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Abstract 
 

Android has become the dominant operating system for 

portable devices, making it a valuable asset that needs 

protection. Though Android is very popular; it has several 

vulnerabilities which attackers use for malicious intents. In 

this paper, we present a comprehensive study on the threats in 

Android OS that various malware developers exploit and the 

different malware functionality based on Android’s threats. 

Furthermore, we analyze and evaluate the anti-malware 

approaches implemented to face the malware functionalities. 

Finally, we analyze and categorize malware developers’ most 

common anti-analysis techniques to evade anti-malware 

approaches. It comes to our attention that many papers 

covered each topic separately; however, we could not find one 

comprehensive study that covers Android with such details 

that it could be used as a research handbook on Android 

malware. This is the main novelty and contribution of this 

work. 

 

Keywords: Malware detection, Dynamic analysis, Static 

analysis, Hybrid analysis, Reinforcement 

learning 

 

1 Introduction 
 

As the world evolves and technology around us changes 

its face every day, the number of smartphone users and other 

smart devices for business or personal purposes is 

dramatically increasing. Android is the most commonly used 

OS in that category, with 87% Android users [1]. Many smart 

device manufacturers support Android. Android’s first release 

was in September 2008; it is a Linux-based open-source 

platform that supports over 100 languages. The android 

applications are widely available on various App stores such 

as Google Play, Amazon, Aptoide, Galaxy, and others, with 

millions of Apps available to choose from that leads to people 

favoring Android over other OS [2]. However, with the 

increasing numbers of Apps and users, Android Apps APK 

has become the biggest target for attacks; on average, more 

than 600,000 malware applications per month are distributed, 

as AVTest security report [3] stated in their latest security 

report. The AVTest report narrates is based on analysis of 

huge number of attacks and signifies the statistically common 

attack behaviors e.g. in 2019 report, the most damaging but 

frequent attacks were exploiting the hardware architecture 

base vulnerabilities to read the content of memory which may 

contain confidential information e.g. password. The report 

also summarizes the attack targets year-wise e.g. in 2019, 

Windows devices were attacked most of the times. According 

to this AVTest reports, the android OS has been facing 

tremendous increase in number of attacks per year. Those 

attacks vary in their specialization level and target, which 

creates a pressing need for in-depth analysis of their 

techniques to develop effective detection and classification 

tools [4]. Therefore, we are targeting Android malware; we are 

covering different types of malware, anti-malware techniques. 

Malware is a code that a cybercriminal has developed 

intending to gain unauthorized access to a device, data, or 

network. Its effect may vary from mild to severe depending on 

the permission it gains. Additionally, we have discovered in 

our research that due to the speed of App development, some 

Apps do not go through enough security checks before being 

published, leading to unintentional security breaches to users’ 

devices. Moreover, malware developers are increasingly more 

innovative when hiding their malicious code behind complex 

GUI widgets (are miniature application views that can be 

embedded in other applications (such as the home screen) and 

receive periodic updates) to hinder malware analysis tools. 

Furthermore, due to the comparatively limited capabilities 

of smart devices in processing, storage, and battery  life, the 

traditional anti-malware “PC anti-malware” techniques are not 

suitable as it requires a lot of processing and storage 

capabilities [5]. These techniques have been adopted for the 

mobile devices with scarce resources. The traditional 

techniques are typically constructed using standard signature 

based approach.  However, these techniques pave way for 

the exploration of more modern and behavior based scalable 

solutions to constructor state-of-the-art antimalware.  

In order to detect and deter new malware definitions, the 

traditional anti-malware, which are largely based on signature-

based Anti Virus (AV) are not sufficient as the malware keep 

changing signature pattern of their attack. Such attack require 

use of more sophisticated approaches to detect them and 

contain them. Signature-based AV uses a kind of fix set 

malware characteristics to identify and categorize malware; 

however, malware can easily surmount it using obfuscation or 

encryption, as explained later in sections 3.4 and 3.5. 

Consequently, other anti-malware techniques are employed, 

such as Static and Dynamic analysis. 
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Static analysis is performed using a reverse-engineer to 

analyze the code without executing it; by utilizing the App 

manifest, static analysis can collect constructive information 

about the App behavior, permissions, activities, etc. However, 

this method can indeed be defrauded using camouflage 

techniques such as encryption and obfuscation. On the other 

hand, dynamic analysis performs an exhaustive analysis of the 

App by running the code in a controlled save environment 

“emulator” and monitor and analyze its functionality at run 

time. This technique gives wider latitude of the malware 

behavior and intention; then again, in 2013, Obad malware 

was the first malware to defeat dynamic analysis by detecting 

emulators’ use and not executing their malicious act on it.  

Accordingly, various malware evades the use of emulators by 

delaying their malicious act until they inspect the environment 

and detect whether an emulator has been employed; in that 

cases, they do not execute their malicious code and qualify as 

benign App [5-6]. Hence, there is a need to develop a new 

technique that can understand the previously stated downsides 

of the static and dynamic analysis and outsmart malware by 

learning their attribute and detecting them. 

It comes to our attention that many papers covered each 

topic separately; however, we could not find one 

comprehensive study that covers Android with such details 

that it could be used as a research handbook on Android 

malware. This is the main novelty and contribution of this 

work. 

The paper structure is as follows: section 2 illustrates the 

different Android vulnerabilities. Section 3 explains how 

malware developers use android vulnerabilities to perform 

attacks. Section 4 analyzes and evaluates the several anti-

malware techniques to confront the attacks of section 3. 

Section 5 presents some of the most common anti-analysis 

techniques that malware developers use to evade anti-malware 

detection. While we conclude and present the future work in 

section 6. 

 

2. Android Vulnerabilities 
 

Before discussing the vulnerabilities available in Android, 

we need to establish a basic understanding of the Android 

Platform structure Figure1 [1, 7-9]: 

1. Android application layer - allows developers to utilize 

the existing functionality of the device. 

2. Java API framework - allows the App developer to 

access a broad collection of APIs that provide the building 

blocks for the App layer. 

3. Native Libraries – core android components are built 

from native code C and C++. 

4. Android Runtime 

a. Older Android versions used - Dalvik Virtual Machine 

- the previous two layers are Java programed, and they get 

executed inside Dalvik VM, which is responsible for 

interpreting the Dalvik Executable “DEX” into byte code 

format. That allows App components to communicate and 

share resources such as user interface and stored data. 

b. Android 5 and above use - Runtime ART – multiple 

virtual machines with a low memory device usage. 

5. Hardware Abstraction layer – allows API framework 

access to particular device hardware such as camera and 

Bluetooth. 

6. Linux Kernel is built on the open-source kernel of Linux 

provide Android OS with the core OS infrastructure; some of 

the userspace services and libraries communicate with the 

kernel layer. 

Before analyzing the different Android malware 

techniques, we need to discuss the inherently available threats 

in Android OS that various malware developers exploit. 

It is obvious from the Figure 1 that the android runtime 

environment is a layered system which executes the app 

methods by using several callbacks. This architecture also 

pose challenges for the security solution to predict the app 

behavior, construct the context and data flows etc. For 

example, a method “sendMessage()” could be an execution 

pattern based on call to the code from Application layer to 

Android framework layer and eventually to linux kernel layer.  

Each layer generates its down data and maintains it in its local 

space.  To generalize this behavior, the security solution 

must maintain the information flow about the callbacks, 

contexts of the object, the use of data generated by method etc. 

To maintain such rich data, the security solutions can face 

challenge of consuming many resources, which can yield high 

overheads.  The rest of paper will be this framework (given 

in Figure 1) to narrate the significance and weakness of the 

current security solutions of the android apps.  

 

 

Figure 1. Android platform structure 

 

2.1 Application Permissions 
 

Android restrict application access to different resources 

using permission-based security level. Permissions are 

categorized into four levels normal, dangerous, signature and 

Signature OrSystem permission. Apps are required to declare 

their permission requests in their manifest [10]. However, 

when users download and install an App, they get prompted to 

allow all or deny all permissions. If the user reject the 

permission granting step, the App will not be installed; 

therefore, most users obliviously accept all permissions 

without comprehending their implications or risks. 

Additionally, Apps can request extra dangerous permissions 

at runtime from users [11]. 
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2.2 Fragmentation Problem 
 

On average, Google Android publish an update every 

month; however, for the update to reach every user from every 

manufacture worldwide, it takes months, which leads to 

different versions of Android remain available around the 

world, those with older versions remain vulnerable to security 

cracks that have been resolve in the newer updates [12].  For 

instance, some permissions declared as dangerous in the 

newer update are still normal on the un-updated device, 

leading to user data exploitation [13-14]. 

 

2.3 Colluding Attack 
 

When users unknowingly install different Apps that share 

the same signed certificate, created by the same developer, 

they also share the permissions and access to the resources. In 

contrast, each App asks for single permission does not seem 

suspicious, but their permissions combined allow them to 

perform malicious activities. Additionally, each App 

separately gains access to a different resource. All Apps with 

the same certificate share these resources, leading to one App 

having access to voluminous resources without arousing any 

suspicion [10, 15]. 

 

2.4 System Server  
 

Researchers in [16] has discussed the system server as a 

single point of failure in Android OS. System server is a multi-

thread process that is responsible for most of the system 

process and App functionality. However, this process is 

vulnerable to exploitation by App developers. If an App 

developer writes a loop to invoke API in an App, it can loop 

endlessly and keep freezing and rebooting the system, which 

can later be used by malware to conduct a DoS attack. 

Moreover, [17] has shown that callback on SS can cause a 

system freeze and repeated system reboot. Various malware 

developers can exploit all the previously named vulnerabilities 

in Android to perform attacks on users, as explained in the 

following section. 

 

3. Malware Functionalities 
 

Malware varies in its purpose and attacks; some cause 

disturbance of the user device functionality by performing 

massive Ads attacks. Others steal users’ contacts and use them 

to spread and target others’ attacks. While others are more 

harmful, causing financial charges on the user or even stealing 

their bank account details to perform transactions on the 

behaves. Below we present the malware functionalities. 

 

3.1 Aggressive Advertisement 
 

One of the most widespread malware known to users is 

those annoying Apps that keep popup and disturb their device 

usage. Some malware takes control of the user device and 

starts bombarding them with advertisements, change their 

default search engine, and more such as Plankton [15]. 

 

3.2 Remote Control 
 

93% of malware use the infected device for bots [18]. By 

gaining access to the device, these types of malware take 

control of the device, and by using a remote server, they can 

utilize the device as a bot which is a part of a botnet “group of 

devices controlled by a remote server” either to steal their data 

or to perform attacks such as denial of service attacks. Beanbot, 

Anserverbot are famous malware that create botnet [15]. 

Beanbot attack the devices with stealing the information e.g. 

IMEI number and phone number etc and send it to a remote 

server. It can also send high priced SMS from the device to 

consume the phone credits. Anserverbot also install the code 

on victim device to give remote control to the hacker via this 

code. The malware hidden in app, prompts users to install an 

update and in this disguise, the remote control program is 

download and install on the victim machines.  

 

3.3 Privilege and Permission Escalation 
 

Around 36% of malware use at least one root exploit, but 

it is ubiquitous to use more than one. By exploiting the android 

vulnerability colluding attack explained in section 2.3, various 

malware can collude to share permissions and gain higher 

privileges [19]. SMS-related permission is the most used 

exploit among malware; around 45% of malware requests to 

gain various SMS-related access, such as reading, writing, 

receiving, and sending messages [18]. 

Malware uses these escalations for various purposes, such 

as Obad to hide, Fobus to prevent users from disabling their 

privileges. In addition, the malware sways the user to give 

privileges for various reasons such as security-related services 

“Updtkiller,” enhance the device productivity “Fobus,” or 

forcefully ask for permissions till the user gives in 

“SmsZombie” [20]. 

Additional observation, malware Apps usually ask for 

more permissions than benign Apps. On average, malicious 

Apps ask for 11 permissions. In contrast, benign Apps, on 

average, asks for four permissions. 

 

3.4 Financial Charges 
 

Some malware uses remote control and privilege 

escalation to make a financial gain of the compromised device. 

This financial gain can send messages or subscribing to a 

premium-rate number, sending messages to the contact list, or 

even making phone calls in the background without the users’ 

knowledge [18]. Such as DroidSMS subscribing for premium 

numbers, Zitmo steals users’ login details to perform financial 

transactions from users’ bank accounts [15]. Zitmo is designed 

to steal mobile transaction authorization numbers (mTAN). It 

is a Trojan that aims to forward incoming text messages with 

mTAN codes to malicious users or servers. Based on that, it 

can execute financial transactions using hacked bank accounts. 

Another prevalent malware that causes finical charges in users 

is ransomware, where the malware locks the device until 

payment is made to unlock the device data again, such as 

FakeDefender [15].  

 

3.5 Leaking Information 
 

Apps, in general, need access to users’ information to 

function and communicate; however, transferring this 

information outside the user’s device without their knowledge 
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or consent is considered information leaking [19]. More than 

80% of malware collects some user’s and device information 

and sends it to their remote servers. Device information such 

as IMEI , IMSI , Kernel version, phone manufacturer, network 

operator [20]. SMS messages, phone numbers, user accounts, 

email addresses, usernames, and passwords. Using this 

information, malware attackers can perform a fraud on the 

user without their knowledge [18]—FakeNetflix masquerade 

as the famous App Netflix to steal the users’ login details and 

leak them.  

 

4. Anti-Malware Techniques 
 

In order to monitor, detect and mitigate the malware 

functionality stated in section 4, intensive research has been 

conducted over the years. As a result, anti-malware techniques 

vary in their methodology of detection. Following, we discuss 

static and dynamic anti-malware techniques with state- of- 

the- art tools used in each. 

 

4.1 Static Analysis 
 

Static analysis has been widely employed in detecting 

malware. The static analysis relies on reverse engineering by 

analyzing the Dalvik bytecode without executing the code. 

This technique advances over dynamic analysis as the 

malware will not hide or delay their malicious act while being 

analyzed in a safe environment.  Dalvik Virtual Machines 

(DVM) is not more used as runtime environment for the newer 

version of Android, however, the dex format is still in use. 

DVM is different than typical java virtual machine at its 

execution architecture is based registered-based bycote. 

Empirically, DVM is slower than JVM [63], however, 

performance of apps running on DVM is not deteriorated and 

significantly affected due to running in registered-based 

architecture. The dalvik format is commonly used in the app 

security models which can scan the dalvik byte code.  

Serval previous work has been done in that area. CHEX [1] 

is one of the early attempts to employ static analysis on 

Android apps. CHEX is a component hijacking examiner that 

checks apps for multiple entry points, resulting in sensitive 

data leaking or permission escalation. Chex has reported a low 

false rate in identifying all entry points of an app, and then by 

introducing the app splitting concept, they divide the app code 

into multiple segments according to their used entry point to 

the code. Then they were able to track all potential data flow 

for each app entry point and identify the potential hijacking 

vulnerability exploited by the app, whether intentional or 

accidental. However, CHEX cannot detect those hijacking 

attacks that do not use explicit data flow, resulting in false-

negative results. 

Flowdroid [2] is a static taint analysis tool specifically 

designed for the Android platform that examines the potential 

App byte code and configuration files for sensitivity leaks, and 

the first taint analysis tool detects sensitive leaks from context, 

flow, field, and object flow by modeling the altogether App 

life cycle and UI widgets. FlowDroid combines forward taint 

analysis and on-demand backward alias analysis to determine 

if the data would get tainted at the received method “sink.” 

However, Flowdroid is unable to resolve reflective calls if 

their arguments are not a string constant. 

 

Motivated by Flowdroid, Amandroid [22] creates IDGF 

“inter-component data-flow graph,” which covers all the Apps 

access points to sensitive information. That graph identifies 

any sensitive information request and flows between the same 

App component or between different Apps. Then it builds 

DDG “data dependence graph” to track the data flow through 

the App, which then can be generalized and used to analyze 

different Apps. Thus, Amandroid can be utilized to detect data 

leaks, data injection, and misuse of API. However, Amandroid 

has limited competency in handling exceptions, reflections, 

concurrency, and implicit flows.  

Another tool that targets sensitive data leaks is Apposcopy 

[23] which uses signature base and taint analysis to identify an 

App as malware. Apposcopy firstly creates a high-level 

language datalog to identify shared behavior characteristics of 

each malware family, then using deep taint analysis to match 

an App data-flow and control-flow with the pre-defined 

datalog. This tool advantage does not depend on the existence 

of particular instruction or byte code to identify malware, 

making it resilient to code obfuscation. However, Apposcopy 

cannot detect all variants of the same malware family when 

they vary in characteristics if it is not listed in their datalog; 

additionally, it can be defeated by using dynamic payload 

explained in section 5.2.  

Flowdroid creates structure (i.e. graph) to generalize the 

behavior signature of the malware while Apposcopy creates 

sematic-based representation for defining the malware 

patterns. The Flowdroid structure captures information about 

flow of calls and constructs context while Apposcopy is 

semantically capture the pattern structure using inter 

component call graph.  

On the other hand, another attempt to track evidence of 

malicious behavior and sensitive data-flow has been published 

under EviHunter [24]. In their work, their analysis goes 

through two phases online and offline. In the offline phase, 

they build an App Evidence Database AED to store all files 

that include evidentiary data, the data type under investigation, 

and the exact file path on Android. The online phase compares 

the Apps with the database that has been build in phase 1. They 

have improved the existing static analysis tools “Horndroid 

[25]” to include the sensitive data and its type and include its 

path in the device, which allows this tool to be typically 

utilized for forensics investigation slightly more than malware 

detection and prevention. The limitation of EviHunter, like its 

preliminary attempts, cannot detect dynamic payload that can 

only be detected at runtime.  

Other attempts such as CHEX [26], SafeDroid [27], 

AnaDroid [28], ScanDal [29], DroidEnsemble [30], 

DroidSieve [31], COVA [32] AndroDialysis [33], 

DroidNative [34], Vulvet [35] and many others; were all 

limited by the inclination of static analysis and the possibility 

of malware hiding its malicious act until runtime or using 

dynamic load, or any other anti-analysis techniques explained 

in section 5. Researchers in [36]  detected the presence of 

malware using power consumption data. While their approach 

was mainly focus in detecting in desktop computers, 

conceptually it can be applied to mobile apps. 

SafeDroid [27] is a client-server based antivirus for the 

android apps which scans the apps and then assigns a label to 

them based on its signature matching technique which is run 

by a remote module of the SafeDroid. The client module 

installed on a device reads the required information from the 
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dex file and sends data to remote service which classify if the 

app is malicious or not.  

Anadroid [28] combines taint analysis with pushdown 

control flow analysis (CFA) for the java code (but could be 

used for any high level language). It also uses the 

approximation based on asynchronous entry points in an app 

to predict a malicious agenda in an android code.  

 

4.2 Dynamic Analysis 
 

Another technique that has been employed in detecting 

and mitigating malware is Dynamic analysis. In this technique, 

analysts execute and monitor App functionality and behavior 

in a safe environment, such as emulators, simulators, 

sandboxing, and others. In this technique, the suspected App 

run and user interaction are imitated to observe the App’s 

actions, behavior, and control-flow to identify malicious 

actions and categorize the App as malware or benign. 

ServiceMonitor [37] is a host-based lightweight detection 

tool that monitors the application interaction with system 

services and constructs a statistical Markov chain model as a 

feature vector to classify the application. Then using the 

previously constructed model, the Forest algorithm identifies 

the App either as benign or malicious. It extracts a set of 

behaviors (methods) by monitoring the app interaction with 

other services like camera, messaging (i.e. sendSMS). This 

extraction can build a true behavior model for a malicious app, 

which hides malicious behaviours into code. To map the 

extract methods from interaction to a class label (malicious or 

benign) using a variation of decision tree called Random 

Forest. Their experiment published results stated that 

ServiceMonitor could detect malware trying to escalate their 

privilege, acquire unnecessary permission, collect user 

information, or gain financial benefits. However, some 

malware could detect the safe environment and did not trigger 

their malicious act and therefore been classified as a benign 

App which caused several false negatives. Additionally, they 

reported a lesser percentage of false-negative, which has been 

reported due to some benign Apps acquiring permission that 

has been classified as dangerous. 

TaintDroid [38] is another attempt to identify malware 

Apps by tagging data, then track the tainted data dissemination 

through the system. If the data leaves the system through the 

network or any other port, TiantDroid logs the data, and the 

Application used it, and the transferred data destination. 

However, as reported in their paper, TaintDroid can detect 

only explicit data-flow and be deceived using implicit data-

flow. 

Motivated by TaintDroid, TaintART [39] comes to be the 

first information-flow tracking on ART “Android Run time” 

system. The tool is based on a multi-level data-flow tracking 

system to minimize the storage overhaul. Firstly, taint logic is 

performed by tagging and tracking tainted data; when data is 

released, the tag gets cleared. Then, using tags, the data is 

tracked throughout the system and record when it leaves the 

system either via network or any other way. However, similar 

to its preceding TaintDroid, TaintARt cannot detect explicit 

data-flow. 

On the other hand, Droid-AntiRM [40] aims to support 

dynamic analysis techniques by taming the anti-analysis 

techniques such as logic bomb section 5.6. Droid-AntiRMtr 

identifies those anti-analysis techniques and rewrites the 

condition statements in the App code to force the malicious 

behavior to be executed at analysis time, improving the 

performance of other dynamic analysis tools. Although their 

work mainly focused on SMS-related services such as sending, 

blocking, deleting SMS, or leak sensitive data through SMS, 

they also focus on privilege escalation and gaining root 

privilege. The limitation of this tool is its inability to detect 

dynamic code loading or other obfuscation techniques.  

 DroidScope [41] is a droid-based emulator that performs 

taint analysis at the machine code level, it is capable of 

detecting data leakage and root exploit. They additionally 

developed four system at the API level, taint tracker to trace 

how the App acquire and leak the tainted data through Java 

objects. 

Similar to EviHunter, [42] proposes a tool that 

dynamically analyzes App and identifies sensitive data leaks 

such as GPS location, device ID, browsing history, or any 

other data that might the type of data they collect and how they 

use it. However, similar to DroidAntiRm, they cannot detect 

implicit data-flow. In addition to facing problems with event 

sequence, if the tool failed to identify and follow the correct 

sequence of events in the App, the App will not be analyzed 

accurately. 

Other attempts have been published for dynamic analysis 

such as DL-Droid [43], CopperDroid [44], MAdFraud [45], 

VetDroid [46], PREC [47], DTAInjection [48] however, they 

all faced common limitations, that is malware can detect 

dynamic analysis tools, in that case, they either do not lunch 

their malicious activities or crashes itself.  

 

4.3 Hybrid Analysis  
 

Other tools use a hybrid technique that combines static and 

dynamic analysis, such as WifiLeaks [49]. It detects 

permission requests and data collected using these 

permissions. They use static analysis to categorize the 

permissions attained by the App then use dynamic analysis to 

identify the uses of those permissions for data collection and 

leaks after that. Their primary focus is WiFi access permission 

and the Apps that use that permission to leak personal 

identification information. EspyDroid [50] targets reflection 

analysis and obfuscation malware by using static analysis to 

rewrite conditional statements using bytecode instrumentation, 

optimizing the number of paths to be traveled at the dynamic 

analysis stage. 

Table 1. summarizes anti-malware tools and their 

techniques; additionally, it covers the dataset they have used 

for testing and malware functionality they are targeting.  

AndroShield [57] also employs hybrid analysis; it utilizes 

static analysis to perform reverse engineering on the apk file 

to get code and manifest files. It then utilizes dynamic analysis 

to monitor the App runtime behavior to detect Data Leak, 

Intent Crashes, and Insecure Network requests. Other hybrid 

analysis research is published such as SamaDroid [52], 

AspectDroid [55], mad4a [56], AndroPyTool [53-54], TAN 

[58]. However, these tools are confronted with some inherent 

limitations of static and dynamic analysis (they do not handle 

all the malware functionality stated in section 3), such as 

obfuscation or change of package signature. Furthermore, 

these techniques still faced a problem with zero-day attacks, 

“new malware striking for the first time.” Therefore, comes 

the need for a new technique that can learn and develop itself, 

independent of malware signature or library. 
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Table 1. Anti-malware comparison - tools, techniques, dataset, and malware functionality  

(1 Aggressive ads, 2 Remote control, 3 Privilege and permission escalation, 4 Financial charges, 5 Leaking information) 

Anti-malware tools Analysis technique First released Dataset Malware 

functionality 

CHEX [26] 

 

Static 2012 General Apps from Google Play 3 and 5 

DroidScope [41] 

 

Dynmaic 2012 Droid-KungFu, DroidDream 3 and 5 

ScanDal [29] 

 

Static 2012 General Apps from Google Play 5 

AnaDroid [28] 

 

Static 2013 Contagio 3 and 5 

VetDroid [46] 

 

Dynamic 2013 Genome, BaseBridge, Zitmo  3 

Amandroid [22, 51] 

 

Static 2014 General Apps from Google Play 5 

Apposcopy [23] 

 

Static 2014 Droid-KungFu, Geinimi, and GoldDream 5 

Flowdroid [21] 

 

Static 2014 DroidBench 5 

MAdFraud [45] 

 

Dynamic 2014 Airpush 1 and 2 

PREC [47] Dynamic 2014 Genome, DroidDream, DroidKunfgFu1, 

DroidKungFu2, Ginger Master,  

BaseBridge, DroidKungFuSapp 

3 

     

TaintDroid [38] 

 

Dynamic 2014 General Apps from Google Play 2 and 5 

WifiLeaks [49] 

 

Static and Dynamic 2014 General Apps from Google Play 3 and 5 

CopperDroid [44] 

 

Dynamic 2015 Genome, Contagio, McAfee 3 and 5 

Horndroid [25] 

 

Static 2016 DroidBench 5 

TaintART [39] 

 

Dynamic 2016 General Apps from Google Play 2 and 5 

AndroDialysis [33] 

 

Static 2017 Drebin 3 

Droid-AntiRM [40] 

 

Dynamic 2017 Drebin, Contagio and Genome 2, 3, 4 and 5 

DroidSieve [31] 

 

Static 2017 Drebin, MalGenome 3 

DTAInjection [48] 

 

Dynamic 2017 DroidBench 5 

SamaDroid [52] 

 

Static & Dynamic 2017 Drebin, Genome 3 and 5 

AndroPyTool [53-54] 

 

Static & Dynamic 2018 OmniDroid [54] 3 and 5 

AspectDroid [55] Static & Dynamic 2018 DroidBench 3, 4, and 5 

 

DroidEnsemble [30] Static 2018 FakeInst, Opfake, FakeInstaller, 

DroidKungFu, GinMaster, Plankton 

3 

     

EviHunter [24] 

 

Static 2018 DroidBench 5 

mad4a [56] 

 

Static & Dynamic 2018 ASHISHB, Genome, Drebin, Contagio 3 

AndroShield [57] 

 

Static & Dynamic 2019 DroidBench 3 and 5 

COVA [32] 

 

Static 2019 AndroZoo 5 

EspyDroid [50] 

 

Static & Dynamic 2019 F-Droid, Genome 5 

ServiceMonitor [37] 

 

Dynamic 2019 AndroZoo, Drebin, Genome 3 and 5 

TAN [58] 

 

Static & Dynamic 2020 Drebin, AMD, AndroZoo 3 

Vulvet [35] Static 2020 Ghera, Mobomarket, Androidpur 3 and 5 
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5. Anti- Analysis Techniques  
 

As malware spread increases, there are several anti-

malware techniques to detect them; however, malware 

developers are also evolving and updating their ways of 

bypassing anti-malware techniques. Following are some of the 

most common anti-analysis techniques that malware 

developers use to evade anti-malware detection. 

  

5.1 Repackaging 
 

Malware developers use reverse engineering to infect 

legitimate android Apps. Firstly, they download a legitimate 

popular App, then reassemble it again after adding a payload 

of malicious code. Then the new infected App is published 

back either on the official App store or other stores. When the 

user unknowingly installs the App, they are vulnerable to 

those malware attacks to steal their information or make 

purchases on the App. It is a prevalent malware technique as 

more than 85% of malware are employing repackaging 

techniques such as DroidDream, and DroidKungFu 1, 2, 3, and 

4. [15, 18, 59]. 

 

5.2 Update Payload 
 

Another technique to bypass anti-malware tools that 

malware developers use is an update attack or dynamic 

payload.  Instead of piggybacking the entire malicious code 

into the altered App, malware developers embed the malicious 

payload as a source in the form of an apk/jar file then asks the 

user to install some critical App updates, which will get the 

user malicious payload from a remote server. In that way, it 

overcomes signature-based and static scanning tools in the 

user device. This technique is adopted by malware families 

such as BaseBridge, and Plankton [15, 18]. Other malware use 

polymorphism to change its code every time it gets updated 

without changing its functionality, such as Opfake [10]. The 

main advantages polymorphism provides to the malicious 

code is the exploitation of same methods but doing different 

behaviors via code overriding using inheritance. The 

interfacing is exploited to override the actual behavior for the 

changing the code to include the malicious behavior. 

 

5.3 Dynamic Execution 
 

Malware register and listen to system-wide events such as 

Boot, Call, and SMS, then when the event happens it triggers 

its payload of malicious code [18]. Slembunk uses this 

technique to monitor user activities, and once the user opens 

their banking application, Slembunk overlays a phishing 

screen on top of the legitimate App that looks exactly alike 

and collects all users’ banking information from the 

compromised device [20]. 

 

5.4 Code Obfuscation 
 

App developer usually uses code obfuscation techniques 

to protect their intellectual property from being misused or 

theft by complicating their code to prevent reverse engineering; 

additionally, obfuscation leads to a compact App that is faster 

to run on users’ device. For instance, Progurad is a prevalent 

tool used by App developers to optimize the App code by 

removing unused classes and methods and replacing lengthy 

class names with shorter ones [15]. However, malware 

developers are using this technique to evade manual analysis. 

Different obfuscation techniques can be used, such as junk 

code insertion, package renaming, altering control-flow [60-

61]. For instance, Obad malware renames all classes and 

methods to an unreadable form [20]. It runs in the background 

of your phone. It is well hidden and can’t be detected without 

root privileges. Actually, once Device Administrator 

privileges have been granted, the malware does not appear in 

the device administrator list. 

The junk code insertion creates additional instructions, 

which might not execute ever but makes it challenge for the 

malware analysis to detect a malware after reverse engineering 

the app due to presence of junk code. The obad takes benefit 

of renaming the source code files or classes such that they 

seems genuine to achieve a legitimate goal, however, the code 

has a high degree obfuscation that it goes undetected by 

Android OS security. It is a highly sophisticated Trojan for 

android platform. 

The common solution to avoid the attack of such malwares 

is to use android operating system features such as keeping off 

the option of auto discover and to use sophisticated anti-virus 

to defend the device against taks.  

 

5.5 Encryption 
 

Another way of defeating analysis techniques is by 

encrypting the code that gets decrypted only at runtime. 

Several encryption techniques can be applied for App 

hardenings, such as string encryption or class encryption. For 

analysts to manually examine malware, they need to decrypt 

it first and then map the ciphered text to plain text to 

understand their behavior; however, it remains a challenge to 

the analysts to attain the encryption key. For instance, Fobus 

uses the fourth entry’s class and method name to the JVM 

stack as a key, while Obad uses a particular Facebook page to 

generate its key [20, 59]. 

 

5.6 Logic Bomb 
 

Some malware to defy dynamic and static analysis 

techniques do not launch their malicious code once executed. 

Instead, they wait for a specific event before triggering their 

malicious action, such as RCSAndroid. Furthermore, some 

wait for a certain amount of time before triggering their 

malicious code, referred to as a time bomb, such as 

HolyColbert. Others start with a login screen that requires the 

user’s credentials to start; without valid credentials, the 

analysis tool will not be able to proceed on investigating the 

App functionality and behavior such as Zitmo [9, 62]. 

 

6. Conclusion 
 

This paper highlighted the main vulnerabilities of Android 

OS and how malware developers exploit these vulnerabilities 

to create several types of attacks such as aggressive ads, 

remote control, financial charges, privilege and permission 

escalation, and information leak. The paper introduced several 

anti-malware techniques to detect and mitigates the 
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malware/attacks. In addition, it classified these techniques into 

static, dynamic, and hybrid. It also analyzes and evaluates the 

anti-malware techniques based on the type of attack and the 

dataset used. Finally, it introduced the most common practices 

used by malware developers to bypass the anti-malware 

techniques such as repackaging, update payload, dynamic 

execution, encryption, and logic bomb. As future work, we 

will focus on the impact of reinforcement learning and how it 

may solve the problem of sustainability for the anti-malware 

approaches. 
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