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Abstract 
 

This paper describes our system at a task: Chinese 

Grammatical Error Diagnosis (CGED). The task is held by the 

Natural Language Processing Techniques for Educational 

Applications (NLP-TEA) to encourage the development of 

automatic grammatical error diagnosis in Chinese learning 

since 2014. The goal of CGED is to diagnose four types of 

grammatical errors: word selection (S), redundant words (R), 

missing words (M), and disordered words (W). The automatic 

CGED system contains two parts including error detection and 

error correction and our system is designed to solve the error 

detection problem. Our system is built on three models: 1) a 

BERT-based model leveraging syntactic information; 2) a 

BERT-based model leveraging contextual embeddings; 3) a 

lexicon-based graph neural network leveraging lexical 

information. We also design an ensemble mechanism to 

improve the single model’s performance. Finally, our system 

achieves the highest F1 scores at detection level and 

identification level among all teams participating in the CGED 

2020 task. 
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1 Introduction 
 

The Chinese language is often recognized as unity of the 

utmost tough to learn. In comparison to English, Chinese does 

not have a singular/plural transition, nor does it have verb 

tense variations. Furthermore, because word boundaries are 

not explicitly specified in Chinese, word segmentation is 

frequently required prior to deeper analysis. All of these issues 

make learning Chinese difficult for newcomers. In recent 

years, an increasing number of people from various linguistic 

and educational backgrounds have expressed an interest in 

studying Chinese as a second language. To assist in 

identifying and correcting grammatical errors produced by 

these people, it is necessary to develop an automated Chinese 

Grammatical Error Diagnosis (CGED) tool.  

Since 2014, the CGED has been chosen as one of the 

shared projects by Natural Language Processing Techniques 

for Educational Applications (NLP-TEA) to stimulate the 

development of automatic grammatical mistake diagnosis in 

Chinese learning. To tackle the CGED challenge, a variety of 

approaches have been offered. 

In this work, we introduce our system to solve the error 

detection problem. In our system, we use three types of models. 

The first one is the BERT-GCN-LSTM-CRF, which is based 

on the perfect of multi-layer bidirectional transformer encoder 

and incorporates GCN to improve the performance. The 

second one is the BERT with context-LSTM-CRF, which 

makes use of contextualized word representations because 

they have the ability to efficiently capture compositional 

information in language. The third one is the LGN, which 

incorporates lexical information into Chinese NER tasks. 

We also design an ensemble mechanism to progress the 

single model’s performance. In the experiment, our system 

gets the highest F1 scores at detection level and identification 

level among all the models that participated in the NLPTEA-

2020 CGED task. 

 

2 Chinese Grammatical Error Diagnosis  
 

Since 2014, the shared assignment for the CGED has taken 

place. Several sets of training data produced by CFL students 

have been released, many of which contain severe 

grammatical mistakes. The CGED provides four categories of 

mistakes for detection: (1) R (redundant word errors); (2) M 

(missing words); (3) W (word ordering errors); and (4) S 

(single word errors) (word selection errors). Three levels of 

performance are evaluated: detection, identification, and 

location. Missing and selection mistakes require no more than 

three repairs, according to the systems. In this paper, our 

system focuses on the error detection problem. 

 

3 Models 
 

Some previous works consider the error detection problem 

to be a sequence labeling problem. Similarly, we use BIO 

encoding to generate a corresponding label sequence y for a 

sentence x  [1]. We use three models to solve the labeling 

problem, in which BERT and GCN information are all used. 

 

3.1 BERT-GCN-LSTM-CRF 
 

Previous works use LSTM-CRF model to solve the 

problem [2]. For better performance, we combine the BERT 

model and GCN model. 

We use BERT [3], the multi-layer bidirectional 

transformer encoder [4] to encode the input sentence. As 
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shown in Figure 1, given an input sequence S =  x1, x2, ⋯ , xN, 

BERT outputs the hidden states S′ =  h1, h2, ⋯ , hN. 

 

3.1.1 GCN 

 

Previous research [2, 5] put a lot of effort into feature 

engineering, such as pretrained and parsing features. The most 

significant parsing characteristics are part-of-speech tagging 

(POS) and dependency information, indicating that the job is 

strongly related to the structure of the sentence syntactic 

dependence. 

The Graph Convolution Network is used to better 

comprehend the dependence structure of an input phrase 

(GCN) [6-7]. Specifically, we use the graph attention 

networks (GAT) [8] to assign different importance to nearby 

nodes using masked self-attention layers. The BERT model’s 

high-level character information and the dependency tree’s 

adjacency matrix are accepted by the multi-layer GCN 

network. A GAT operation with M independent attention 

heads can be expressed as follows: 

 

fi
′ = ∏ σ(∑ αij

mWmfjj∈Ni
)M

m=1 .          (1) 

 

αij
m =

exp(LeakyReLU(aT[Wmfi∥WMfj]))

∑ exp(LeakyReLU(aT[Wmfi∥WMfm]))m∈Ni

,   (2) 

 

where ∏  is the concatenation operation, σ  is a nonlinear 

activation function, Ni is the graph’s neighborhood of node 

i, αij
m are the attention coefficients and a is a feed-forward 

neural network. At the last layer, averaging will be adopted: 

 

fi
final = σ (

1

M
∑ ∑ αij

mWmfjj∈Ni
M
m=1 ) .     (3) 

 

3.1.2 Concatenation 

 

Following the graph convolution network, we concatenate 

the representation H_l for the l-th layer with the BERT hidden 

state as the LSTM layer’s input. 

 

3.1.3 CRF 

 

To predict the sequence tags for each token, a CRF layer 

is added. 

 
Score(X, Y) = ∑ Ayi,yi+1

n
i=0 + ∑ Vi,yi

n
i=1 .    (4) 

 

P(Y|X) =
exp(Score(X,Y))

∑ exp(Score(X,Y′))Y′
,       (5) 

 

where X, Y, Y′ denotes the input system, the fact tag order, 

and a random label order, V signifies the discharge grooves, 

and A is the transition scores matrix of the CRF layer. We use 

Viterbi Decoding [2] to inference answers. 

 

 

 
Figure 1. Architectures of BERT-GCN-LSTM-CRF for grammatical error detection 

 

 

3.2 BERT with Context-LSTM-CRF 
 

Error detection can be difficult because CGED datasets are 

restricted in extent and the label disseminations are extremely 

unbalanced. As described in [9], Contextualized word 

representations can detention compositional statistics in 

philological efficiently, and they can be augmented on bulky 

quantities of unproven data. Specifically, it uses ELMo, BERT 

and Flair embeddings as contextualized word representations. 

To improve the performance on this task, we similarly use the 

structure shown in Figure 2. 
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Figure 2. Architectures of BERT with context-LSTM-CRF for grammatical error detection 

 

3.3 LGN 
 

RNN is frequently used in Chinese named entity 

recognition (NER) task. However, RNN-based models are 

prone to word ambiguities because to their chain erection and 

absence of universal semantics. LGN [10] solves this problem 

by providing a global semantics lexicon-based graph neural 

network, in which dictionary acquaintance is utilised to link 

letters to capture the local composition, while a global relay 

node connects each character node and word edge to capture 

global sentence semantics and long-range dependency. Figure 

3 shows the structure of LGN. Node c represents every 

character and e represents every potential word. Based on 

various graph-based interactions among characters, possible 

words, and whole-sentence semantics, the model may employ 

global context information to continually compare ambiguous 

words to handle the word ambiguities problem. LGN achieves 

Chinese NER as a graph node classification task. We treat 

error detection task as NER and use LGN to increase the 

diversity of prediction. 

 

 
Figure 3. Architectures of LGN for grammatical error detection 

 

 

4 Ensemble Mechanism 
 

To generate better results, we train several fault 

recognition representations and employ a three-stage voting 

ensemble mechanism to get the final result by utilizing the 

predictions from multiple models. 

Before all, we convert the BIO encoding to the format like: 

(error_start_position, error_end_position, error_type) and 

then use the ensemble mechanism:  

In the first stage, we calculate the number of errors of each 

type. If the number of errors of a certain type is greater than 

θ1 of the number of all models, we believe that there is an 

error of this type and the error is the largest of all predictions 

of this type of error. Specially, we do not include LGN when 

calculating the number of models for the reason that the 

number of predictions of LGN is small. 

In the second stage, if an error appears in the predictions 

of more than θ2 models, we think the error exits. Also, we do 

not include LGN when calculating the number of models if the 

error is not predicted by LGN for the same reason. 

In the third stage, we calculate the number of all predicted 

errors. If it is great than θ3 of the number of all models, we 

believe there is an error. If no errors are predicted after the first 

two stages, we think the error is the one which is predicted the 

most by the all models. Also, we do not include LGN when 

calculating the number of models for the same reason. 

In the experiments, we select the θ1 , θ2  and θ3 

according to the performance on the validation data. 
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5 Experiments 
 

5.1 Data and Experiment Settings 
 

We trained our sole representations using training parts 

that include both the incorrect and the corrected sentences 

from 2016 (HSK Track), 2017, 2018, 2020 training data sets, 

as well as 2016 (HSK Track) and 2018 testing data sets. The 

sentences from 2017 trying data set are used for validation and 

2020 testing data set are used for test. The overall data 

distribution in the training data is shown in Table 1. 

 

 

Table 1. Data statistics 

 Error R M S W 

Train 62,661 13,929 16,672 27,504 4,556 

Validation 4,871 1,060 1,269 2,156 386 

Test 3,660 768 862 1,701 329 

 

 

For the BERT-GCN-LSTM-CRF model, As the Bert’s 

initialization, we choose the ELECTRA discriminator [11]. 

We utilise the Chinese ELECTRA-Large discriminator model, 

which has 1024 hidden units, 16 heads, 24 hidden layers, and 

324M parameters. For the GCN model, Language Technology 

Platform (LTP) [12] was used to generate the dependency tree, 

and the first layer’s hidden vector size was 512 with 8 heads, 

while the second layer’s hidden vector size was 1024 with 8 

heads. The hidden size for LSTM was 2048 with one layer. 

For the other settings, we utilise 128-token streams, a 32-token 

mini-batch, a 2e-5 learning rate, and a 120-second epoch. To 

train 12 single models for the ensemble process, we utilise 

different random seeds and dropout [13] values. 

For the BERT with context-LSTM-CRF model, we also 

select ELECTRA discriminator as the Bert’s beginning, and 

we custom ROBERTA to get the contextual embeddings. 

Specially, contextual embeddings are not fine-tuned in all 

experiments. Other parameters are the same as above. Also, 

we use dissimilar arbitrary seeds and dropout standards to train 

10 single models for the ensemble mechanism. 

For the LGN model, the group size, learning rate, and 

epoch were set to 32, 2e-5, 120. Moreover, the dropout rates 

for embedding, attention and aggregation module were all set 

to 0.1. We use different random seeds to train 45 single models 

for the ensemble mechanism. 

 

5.2 Metric 
 

For the error detection task, the evaluation method 

includes three levels: 

Detection level. Determine whether a sentence is correct 

or not. The sentence is incorrect if there is an error. All types 

of errors will be considered incorrect. 

Level of identification This level may be thought of as a 

classification issue with several classes. For a given sort of 

mistake, the rectification scenario should be similar to the gold 

standard. 

Position level. The system’s outputs should be closely the 

equal as the gold benchmark’s quadruples. 

At the recognition, identification, and situation close, the 

three metrics precision, recall, and f1 are measured. 

 

5.3 Validation Results 
 

We use the three single models described above as our 

reference line mockups. The results of dissimilar models are 

listed in Table 2. 

The first and second models have a good fit on the 

validation set. However, LGN does not perform well mainly 

because of the low recall, i.e., fewer errors in the sentences are 

identified, while the high precision ensures a better accuracy 

of the identified errors. Moreover, LGN also increases the 

distribution of results to improve the performance of the 

system. To reduce the effect of low recall, we do not fully 

include the LGN models when using the ensemble mechanism. 

As shown in Table 2, the ensembled model does not achieve 

much improved performance on the validation set, and it is 

mainly because the first and second models already have a 

good fit on the validation set and the number of training 

models is not large enough. 

 

 

Table 2. The results of single models and ensemble model on validation dataset 

Model Detection    Identification    Position   

 Precision Recall F1  Precision Recall F1  Precision Recall F1 

BERT-GCN-LSTM-CRF 0.8695 0.8444 0.8568  0.7471 0.6529 0.6968  0.6111 0.4938 0.5462 

BERT with context- 

LSTM-CRF 

0.8848 0.8338 0.8586  0.7631 0.6333 0.6922  0.6305 0.4786 0.5441 

LGN 0.8244 0.2419 0.3741  0.7313 0.1297 0.2203  0.4316 0.0631 0.1101 

Ensembled model 0.8633 0.8551 0.8592  0.7611 0.6698 0.7125  0.6210 0.5054 0.5572 

 

 

5.4 Testing Results 
 

Table 3 illustrations the presentations on error detection. 

Our structure realizes the best F1 scores at the detection level 

and identification level by a balanced precision and recall 

among all teams participating in the CGED 2020 task. At the 

detection level, we improved the F1 value by 0.47% over the 

state-of-the-art [27-28], and this is because we added syntactic 

information of the sentences, which is much richer than the 

POS Score and PMI Score used by the state-of-the-art method. 

At the identification level, we improved the F1 value by 1.23% 

over the state-of-the-art [23], and we think this is because the 
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state-of-the-art method only adds ResNet on top of BERT, but 

we not only add rich information: syntactic information, 

contextual embeddings and lexical information, but also add 

CRF layer to improve the performance, so we can get better 

F1 value. Although we achieve the highest F1 score, there is 

still a significant gap in our system’s ability to diagnose 

Chinese grammar errors. 

 

 

Table 3. Error detection performances on official testing data sets 

Team Detection    Identification    Position   

 Precision Recall F1  Precision Recall F1  Precision Recall F1 

UNIPUS-Flaubert 0.8782 0.9157 0.8966  0.6507 0.6420 0.6463  0.3147 0.2739 0.2929 

NJU-NLP 0.8565 0.9757 0.9122  0.5571 0.8432 0.6709  0.2097 0.4648 0.2890 

OrangePlus 0.9252 0.8600 0.8914  0.7230 0.6287 0.6726  0.4428 0.3610 0.3977 

Flying 0.9273 0.6213 0.6736  0.7356 0.6213 0.6736  0.4320 0.3514 0.3876 

Ours 0.9037 0.9304 0.9169  0.6957 0.6765 0.6859  0.4185 0.3608 0.3875 

 

 

6 Related Work 
 

The scientists have proposed numerous dissimilar 

technologies to learning the detection and rectification of 

English grammatical errors [14-16]. However, there are few 

research on current Chinese grammatical mistakes. Since 2014, 

current Chinese grammatical mistake diagnostic tasks have 

been introduced to the Natural Language Processing 

Techniques for Educational Applications (NLPTEA). To 

tackle this problem, a variety of approaches have been offered 

[17-18]. [19] In 2016, they presented a model based on layered 

LSTM and CRF that enhanced automated grammatical 

mistake identification accuracy and recall rate. [20] used Bi-

LSTM to sense the position of errors and added supplementary 

verbal statistics, POS, and n-gram, combining machine 

learning and traditional n-gram methods. [21] The work of 

mistake repair was viewed as a translation effort. Surface 

mistakes and grammatical faults are the two types of errors. 

Low-level mistakes are solved using a comparable phonetic 

table and 5-gram language model, whereas high-level errors 

are solved using the Transformer archetypal based on appeal 

roughness and term granularity [22-24]. The researchers 

utilised a multi-model parallel framework with three different 

types of models: rule-based, statistics-based, and neural 

network models. To solve the detection problem, [25] 

combined ResNet and BERT, and to increase the performance 

of a single model, researchers looked at stepwise ensemble 

selection from model libraries. [26, 29-30] leveraged syntactic 

information and adopted a multi-task learning framework 

based on BERT to progress the reference line typical to sense 

grammatical errors. 

 

7 Conclusion 
 

Our method, which associations GCN and BERT for 

Chinese Grammatical Error Diagnosis, is described in this 

article for the NLPTEA-2020 CGED problem. We also design 

an ensemble mechanism to maximize the model’s capability. 

Among all teams participating in the CGED 2020 task, we 

achieve the highest F1 scores at detection near and 

identification level. 
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