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Abstract

Wide-area distributed computing environment is the main 
platform for storing large amounts of data and conducting 
wide-area computing. Tasks and data are jointly scheduled 
among multiple computing platforms to improve system 
efficiency. However, large network latency and limited 
bandwidth in wide-area networks may cause a large delay in 
scheduling information and data migration, which brings low 
task execution efficiency and a long time waiting for data. 
Traditional works mainly focus on allocating tasks based on 
data locality or distributing data replications, but optimizing 
task allocation or data placement alone is insufficient from a 
global perspective. To mitigate the impact of large network 
latency and limited bandwidth on system performance, joint 
online optimization of task rescheduling and data redistribu-
tion is proposed in this study. The task allocation and data 
placement can be adjusted collaboratively during the system 
running process through the task stealing and backfilling 
mechanism and the data replication placement mechanism. 
The experimental results indicate that compared with the 
state-of-the-art method, the proposed method improves the 
system throughput and computing resource utilization by 
20.67% and 20.26% respectively, and can significantly re-
duce the global data migration costs.

Keywords: Distributed computing, Joint scheduling, Task 
rescheduling, Data redistribution

1  Introduction

With the increase in data volume and computing demands 
in various fields, companies and organizations have estab-
lished and organized large computing platforms such as data 
centers and supercomputing centers to build wide-area dis-
tributed computing environments and jointly process widely 
distributed data sets efficiently [1]. In the wide-area distrib-
uted computing environments such as XSEDE [2], EGI [3], 
CNGrid [4], and multi-cloud systems [5], tasks and data are 
jointly scheduled for better efficiency and user experience [6]. 
However, the large network latency and limited bandwidth 
in the wide-area network (WAN) may cause a large delay in 
scheduling information and data migration. The inefficient 

scheduling schemes bring low task execution efficiency and 
a long time waiting for data. To improve system throughput, 
designing an online method to adjust and optimize the distri-
bution of tasks and data during the system running process is 
necessary.

The existing optimization methods during the system 
running process can be classified into task rescheduling 
methods [7-10] and data redistribution methods [6, 11-14]. 
The task rescheduling methods tend to optimize the utiliza-
tion of computing resources by finding idle resources during 
the system running process and enabling smaller tasks to run 
in advance through the backfilling mechanism. However, the 
data placement information is seldom considered in the task 
rescheduling methods, and the advantages of data replication 
in multiple data centers are not fully utilized [15], resulting 
in limited resource utilization improvement and poor optimi-
zation effect. The data redistribution methods can reduce the 
data migration cost through data redundancy placement based 
on the data popularity and storage resource capacity. How-
ever, the neglect of the computing resource state may lead to 
unbalanced data placement and task allocation in wide-area 
environments, and reduce the computing efficiency. In recent 
years, there have been several efforts to accomplish task re-
scheduling or data redistribution through machine learning 
and heuristic algorithms, but again, they do not consider the 
relationship between tasks and data [16-19]. To summarize, 
the aforementioned optimization methods mainly focus on 
optimization through one aspect of task rescheduling or data 
redistribution rather than on a comprehensive approach, 
which cannot meet the demands of global performance op-
timization. Therefore, they are not well applicable for im-
proving throughput during the system running process in the 
wide-area distributed computing environment.

In this paper, we propose a Joint Online optimization 
method of Task rescheduling and Data redistribution (JOTD). 
The task allocation and data placement are adjusted collab-
oratively based on system feedback to optimize the global 
resource utilization, thus improving the system throughput. 
Compared with the existing methods, the proposed method 
adjusts the task allocation and data placement collaborative-
ly, avoiding the problem of incomplete optimization in the 
aforementioned methods.  The JOTD jointly combined the 
task stealing and backfilling mechanism and the data replica-
tion placement adjustment mechanism, improving the system 
throughput which is influenced by the delayed scheduling 
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information and data migration.
The main contributions of this study are summarized as 

follows:
	A Joint online optimization method of task rescheduling 

and data redistribution is proposed, which can effectively 
mitigate the large delay in scheduling information and data 
migration caused by the large network latency and limited 
bandwidth in WAN.

	A locality-aware wide-area task stealing and backfilling 
mechanism is applied to optimize the utilization of com-
puting resources by perceiving data distribution character-
istics and resource idle state.

	A popularity- and cost-aware adaptive data replication 
placement adjustment mechanism is applied to optimize 
the utilization of storage resources by sensing the data ac-
cess popularity and data replication costs.

	The task allocation and data placement are adjusted col-
laboratively based on the system feedback to optimize 
system performance.

	Through the evaluation of using real workload traces, the 
proposed method can significantly improve the system 
throughput compared to other optimization methods.

2  Related Works

To mitigate the system performance degradation caused 
by limited network bandwidth and large latency in the WAN 
environment, optimizing task allocation and data placement 
during the system running process is an effective approach. 
The goal of existing optimization methods is to achieve 
reasonable task allocation to improve computing resource 
utilization through task rescheduling methods such as task 
backfilling, or to optimize the data placement based on sys-
tem feedback information to reduce data migration cost and 
improve the execution process. 

Task rescheduling methods have been widely used in job 
management systems such as SLURM [20], TORQUE [21], 
and PBSpro [22] to improve execution efficiency. Moreover, 
in the wide-area distributed computing environment, it is par-
ticularly important to optimize task allocation through task 
backfilling to solve the problem of low efficiency caused by 
large scheduling information delays. Several task reschedul-
ing methods have been proposed in the past few decades [7-
10, 23-34]. In [7], basic strategies such as FCFS and SPTF 
are integrated for task backfilling, scheduling system chooses 
different rules for reordering and backfilling tasks in the 
waiting queue to optimize computing resource utilization in 
computing platforms. To obtain a more accurate task back-
filling strategy to further optimize the computing resource 
utilization, Carastan-Santos [8] adopts a dynamic reschedul-
ing method based on simulation and machine learning. The 
users’ history information in the system is collected, and the 
task characteristics are analyzed through a nonlinear model 
to predict the behavior of tasks. Thus, the task allocation can 
be optimized more precisely with the proposed method. In 
[16], authors propose GARLSched, which uses reinforce-
ment learning to take several task informations into account, 
and can be optimized for different workloads. In [17], au-
thors propose an efficient running time prediction model, 

referred to as online learning and KNN-based predictor with 
correction mechanism, called OKCM. In [18], authors pro-
pose RLSchert, a job scheduler based on deep reinforcement 
learning and remaining runtime prediction, which estimates 
the state of the system by using a dynamic job remaining 
runtime predictor and learns the best policy to select or kill 
jobs based on the state by imitation learning and approximate 
policy optimization algorithms. However, in the wide-area 
distributed computing environment, data is often replicated 
among multiple computing platforms to improve reliability 
and access performance, while most task backfilling meth-
ods tend to ignore the performance improvement that can be 
brought by using data replication placement [15, 24]. There-
fore, although task rescheduling methods can optimize the 
computing resource utilization to some extent, the improve-
ment of system performance is still limited because the data 
replication placement is not fully optimized and utilized.

The problem of large data migration costs in WAN envi-
ronments has always been a hot topic for researchers. Data 
migration is often optimized through bandwidth allocation, 
load balancing, and other data transmission mechanisms [35-
36]. Data replication placement is also a common technique 
to improve data reliability and access performance in storage 
systems [6, 11-14, 35-40].   Kosar [41] designed the STORK 
storage resource management system to improve system 
performance in large-scale data processing, and the efficient 
access of storage resources is realized through the methods 
of data replication placement and data transmission manage-
ment. In [6] and [13], the data placement method based on 
data popularity feedback is proposed. The popularity of data 
blocks, storage size required by data, and storage resource 
capacity are considered comprehensively to optimize and 
adjust the data placement in the system, and then task sched-
uling is carried out based on the data placement information. 
In [11], four data replication policy is aggregated to support 
efficient data access, and data replication placement is adjust-
ed dynamically and adaptively based on reliability, cost, and 
popularity, optimizing storage resource utilizing and reducing 
data migration cost. However, the data replication place-
ment methods usually only focus on the capacity and load of 
storage resources, as well as data popularity, and pays little 
attention to the state of computing resources. As a result, the 
subsequent task scheduling based on data placement infor-
mation will cause unbalanced task allocation in the system, 
reducing system throughput. In [19], the authors propose a 
metaheuristic approach using a non-dominated sorting ge-
netic algorithm II in order to address the latency and traffic 
differences between different hardware nodes and provide an 
automated method to manage the transmission of data copies, 
including their deployment in a fog cloud environment.

To summarize, the existing optimization methods during 
the system running process mainly focus on optimization 
through one aspect of task rescheduling or data redistribution 
rather than on a comprehensive approach, which cannot meet 
the demands of global performance optimization. Therefore, 
this paper proposes a joint online optimization method for 
task rescheduling and data redistribution. Compared with 
the existing methods, the proposed method adjusts the task 
allocation and data placement in the system running process 
based on the collaborative application of task rescheduling 
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and data redistribution mechanisms, avoiding the problem of 
incomplete optimization in the aforementioned methods, and 
effectively improving the system performance.

3  Joint Online Optimization

JOTD is an optimization method during the system run-
ning process based on dynamic task rescheduling and data 
redistribution. The locality-aware wide-area task stealing 
and backfilling mechanism is applied in JOTD to modify the 
inefficient scheduling schemes caused by the delay of sched-
uling information. On the premise of making full use of data 
locality, the appropriate tasks are selected by considering in-
formation such as task requirements and priority, and the task 
stealing and backfilling mechanism among task queues in a 
wide-area is carried out to optimize the utilization of com-
puting resources. Moreover, the popularity- and cost-aware 
adaptive data replication placement adjustment mechanism 
is applied to mitigate the long data waiting time caused by 
delayed data migration. Based on the feedback on the data 
replication cost and the data popularity, the evaluation model 
of the data replication scheme is established, and the data 
replication placement in a wide-area is adjusted adaptively to 
optimize the utilization of storage resources. The framework 
of JOTD is shown in Figure 1.

Figure 1. JOTD framework

The task allocation and data placement are adjusted col-
laboratively in JOTD. In terms of information coordination, 
the two mechanisms share the resource information, the data 
placement information, and the task allocation information, 
and make decisions based on this shared information. In 
terms of decision coordination, the adjustment of task allo-
cation will affect the data access popularity in the data repli-
cation placement adjustment mechanism and then affect the 
data redistribution. Besides, the adjustment of data placement 
will affect the data locality and migration cost in the task 
stealing and backfilling mechanism, and then affect the task 
rescheduling. JOTD avoids the problem of a single optimi-
zation direction in the aforementioned optimization methods, 
and can effectively optimize the global resource utilization 
during the system running process, thus improving the sys-
tem throughput. 

3.1 Locality-aware Wide-area Task Stealing and  Backfill-
ing Mechanism
Due to the delay in scheduling information in the WAN 

environment, the scheduling scheme may not be accurate, 

and the time costs such as task execution time, data migration 
time, and queue waiting time may differ from the actual situ-
ation. To avoid the unbalanced task allocation caused by the 
delayed scheduling information, we propose a task stealing 
and backfilling mechanism based on data locality and re-
source state feedback in the wide-area distributed computing 
environment. When a computing platform has idle resource 
feedback, the task allocation is adjusted among multiple task 
queues in the wide-area to improve the execution efficiency, 
thus improving the system throughput. The overview of the 
locality-aware wide-area task stealing and backfilling mecha-
nism is shown in Figure 2.

Figure 2. Locality-aware wide-area task stealing and 
backfilling mechanism

3.1.1 Task Selection
When receiving feedback from the system, informing the 

computing platform j has idle resources, the mechanism se-
lects tasks that are queuing in other computing platforms to 
generate a task set by sensing data locality and global re-
source load. All tasks whose requirements can be met by 
computing platform j, such as its computing capacity require-
ment and application deployment, are set as a task set Tall. In 
Tall, all tasks whose required data replication are stored in 
platform j are set as a task set Tdata. Once a task in Tdata is sto-
len and backfilled, it can be executed immediately without 
going through the data migration process and queue waiting 
process. Other tasks in Tdata are set as a task set Tcomp, which 

means = −comp all dataT TT . Tasks in Tcomp need to undergo a data 

migration process after stealing and backfilling, so the task 
allocation can be adjusted with some data migration costs.

Since we need to select a suitable task for stealing in a 
short time, task selection set T is defined from Tall to narrow 
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the search domain. First, let = dataT T , and redefine = compT T  

only when none of the tasks in T meet the filtering criteria. 
That is, Tdata is an empty set or the target platform queue will 
be affected if any task in T is stolen. To select a more suitable 
task for stealing, we select the task with a higher priority in 
the computing platform with a higher load, thus achieving a 
higher resource utilization and balancing the load among 
platforms. Besides, the data replication required by the se-
lected task should be afore stored in platform j to avoid the 
data migration cost, reducing the network load and ensuring 
the timeliness of task stealing and backfilling. For a task ∈t T
, its stealing adaptability parameter is:

         . (1)

In Eq. (1), priority indicates the priority of tasks, which is 
defined based on the computing quantity of the task. In this 
case, smaller tasks are preferentially selected to make full use 
of idle resources and reduce the average waiting time in the 
system.  represents the idle state of the storage and 
computing resources in the computing platform i which holds 
task t. The larger the idle state is, the less likely the task t is 
to be stolen.

         . (2)

Besides, when = compT T , data migration time ,trans tT  
should be added to the filtering condition. When the data mi-
gration cost is higher, the task is less likely to be stolen, thus 
avoiding a large amount of additional data migration. 

In this mechanism, a mountain climbing algorithm is used 
to find the sub-optimal solution in the task set T to improve 
the search efficiency. In addition, to ensure the effectiveness 
of task stealing and backfill mechanism, filtering conditions 
should be set as follows:

         
∈

=0 arg max ( )
t T

t F t . (3)

         <
0, ,exec t wait tT T . (4)

         <
0 0, ,trans t wait tT T . (5)

Task t0 represents the stealing target and task t represents 
a task in the target idle computing platform. The filtering 
condition in Eq. (4) ensures that the execution time of the 
stolen task on target platform j is shorter than the expected 
waiting time of any task t’ in platform j. In this case, when 

the stolen task is backfilled, the waiting time for tasks on the 
target platform will not be prolonged. Besides, it is necessary 
to ensure that the data migration cost of the stolen task is less 
than its original queue waiting time. Since 

0,trans tT  of the tasks 
in Tdata is 0, this condition applies to the tasks in Tcomp.
3.1.2 Task Rescheduling

After a task t0 is selected, the resource information of 
platform j is locked, the selected task t0 is added to the task 
queue of the platform j, and task t0 is deleted from the origi-
nal task queue. If ∈0 compt T , the data required by t0 will be mi-
grated. The data may have multiple replications in the sys-
tem, and the scheme with the lowest data migration cost 
should be selected. For platform j, although its task queue 
may not be empty, the idle resources on it cannot meet the 
needs of any task in the queue. Therefore, the task resched-
uled to the platform will be executed in advance without af-
fecting the queuing of the existing tasks, thus effectively im-
proving the utilization of computing resources. For the 
selected task t0, the execution of the task will be advanced re-
gardless of whether the required data replication is stored in 
platform j, thus improving the system efficiency. 

The locality-aware wide-area task stealing and backfilling 
mechanism is shown in Algorithm 1.

Algorithm 1. Locality-aware wide-area task stealing and 
backfilling
Input: Task collection Tall

Output: Stolen task t0

1 for all i in computing platforms do
2   for all t in Tall do
3     // note the distinction of data distribution
4     calculate F(t) by Eq. (1);
5   end for
6 end for
7 F(t)max=0;
8 for all t in Tall do
9   if F(t) < F(t)max then
10     continue;
11   else if Texec,t < Twait and Ttrans,t < Twait,t then
12 t0=t;
13 F(t)max= F(t0);
14   end if
15 end for

The value of F(t) is first calculated for each platform with 
each task, and it is important to note whether required data 
exists in the current platform. Then a local optimal solution 
is obtained using the hill climbing algorithm. The task of 
this local optimal solution needs to satisfy the condition that 
the task execution time is less than the waiting time of every 
tasks in the backfill queue to avoid prolonging the tasks.

To summarize, when there are idle resources and small 
tasks in the system, the locality-aware wide-area task stealing 
and backfilling mechanism can optimize the task allocation, 
thus improving the execution efficiency and the system 
throughput.
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3.2 Popularity- and Cost-aware Adaptive Data Replica-
tion Placement Adjustment Mechanism
Due to the high latency and low bandwidth of WAN, data 

migration may be unstable and slow, resulting in tasks long 
time waiting for data. Data replication placement is a com-
mon method to improve data access performance in this case. 
Replication and placement of hot data can effectively aggre-
gate WAN bandwidth, however, storage and network resourc-
es occupied by multiple replications may degrade system 
performance to some extent. Therefore, the popularity- and 
cost-aware adaptive data replication placement adjustment 
mechanism is proposed. The number of data replications in 
the wide-area distributed computing environment is adjusted 
based on the tradeoff of data popularity and replication cost. 
Moreover, the locations of replications are adjusted based on 
the state of global computing resources to avoid an unbal-
anced load. Thus, data placement can be adjusted adaptively 
to optimize the utilization of storage resources, reducing data 
migration costs and improving system throughput. The over-
view of the popularity- and cost-aware adaptive data replica-
tion placement adjustment mechanism is shown in Figure 3.

Figure 3.  Popularity- and cost-aware adaptive data 
replication placement adjustment mechanism

3.2.1 Data Selection
The replication mechanism collects information on the 

data popularity and replication cost in the system. When 
storage resources in the system are idle, the replication mech-
anism periodically selects data whose replication placement 
needs to be adjusted based on the system feedback. Firstly, 
for data d, according to the collected data access information, 
the data popularity is calculated and feedback to the system. 
Data popularity is divided into global data popularity Pd and 
local data popularity pi,d in platform i. Data popularity is de-
fined as:

         . (6)

         . (7)

In the definition, Data access ratio Fd is the ratio of the 
access times of data d to global access times of all data, and 
fi,d is the ratio of the access times of data d in platform i to 
global access times of data d. Meanwhile, the data access 
time interval  is max-min normalized. When the data 
access time interval is smaller and the access ratio is higher, 
it indicates that the data is more popular.

Although data replication can effectively improve data 
reliability and access performance, however, the maintenance 
of multiple replications will cause network and storage costs, 
which are defined as replication cost Cd. Replication cost 
mainly consists of the replication storage cost, the data mi-
gration cost during replication creation, and the consistency 
cost among multiple replications.

         = + +, , ,d stor d tran d cons dC C C C . (8)

As the costs are mainly considered from the perspective 
of resource occupation, all costs in Eq. (8) are defined as the 
product of occupied resource quantity and occupied time. 
Assuming that there are n replications of data d in the system 
and the existence time of the xth replication dx is , xdura dT , we 
analyze the costs of each item.

The replication storage cost is mainly caused by the 
occupation of storage resources by multiple replications. 
However, the occupation of storage resources by data repli-
cations may affect the placement of other data. Therefore, an 
inappropriately large number of replications may cause per-
formance degradation. The replication storage cost is defined 
as:

         
=

= ×∑, ,
1

x

n

stor d d dura d
x

C S T . (9)

Where Sd represents the Size of data d.
The migration cost during replication creation is only 

incurred at creation time. It is worth mentioning that for the 
data without replications, the replication mechanism will be 
triggered after it is migrated, to determine whether a perma-
nent replication of the data should be generated in the plat-
form according to the data popularity. Because the data mi-
gration is complete at this point, generating a replication can 
reap the benefits of data replication while avoiding the extra 
data migration cost. The migration cost during replication 
creation is defined as:

         
= =

= × = ×∑ ∑, ,
2 2 , ,

x

x

n n
d

tran d d tran d d
x x i j d

S
C S T S

B . (10)
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Where , xtran dT  represents the transmission time of the rep-

lication dx, and , , xi j dB  represents the bandwidth between plat-
form i and j occupied by the migration of replication dx. 

The consistency cost mainly comes from the cost of net-
work resources consumed by the consistency synchronization 
between multiple replications. The broadcast protocol and 
master-slave replication mechanism which are commonly 
used in storage systems are applied in this case. After data is 
changed, the changes are broadcasted to all replications of 
the data for synchronization. It is assumed that data changes 
of every τ time, then the consistency cost is calculated based 
on the existence time , xdura dT .

         . (11)

Then, there needs to be a tradeoff between the global data 
popularity Pd and the replication cost Cd. For data with high 
popularity, this mechanism tends to maintain replications in 
the system. Meanwhile, for data with high replication costs, 
this mechanism tends to reduce the number of replications. 

Max-min normalization is performed on the replication 
cost Cd:

         
−

=
−

min
,

max min

d
d c

C C
C

C C . (12)

Where Cmax and Cmin are the maximum and minimum 
replication costs of all data. The level of replication cost of 
data d among all data is expressed by relative replication cost 
Cd,c. Then the tradeoff score between global data popularity 
and replication cost is defined as:

         = − − ,(1 )d d d cScore P C . (13)

The tradeoff score is a value in the range of (0, 1). For 
the data with relatively low replication cost and high data 
popularity, the score is higher, and the mechanism is more 
inclined to add the replication number in the system. The 
upper and lower thresholds are set for the tradeoff score. 
For the data exceeding the thresholds, the mechanism will 
adjust the number and location of replications. The range 
of tradeoff scores, which is (Scorel, Scoreu), is concluded 
from experiments to ensure better performance of most 
replications. The tradeoff scores are sorted from large to 
small. The data whose tradeoff score is less than Scorel and 
ranked in the bottom 20 percent, and the data whose tradeoff 
score is greater than Scoreu and ranked in the top 20 percent 
are selected for data redistribution.
3.2.2 Data Redistribution

In [11], a calculation formula for the appropriate number 
of replications in the system is proposed according to the data 
size, storage resource state, application parameters, and sta-
bility parameters. However, the delay of system information 

in the wide-area environment may cause an inaccurate result, 
and the large-scale adjustment of the replications may cause a 
surge in network load. In this mechanism, we only implement 
modest adjustment of replications, and the constant polling of 
the replication mechanism makes the replication placement 
in an appropriate state. We propose a solution named increase 
and decrease of γ, that is, for a system with k computing plat-
forms, n replications of data d have been distributed in the 
system, then γ is the number of replications added or reduced 
in the data redistribution stage.

       
min , ,

2 2

,
2

d u

d l

n k n Score Score

n Score Score
γ

  −    >          = 
  <   

. (14)

The data replication placement is adjusted adaptively 
based on local data popularity pi,d and the idle state of the 
storage and computing resources , which are defined in 
Eq. (7) and Eq. (2) separately. Data popularity is relevant 
to the performance improvement brought by replication 
placement. Besides, considering the load of storage and 
computing resources can avoid the problem of unbalanced 
task allocation in subsequent scheduling.

The data popularity and resource idle state are multi-ob-
jective rankings, and n’ computing platforms with the highest 
rank are selected to generate a new replication scheme. QoS 
checks are then performed, when the computing platforms 
specified as replication locations by the users are not in the 
scheme, the mechanism will replace the last ordered plat-
forms in the scheme with the specified platforms.

Popularity- and cost-aware adaptive data replication 
placement adjustment mechanism is shown in Algorithm 2.

Firstly the algorithm calculates Pd and pi,d representing 
global data access popularity and local data access popularity 
by the frequency of data access, and calculates the cost 
of data storage, data transmission, and data consistency 
maintenance by the number of data replications, and later 
synthesizes the replication cost Cd. After that, the maximum 
and minimum values of data replication cost are searched, 
and each replication cost value is normalized. Finally, the 
increase and shrinkage policies of data are executed by the 
thresholds set in advance, and the platforms that perform 
special operations are specified by the local data access 
popularity.

To summarize, when there are sufficient storage and 
network resources in the system, the proposed mechanism 
can bring a large performance improvement. Otherwise, the 
mechanism may cause extre load on storage and network re-
sources. The popularity and cost-aware adaptive data replica-
tion placement adjustment mechanism can optimize the data 
placement to reduce data migration costs and avoid long time 
waiting for data, thus improving the system throughput.
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Algorithm 2. Popularity- and cost-aware adaptive data
replication placement adjustment
Input: Data information
Output: Data placement decision
1 for all data d do
2   calculate Pd by Eq. (6);
3   for all i in computing platforms do
4     calculated pi,d by Eq. (7);
5   end for
6   calculate Cstor,d for data d by Eq. (9);
7   calculate Ctrans,d for data d by Eq. (10);
8   calculate Ccons,d for data d by Eq. (11);
9   Cd = Cstor,d + Ctrans,d + Ccons,d;
10 end for
11 find the maximum and minimum values in Cd;
12 for all data d do
13   normalize Cd  by Eq. (12);
14   calculate Scored  by Eq. (13);
15 end for
16
17 for all data d do
18   if Scored > Scoreu then
19     Add data replications by Eq. (14) and pi,d;
20   else if Scored < Scorel then
21     Remove data replications by Eq. (14) and pi,d;
22   end if
23 end for

4  Experiments and Analysis

In this section, we evaluate the performance of JOTD and 
the comparison methods in a simulation environment. The 
Simgrid is used to simulate the wide-area distributed com-
puting environment and implement different optimization 
methods in this platform. The system throughput, resource 
utilization, and global data migration cost are evaluated.

4.1 Experimental Setup
The experimental environment is established based on 

Simgrid [42], which simulates a wide-area distributed com-
puting environment consisting of 5 geographically distributed 
computing platforms. Various parameters in the environment 
are configured (shown in Table 1), including the computing 
and storage capability of computing platforms, and network 
capability between computing platforms.

Table 1. Computing platform configuration
Computing 

platform 
Core number Core computing 

capability
Storage 

capability
1 3500 22.89 GFlops 30 TB
2 3200 29.43 GFlops 25 TB
3 2600 14.55 GFlops 20 TB
4 2700 22.89 GFlops 10 TB
5 2800 16.55 GFlops 8 TB

The datasets used for the experiments are published real 
workload traces from French Atomic Energy Commission 

(CEA) [43] and Facebook [44]. The tasks in CEA trace have 
the largest computing requirements, which can occupy nearly 
the computing resources of a whole computing platform, so 
it may impose a heavy burden on the system. Meanwhile, the 
computing requirements of tasks in the Facebook trace are 
relatively small and impose a steady load on the system.

In terms of optimization methods, runData [13], CAMS 
[11] and GCSS [45] are chosen as the comparison methods. 
The runData applies a dynamic data redistribution mechanism 
and considers data locality in the task offloading process, but 
does not make data replication. CAMS adopts a dynamic rep-
lication redistribution mechanism and tends to assign tasks to 
the computing platform which has the required data replica-
tion and the highest computing performance. When no com-
puting platform meets the condition, then random scheduling 
is adopted. GCSS is a collaborative scheduling of tasks and 
data, which applies data replication and task rescheduling, 
but does not carry out dynamic redistribution of replication. 
JOTD is an optimization method during the system running 
process based on dynamic task rescheduling and data redistri-
bution. Moreover, JOTD applies data replication and collabo-
rative scheduling of tasks and data. Moreover, the complexity 
of each method is analyzed according to the published paper. 
The characteristics of the methods being compared are shown 
in Table 2.

Table 2. Characteristics of the methods being compared
Method runData CAMS GCSS JOTD

Data redistribution   

Task rescheduling   

Data replication   

Collaborative scheduling    

Complexity O(n2) O(n2) O(n2) O(n2)

4.2 Experimental Results
We analyze the experimental results in terms of system 

throughput, resource utilization, and global data migration 
cost. System throughput is the most important evaluation in-
dex we pay attention to, while resource utilization and global 
data migration cost can also help analyze the impact of differ-
ent optimization mechanisms on system performance.
4.2.1 System Throughput

System throughput refers to the number of tasks com-
pleted during a certain period. We experiment in 20000 to 
100000 seconds using Facebook trace and CEA trace as in-
put. 

Figure 4 indicates that JOTD has the best system through-
put when replaying both Facebook trace and CEA trace. 
When replaying Facebook trace for 100000 seconds, JOTD 
outperforms runData, CAMS, and GCSS by 26.26%, 30.66%, 
and 27.58%, respectively. Meanwhile, JOTD respectively 
outperforms runData, CAMS, and GCSS by 26.64%, 33.19%, 
and 20.67% when replaying the CEA trace. JOTD optimizes 
the system performance through task rescheduling and data 
redistribution and dynamically adjusts the task allocation 
and data replication placement according to the information 
feedback in the system. Meanwhile, JOTD pays attention to 
cost, popularity, performance, and other objectives during 
collaborative optimization to make the system more efficient. 
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Therefore, JOTD achieves the highest system throughput. 
The runData dynamically adjusts the data placement based 
on data access information and resource load state during 
the system running process, then runData reschedules tasks 
to balance the load of each computing platform according 
to data placement, so runData method can achieve higher 
system throughput and performance than CAMS and GCSS. 
Due to the lack of a data replication mechanism, the access 
performance of hot data is limited, thus runData has a lower 
throughput than JOTD. Meanwhile, CAMS and GCSS opti-
mize the system performance through data redistribution and 
task rescheduling respectively. However, single optimization 
direction leads to the limitation of optimization, CAMS gen-
erates random task scheduling schemes in some cases, and 
the replication mechanism in GCSS cannot be dynamically 
adjusted, so there is still room for improvement in the system 
throughput of CAMS and GCSS.

It can also be observed that JOTD has a greater perfor-
mance improvement in system throughput when replaying 
CEA Trace. After comparing the two traces, it can be ob-
served that the tasks in CEA Trace have larger core require-
ments, and some tasks require up to 2000 cores for running, 
which means that there may be high-demand tasks waiting to 
be executed in the system from time to time. Therefore, frag-
mented resources may exist in the system. These resources 
cannot meet the requirements of tasks in queues of the local 
computing platform but can meet the requirements of tasks in 
queues of other computing platforms. In this case, the local-
ity-aware wide-area task stealing and backfi lling mechanism 
introduced in section 3.1 can be triggered and brings a large 
performance improvement.

Figure 4. System throughput observed for diff erent traces

4.2.2 Resource Utilization
Resource utilization is defined as the ratio of effective 

resource usage to total resource usage. It is calculated as the 
sum of all the used resources multiplied by their running time 

divided by the total resources multiplied by the system run-
ning time. It is worth mentioning that in section 4.1, we set 
the computing platform with suffi  cient storage resources, that 
is, the storage resource will not become the bottleneck, so we 
only analyze the utilization of computing resources here.

Figure 5. Computing resource utilization observed for 
diff erent traces

It can be observed from Figure 5 that the computing re-
source utilization of JOTD is not the highest when replaying 
Facebook trace. However, when the system load is high, 
that is, when replaying CEA Trace, JOTD achieves better 
performance, outperforming runData, CAMS, and GCSS 
by 20.26%, 44.21%, and 14.00% on average respectively. 
When replaying Facebook trace, the load in the system is 
relatively stable, and there are few tasks with large core re-
quirements, so the fragmented resources caused by resource 
reservation for large tasks are rarely generated. Task stealing 
and backfilling mechanism in JOTD is rarely triggered, so 
the computing resource utilization of each methods is rela-
tively close. When replaying the CEA trace, as analyzed in 
section 4.2.1, the task stealing and backfilling mechanism 
in the JOTD method achieves good results as the load in the 
system is high. The locality-aware wide-area task stealing 
and backfi lling mechanism can be triggered by idle resources 
in the system. In this case, the idle resources cannot meet the 
requirements of tasks in the local queue but can meet the re-
quirements of tasks in queues of other computing platforms. 
Through this mechanism, appropriate tasks are selected to be 
stolen and backfi lled, and the selected tasks will not aff ect the 
execution of other tasks in the computing platform with idle 
resources, that is, the selected tasks are executed in advance, 
while other tasks in the system will not be postponed. There-
fore, task stealing and backfi lling can eff ectively improve the 
utilization of computing resources and system throughput in 
the system. Similarly, GCSS with task stealing mechanism 
also has a good performance in computing resource utili-
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zation. The runData and CAMS have poor performance in 
computing resource utilization compared to other methods. 
This occurs because the ignorance of data replication mech-
anism in runData may cause a long time waiting for data, 
and CAMS do not consider the optimization of computing 
resource utilization.
4.2.3 Global Data Migration Cost

We calculated the global data migration cost from the 
time dimension, that is, the sum of the time spent on data 
transmission during system running. We take 2500 tasks from 
both Facebook trace and CEA trace as input. The global data 
migration cost can refl ect the performance advantage of data 
replication placement more intuitionistic than the storage re-
source utilization.

Figure 6. Global data migration cost observed for diff erent 
traces

It can be observed From Figure 6 that the JOTD can sig-
nifi cantly reduce the global data migration cost in each case. 
When replaying Facebook trace, JOTD outperforms run-
Data, CAMS, and GCSS by 94.94%, 95.21%, and 94.13%, 
respectively. When replaying the CEA trace, JOTD outper-
forms runData, CAMS, and GCSS by 77.19%, 88.95%, and 
83.01%, respectively. CAMS has the highest global data 
migration cost in all cases. In the collaborative scheduling of 
tasks and data process, CAMS prefers to schedule a task to 
the computing platform with required replication and high 
computing capability, and when no scheduling scheme can 
meet the condition, random scheduling is adopted to balance 
the load. Note that the schemes generated by random sched-
uling will cause remote data access, so the global data migra-
tion cost increases signifi cantly. On the other hand, runData 
and GCSS consider data placement state and data locality 
when scheduling tasks and data, thus both have less global 
data migration cost than CAMS. However, data replication 
mechanism is an eff ective way to optimize data migration in 
WAN. The non-replicaiton mechanism and static replication 

mechanism in runData and GCSS can still be optimized to 
achieve a better performance in data migration. Meanwhile, 
in JOTD, the data replication placement can be adjusted dy-
namically and adaptively according to the replication cost 
and data popularity, so storage resources can be effectively 
utilized and the global data migration cost can be greatly mit-
igated. In the case of suffi  cient storage resources in the sys-
tem, it is even possible to make a full replication decision on 
hot small data. Such data will not incur data migration costs 
when accessed by tasks, but only the cost of maintaining rep-
lication consistency. Therefore, the global data migration cost 
of JOTD is much lower than that of other methods.

5  Conclusion

This work proposes a joint online optimization of task 
rescheduling and data redistribution. In this method, a local-
ity-aware wide-area task stealing and backfi lling mechanism 
and popularity- and cost-aware adaptive data replication 
placement adjustment mechanism is applied. The task alloca-
tion and data placement are adjusted collaborative during the 
system running process to mitigate the impact of large net-
work latency and limited bandwidth on system performance. 
The simulation results indicate that JOTD outperforms the 
state-of-the-art methods in terms of system throughput, com-
puting resource utilization, and global data migration costs. 
The current realization of JOTD does not take into account 
the optimization of dynamic bandwidth allocation among 
diff erent transport works. In the future, we would like to fur-
ther improve the system performance and optimize network 
resource load through the bandwidth allocation methods.
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