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Abstract 
 

Whale Optimization Algorithm (WOA) is a new meta-

heuristic algorithm proposed by Australian scholar Mirjalili 

Seyedali in 2016 based on the feeding behavior of whales in 

the ocean. In response to the disadvantages of this algorithm, 

such as low solution accuracy, slow convergence speed and 

easy to fall into local optimum, an improved Whale 

Optimization Algorithm (IWOA) is proposed in this paper. 

We introduce chaotic mapping in the initialization of the 

algorithm to keep the whale population with diversity; 

introduce adaptive inertia weights in the spiral position update 

of humpback whales to prevent the algorithm from falling into 

local optimum; and introduce Levy flight in the random search 

for food of humpback whales to improve the global search 

ability of the algorithm. In the simulation experiments, we 

compare the algorithm of this paper with other metaheuristic 

algorithms in seven classical benchmark test functions, and the 

numerical results of four indexes, minimum, maximum, mean 

and standard deviation, in different dimensions, illustrate that 

the algorithm of this paper has better performance results.  

 

Keywords: Whale optimization algorithm, Chaos mapping, 

Inertia weights 

 

1 Introduction 
 

In 2016, Australian scholar Seyedali Mirjalili constructed 

a new algorithm-Whale Optimization Algorithm (WOA) [1] 

based on the living predatory behavior of whales in the ocean 

among natural marine organisms, which has the advantages of 

simple operation, few parameters, moderate complexity. The 

algorithm is widely used in engineering field because of its 

advantages such as simple operation, less parameters, and 

medium complexity. Like other metaheuristic algorithms, 

WOA has the disadvantage of fast convergence and easy to 

fall into local optimum. Therefore, a new solution strategy is 

proposed in this paper. Strategy 1: To address the problem of 

lack of diversity in the population, we use chaotic mapping in 

the initialization phase to maximize the diversity of solutions. 

Strategy 2: The parameter setting in the spiral position update 

of WOA introduces an adaptive weight, which makes the 

individual humpback whales swim in a more reasonable way 

to avoid the algorithm falling into local optimum by increasing 

the coefficients of the adaptive weight; Strategy 3: The Levy 

method is introduced in the humpback whales’ search for food 

behavior to avoid back and forth swimming, thus improving 

the quality of the global solution of humpback whales. We 

incorporated these three strategies into WOA to form a new 

WOA-Improved Whale Optimization Algorithm (IWOA). To 

verify the performance of IWOA, we select seven classical 

benchmark functions in our simulation experiments and 

compare IWOA with classical ant colony algorithm [2], 

particle swarm algorithm [3] and whale optimization 

algorithm, and the effect of experimental results shows that 

IWOA does have better improvement effect. 

The structure of this paper is as follows: Section 1 

describes the research background., Section 2 describes the 

current status of WOA research and describes the direction of 

this paper from these studies. Section 3 shows the process of 

whales living and feeding in the sea in the form of an 

algorithm, while Section 4 implements the improvement of 

WOA from three aspects. Section 5 compares this algorithm 

with other algorithms in different benchmark functions in 

simulation experiments to illustrate the effect of the algorithm 

improvements in this paper, and Section 6 concludes the 

whole paper. 

 

2 Related Knowledge 
 

To improve the performance of the whale algorithm, 

scholars have carried out different degrees of research from 

different aspects. Reference [4] proposed a chaotic strategy-

based quadratic opposition-based learning adaptive variable-

speed whale optimization algorithm. Simulation experiments 

show that it can effectively improve the performance of the 

algorithm; Reference [5] proposed a multistrategy whale 

optimization algorithm (MSWOA) that is significantly 

superior and effective in solving global optimization problems; 
Reference [6] proposed an optimization algorithm called the 

hunger games search-whale optimization algorithm; 
Reference [7] proposed the hybrid whale optimization 

algorithm (HWOA) and combined it with the tabu search 

algorithm and local search procedures. Reference [8] proposed 

a strategy for optimizing support vector machines using the 

whale optimization algorithm, and simulation experiments 

illustrate that the use of the whale optimization algorithm can 

improve the prediction performance of support vector 

machines; Reference [9] proposed a strategy to optimize 

association rule mining using the whale optimization 

algorithm, and simulation experiments illustrate that the use of 

the whale optimization algorithm can improve the 
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effectiveness of association rule mining; Reference [10] 

proposed improving the WOA by adding Gaussian mutation, 

chaotic mapping and shrinking strategy methods. The 

simulation experiment results show that such methods can 

improve the performance of the WOA and achieve better 

results in engineering applications; Reference [11] proposed 

integrating associative learning into the algorithm on the basis 

of the WOA and obtained a global enhancement algorithm. 

Simulation experiments showed that it can reduce the running 

time of the algorithm and increase the speed of operation; 
Reference [12] proposed adding chaotic mapping to 

algorithm-LCWOA, and simulation experiments show that the 

convergence accuracy of the improved algorithm has been 

significantly improved; Reference [13] proposed the idea of 

adding local search to WOA, forming a new whale algorithm-

LWOA, and simulation experiments of the algorithm show 

that the convergence accuracy and the running time of the two 

approaches have different degrees of improvement; Reference 

[14] proposed a chaotic mapping of WOA, different from the 

ordinary chaotic mapping, in which the algorithm combines 

feature selection and chaotic mapping with each other to avoid 

falling into local search and improves the ability of the 

algorithm to find the optimal solution; simulation experiments 

illustrate a significant improvement in performance compared 

to WOA; Reference [15] proposed an algorithm that integrates 

the competitive mechanism of multiobjective differential 

evolution on the basis of the WOA. The algorithm uses the 

competitive mechanism to select when the humpback whale 

faces multiple targets, which can effectively improve the 

performance; Reference [16] proposed to use WOA for SVM 

optimization, and used it in building geotechnical research and 

achieved good results; References [17-18] do not propose an 

application of the whale optimization algorithm, but they 

provide useful thoughts for this paper.  

 

3 Whale Optimization Algorithm 
 

In nature, whales are a group of animals that obtain food 

through group behavior. The whale optimization algorithm is 

a bionic intelligent optimization algorithm that imitates the 

predation of whales in nature. The predation process of whales 

is mainly divided into three stages: surrounding predation, 

bubble attack and hunting for prey. 

 

3.1 Surrounding and Predation 
 

The way whales obtain food in the sea is accomplished by 

group encirclement. Therefore, at the beginning of the 

algorithm, due to the lack of prior knowledge, humpback 

whales first need to determine the approximate location of 

their prey, and then to obtain the food, the humpback whale 

calls other whales to the location of the food . In the WOA, 

because there is no determination of where the food is, it can 

only be assumed that the current humpback whale’s position 

is the food position (that is, the optimal individual position). 

Therefore, other whale individuals in the group move toward 

the current optimal individual position and surround it; then, 

Formula (1) is used to update the position: 

 

( 1) ( ) | ( ) ( ) |p pX t X t A C X t X t+ = −   − .  (1) 

 

In the formula, ( 1)X t +  represents the position after the 

1t + -th iteration, ( )pX t  represents the optimal solution 

within the current range of the t -th time, and 

| ( ) ( ) |pA C X t X t  −  represents the distance between 

the current optimal solution and the individual whale. The two 

very important vectors A  and C  are expressed as shown 

in (2) and (3), respectively. 1rand  and 2rand  denote the 

random numbers between (0,1) and serve to control the size of 

the two vectors, while a  is the convergence factor with the 

role of ensuring that the two vectors A  and C  have a 

certain convergence so that the algorithm avoids failure to 

converge, and the value of the decreasing trend in is set in [2,0]. 

maxt  denotes the maximum number of iterations 

 

12A a rand a=  − .                     (2) 

 

22C rand=  .                          (3) 

 

max2 2a t t= − .                         (4) 

 

In the formula, maxt  is the maximum number of iterations. 

 

3.2 Spiral Bubble Attack 
 

After the whale obtains the position of the food, it does not 

directly take the food since unique air bubbles from the 

whale’s head are first used to attack the food, and then it 

knocks the food out and obtains the food. The WOA simulates 

the whale through contraction and envelopment behavior and 

spiral renewal behavior. To prey on the behavior of spitting 

out bubbles, the goal of the WOA algorithm is set to obtain the 

local optimal solution. 

(1) Shrink enveloping mechanism 

In Formula (1), the individual whale approaches the 

optimal solution position. In the formula, the factor | | 1A   

plays a more critical role. From the formula, when | | 1A  , 

the individual whale is approaching the whale in the current 

optimal position, and | |A  is the size of the array that 

determines the size of the whale’s moving pace. 

(2) Spiral update position 

Before obtaining food, the whale needs to calculate the 

distance between the individual whale and the food. The whale 

does not blindly call other whales to approach the food 

immediately since it needs to estimate its own position and the 

position between where the food is located The whale does not 

directly rush to the food but takes a spiral approach to search 

and locate the prey. Therefore, in the algorithm, the spiral 

update is expressed in Equation (5): 

 
'( 1) cos(2 ) ( )lb

pX t D e l X t+ =   + .    (5) 

 

In the formula, 
' | ( ) ( ) |pD X t X t= −  is used to 

represent the distance between the i -th whale and its prey, 

the parameter b  is mainly used for the shape constant when 
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the whale is moving in a spiral, and l  represents a random 

number between -1 and 1. The cosine function can be used to 

express the state when the position is updated, and the 

probability p  represents the choice of the balance 

enveloping mechanism and the spiral position. According to 

the algorithm requirements, the value is set as 0.5. 

 

3.3 Random Search for Prey 
 

Individual whales can randomly swim in all directions to 

find food. Of course, this behavior is a random process. The 

essence of searching is also to determine a new location based 

on the location of other whales, expressed as follows: 

 

( 1) ( ) | ( ) ( ) |rand randX t X t A C X t X t+ = −  − .      (6) 

 

In the formula, ( )randX t  is the position of the individual 

whale randomly selected in the current population. 

 

4 Improved Whale Optimization 

Algorithm 
 

This paper proposes the improved whale optimization 

algorithm (IWOA), which is improved from the following 

three aspects. 

 

4.1 Population Initialization 
 

There is no description of the initialization of the 

population in WOA, which is the reason why the algorithm is 

prone to fall into local optimum. We initialize the population 

of WOA using chaotic mapping. Since chaotic mapping has 

good randomness, ergodicity and periodicity, it can be 

processed for individual solutions in WOA, which maintains 

the diversity of individual solutions of abundant fish and thus 

improves the quality of individual solutions. 

 

, 1, 0.1 (0,1)k j k jx x rand−= +  .               (7) 

 

, min, , min, max,(1 )i j j i j j jx x x x x= +  − .          (8) 

 

In Formulas (7-8), 1k −  and k  represent the number 

of iterations, j  represents the dimension, and i  represents 

the individual. In particular, in Equation (8), the individual 

,i jx  in each iteration needs to be mixed with the maximum 

value max, jx  and minimum value min, jx  obtained by the 

individual at the current number of iterations of that individual, 

and to be able to guarantee the effect of chaotic mapping, it is 

also necessary to perform the cumulative operation on the 

minimum value of the individual to ensure the effect of 

individual chaos. Through such a chaotic operation, the 

individual has more solution diversity in the population, which 

provides a better guarantee for the subsequent generation of 

optimal solutions. 

 

 

 

4.2 Inertia Weights based on the Cosine Function 
 

Most metaheuristic algorithms fall into a local optimum 

when solving the optimal solution [19]. Generally, we use a 

linear weighting method in the update of the individual 

solution, but this method can only guarantee that it will not fall 

into a local optimum within a certain number of iterations, 

while the linear weights lack variation, so the individual 

solution at a later stage may also fall into a local optimum. In 

order to avoid this situation, we use the adaptive weighting 

method based on the cosine function. The purpose of using 

this method is to fully consider the iterative characteristics of 

the whale optimization algorithm, through the periodic 

characteristics of the cosine function, so that the individual is 

guaranteed to avoid falling into a local optimum. 

 

max min

max

2 2
cos( )

( ) ( )t t

obj i obj i

t

t f x f x


 = +

+
.     (9) 

 

In the formula, maxt  is the maximum number of 

iterations, t  is the current number of iterations, the fitness 

value of the individual is added to better integrate the 

individual and the weight so that the individual has optimizing 

ability, 
max ( )t

obj if x  and 
min ( )obj if x  represent the maximum 

and minimum individual fitness of the current individual i  

during the t iterations, respectively. From the perspective of 

the overall execution of the algorithm, at the beginning of the 

algorithm, the value of   is relatively large, so the algorithm 

mainly performs a global search. As the number of iterations 

continues to increase, the value of   gradually decreases. In 

particular, the appearance of the cosine function is able to 

maintain the vitality of the individual’s solution on the one 

hand, and on the other hand, it has a good effect on the 

convergence accuracy of the algorithm and the exact accuracy 

of the solution and avoids the possibility of the individual 

falling into local search prematurely. Therefore, in view of the 

above analysis, the spiral update Formula (5) in the WOA is 

modified in this paper, and the formula is as follows. 

 

( 1) ' ( )lbX t D e X t+ =   +  .             (10) 

 

4.3 Optimization of Individual Foraging 

Behavior by Levy Flights 
 

In the study of bionic animals, the scholar EDWARDS 

AM [20] found that bionic animals randomly advance in any 

dimensional space with an arbitrary length of distance in any 

direction. This behavioral characteristic is called the Levy 

flight characteristic. On the one hand, this kind of flight 

feature can perform a local search in a small area, and on the 

other hand, it can perform a global search in a large area. The 

operation of a Levy flight can help individuals in the WOA 

achieve a certain balance between the local scope and the 

global scope, thereby improving the quality of the global 

optimal solution. Therefore, in the WOA description in this 

paper, the original Levy flight characteristics are specifically 

optimized. 
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Levy(s):| s |−1−β, 0 < β ≤ 2.                (11) 

 

In Formula (11), s  is a random step size, and a Levy 

flight refers to this random step size. Therefore, s  is 

expressed as follows 

 
1// | |s v = .                          (12) 

 

The expression of s  is specific to Levy flight behavior 

in a way that its value relies entirely on the expression of the 

parameters, and in regard to the two parameters in Eq(12). 
,v , which fully comply with the normal distribution, each 

has the following expressions. 

 

µ: N(0, 𝜎𝜇
2), v: N(0, 𝜎𝑣

2).                 (13) 

 

In the formula 

 
1/

( 1)/2

(1 )sin( / 2)
, 1

[(1 ) / 2] 2
v



 

 
 

  −

  +
= = 

 +   
 

From the above behavior of Levy flight characteristics, whales 

also have such behaviors in the predation process, especially 

in the foraging stage. Humpback whales lack prior knowledge 

and guide other whales to approach it, which easily causes the 

algorithm to fall into a local optimal situation. Therefore, to 

avoid this situation, it is necessary to introduce the Levy flight 

mechanism into the foraging behavior of the algorithm. 

Therefore, for this reason, this article will update the foraging 

behavior after the introduction of the Levy flight mechanism 

as follows: 

 

( 1) ( ) ( ) s ( )X t X t a t ign rand s+ = +   .        (14) 

 

In Eq. (14), rand  replaces the original p , and we 

believe that choosing a random number between [-1,1] is more 

suitable for the algorithm in this paper. We use s ( )ign rand  

to denote the Levy flight characteristic function with 

parameter rand , as shown in Equation (15), and in addition, 

we choose ( )a t  as the scale factor function for the number 

of iterations, this ensures that the algorithm can obtain better 

results in finding the optimal solution. as shown in Equation 

(16). 

 

1 [0,1]
s ( )

1 [ 1,0)

rand
ign rand

rand


= 

−  −
.            (15) 

 

( ) exp( ( ) ( ))best t t

obj i obj ia t t f x f x= − − .        (16) 

 

In Formula (15), when the value of rand  is greater than 

or equal to 0, the Levy flight characteristic function takes the 

value 1; otherwise, the value is -1. In Eq. (16), ( )t

obj if x  and 

( )best t

obj if x  represent the fitness value of the i th individual 

whale at the t th iteration and the population optimal 

individual fitness value of the current population, respectively. 

Formula (14) shows that the update of foraging behavior is 

significantly improved compared to Formula (6). After using 

the Levy flight feature, the WOA searches for the optimal 

solution in a small range in the initial stage of the algorithm. 

As the number of iterations continues to increase, a random 

search is performed in a large range, which can ensure the 

search effect of the WOA in different ranges. It is possible to 

obtain more high-quality optimal solutions. From the above 

research results, it can be found that the WOA uses the Levy 

flight characteristic function to solve the problem of 

oscillation near the extreme value in the process of generating 

the optimal solution of the algorithm, thereby improving the 

efficiency of the algorithm to obtain the optimal solution. 

 

4.4 Algorithm Complexity Analysis 
 

Algorithm complexity is an important reference for testing 

the performance of an algorithm. The complexity is divided 

into time complexity and space complexity. The space 

complexity of this article has not changed, and the time 

complexity is mainly considered, so this article chooses time 

complexity to measure the performance of the algorithm. The 

so-called time complexity mainly measures the workload 

required during the execution of the algorithm. The time 

complexity of the WOA algorithm comes from the influence 

of many factors, such as the population size N , the search 

dimension D , and the number of iterations T . Therefore, 

the overall time complexity of the WOA algorithm is d, while 

the time complexity of the IWOA algorithm proposed in this 

paper has a significant improvement compared to the time 

complexity of the WOA, which is reflected in the increase of 

( )O T  for population initialization, ( )O T  for adaptive 

weight, and ( )O N T  for Levy flight behavior. 

 

4.5 Algorithm Flow 
 

Step 1: Initialize the parameters of WOA and set the maximum 

number of iterations 

Step 2: In the individual initialization, use Eqs. (7-8) to 

complete the initialization process for all individuals. 

Step 3: In whale individual spiral, use Eq. (10) to perform 

individual update of individual position. 

Step 4: In the whale search for food, use formula (14) to 

complete the individual search 

Step 5: Increase the number of iterations by 1 

Step 6: When the number of iterations reaches the maximum, 

the algorithm ends, otherwise go to step 3. 

 

5 Simulation Experiment 
 

5.1 Algorithm Settings 
 

To better verify the performance improvement effect of 

the IWOA algorithm, this paper chooses the ACO, PSO, WOA, 

CWOA [12], and LWOA [13] algorithms to compare with the 

algorithm in this paper. The computer hardware platform was 

a Core i7 processor with 16 GHz memory and a 1000 G hard 

disk. The operating system was Win10, and the simulation 

software was MATLAB2012a. The population size is set to 

100, and the number of iterations is set to 100. The parameters 

required by the various algorithms are shown in Table 1. 
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Table 1. The main parameters of the 6 algorithms 

Algorithm Parameter description 

ACO The pheromone value is set to 0.01,  

the volatilization coefficient is set to  

0.01, and the path selection  

probability is set to 0.5. 

PSO The inertia weight is set to 0.1, and  

the learning factor is 0.5. 

WOA a is [2,0] linearly decreasing 

CWOA a is [2,0] linearly decreasing, and the  

chaotic mapping value is 0.5. 

LWOA a is [2,0] linearly decreasing, and the  

value of β
𝛽

is 1.5. 

IWOA a is [2,0] linearly decreasing, the  

value of β is 1.5, and the value of  

rand is 1. 

 

5.2 Classic Test Function 
 

This paper selects 7 representative test functions (Table 2) 

to evaluate the performance of the algorithm in this paper. The 

reason for choosing these classic test functions is that these 

functions can measure whether the algorithm in the high and 

low dimensions of this paper can converge or reach the 

accuracy that the algorithm can achieve. Such a comparison 

can theoretically illustrate the performance advantage between 

the algorithm in this paper and the comparison algorithm. The 

choice of test metrics is a matter of core illustrative power of 

the algorithm results, and we have chosen minimum, 

maximum, mean, and standard deviation as the metrics. These 

metrics have always been important indicators for algorithm 

performance measurement. Among these four metrics, the 

first two metrics mainly measure the quality effect of the 

solution, the third metric is used to measure the accuracy of 

the solution as required, and the fourth metric compares the 

effect of the solution with different numbers of iterations in 

different dimensions. 

 

Table 2. Test function 

Number 
Function  

name 
Test function expressions 

F1 Sphere 
2

1

( )
n

i

i

f x x
=

=  

F2 Schwefel2.22 
1 1

( ) | | | |
nn

i i

i i

f x x x
= =

= +   

F3 Schwefel1.2 
1 1

( ) ( )
n i

j

i j

f x x
= =

=   

F4 Schewfel2.21 ( ) max( ( ))if x abs x=  

F5 Rosenbrock 
1

2 2 2

1

1

( ) [100( ) ( 1) ]
n

i i i

i

f x x x x
−

+

=

= − + −
 

F6 Step 
2

1

( ) ([ 0.5])
n

i

i

f x x
=

= +  

F7 Rastrigin 
2

1

( ) ( 10cos(2 ) 10)
n

i i

i

f x x x
=

= − +  

 

5.3 Analysis of Experimental Results 
 

Table 3 to Table 9 shows the comparison results of the 

algorithm performance metrics of the six algorithms in the 

seven classical test functions. Next, we analyze the test results 

of these seven classical functions separately. 

F1 benchmark function: this algorithm has obvious 

advantages over the other five algorithms in four indicators, 

especially in the higher dimension (such as dimension 30), the 

value of the algorithm’s indicators are the smallest, especially 

when the dimension is 2, the indicator minimum results equal 

to 0, which indicates that the performance of this algorithm is 

very good, also in the dimension of 5 and 10, this algorithm 

performance is as good. 

F2 benchmark function: the algorithm in this paper is 

smaller in dimension (such as dimension 2) when the values 

are the smallest, which shows that the quality of the 

algorithm’s solution has good stability, in dimension 5 and 10, 

the performance of this algorithm exceeds that of other 

comparative algorithms. 

F3 benchmark function: the algorithm of this paper 

maintains the best values regardless of whether the 

dimensional values are small or large, which shows that the 

algorithm has better performance in four different dimensional 

values and also shows that the performance of the algorithm is 

better. 

F4 benchmark function: this algorithm has better 

performance no matter when the dimensional value is small or 

large, especially when the minimum value indicator is once 

again 0 in dimension 2, and when other dimensions (such as 5, 

10, 30), the four indicators of this algorithm is only higher than 

the comparative CWOA, the advantage is not obvious, but 

compared to ACO, PSO and WOA, this algorithm indicator 

data results are satisfactory. 

F5 benchmark function: the algorithm of this paper, 

whether in the smaller or larger dimensional values, the 

algorithm of the values remain optimal, although there is no 

minimum value of 0, but the performance of the algorithm still 

withstood the test, here it should be noted that when the 

dimension of 30, this algorithm corresponds to the maximum 

and average of the two indicators, this algorithm has only a 

slight advantage over CWOA. 

F6 benchmark function: the algorithm in this paper, 

whether the value of the dimension is small or large, the 

algorithm’s values remain optimal, although there is no 

minimum value of 0, but the performance of the algorithm still 

withstood the test, especially when the dimension is 10, the 

algorithm compared to LWOA, WOA algorithm has the 

advantage is not very obvious, and in the dimension of 2, the 

algorithm’s data results have obvious advantages 

F7 benchmark function: the algorithm of this paper, 

whether in the smaller or larger dimensional values, the 

algorithm of the values remain optimal, although there is no 

minimum value of 0, but the performance of the algorithm still 

performs well, especially in various dimensions have better 

results. And when other dimensions (such as 5,10,30), the four 

indicators of this algorithm are only higher than the 

comparative CWOA, although the advantage is not obvious, 

but compared to ACO, PSO and WOA, this algorithm index 

data results are satisfactory. 

From the above results, it is found that the overall 

performance of the algorithm in this paper has improved 

significantly compared to WOA. In the analysis of the 

complexity of the algorithm, although the complexity of the 

algorithm in this paper has improved, the performance of the 

algorithm is still good, and the algorithm in this paper has 

better results in all four data indicators. Although the 
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advantage is not obvious in the individual index data, it does 

not prevent the effect of the improvement of the algorithm in 

this paper. Therefore, in summary, the algorithm performance 

of this paper still has some advantages. 

 

Table 3. Comparison results of F1 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum  

Value 

Maximum  

value 
Mean 

Standard  

deviation 

ACO 

2 0.0203476 16456.500 1989.67792 4983.5158 

5 0.3707979 30581.9835 4471.44257 8648.6628 

10 562.4510 57141.6827 16120.5908 17758.7147 

30 26114.2603 132024.456 69169.7457 35162.8114 

PSO 

2 6.3461e-10 0.0021637 0.000139559 0.0003861 

5 0.005738 4.98512 1.01386505 1.3156749 

10 2.29394 481.84602 145.480588 105.66809 

30 1442.3533 6300.0227 3537.511730 1210.68219 

WOA 

2 
1.441E-14 2.814E-05 1.254E-06 4.485E-06 

5 
2.059E-07 5.326E-02 5.942E-03 1.082E-02 

10 
1.168E-04 1.098E+00 9.542E-02 1.679E-01 

30 
2.649E-03 1.041E+01 1.702E+00 2.222E+00 

CWOA 

2 
9.0480E-18 2.6337E-07 1.1068E-08 3.9676E-08 

5 
2.4659E-18 3.3345E-04 1.5645E-05 6.2494E-05 

10 
4.9822E-16 4.4317E-04 1.8426E-05 6.9441E-05 

30 
4.2062E-13 5.2668E-03 1.2560E-04 7.4489E-04 

LWOA 

2 
6.9109E-16 2.1953E-04 4.6354E-06 3.1022E-05 

5 
6.5354E-08 1.1884E-01 9.3972E-03 2.2033E-02 

10 
8.4292E-06 6.7253E-01 9.2900E-02 1.2863E-01 

30 
4.5597E-03 6.7957E+00 1.5615E+00 1.7818E+00 

IWOA 

2 
0 1.1738E-67 2.4116E-69 1.6594E-68 

5 
3.8768E-55 8.1156E-41 1.8560E-42 1.1518E-41 

10 
2.0110E-49 6.0219E-35 1.3795E-36 8.5234E-36 

30 
5.6653E-43 1.7244E-31 4.8737E-33 2.5423E-32 

 

Table 4. Comparison results of F2 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 0.171701 90.7335 9.18269 24.75729 

5 0.847493 16850.7147 798.050 2890.376 

10 4.727616 333392446.90 10854563 49590932.044 

30 44551072.64 1.66977e+20 3.41849e+18 2.36061e+19 

PSO 

2 4.61154e-06 0.00995994 0.00100221 0.00200884 

5 0.004236052 1.2703288 0.2266671 0.2595154 

10 1.0877692 8.44706953 4.5504297 1.89244510 

30 15.01764810 66.971699 32.4898099 10.564354 

WOA 

2 
1.921E-07 5.808E-03 3.905E-04 9.117E-04 

5 
1.316E-04 1.798E-01 3.832E-02 3.802E-02 

10 
2.252E-03 1.471E+00 3.436E-01 3.124E-01 

30 
1.218E-01 8.858E+00 2.126E+00 2.089E+00 

CWOA 

2 
4.2539E-09 4.4962E-04 5.8668E-05 1.0604E-04 

5 
3.5113E-09 2.5201E-02 1.7769E-03 4.4900E-03 

10 
7.0585E-08 4.8661E-02 3.5748E-03 9.3047E-03 

30 
1.4331E-06 7.0166E-01 3.2229E-02 1.1160E-01 

LWOA 

2 
2.0348E-06 5.3100E-03 3.5035E-04 8.7636E-04 

5 
7.6096E-04 2.7352E-01 6.8806E-02 6.4547E-02 

10 
3.5134E-02 1.3472E+00 3.3425E-01 3.0949E-01 

30 
1.3783E-01 8.9488E+00 2.4873E+00 1.9442E+00 

IWOA 

2 
0 5.383E-42 3.172E-43 1.052E-42 

5 
1.277E-32 6.883E-26 2.344E-27 1.025E-26 

10 
8.473E-30 1.525E-22 5.799E-24 2.216E-23 

30 
3.240E-28 2.511E-21 2.215E-22 5.730E-22 

 

Table 5. Comparison results of F3 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 0.025686 270.41155 38.91627 88.25971 

5 0.018994 1017.43652 96.19119 273.9338 

10 0.176349 3131.65679 280.8745 828.66022 

30 0.159286 13060.0157 758.43687 2825.95712 

PSO 

2 4.0795811e-11 0.0016373 9.93502e-05 0.00028406 

5 9.6079588e-11 0.00144573 0.0001186 0.00025395 

10 1.91657e-09 0.01397033 0.0005589 0.00206236 

30 8.92441e-11 0.039662004 0.0017298 0.0059671 

WOA 

2 
6.880E-11 2.115E-04 2.178E-05 3.788E-05 

5 
8.461E-07 3.365E-03 2.661E-04 5.333E-04 

10 
4.719E-07 1.899E-02 1.661E-03 3.048E-03 

30 
3.727E-05 9.489E-02 1.306E-02 1.983E-02 

CWOA 

2 
1.4350E-09 8.5384E-03 3.7521E-04 1.3676E-03 

5 
2.7207E-10 1.5871E-01 1.3300E-02 2.9698E-02 

10 
3.8822E-07 7.2073E-01 4.9116E-02 1.3323E-01 

30 
4.6607E-06 9.0665E+00 1.0012E+00 1.9562E+00 

LWOA 

2 
5.4324E-08 1.8933E-04 1.9570E-05 3.7297E-05 

5 
5.4736E-07 3.0950E-03 3.2137E-04 5.2946E-04 

10 
1.6229E-06 1.3668E-02 1.7022E-03 3.2095E-03 

30 
8.8188E-05 3.1915E-01 1.7030E-02 4.5900E-02 

IWOA 

2 
0 3.7874E-10 3.6633E-11 7.0173E-11 

5 
1.2057E-12 5.9425E-09 5.9048E-10 1.1155E-09 

10 
1.1827E-11 1.6488E-08 2.5080E-09 4.0931E-09 

30 
4.5880E-11 2.8673E-07 2.3932E-08 5.0602E-08 

 

Table 6. Comparison results of F4 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 0.15161 98.9014 40.89212 44.35097 

5 3.97965 98.8703 77.03869 28.64099 

10 28.8742 99.63691 90.60360 12.575049 

30 87.06238 99.83433 96.58320 2.8063077 

PSO 

2 2.3331863e-05 0.1167497 0.0079861 0.01785393 

5 0.0515829 4.4855845 0.8557691 0.88475519 

10 4.1968123 19.512747 10.652086 3.66702843 

30 15.841233 39.906120 26.712640 4.98594719 

WOA 

2 
9.173E-07 2.349E-01 1.893E-02 4.220E-02 

5 
2.922E-02 7.346E-01 2.728E-01 1.487E-01 

10 
1.823E-01 9.975E-01 6.390E-01 2.171E-01 

30 
6.550E-01 1.697E+00 1.333E+00 2.146E-01 

CWOA 

2 
7.4083E-10 4.8827E-04 3.0697E-05 8.2312E-05 

5 
1.4428E-10 3.8148E-03 1.8466E-04 6.8415E-04 

10 
3.3838E-09 1.6005E-02 4.9804E-04 2.3528E-03 

30 
2.1878E-10 1.3632E-02 5.1994E-04 2.1744E-03 

LWOA 

2 
4.9197E-06 1.5558E-01 1.2626E-02 2.4664E-02 

5 
1.1256E-02 7.4553E-01 2.7714E-01 1.6328E-01 

10 
3.5382E-01 1.0113E+00 6.9495E-01 1.6096E-01 

30 
1.0367E+00 1.7317E+00 1.3670E+00 1.6881E-01 

IWOA 

2 
0 3.5239E-15 1.4043E-16 5.8358E-16 

5 
2.1804E-13 3.0607E-02 1.2986E-03 4.9925E-03 

10 
7.3759E-06 4.8473E-01 7.7337E-02 1.0178E-01 

30 
3.8849E-02 6.1964E-01 4.3101E-01 1.5206E-01 

 

Table 7. Comparison results of F5 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 0.1722043 79962962.92 7491663.86 22733221.52 

5 18.845310 167820742.75 23591724.06 55016275.21 

10 259.87970 323733723.58 45288706.35 99657763.65 

30 50005.033 776897069.35 144735089.29 274523195.49 

PSO 

2 4.536701e-07 7.70186 0.2493286 1.10263 

5 1.6381553 1731.353 165.48465 360.10007 

10 216.66020 67022.206 8255.2939 13456.5928 

30 135286.400 2905425.250 847467.368 634605.300 

WOA 

2 
7.135E-09 2.314E+01 7.926E-02 2.812E-01 

5 
8.137E-02 6.919E+02 3.912E+01 2.349E+00 

10 
7.374E+01 1.716E+02 2.338E+01 3.318E+01 

30 
2.312E+02 8.916E+03 2.816E+02 2.713E+02 

CWOA 

2 
0.6015 0.9892 0.6557 0.0939 

5 
3.5985 3.9743 3.8919 0.1064 

10 
8.4986 9.0698 8.8758 0.0954 

30 
28.4938 28.8485 28.7042 0.0466 

LWOA 

2 
0.00003 0.17274 0.02130 0.03667 

5 
1.00388 8.45112 3.92143 1.48542 

10 
8.94112 187.97241 27.83011 35.16632 

30 
29.39202 1274.87336 363.91765 310.45510 

IWOA 

2 
7.1962E-11 4.5806E-04 1.5721E-05 6.5310E-05 

5 
1.6594E-03 3.0692E+00 9.9933E-01 8.4164E-01 

10 
3.1007E-01 8.9153E+00 6.9537E+00 1.6665E+00 

30 
2.7516E+01 2.8816E+01 2.8286E+01 4.0360E-01 
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Table 8. Comparison results of F6 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 0.03378920 16638.3892 1698.4606 4631.1454 

5 0.31684722 30570.9268 4916.7122 9140.7732 

10 611.799391 56516.6916 16125.4211 17752.7511 

30 26202.1263 132628.8162 69217.9809 35142.1199 

PSO 

2 2.242653e-10 0.00459714 0.00033719 0.00085328 

5 0.0004307558 12.333401 1.12429536 2.12086752 

10 12.1117574 560.90399 143.552158 115.685413 

30 1363.98861 7473.0983 3643.11901 1311.62557 

WOA 

2 
5.704E-10 9.926E-04 6.431E-05 1.951E-04 

5 
8.987E-04 2.929E-01 4.114E-02 4.675E-02 

10 
9.370E-02 1.588E+00 5.122E-01 2.791E-01 

30 
1.314E+00 1.214E+01 4.299E+00 2.124E+00 

CWOA 

2 
8.0095E-09 2.3722E-02 1.5786E-03 4.2013E-03 

5 
5.9473E-11 4.3627E-01 1.5907E-02 6.3788E-02 

10 
6.4474E-06 1.7708E+00 1.1807E-01 2.8349E-01 

30 
1.8403E-06 3.9997E+00 3.6216E-01 7.8134E-01 

LWOA 

2 
3.7402E-08 6.6989E-04 3.0574E-05 9.9152E-05 

5 
3.2406E-04 2.9195E-01 4.7375E-02 6.4563E-02 

10 
1.3796E-01 1.4132E+00 5.5585E-01 2.9196E-01 

30 
1.3178E+00 1.2369E+01 4.0855E+00 2.0166E+00 

IWOA 

2 
1.4320E-14 6.0278E-08 4.7190E-09 1.2007E-08 

5 
1.2199E-07 2.4806E-01 9.6201E-03 4.7534E-02 

10 
2.2489E-04 3.0199E-01 8.5553E-02 1.1095E-01 

30 
3.7865E-01 2.5983E+00 1.4056E+00 6.0852E-01 

 

Table 9. Comparison results of F7 test functions in 4 

dimensions 

Algorithm Dimension 
Minimum 

Value 

Maximum 

value 
Mean 

Standard  

deviation 

ACO 

2 1.7772 55.2792 25.3269 13.1594 

5 33.0470 133.3064 81.6386 18.5751 

10 88.0778 239.8591 173.6402 35.0953 

30 484.4055 645.3189 544.7705 37.1596 

PSO 

2 7.322583e-09 1.0012715 0.1596454 0.350144 

5 2.005007 22.881284 8.2732804 4.629569 

10 14.86362 62.029896 34.954967 11.06757 

30 120.8475 264.78830 201.04720 28.58588 

WOA 

2 
1.603E-10 1.992E+00 3.064E-01 5.525E-01 

5 
1.062E-05 1.009E+01 4.128E+00 2.697E+00 

10 
7.033E-01 4.856E+01 2.281E+01 1.020E+01 

30 
1.578E-01 2.215E+02 1.238E+02 6.525E+01 

CWOA 

2 
3.5527E-15 8.0920E-05 3.8136E-06 1.3626E-05 

5 
0 1.8157E+00 3.8272E-02 2.5667E-01 

10 
1.0658E-13 7.2853E-01 3.2733E-02 1.4381E-01 

30 
8.3437E-11 9.2395E+00 3.9202E-01 1.5630E+00 

LWOA 

2 
1.3500E-13 1.9899E+00 2.0225E-01 4.4047E-01 

5 
1.3683E-03 9.8713E+00 4.6314E+00 2.5251E+00 

10 
3.9005E-02 4.2370E+01 1.9305E+01 1.0999E+01 

30 1.7772 55.2792 25.3269 13.1594 

IWOA 

2 33.0470 133.3064 81.6386 18.5751 

5 88.0778 239.8591 173.6402 35.0953 

10 484.4055 645.3189 544.7705 37.1596 

30 7.322583e-09 1.0012715 0.1596454 0.350144 

 

Figure 1 to Figure 7 show the results of the adaptation 

values of the six algorithms under the seven benchmark test 

functions. It can be found from the curves in the figures. Under 

different benchmark test functions, with the increasing 

number of iterations, the algorithms in this paper all show a 

decreasing trend in the benchmark test functions, while the 

other five algorithms are trapped in local optimum, which 

affects the generation of optimal solutions of the algorithms. 

In particular, in the F7 test function, the algorithm in this paper 

searches for the theoretical optimum. In the other test 

functions, although the optimal solution is not searched, the 

convergence accuracy of the algorithm in this paper is still 

optimal. In the F1 test function and F2 test function, this paper 

is able to improve 80 and 40 orders of magnitude respectively, 

and in the other F3, F4, F5, and F6 test functions, compared 

with the CWOA algorithm by roughly 2, 14, 8, and 6 orders 

of magnitude respectively, compared with the LWOA 

algorithm by roughly 5, 20, 7, and 4 orders of magnitude 

respectively, compared with the WOA algorithm by roughly 

4, 17, and 6, and 5 orders of magnitude respectively. These 

data results show that the effect of the algorithm improvement 

in this paper is obvious. From the overall data of the algorithm, 

the corresponding curve of the algorithm in this paper 

stabilizes in the second half of some test functions, which 

indicates that the algorithm falls into the local optimum at the 

later stage, resulting in the degradation of the performance of 

the algorithm, which also indicates that there is still much 

room for improvement of the algorithm in this paper. 

 

Figure 1. Results of 6 algorithmic fitness values in the F1 

function 

 

Figure 2. Results of 6 algorithmic fitness values in the F2 

function 

 

Figure 3. Results of 6 algorithmic fitness values in the F3 

function 
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Figure 4. Results of 6 algorithmic fitness values in the F4 

function 

 

 

Figure 5. Results of 6 algorithmic fitness values in the F5 

function 

 

 

Figure 6. Results of 6 algorithmic fitness values in the F6 

function 

 

Figure 7. Results of 6 algorithmic fitness values in the F7 

function 

 

5.4 Wilcoxon’s Test 
 

According to the result of Table 3 to Table 9, the 

performance of the 6 algorithms can be sorted into the following 

order: IWOA, CWOA, LWOA, WOA, PSO, ACO. 

Additionally, due to the importance of the multiple-problem 

statistical analysis, Table 10 also gives the statistical analysis 

resultsthroug Wilcoxon’s test between IWOA and other 5 

compared algorithms. The parameters of Wilcoxon’s test are α 

= 0.01 and 0.05. 

 

Table 10. Wilcoxon’s test between IWOA and other 

algorithms over all dimensions on 7 test functions 

Algorithm R+ R- P value 

IWOA versus ACO 349 236 0.0069 

IWOA versus PSO 339 236 0.0091 

IWOA versus WOA 289 191 0.0124 

IWOA versus CWOA 194 125 0.1282 

IWOA versus LWOA 228 143 0.0601 

 

From the results shown in Table 10, we can see that IWOA 

provides higher R+ values than R- in all the cases. Therefore, 

we can obtain the conclusions: IWOA is better than CWOA, 

LWOA, WOA, PSO, ACO significantly. 

 

6. Conclusion 
 

This paper starts from analyzing the basic principle of 

WOA, and proposes an optimization strategy for the 

shortcomings of the algorithm in terms of convergence speed 

and solution accuracy. Chaotic steganography is used in the 

initialization to improve the diversity of the population; the 

cosine-based inertia weight method is used in the whale spiral 

update to ensure that the algorithm does not fall into local 

optimum, and the Levy behavior is used in the whale foraging 

behavior to improve the individual global search ability. In the 

simulation experiments, we choose five different algorithms 

as the comparison algorithms in this paper, and test them in 

four technical indicators with different numerical dimensions 

of seven benchmark functions, and the experimental results 

show that the performance of the algorithms in this paper has 

been improved. 
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