022.

[41] T. Kosar, M. Balman, A new paradigm: Data-aware
scheduling in grid computing, Future Generation Com-
puter Systems, Vol. 25, No. 4, pp. 406-413, April, 2009.

[42] H. Casanova, A. Legrand, M. Quinson, SimGrid: a
Generic Framework for Large-Scale Distributed Ex-
periments, Proceedings of the 10th International Con-
ference on Computer Modeling and Simulation, Cam-
bridge, UK, 2008, pp. 126-131.

[43] D. G. Feitelson, D. Tsafrir, D. Krakov, Experience with
using the Parallel Workloads Archive, Journal of Par-
allel and Distributed Computing, Vol. 74, No. 10, pp.
2967-2982, October, 2014.

[44] Y. Chen, A. Ganapathi, R. Griffith, R. Katz, The Case for
Evaluating MapReduce Performance Using Workload
Suites, 2011 IEEE 19th Annual International Sympo-
sium on Modelling, Analysis, and Simulation of Com-
puter and Telecommunication Systems, Singapore, 2011,
pp. 390-399.

[45] Y. Song, L. Xiao, L. Wang, G. Qin, B. Wei, B. Yan,
C. Zhang, GCSS: a global collaborative scheduling
strategy for wide-area high-performance computing,
Frontiers of Computer Science, Vol. 16, No. 5, pp. 1-15,
October, 2022.

Biographies

Yao Song received the B.S. in spacecraft
design and engineering from Beihang
University, Beijing, China, in 2016. He is
currently pursuing a Ph.D. degree in cy-
ber-space security at Beihang University.
His main research interests include cyber-
space security, parallel and distributed file
system, high performance computing, and

scheduling system.

Limin Xiao received the Ph.D. degree
in computer science from Institute of
computing, Chinese Academy of Sciences,
Beijing, China, in 1998. He is a professor
of the School of Computer Science and
Engineering, Beihang University, Beijing,
China. His main research areas are
computer architecture, high performance

computing, and cloud computing.

Liang Wang received the Ph.D degree in
Computer Science and Engineering from
The Chinese University of Hong Kong
in 2017. He is an assistant professor with
the School of Computer Science and En-
gineering, Beihang University, China. His
research interests include power-efficient
and reliability-aware design for network-

on-chip and many-core system.

22 Journal of Internet Technology Vol. 24 No. 1, January 2023

Wei Wei received his Ph.D. degree from
Xi’an Jiaotong University in 2011. He is an
associate Professor at Xi’an University of
Technology. He is an ACM&IEEE Senior
Member. His research interests include
Wireless Networks and Wireless Sensor
Net-works Application, Mobile Comput-
ing, Distributed Computing, and Pervasive

Computing.

Jinquan Wang received the B.S. in soft-
ware engineering from Hunan University,
Changsha, China, in 2021. He is current-
ly pursuing a Ph.D. degree in Computer
Architecture at Beihang University. His
main research interests include parallel and
distributed file systems, high performance
computing, and distributed management

system.

