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Abstract 
 

With the continuous development of the network, the scale 

of RDF data is becoming larger and larger. In the face of large-

scale RDF data processing, the traditional database query 

method has been unable to meet the needs. Due to the limited 

characteristics of subgraph matching, most existing 

algorithms often have the phenomenon that many subgraphs 

are repeatedly traversed during the query process, resulting in 

a large number of intermediate result sets and low query 

efficiency. The core problem to be solved is how to efficiently 

match subgraphs. In order to improve the query efficiency of 

RDF subgraphs in massive RDF data graphs and solve the 

problem of repeated calculation of some graphs in the query 

process of RDF subgraphs, an RDF subgraph query algorithm 

based on star decomposition is proposed in this paper. The 

algorithm uses graph structure to decompose RDF subgraphs 

into stars and uses a custom node cost model to calculate the 

query order of the star subgraphs. By decomposing, the 

amount of communication among subgraphs is reduced, and 

the communication cost for query processing is lowered. 

Moreover, utilizing the query order for RDF subgraph 

matching can effectively reduce the generation of intermediate 

result sets and accelerate the efficiency of subgraph matching. 

On this basis, the performances of the proposed algorithm and 

several other widely used algorithms are compared and 

analyzed on two different datasets. Experiments show that the 

proposed algorithm has better advantages in database 

recreation, memory size, and execution efficiency.  

 

Keywords: RDF query, Subgraph matching, Subgraph query, 

Search problems, Star decomposition 

 

1 Introduction 
 

Resource Description Framework (RDF) is a standard data 

model for describing web resources. It was mainly designed to 

build the Semantic Web. In the past few decades, there have 

been related technologies applied to RDF graph queries in 

different fields, such as life sciences, bioinformatics, and 

social intelligence. It is suitable for the re-identification of 

social network users, socially intelligent transportation, and 

the anonymity of social networks in people’s daily lives. In 

such an environment, how to query RDF subgraphs more 

effectively has become a research focus. 

Today, when RDF graph data is getting larger and larger, 

the query methods adopted by traditional relational databases 

are far from being able to meet the current processing needs. 

With the continuous development of the Semantic Web, the 

data in RDF format is increasing, and the number of RDF 

graphs is also increasing. At present, massive RDF data brings 

new problems to RDF graph data management. It is very 

important to accurately find the required data in the massive 

RDF graphs. Typically, a large number of RDF graphs are 

processed by graph mining [1], and the required data can be 

obtained. Graph mining is a branch of data mining, which 

represents a large amount of complex data in the form of 

graphs and infer useful knowledge by mining. Subgraph 

matching plays a very important role in the whole process of 

graph mining [2]. According to whether the graph has 

directionality or not, the graph is divided into the directed 

graph and the undirected graph. Subgraph matching refers to 

inputting a query graph and a queried data graph and 

outputting a set of subgraphs that satisfy the query graph 

matching conditions (that is, the matching results are 

consistent with the query graph topological structure and 

vertex labels). Using the idea of graph matching can 

effectively reduce the time of the RDF query. At present, the 

efficiency of large-scale RDF graph matching using existing 

algorithms is low. Although researchers have proposed many 

new methods to improve the current situation, there are still 

many deficiencies. Due to the limitations and characteristics 

of subgraph matching, most of the current algorithms are 

based on node iteration, using the relationship between nodes 

for analysis. Existing query algorithms often introduce a large 

number of connection operations, and repeatedly traverse 

some subgraphs during the query process, resulting in a large 

number of intermediate result sets, resulting in low query 

efficiency and low query performance. In addition, there are 

also great problems with database pre-creation, and memory 

storage, the query time is extended [3]. Because of the above 

problems, the solution for the current RDF graph query 

problem is not perfect, many researchers are seeking new 

algorithms to query the RDF graph. Therefore, how to reduce 

the generation of intermediate result sets, reduce repeated 

calculations and improve execution efficiency has become an 

important issue for current RDF graph queries.  

In response to the above problems, this paper proposes an 

RDF Node Substitution Value-Star Query (RNSV-SQ) 

algorithm based on node cost value. The main contributions of 

this paper can be summarized as follows: 



1614 Journal of Internet Technology Vol. 23 No. 7, December 2022 

 

 

1) We propose a star decomposition method, which 

decomposes RDF graphs into star subgraphs by using graph 

structure, and calculates the query order of these star 

subgraphs by using the user-defined node generation value 

model. 

2) We propose a subgraph matching algorithm based on 

above star decomposition. According to the query order of the 

star subgraphs, fewer intermediate results can be generated, 

and repeated calculations can be reduced, so as to improve the 

performance of the RDF subgraph query. It also improves the 

database pre-creation, storage memory size, and execution 

efficiency.  

3) We compare and analyze the performances of the 

proposed algorithm and several other widely used algorithms 

on two different datasets. Experiments show that the 

algorithms proposed in this paper can effectively improve the 

query efficiency of RDF subgraphs. 

The rest of this article is arranged as follows: The next 

section describes the current status of RDF subgraph query 

algorithm at home and abroad. Section 3 describes the RDF 

subgraph, subgraph matching, and other related concepts, and 

introduces our RDF subgraph query algorithm based on star 

decomposition in detail. Section 4 proves the superiority of 

our algorithm by conducting experiments on two datasets. In 

the last section 5, the content of the article is sorted out and 

summarized, and the future research direction is further 

prospected. 

 

2 Related Work 
 

To solve the RDF subgraph query problem is to solve the 

problem of subgraph matching. Its main difficulty is how to 

obtain results from polynomial time. When the traditional 

subgraph query algorithms are processing, a large number of 

intermediate result sets will often appear, resulting in a 

prolonged matching time. In recent years, many researchers 

have been researching and discussing the problem of subgraph 

matching, and have proposed many advanced methods, which 

have played a further development role in solving the problem 

of subgraph matching. The related research is mainly as 

follows: 

In 1976, a practical search scheme for subgraph matching 

was given for the first time, which was based on the idea of 

backtracking. It also used some feasible solutions to iteratively 

generate complete solutions, and timely terminate some 

infeasible solutions in the query process, such as VF2 [4], 

GADDI [5], SPath [6], etc. VF2 used grammatical and 

semantic similarity to match nodes, and used specific vectors 

as data structures to reduce the time for matching large graphs. 

GADDI calculated the neighboring discriminating 

substructure (NDS) distance for each pair of adjacent nodes in 

the graph, and generated a series of unequal attributes based 

on this to eliminate the candidate results. SPath proposed a 

one-time path mechanism, which decomposes the query graph 

into the shortest path set in units of neighbor nodes, but it is 

not a one-time node mechanism. VF3 [7] proposed a 

feasibility result set, divided nodes into predecessors and 

successors, classified label nodes, and proposed feasibility 

rules using node structure information and edge label 

frequency. These algorithms filter the candidate set through 

different connection sequences, pruning schemes or some 

auxiliary information. The disadvantage is that the time 

complexity is high, so they are not suitable for the processing 

with large amounts of environmental data. 

There are a large number of intermediate result sets and 

repeated calculations in the subgraph matching process, 

resulting in too long execution time. Ren et al. [8] proposed a 

general improvement method of existing matching methods 

based on the relationship between data nodes. Through 

observation and comparison, it was concluded that most of the 

subgraph matching algorithms have a large number of 

duplications of calculation, which can be avoided by the 

relationship between data vertices. Also proposed a novel 

method to reduce repetitive calculations. Wang et al. [9] 

provided many additional experiments based on the original 

subgraph matching search to detect the different effects of 

graph compression itself and candidate filtering on query 

performance. Experiments showed that the processing time 

was significantly reduced by using a separate compression 

step, and then the processing time can be further reduced by 

using a filtering step. Kyu et al. [10] proposed a chain-star 

index scheme and a query method of SPARQL query. In 

addition to supporting chain query and star query, this method 

also optimizes query time by reducing the memory for 

connection operations and storing data, thereby minimizing 

query execution time. On this basis, Kyu et al. [11] considered 

a search method based on RDF data graph structure, which can 

effectively reduce connection operations. It supported chain 

and star SPARQL queries, and was optimized for query 

performance. By considering the difference in the edge 

structure around all vertices, the chain-like and star-like 

subgraphs were extracted from the RDF data graph, and search 

methods that reduce the number of connections were favored 

to speed up query response time. 

With the increasing complexity of the current query graph 

structure, the efficiency of graph-based query about SPARQL 

query processing has gradually been unable to keep up with 

the complexity of the graph structure. In analyzing the basic 

structure of the RDF graph, Park et al. [12] first conducted a 

comprehensive study of the existing cardinality estimation 

technology of subgraph matching query. Introduced a new 

framework on which all currently known technologies can be 

implemented, and an opinion on its performance can be given. 

A new realization has also been achieved with the 

representative cardinality estimation technology of graph 

databases and relational databases. Bi et al. [13] proposed a 

new framework of the delayed Cartesian product based on the 

structure of a query to minimize the redundant Cartesian 

products. A new path-based auxiliary data structure was also 

proposed, which performs subgraph matching through the 

generated matching order, thereby significantly reducing the 

exponential size of the existing path-based auxiliary data 

structure. 

The study found that frequent subgraph mining (FSM) in 

graph mining can quickly find all subgraphs of the graphs. 

Frequent Subgraph Patterns (FSPs), which work well for 

graph mining on small and medium-sized graphs, can speed 

up query time for subgraphs on complex graph structures. 

Rehman et al. [14] proposed a new optimization method to 

show the association between frequent and optimized 

subgraph patterns. This approach explored whether there was 

a potential correlation between FSPs and optimized subgraphs, 

and can further reduce FSPs. In order to improve the efficiency 

of the algorithm, a new conceptual framework A-RAnked 

Frequent pattern-growth Framework (A-RAFF) was proposed 
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[15], this framework adds a sorting function to the mining 

process, which can sort the found frequent subgraphs. In 

addition, A-RAFF embedded the ranking of FSGs found in the 

mining process [2], so that A-RAFF can reduce the work of 

generating a large number of useless frequent subgraphs under 

the premise of efficient computation. To deal with a large 

number of FSPs challenges [16], a new ranking method FSP-

Rank was used by A-RAFF, which effectively reduces the 

repetition and huge frequent patterns, and effectively speeds 

up the processing time. 

Researchers also improve the execution efficiency by 

graph division. Guan et al. [17] proposed a subgraph matching 

method based on the structure segmentation of query graph. 

By disassembling a complete query graph into many simple 

query subgraphs, the search space was reduced through the 

adjacent subgraph structure, and matching subgraphs were 

found in the data graph according to the search area. Finally, 

output the resulting graph by adding related subgraphs. This 

method can improve query time and efficiency when 

processing complex query graphs. Ning et al. [18] proposed a 

dominance-partitioned strategy under the premise of load-

balancing on subgraph division, which partitions large RDF 

graphs without affecting the knowledge structure. The 

subgraph matching algorithm through a dominance-

partitioned strategy to perform all matching subgraphs on the 

RDF graph of the cluster partition. 

In addition to the above methods, Li et al. [19] solved the 

problem of answering queries about fuzzy RDF data graphs. 

By modeling the RDF data onto the fuzzy graph, the RDF 

queries and the query search of the subgraph of the fuzzy 

graph can be regarded as equivalent, and these subgraphs were 

highly likely to match the given query graph. Sakr et al. [20] 

designed many centralized RDF query processing systems. In 

these query systems, the storage and query processing of RDF 

datasets were managed on a single node. An overview of 

various technologies, systems, and a large number of RDF 

data models for centrally querying RDF datasets were efficient, 

and scalable RDF query processing solutions. 

Although the above methods have made a lot of 

achievements in RDF subgraph processing, they still spend a 

lot of time in many aspects when processing data, resulting in 

low efficiency. For example, in the preprocessing of the 

relational structure of RDF data, there are still a large number 

of intermediate result sets, which will consume a lot of time, 

and the efficiency of database pre-creation, storage memory 

size, and execution speed is not high [3]. 

 

3 RDF Subgraph Matching Algorithm 

Based on Star Decomposition 
 

In the process of RDF subgraph matching, the 

intermediate result set is one of the important factors that 

affect the query efficiency, so it is very important to study how 

to reduce the generation of the intermediate result set to 

improve the query efficiency. Because for queries, different 

orders will lead to different results. In this section, the cost 

value of the structure between nodes and the degree of analysis 

was used to obtain the optimal order for the query, thereby 

reducing the generation of intermediate result sets, and 

improving the efficiency of the subgraph query. 

 

 

3.1 Related Concepts 
 

Definition 1 (RDF data graph) RDF data graph 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑) is a directed label graph, where V represents the 

set of nodes. E represents the set of directed edges connected 

to the nodes in V. 𝐸: (𝑣, 𝑣′) represents a directed function, 

representing a directed edge from 𝑣 to 𝑣′, where 𝑣, 𝑣′ ∈ 𝑉. 

L is the label set of edges and nodes. 𝜑: 𝑉 ∪ 𝐵 → (𝐿 ∪ 𝑣𝑎𝑟) 

represents a label function that maps nodes or edges to 

corresponding labels, B represents blank node. 

Definition 2 (RDF subgraph) When querying the RDF 

data graph, it can be found that each RDF graph used for the 

query can be regarded as a subgraph 𝐺𝑔, 𝐺𝑔 ∈ 𝐺. In the RDF 

subgraph 𝐺𝑔 = (𝑉𝑔,  𝐸𝑔,  𝐿𝑔,  𝜑𝑔), Vg is the node-set of 𝐺𝑔, Eg 

is the edge set of 𝐺𝑔, Lg is the label mapping set of Vg, and 𝜑𝑔 

represents the label mapping function of Vg→Lg, any node 𝑠 

and the label in Lg can correspond to each other. 

The processing of RDF graphs can be abstractly regarded 

as directed graph processing, and each query RDF graph can 

be regarded as an RDF subgraph. 

Definition 3 (Subgraph matching) Given two graphs 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑)  and 𝐺𝑔 = (𝑉𝑔, 𝐸𝑔, 𝐿𝑔, 𝜑𝑔) , the subgraph 

matching mapping f: 𝑉𝑔 → 𝑉  represents the mapping from 

the nodes of 𝐺𝑔 to the nodes of G. For any node 𝑢 ∈ 𝑉𝑔, there 

is 𝜑𝑔(𝑢) = 𝜑(𝑓(𝑢)). For each edge (𝑢𝑖 , 𝑢𝑗) ∈ 𝐸𝑔 ((𝑢𝑖 , 𝑢𝑗) 

represents a directed edge from 𝑢𝑖 to 𝑢𝑗), there is an edge 

(𝑓(𝑢𝑖), 𝑓(𝑢𝑗)) ∈ 𝐸. 

Definition 4 (RDF star-shaped subgraph) Given a 

subgraph 𝐺∗ = (𝑉∗, 𝐸∗, 𝐿∗, 𝜑∗) of an RDF graph 𝐺 , if and 

only if there is a 𝑣  in 𝑉∗  that satisfies: ∀𝑢 ∈ 𝑉∗ −
{𝑣}, 〈𝑣, 𝑢〉 ∈ 𝐸∗ or 〈𝑢, 𝑣〉 ∈ 𝐸∗. 𝐺∗ is called the star-shaped 

subgraph of 𝐺, and 𝑣 is called the central node of 𝐺∗. 

Definition 5 (Star-shaped subgraph matching) Given a 

star-shaped graph 𝐺∗ = (𝑉∗, 𝐸∗, 𝐿∗, 𝜑∗) and data graph 𝐺 =
(𝑉, 𝐸, 𝐿, 𝜑), the subgraph matching mapping 𝑓: 𝑉∗ → 𝑉  of 

the star graph are defined as follows: For the star-center node 

𝑣𝑠, there is 𝐿∗(𝑣𝑠) = 𝐿(𝑓(𝑣𝑠)). For the neighboring point of 

the star-center, there is |𝑎𝑑𝑗(𝑣𝑠, 𝜑)| ≤ |𝑎𝑑𝑗(𝑢, 𝜑)|. Where f 

represents the mapping from the nodes of 𝐺∗ to the nodes of 

𝐺, 𝐿∗(𝑣𝑠) is the label representing the center of the star in the 

star pattern, |𝑎𝑑𝑗(𝑣𝑠, 𝜑)| represents the number of adjacent 

points of the star-center 𝑣𝑠 with a label of 1. 

 

3.2 Node Cost Model 
 

In the RDF star graph, the node cost model of the central 

node 𝑣 is specifically defined: 

 

( )= ( )+ ( )W v α deg v t NE v  .             () 

 

Where, α takes a value of [0-1], α refers to the appearance 

frequency of all out-degrees of the star S in the data graph. The 

higher the frequency of occurrence, the closer to 1, whereas 

the closer to 0. deg(𝑣) represents the number of nodes that all 

out-degrees of star S with 𝑣 as the center node coincided with 

all out-degrees of another node at the same time in the data 

graph. t is the weight, 𝑡 ∈ [0,1], NE(𝑣) represents the edges 

(including in-degree and out-degree) owned by the node 

matching the query result of star 𝑠′ in the last round, which 

are consistent with star s. 

The node cost value model follows the following rules: 
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1) First consider the star pattern with the highest degree 

of the central node 𝑣. If there are multiple star patterns with 

the same out-degree, then follow (2). The higher the out-

degree of the central node 𝑣 , the stronger the constraint of 

node 𝑣, the smaller the candidate set, and the lower the query 

cost; 

2) Select the star with the largest 𝑊(𝑣). The greater the 

deg(𝑣) and NE(𝑣), the greater the 𝑊(𝑣). This indicates that 

the star s with 𝑣 as the central node in the data graph has a 

larger number of nodes that match all the out-degrees of the 

star s, the more the same number of edges as the previous 

matching star 𝑆′ , the greater the constraint, the fewer the 

number of nodes dominated, the lower the query cost, and the 

fewer intermediate results. 

 

3.3 Star Decomposition of RDF Graph 
 

In the previous section, a node cost value model was 

proposed. Using this model to sort the matching order for RDF 

subgraphs that have passed star decomposition can effectively 

reduce the generation of intermediate result sets, and improve 

query efficiency. 

Figure 1 shows the main steps of the star decomposition 

algorithm: 

 

 

Figure 1. The main steps of star decomposition 

 

 

The main idea of star decomposition is as follows: 

1) Query the set of triple statements 𝑑𝑄 from subgraph 

d, and select node c as the first star-shaped center node 𝑣𝑠1 

by the node cost model. Unselected nodes will remain in 

subgraph d, waiting for the next query; 

2) Let the star S1 take 𝑣𝑠1 as the central node, find the 

corresponding edges and leaf nodes in the corresponding 

query subgraph d and get all the triples of S1, and then add S1 

to the star decomposition queue R. Delete the triplet 

information in the query subgraph d that has been added to R; 

3) Check whether all triple information in d has been 

decomposed, if decomposed, proceed to step 5), if not 

decomposed, keep the rest of the remaining information in d 

for the next lookup, proceed to step 4); 

4) Continue to obtain the central node in the remaining 

subgraphs through the node cost model, then repeat steps 1), 

2), and 3); 

5) Return the star decomposition queue R. 

For example, we perform a star decomposition query in the 

data graph G0 shown in Figure 2 and the RDF subgraph d0 

shown in Figure 3. The star decomposition method is 

described in detail below. The star patterns S1, S2, and S3 as 

shown in Figure 4 will be obtained. If these star patterns are 

respectively queried on the data graph G0, the following 

results will be obtained: 

The query results of 𝑆1 are: {𝐴 = 𝑎, 𝐵 = 𝑏, 𝐶 = 𝑐, 𝐷 =
𝑑}, {𝐴 = 𝑙, 𝐵 = 𝑚, 𝐶 = 𝑛, 𝐷 = 0} 

The query results of 𝑆2 are: {𝐸 = 𝑒, 𝐴 = 𝑎, 𝐹 = 𝑓} 

The query results of 𝑆3  are: {𝐸 = 𝑓, 𝐺 = 𝑔}, {𝐹 =
𝑗, 𝐺 = ℎ} 
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Figure 2. RDF data graph G0 

 

 

Figure 3. RDF subgraph d0 

 

 

Figure 4. Stars S1, S2 and S3 

 

The query order for these star types is not random, and the 

number of intermediate result sets often depends on the 

arrangement order. S3 is not associated with S1, if the matching 

order is S1, S3, and S2, four matching intermediate results will 

be generated. According to the designed node cost value 

model, firstly, the star S1 with the most out-degree is 

considered, and S1 is ranked first in the query sequence. 

Secondly, compare the node cost value of S2 and S3, and put 

the node with the largest node cost value in the second place. 

According to the node cost value model formula, the value of 

t is 0.5, and the node cost value of the central node of star S2 

can be obtained as 𝑊(𝑣𝑠2) =
3

14
× 1 + 0.5 × 1 =

5

7
, the node 

cost of the central node of star S3 is 𝑊(𝑣𝑠3) =
2

14
× 2 +

0.5 × 0 =
2

7
. Because S2 has the largest value, it is used as the 

priority query matching object, and the query order (star 

decomposition queue) is S1, S2, S3. Querying in this order will 

only produce one intermediate result set. Therefore, finding an 

optimal matching query order is very important to reduce the 

generation of intermediate result sets. 

 

3.4 Star Query Algorithms for RDF Subgraph 
 

When performing query matching operations on the data 

graph, in order to obtain the optimal execution order, it is 

necessary to perform star decomposition on each RDF 

subgraph to obtain a star queue. When matching, the matching 

order for the stars was arranged through the node cost value 

model. 

Definition 6 (Partial query subgraph) Obtain a subgraph g 

in the RDF graph G, use the star decomposition algorithm for 

g to obtain the star decomposition queue P, and give the 

matching order S1, S2, …, Sn, which satisfies ∪1≤𝑖≤𝑗 𝑉(𝑆𝑖) ∩

𝑉(𝑆𝑗) ≠ ∅, 1 ≤ 𝑗 ≤ 𝑛 . Pj is a sequential partial query 

subgraph, 1≤j≤n is a subgraph of subgraph g, and satisfies the 

following conditions: 

(1) 𝑉(𝑃𝑗) =∪1≤𝑖≤𝑗 𝑉(𝑆𝑖) 

(2) 𝑌(𝑃𝑗) =∪1≤𝑖≤𝑗 𝑉(𝑆𝑖) 

Where, V(Pj) represents the node of the local subgraph Pj, 

and Y(Pj) represents the edge of the local subgraph Pj. 

StarMatching algorithm is mainly based on the idea as 

follows: 

1) Input the star S and the adjacency list N(v); 

2) Query all the node v sets in the data graph that can be 

matched with the star-shaped center node 𝑣𝑠; 

3) Obtain all the candidate sets A(li) of nodes li that can 

match each leaf node 𝑆. 𝐿𝑒𝑎𝑓 of star S in the data graph; 

4) Do the Cartesian product operation on the candidate 

set A(li) of the star S, we can get the matching result Ωv(S) of 

the star S on the node 𝑣. The union of the matching result sets 

Ωv(S) of all nodes 𝑣 is also called the matching result Ω(S) of 

star S. 

Figure 5 shows the main steps of the StarMatching 

algorithm: 

 

 

Figure 5. The main steps of star matching 

 

RNSV-SQ mainly follows the following steps: 

1) Input the RDF subgraph d, the star decomposition 

queue R, and the adjacency list N(v) of the data graph G; 

2) Obtain the star S1 in the star decomposition queues R, 

and match the star S1 on the adjacency list N(v), which is the 

result Ω(P1) of the local subgraph P1; 

3) Continue to acquire new star patterns until all 

acquisitions are over to get the result Ω(Pt−1); 

4) Obtain the matching result of the star St through the 

star matching algorithm; 

5) Combine the matching result of the partial subgraph 
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Pt−1 obtained in the last round and the matching result of the 

star-shape St to obtain the result Ω(Pt); 

6) Traverse all stars R = {S1, S2, …, Sn} in the queue, the 

matching result T in the data graph is the union of Ω(Pt), and 

output the result set T. 

The time complexity of RNSV-SQ is 𝑂(𝑉𝑠 ∙
𝑚𝑎𝑥𝑁𝑠∙𝑚𝑎𝑥𝑀), where s is the number of stars, V is the number 

of nodes in the RDF subgraph d, maxN is the maximum 

number of outgoing-degrees owned by nodes in data graph G, 

and maxM is the maximum number of outgoing-degrees 

owned by nodes in subgraph d. According to the process of the 

algorithm, the time complexity of star matching is the total 

time consumed by s stars in matching all nodes V of the data 

graph, which is ∑ 𝑂𝑠
1 (∑ (𝑁(𝑣) + 𝛺(𝑆𝑡))𝑣∈𝑉 ) , the time 

complexity of the star pattern of the connection matching with 

the local query graph is ∑ 𝑂𝑠
1 (∑ (𝛺(𝑃𝑡−1) × 𝛺(𝑆𝑡))𝑣∈𝑉 ). In 

the matching of s star patterns, maxN, the maximum out-

degree owned by the node in the data graph G, and maxM, the 

maximum out-degree owned by the node in the subgraph d, 

are taken as the maximum time consumption. Although this 

algorithm will consume a certain amount of time in the process 

of decomposing the query graph and obtaining the matching 

sequence of the star pattern. However, according to the 

obtained matching order, the generation of intermediate results 

can be greatly reduced, and the time consumption in the query 

process can be reduced, which still shows better advantages. 

 

4 Experimental Analysis 
 

4.1 Experimental Environment and Dataset 
 

The experimental platform uses Linux Ubuntu operating 

system, using Intel(R) Core(TM)i7-9700@3.0GHz eight-core 

processor, the memory is 16GB, and the hard disk size is 1T. 

The algorithm development environment is Eclipse 2018, 

and the development language is Java, JDK1.8. 

This experiment uses two standard RDF datasets, 

DBpedia2015A 1  dataset and WatDiv 2  dataset. The 

DBpedia2015A dataset collects data related to sports content, 

while WatDiv is a dataset used to describe e-commerce, it 

contains information about some products sold and retailers, 

as well as information about users who purchase goods. 

Both of these datasets allow users to generate datasets of 

appropriate scale according to the required dataset size by 

using the method described in [21]. We generated a 

DBpedia2015A-1M dataset, which contains 90512 nodes and 

270745 edges. For WatDiv dataset, we generated 1M, 10M, 

and 100M, of which 1M contains 132478 nodes and 384015 

edges, 10M contains 1102045 nodes and 2097786 edges, and 

100M contains 9145251 nodes and 24774138 edges. 

 

4.2 Comparison of Query Efficiency 
 

RNSV-SQ is compared with the graph matching 

algorithms GADDI [5], SPath [6], and VF3 [7] proposed in 

recent years. Compare and analyze the performance of these 

four algorithms in terms of database pre-creation time, data 

storage memory size, and query time.  

The basic test provided by the WatDiv dataset contains 

four query template categories, namely linear query, star query, 

 
1 DBpedia2015A [DB]: http://downloads.dbpedia.org/2015-04/ 

snowflake query, and complex query. These query templates 

are generated by representing the data as a model of basic 

graphics and performing a random traversal of the data in the 

query pool. There are some given basic query templates on the 

WatDiv dataset. 12 basic query templates were selected from 

the following four categories: linear (L), star (S), snowflake 

(F), and complex (C). These query templates were L1, L2, L3, 

S1, S2, S3, F1, F2, F3, C1, C2, and C3. Due to the lack of a 

given query template on the DBpedia2015A dataset, query 

graph templates containing the above four query types were 

imitated and designed on the DBpedia2015A dataset, denoted 

as L11, S11, F11, and C11. 

As shown in Figure 6, we can easily see the experimental 

comparison results on two datasets, VF3 and RNSV-SQ are 

better than GADDI and SPath in the time of database pre-

creation. During the database creation process, the database 

creation time gap between VF3 and RNSV-SQ on these 

datasets is very small, and the time required is relatively short 

compared with the other two algorithms, this is because VF3 

does not need to extract auxiliary structures for the data graph, 

and the preprocessing requires a short time. RNSV-SQ takes 

some time to save node adjacency structure information. SPath 

needs to calculate and save the k-order neighbor structure, 

which takes a long time. GADDI needs to calculate the NDS 

distance between nodes in the data preprocessing stage, so 

compared with several other algorithms, GADDI database 

creation takes the longest time. 

 

 

Figure 6. Database pre-creation time 

 

 

Figure 7. Data storage size 

 

Figure 7 shows the comparison of storage space size. It can 

be seen that SPath has the largest storage space. Because SPath 

is aimed at the more complex adjacency structure of the graph. 

It proposes the width-first traversal centered on nodes, and the 

adjacencies information about nodes is represented by triples. 

Therefore, in addition to the data graph nodes, the k-order 

2 WatDiv [DB]: http://dsg.uwaterloo.ca/watdiv/ 
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adjacency information of the nodes needs to be stored. 

Additionally, the storage space required by SPath is about 1.6-

4.1 times that of RNSV-SQ, while GADDI needs to store the 

NDS distance between two nodes and adjacent nodes, and the 

storage space is 1.2-1.6 times that of RNSV-SQ. RNSV-SQ 

performs slightly better than VF3 in terms of storage space, 

because RNSV-SQ makes better use of the structural 

information on adjacent nodes to reduce storage space. 

 

 
(a) Query time of different templates on WatDiv-10M 

 

 
(b) Query time of different templates on DBpedia2015A-1M 

Figure 8. Query time of different query templates 

 

In the WatDiv-10M dataset, as shown in Figure 8(a), 

RNSV-SQ has a relatively good performance in the compared 

query template, and the required query time is lower. The 

queries efficiency of VF3 and RNSV-SQ is not much different. 

Among the query templates for L1, C1, and C2, VF3 has the 

fastest matching speed, while SPath and GADDI perform 

poorly. SPath has the longest query time for the four types of 

query templates, mainly due to the need to match nodes in the 

triplet when filtering candidate nodes, and the number of 

nodes is too large, which leads to a long time. Moreover, 

GADDI has to calculate the adjacency distance between any 

two nodes in the query graph during execution, which leads to 

excessive time consumption. 

On the DBpedia2015A-1M dataset, the change from linear 

to complex can be obtained from Figure 8(b). As the 

complexity of the query graph structure increases, the rising 

trend of query time for VF3 and RNSV-SQ is much smaller 

than that of GADDI and SPath. The main reason is that SPath 

needs to calculate and merge label paths around nodes, 

resulting in high query response time for complex structure 

graphs, while GADDI lacks an effective node merging 

sequence. 

We also tested the effect of dataset size on the performance 

of the algorithms. Through experiments on 1M, 10M, and 

100M of WatDiv dataset, 12 query templates of the above four 

types are queried respectively, and the average query time of 

RNSV-SQ, GADDI, SPath, and VF3 on the four types is 

calculated. 

 

 
(a) Query time of type L on 1M, 10M, and 100M of WatDiv 

dataset 

 

 
(b) Query time of type S on 1M, 10M, and 100M of WatDiv 

dataset 

 

 
(c) Query time of type F on 1M, 10M, and 100M of WatDiv 

dataset 

 

 
(d) Query time of type C on 1M, 10M, and 100M of WatDiv 

dataset 

Figure 9. Query time of different dataset sizes and query types 
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From the experimental results in Figure 9, it can be 

observed that when the dataset size increases from 1M to 

100M, the query time of the four algorithms increases, and the 

query time of SPath and GADDI increases greatly, especially 

when the dataset increases from 10M to 100M.  The query 

time of SPath and GADDI is more obvious than that of VF3 

and RNSV-SQ, while the query time of RNSV-SQ and VF3 

increases less, they are more stable in different query types. It 

can be seen from the query templates S and F that RNSV-SQ 

has less query time than VF3, so RNSV-SQ has high query 

efficiency in some cases. Therefore, as the size of the dataset 

increases, RNSV-SQ is still effective and feasible. 

In sum, experiments prove that RNSV-SQ proposed in this 

paper has better advantages in database pre-creation, storage 

memory size, and execution efficiency compared with 

GADDI, SPath, and VF3. 

 

5 Conclusions 
 

This paper proposes RNSV-SQ to decompose the RDF 

graph into a star-shape, and calculates the query sequence of 

generating these star-shaped subgraphs by using a custom 

node cost model. Based on the generated sequential query, the 

generation of intermediate result sets can be effectively 

reduced, and query performance can be improved. 

Experiments have shown that compared with other algorithms, 

the algorithm proposed in this paper has better advantages in 

execution efficiency and other aspects. 

The algorithm proposed in this paper has a good 

performance in querying RDF subgraphs, but it also has its 

shortcomings. There may be many directions for improvement 

in future related research. The current optimal query order can 

be obtained through the custom node cost model, and in the 

future, we can try to obtain a better query order to reduce the 

intermediate result set. In terms of datasets, we can also add 

further experiments on actual large real datasets or further 

query and research on datasets with fixed frequency change 

and update. In addition to star decomposition, other improved 

graph structures decomposition methods can be introduced to 

the intermediate result processing method, such as linear type, 

snowflake type, etc. 
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