
PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1597

*Corresponding Author: Min Huang; E-mail: huangmin@hebust.edu.cn

DOI: 10.53106/160792642022122307014

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on

RS Erasure Code

Junqiang Ma1, Weihao Yan2, Xiaotian Zhang2, Min Huang2*, Jingyang Wang2

1 Department of Electrical Engineering, Hebei Vocational University of Technology and Engineering, China

2 School of Information Science and Engineering, Hebei University of Science and Technology, China

22538805@qq.com, 1793131106@qq.com, 624943523@qq.com, huangmin@hebust.edu.cn, jingyangw@hebust.edu.cn

Abstract

Erasure code has been used by more and more researchers

to solve the problem of efficient, reliable, and fault-tolerant

data storage. However, the existing libraries based on erase

code can only run on the Linux platform, and some of them

need GPU support. This paper implements a cross-platform

data fault-tolerant storage library based on RS erasure code,

PyRS, which is running on CPU without GPU support and

developed in Python. PyRS uses Vandermonde matrix as the

coding matrix and Numba and NumPy libraries to speed up

and optimize the program. This paper compares PyRS with

Jerasure on the same Linux platform. The results show that the

encoding and decoding speed of PyRS is 8 times faster than

that of Jerasure. The CPU usage rate of both is about 25% and

the memory usage rate of PyRS is about 5% higher than that

of Jerasure. The same experiments are carried out on PyRS on

the Windows platform. Experimental results show that

compared with running on the Linux platform, PyRS running

on the Windows platform has almost the same speed of

encoding and decoding, and its CPU usage rate increases by

about 15%, while its memory usage rate decreases by about

5%.

Keywords: Data fault-tolerant storage, RS erasure code,

Jerasure, Vandermonde matrix, Cross-platform

1 Introduction

Erasure code is a forward error correction technology that

can ensure data reliability with more optimized data

redundancy [1]. Erasure code was first used to solve the

problem of data transmission loss in the field of

communication, which introduced erasure code technology

into the storage field due to its advantages of preventing data

loss.

Today, erasure code technology has been widely used in

the storage field and has become one of the leading fault-

tolerant technologies in storage systems [2]. Another major

fault-tolerant technology for storage systems is replication [3].

Compared with the traditional replication technology, erasure

code technology has the advantages of low redundancy and

high reliability. For example, when we store a file of size

10KB with replication technology of the 3-copies policy, the

storage cost is 30KB, because the same data is stored in three

copies. However, erasure code technology is used to realize

the storage effect of the 3-copies policy, on the premise that

the size of each data block is 1KB, the file is divided into 10

segmented data blocks and 3 redundancy check data blocks

are generated, and the storage cost is 13KB. Therefore, erasure

code technology can ensure data reliability with lower storage

cost than replication technology.

Both Hadoop3.0 and Ceph distributed storage systems use

erasure code technology as one of the system fault-tolerance

technologies. At the same time, Microsoft, Google, Facebook,

Amazon, Taobao, and other Internet giants have also begun to

study erasure code storage technology and apply it to their

respective mainstream storage systems, such as Microsoft’s

cloud storage system Azure [4] and Facebook’s warm BLOB

storage system [5].

1.1 Literature Review

At present, with the scale of data storage increasing, the

data storage space is facing severe challenges, and the erasure

code technology can solve this problem well. Therefore, a

flexible and convenient erasure code library is vital for the

storage system.

In 2007, Jerasure was published, which was an erasure

code library and developed by James S. Plank [6]. The

Jerasure library had complete functions and supported a

variety of erasure codes, including RS (Reed-Solomon)

coding and CRS coding. However, it is developed in the C

language and has platform limitations. Jerasure can only

support the Linux system, and its speed performance is lower.

In 2015, Chu et al. designed and implemented the PErasure

library [7], which was a parallel Cauchy Reed-Solomon (CRS)

EC library, used Graphics Processing Units (GPUs) to

complete the EC computing task and improved the speed of

the EC library to some extent. However, it cannot fully use the

GPU memory system, resulting in poor performance. In 2016,

Dai et al. used CUDA to accelerate RS code based on the

reed_sol_r6_OP (R6) algorithm of Jerasure library [8] and

achieved good results, with speed up to 20 times that of the

original R6 algorithm. But it only supports Linux systems.

In 2017, Zhou proposed an improved coding based on RS

erasure code – LRC [9]. Compared with RS, LRC could save

nearly half of the decoding cost in the case of similar storage

costs. When the encoding parameters were changed, the codec

performance of LRC did not change significantly, and more

parameter combinations could be selected. However, the tool

1598 Journal of Internet Technology Vol. 23 No. 7, December 2022

is developed in C language and can only run on Linux. Gong

et al. designed a new erasure code, ZD code [10]. Two

structures based on Vandermonde matrix and Hankel matrix

were proposed. The codec performance of ZD code and

Cauchy-RS code was compared. The decoding performance

of ZD code was at least 20% better than that of Cauchy-RS

code. However, the tool is implemented in C language, which

has the limitation of cross-platform.

In 2018, Liu et al. designed and implemented G-CRS [11],

a new GPU-based CRS erasure code library. Compared with

PErasure, this library can make full use of GPU resources to

improve the EC’s performance to some extent. Liu et al.

proposed an efficient single-disk fault coding scheme, L-Code

[12], which used both horizontal parity check and anti-angle

parity check for data reconstruction. The scheme improved the

performance of single-fault disk reconstruction. But L-Code

can only run on Linux.

In 2019, Xie et al. proposed an Availability Zone erasure

Code (AZ-Code) [13], which took advantages of MSR and

LRC codes. Experiments showed that AZ-Code could keep

low recovery costs and high reliability compared with

traditional erasure code. But it only runs on the Hadoop and

Linux system. In 2020, Qiu et al. proposed an efficient hybrid

erasure encoding framework EC-Fusion in Cloud Storage

Systems [14], which combined RS and MSR code. Compared

with traditional erasure code, EC-Fusion improved application

response time and reduced reconstruction time. But

experiments are only taken on the Hadoop platform under the

Ubuntu system.

In 2021, Fang et al. proposed a new CLRC algorithm

based on RS algorithm [15], which generated local check

blocks by grouping RS encoded blocks. Compared with RS

algorithm, CLRC reduced the bandwidth and I/O consumption

of data recovery. However, the algorithm is tested on the

Centos platform, and there are limitations in cross-platform.

Arslan proposed an erasure code library - Founsure [16],

which could save storage space, minimize data storage

overhead, and reduce data recovery bandwidth. But Founsure

is implemented by Linux instructions.

To sum up, all research achievements can only run on

Linux platforms, do not have the cross-platform capability and

cannot run on Windows platform. Some achievements require

Hadoop environment support. The research achievements in

reference [7, 11] also rely on GPUs, which undoubtedly

increases the cost of using the system. Therefore, it is of great

significance to design and develop a cross-platform data fault-

tolerant storage library based on RS erasure code that can run

on CPU.

1.2 Main Contributions

PyRS is developed in Python. It takes advantage of the

cross-platform and flexibility of the Python. PyRS contributes

to the universal application of erasure code technology in a

storage system. The contributions of this paper are as follows:

⚫ PyRS is a cross-platform data fault-tolerant storage

Library, which can run on Linux and Windows platforms.

It is easy to operate PyRS, and PyRS’s running

environment is easily configured.

⚫ PyRS uses Numba and NumPy to improve its

performance in terms of speed. Numba can compile some

of the programs into local machine instructions, and

NumPy has high performance for processing data.

⚫ PyRS can be up to 8 times faster than the Jerasure library

in the same system environment and state.

⚫ PyRS library has the advantages of fast speed, cross-

platform, simple operation, and accessible environment

configuration.

1.3 Organization

The remaining parts of this paper are organized as follows:

Section II introduces the encoding and decoding principles of

RS erasure code. In Section Ⅲ, we first introduce the Galois

field and encoding matrix, and then describe the

implementation process of PyRS data encoding and decoding,

finally, explain the process of Numba and NumPy accelerating

PyRS. In Section Ⅳ, we compare PyRS with Jerasure on

Linux Platform in terms of encoding/decoding speed, CPU

usage and memory usage, and then test PyRS on the Windows

Platform. The last section summarizes the work of this paper

and introduces future work.

2 RS Erasure Code

RS erasure code is a multi-array BCH code with robust

error correction ability, dividing the data file into k segmented

data blocks in bytes and then generating m redundancy check

data blocks with equal size through encoding. When restoring

the file data, within the loss of m data blocks, any k data blocks

(including segmented data blocks and redundancy check data

blocks) selected from the remaining data blocks can be

decoded to obtain the original data file [17].

2.1 Principle of RS Erasure Code Encoding

The progress of RS erasure code coding is as follows:

(1) The data file is divided into 𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘 , total k

segmented data blocks in bytes.

(2) 𝐷 = (𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘) as input vector, V is an

encoding matrix.

(3) D multiplies with the encoding matrix to get the result

data Y.

𝑉 ∗ 𝐷 = 𝑌. (1)

11 12 1

21 22 2

1 2

1 0 0

0 1 0

0 0 1
=

k

k

m m mk

V
B B B

B B B

B B B

. (2)

As shown in formulas (1) and (2), V is an encoding matrix,

and any k*k sub-matrix must be invertible, as shown in

formula (3). 𝐷 = (𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘) is the input vector,𝑌 =
(𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘, 𝐶1, 𝐶2, . . . , 𝐶𝑚) is the encoding result, as

shown in formula (4), and formula (4) is equivalent to formula

(1).

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1599

𝐵 = [

𝐵11 𝐵12

𝐵21 𝐵22
⋯

𝐵1𝑘

𝐵2𝑘

⋮ ⋱ ⋮
𝐵𝑚1 𝐵𝑚2 ⋯ 𝐵𝑚𝑘

]. (3)

1

2

1 3

2

3

11 12 1

1

21 22 2

2

1 2

1 0 0

0 1 0

0 0 1
k

k

k

k

m m mk

m

D

D

D D

D

D D
B B B

C
B B B

D C

B B B
C

 =

. (4)

As shown in formulas (2) and (3), it is easy to find that the

matrix V consists of the identity matrix and the matrix B. V*D

is equivalent to first multiplying the identity matrix with the

input vector D, and then multiplying the matrix B with the

input vector. The identity matrix is multiplied by the input

vector D, and the result is obviously the input vector, where

the elements represent k equally-sized segmented data blocks.

The matrix B is multiplied by the input vector, and the result

is redundancy check data blocks. The vertical combination of

the two results is the encoding result. Therefore, the essence

of RS erasure code coding is to divide the data file into k

segmented data blocks of equal size, then multiply the matrix

B with the input vector to obtain redundancy check data blocks

[18]. To ensure that matrix V’s k*k sub-matrix is invertible,

matrix B is generally a Vandermonde matrix or a Cauchy

matrix.

2.2 Principle of RS Erasure Code Decoding

RS erasure code decoding refers to recovering the original

data file using encoded data blocks generated by RS erasure

code encoding and mathematical algorithms [19-20]. The

process is as follows.

(1) Assuming that the encoded data blocks 𝐷1 and 𝐶1

have been lost, the rows corresponding to the missing data

blocks are deleted from the encoding matrix. That is, the first

row and the (k+1)th row of matrix V are deleted, and the new

matrix after deletion is denoted as 𝑉′.

21 22 2

0 1 0

0 0 1

k

V

B B B

 =

. (5)

Y‘’ = [

𝐷2

⋮
𝐷𝑘

𝐶2

]. (6)

(2) Take any k-row vector from the matrix 𝑉′ to get the

matrix 𝑉′′. As shown in formulas (5) and (6), we select k-row

vectors from top to bottom, so the matrix 𝑉′′ is a k*k square

matrix, and the corresponding vector of the encoded data

block is 𝑌′′.

(3) According to formulas (4), (5), and (6), the following

formula(7) can be obtained.

𝑉′′ ∗ 𝐷 = 𝑌′′. (7)

(4) The inverse matrix of V'' multiplied by both sides of

the formulas (7), then the formulas (8) and (9) can be obtained.

(𝑉′′)−1 ∗ 𝑉′′ ∗ 𝐷 = (𝑉′′)−1 ∗ 𝑌′′. (8)

𝐷 = (𝑉′′)−1 ∗ 𝑌′′. (9)

(5) At this point, the original data block D is obtained.

3 PyRS Implementation

We use flexible and cross-platform Python to develop

PyRS. Vandermonde matrix is selected as the encoding matrix.

Any sub-matrix of the Vandermonde matrix is a singular

matrix with an inverse matrix. The Gaussian elimination

method calculates the inverse matrix in RS encoding/decoding.

Four arithmetic operations defined in Galois field

𝐺𝐹(2𝑤)are used to solve the problem of addition, subtraction,

multiplication, and division of real numbers. The PyRS system

model is shown in Figure 1.

(1) Galois field. Galois field 𝐺𝐹(2𝑤) is constructed by

building the 2𝑤 distinct elements on the Galois field. The

finite field 𝐺𝐹(2𝑤) is constructed using an irreducible

polynomial of 𝐺𝐹(2𝑤), and the four arithmetic operations on

the Galois field are realized simultaneously. The results of the

four arithmetic operations on the Galois field will fall into the

finite field, which avoids the problem of data overflow caused

by too large numerical results of the mathematical calculation

and ensures the accuracy of the data.

(2) Encoding matrix. The encoding matrix is constructed

using a Vandermonde matrix to meet the needs of RS erasure

code encoding/decoding.

(3) Encoding. The data encoding based on RS erasure code

can divide any file into k segmented data blocks and

simultaneously generate m redundancy check data blocks. The

result of encoding is k+m data blocks, including k segmented

data blocks and m redundancy check data blocks. When no

more than m data blocks fail at the same time, the original file

can still be restored by remaining any k non-failed data blocks,

thereby, the availability of the storage system is ensured, and

the reliability is improved [21-22].

(4) Decoding. It is assumed that the file is divided into k

segmented data blocks, 𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘 . Simultaneously

use RS erasure code to generate m redundancy check data

blocks, 𝐶1, 𝐶2, . . . , 𝐶𝑚. The size of all blocks is both t bytes.

When no more than m data blocks in

𝐷1, 𝐷2, 𝐷3, . . . , 𝐷𝑘, 𝐶1, 𝐶2, . . . , 𝐶𝑚 are invalid, PyRS can

perform decoding and reconstruction calculation through any

remaining k data blocks that have not failed to restore the

original file data.

1600 Journal of Internet Technology Vol. 23 No. 7, December 2022

Input k and m

 PyRS

Output the restored

original file

Store k+m data

blocks

Encoding

matrix

Galois

field

Cloud 1

D1

Cloud 2

D2

Cloud k

Dk

Cloud k+1

C1

Cloud k+2

C2

Cloud k+m

Cm

Internet/Intranet

Select any k non-

failed data blocks

DecodingEncoding

NumbaNumpy

Select an original

file

Figure 1. PyRS system model

(5) Numba and NumPy technologies accelerate PyRS.

Python has the advantages of high development efficiency and

cross-platform, so the coding library introduced in this paper

is implemented in Python. However, the execution efficiency

of the program written in Python is lower, so the execution

speed of PyRS needs to be improved. Aiming at the

characteristic of PyRS using many mathematical calculations

and loop statements, this paper selects the Numba library to

accelerate. The Numba library can compile the corresponding

Python program into local machine instructions at runtime to

achieve the purpose of acceleration. Besides, the high-

performance characteristics of NumPy are utilized to process

data and improve the speed performance of PyRS.

To ensure the safe and fault-tolerant storage of file data,

more and more users not only need to divide file data into

multiple data blocks and store them on different disks in a

distributed storage system or different clouds in multi-cloud

storage, but also need to store the same file data block

repeatedly through replication technology. Although the

implementation of replication technology is simple, the

storage cost is very high. Erasure code technology can realize

efficient storage. The process of safe and fault-tolerant storage

of file data through PyRS is as follows:

(1) Select an original file. Select a file of any format type

on your local disk. This file is to be stored securely.

(2) Input k and m. k indicates the number of blocks to

divide the original file into data blocks. m represents the

number of redundant data blocks generated by PyRS.

(3) Encoding. The data encoding of PyRS divides the

original file into k segmented data blocks and simultaneously

generates m redundancy check data blocks. There are k+m

data blocks.

(4) Store k+m data blocks. k+m data blocks are stored in

different clouds of a multi-cloud storage through

Internet/Intranet. We can also store the data on different disks

in a distributed storage system.

The data of k+m data blocks stored in a multi-cloud

storage or a distributed system may be invalid due to disk

damage, viruses or hacker attacks, and network faults. As long

as the data blocks stored by PyRS fail less than m data blocks,

the original file data can be correctly restored through PyRS

decoding. Thus, the fault-tolerant storage of file data is

realized. The process for PyRS to restore file data is as follows:

(1) Select any k non-failed data blocks. Obtain any k non-

failed data blocks from k + m data blocks stored in the multi-

cloud storage systems or distributed systems through

Internet/Intranet.

(2) Decoding. The data decoding of PyRS restores the

original file using the selected k non-failed data blocks.

(3) Output the restored original file.

3.1 Galois Field

3.1.1 Galois Field Structure

As a finite field, Galois field can reasonably ensure that

the results of four arithmetic operations fall within the finite

field in the encoding/decoding process. The accuracy of the

data and the successful implementation of file encoding and

recovery are ensured. The number of bits in a byte is 8, and its

value range is 0~255. Therefore, w=8, that is, 𝐺𝐹(28) is

selected in this paper to define and construct the Galois field,

and the elements in the field are represented using an 8-bit

binary integer [23].

The polynomial in 𝐺𝐹(28) is as formula (10).

𝑓(𝑥) = 𝑎7𝑥
7 + 𝑎6𝑥

6 + ⋯+ 𝑎1𝑥 + 𝑎0. (10)

In formula (10), the element values in (𝑎0, 𝑎1, . . . , 𝑎7)

can only take 0 or 1, so 𝐺𝐹(28) has 28 = 256 different

polynomials, each polynomial of 𝐺𝐹(28) can be expressed

as an 8-bit binary integer. It can be seen that the finite field

𝐺𝐹(28) can be composed and represented by the coefficients

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1601

of its polynomial, that is, the binary representation. The

decimal set corresponding to binary is the decimal

representation of the finite field 𝐺𝐹(28), which is also the

elemental representation of the Galois field.

This paper uses the method of a generator to define and

construct the Galois field, and the four arithmetic operations

of the Galois field are completed by using the table lookup

method. The generator g is an element in the finite field

𝐺𝐹(2𝑤). The first 2w-1 power of g can constitute all non-zero

elements of the finite field 𝐺𝐹(2𝑤). The elements of the

field 𝐺𝐹(2𝑤) are 𝑔0, … , 𝑔𝑤−2 . The generator g can

generally be taken as the root of an irreducible polynomial in

the field 𝐺𝐹(2𝑤). In this paper, the irreducible polynomial of

the finite field 𝐺𝐹(2𝑤) is shown in formula (11). If 𝑓(𝑔) =
0, formula (12) can be obtained. Therefore, the elements in the

finite field 𝐺𝐹(2𝑤) can be expressed as: 0,1, 𝑔0, … , 𝑔7, 𝑔8 =
𝑔4 + 𝑔3 + 𝑔2 + 1, 𝑔9 = 𝑔 ∗ 𝑔8 = 𝑔5 + 𝑔4 + 𝑔3 + 𝑔, 𝑔10 =
𝑔 ∗ 𝑔9 = 𝑔6 + 𝑔5 + 𝑔4 + 𝑔2, . . . , 𝑔0.

𝑓(𝑥) = 𝑥8 + 𝑥4 + 𝑥3 + 𝑥2 + 1. (11)

𝑔8 = 𝑔4 + 𝑔3 + 𝑔2 + 1. (12)

The generator, polynomial, binary, and decimal

representation of Galois field 𝐺𝐹(28) with the formula (11)

as the irreducible polynomial are shown in Table 1.

Table 1. 𝐺𝐹(28) generator, polynomial, binary, decimal

representation

Generator Polynomial Binary Decimal

0 0 00000000 0

g0 g0 00000001 1

g1 g1 00000010 2

g2 g2 00000100 4

g3 g3 00001000 8

g4 g4 00010000 16

g5 g5 00100000 32

g6 g6 01000000 64

g7 g7 10000000 128

g8 g4+g3+g2+1 00011101 29

g9 g5+g4+g3+g 00111010 58

g10 g6+g5+g4+g2 01110100 116

⋮ ⋮ ⋮ ⋮

g255 g0 00000001 1

According to the characteristics of the Galois field

constructed by using the generator method, this paper builds

three tables, namely positive table, anti-table, and inverse

table.

The positive table stores the elements of the finite field

𝐺𝐹(28). The table index is the exponent of the generator 𝑔,

and the value range is [0, 254]. The element in the table with

index k represents 𝑔𝑘, and its value range [1, 255].

The anti-table stores all the exponents of the generator of

the finite field 𝐺𝐹(28), which index is the decimal value of

polynomial 𝑔𝑘, and the value range is [1, 255].

The element corresponding to the index is the exponent of

the generator, and the value range is [0, 254].

In the inverse table, the index value and the value of the

corresponding element of the index are mutually inverse, and

the value range is [1, 255].

𝐺𝐹(2𝑤) is a finite field; that is, the number of elements in

the field is limited, but the exponent k of the generator is

infinite. So, there must be cycles. The period of this cycle is

2w-1, because g cannot generate polynomial 0, so for 𝐺𝐹(28),

when k is greater than or equal to 255, 𝑔𝑘 = 𝑔(𝑘%255) .

Therefore, for the positive table, the exponent of the generator

element can be 0 to 254, and correspondingly 255 different

polynomials are generated, and the value range of the

polynomial is 1 to 255.

(1) Construct the main table. Define the main table named

gf_table, let gf_table[255] = 0 and gf_table[0] = 1. According

to 𝑔𝑘 = 𝑔 ∗ 𝑔𝑘−1 , (𝑘 ∈ [0,254]) , the value of the

corresponding element of the higher exponent of the generator

is equal to the result of shifting the value of the corresponding

element of the next exponent to left by 1 bit, and the premise

is that the corresponding polynomial exponent is less than 8.

When the element is shifted left 1 bit, the corresponding

polynomial exponent equals 8, and it needs to be processed

according to formula (12). That is, replace 𝑥8 with 𝑥4 +
𝑥3 + 𝑥2 + 1, and then perform XOR operation to get element

value.

(2) Construct the anti-table. Define the anti-table named

gf_arc_table, and let gf_arc_table[0] = 0. The index of

gf_arc_table represents the polynomial value, and the

elements in the table represent the exponent of the generator.

Take the element value in the main table, use it as the index of

the anti-table, and then use the corresponding index of the

element value in the main table as the value of the anti-table

element.

(3) Construct the inverse table. Define the inverse table

gf_inverser_table, and let the index value and the value of the

corresponding element of the index be inverses of each other.

For example, the value of an element in the inverse table 𝜈1,

the corresponding inverse table index is i. Using the main table

and anti-table defined in (1) and (2), take the element value

𝜈2 at index i from the anti-table. Let the maximum value

gf_maxnum in the Galois field defined in this paper minus 𝜈2;

we can get the exponent of the generator corresponding to the

inverse of 𝜈1 in the Galois field 𝐺𝐹(28) . Taking this

exponent as the index, the element value obtained through the

main table is 𝜈1.

3.1.2. Four Arithmetic Operations in Galois Field

The four arithmetic operations in the Galois field are as

follows.

(1) The addition of Galois field 𝐺𝐹(28). That is, the result

of the addition is XOR the two input values.

(2) The subtraction of Galois field 𝐺𝐹(28). The same as

the addition.

(3) The multiplication of Galois field 𝐺𝐹(28). 𝐺𝐹(28)

multiplication is the multiplication of two elements x and y in

the field, i.e., x*y. First, obtain the exponents 𝑘1 and 𝑘2 of

the generator g corresponding to the two elements (x and y) by

looking up the table gf_arc_table. And then, according to the

characteristics of exponent multiplication, i.e., 𝑥 ∗ 𝑦 = 𝑔𝑘1 ∗

𝑔𝑘2 = 𝑔(𝑘1+𝑘2) = 𝑔𝑘 , we can get the representation of

generator 𝑔𝑘. Finally, we obtain the decimal representation

corresponding to 𝑔𝑘 by looking up the table gf_table. When

x is 0 or y is 0, x*y cannot be calculated through the main table

and anti-table. Therefore, the multiplication implementation

adds the judgment of whether the multiplier is 0. If the

1602 Journal of Internet Technology Vol. 23 No. 7, December 2022

multiplier is 0, the result is 0; otherwise, the result is calculated

by looking up the table. The pseudo-code for 𝐺𝐹(28)

multiplication is shown in Algorithm 1.

Algorithm 1. The pseudo-code For 𝐺𝐹(28) multiplication

1.Enter two numbers:𝑥, 𝑦;

2.if 𝑥 == 0 or 𝑦 == 0 then

3. return 0;

4.end if

5. 𝑟𝑒𝑠1 ← 𝑔𝑓_𝑎𝑟𝑐_𝑡𝑎𝑏𝑙𝑒[𝑥] + 𝑔𝑓_𝑎𝑟𝑐_𝑡𝑎𝑏𝑙𝑒[𝑦];

6.if 𝑟𝑒𝑠1 < 𝑔𝑓_𝑚𝑎𝑥𝑛𝑢𝑚 then

7. return 𝑔𝑓_𝑡𝑎𝑏𝑙𝑒[𝑟𝑒𝑠1];

8.else

9. return 𝑔𝑓_𝑡𝑎𝑏𝑙𝑒[𝑟𝑒𝑠1%𝑔𝑓_𝑚𝑎𝑥𝑛𝑢𝑚];

10.end if

(4) The division of Galois field 𝐺𝐹(28) . 𝐺𝐹(28)

division refers to dividing two elements x and y in the field,

i.e., x/y. x divided by y is equivalent to x multiplies the inverse

of y. So, we can think of division as multiplication. Therefore,

the inverse of y can be obtained by checking the inverse table

gf_inverser_table, and then x and the inverse of y are

multiplied. The pseudo-code for 𝐺𝐹(28) division is shown in

Algorithm 2.

Algorithm 2. The pseudo-code for 𝐺𝐹(28) division

1.Enter two numbers: 𝑥, 𝑦;

2.if 𝑦 == 0 then

3. Throw an exception and end the program;

4.end if

5. 𝑦−1 ← 𝑔𝑓_𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝑟_𝑡𝑎𝑏𝑙𝑒[𝑦];

6.Mutiply 𝑥 and 𝑦−1 ;

3.2 Encoding Matrix

This paper selects the Vandermonde matrix to generate the

encoding matrix based on the Galois field algorithm. The

Vandermonde matrix is shown in formula (13).

𝑉𝑎𝑛 =

[

1
1
12

⋮
1𝑚−1

1
2
22

⋮
2𝑚−1

1
3
32

⋮
3𝑚−1

⋯
⋯
⋯
⋱
⋯

1
𝑘
𝑘2

⋮
𝑘𝑚−1]

. (13)

Construct the identity matrix and combine it with the

Vandermonde matrix to get the encoding matrix, as shown in

formula (14).

1 1 1

1 0 0

0 1 0

0 0 1

1 1 1

1 2

1 2m m m

V

k

k− − −

 =

. (14)

3.3 Implementation Process of Data Encoding

Based on RS Erasure Code

The pseudo-code of the encoding process is shown in

Algorithm 3.

Algorithm 3. Pseudo-code of the encoding process

1. Enter encoding information

2. Initialize file read-write buffer

3. Construct Galois field

4. Construct coding matrix

5. loop:

6. Read file

7. if Read content size is smaller than the size of read buffer

 then

8. Data block zero padding

9. end if

10. Split file data into blocks

11.Generate check matrix

12.if First encoding then

13. Write file

14.else

15. Append file

16.end if

17.if Last encoding then

18. Write encoding information file

19.else

20. goto loop.

21.end if

Figure 2 shows the implementation process of data

encoding.

The main steps to achieve encoding are as follows:

(1) Enter the encoding information. Enter the name of the

file to be encoded, the number k of equally divided blocks, the

number m of redundancy check blocks, the buffer size for

reading file, etc.

(2) Initialize the buffer size for reading file. Refer to the

file size, initialize the buffer size so that the file data can be

divisible by the input number of equally divided blocks k. The

file data to be encoded can be divided into k blocks of equal

size.

(3) Construct Galois field. Construct the finite field

𝐺𝐹(28) and define four arithmetic operations on the finite

field as the basis and premise of all operations in encoding and

decoding.

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1603

(4) Construct an encoding matrix.

(5) Encoding. Use the file reading buffer obtained in step

(2) to read the file data multiple times. Each time the file is

read, it needs to be encoded once. The number of times file

readings is the number of times of encodings.

Enter the encoding

information

Initialize the buffer

size for reading file

Construct Galois

field

Construct an

encoding matrix

Read file

The content of the

read file is divided

into blocks

Generate check

matrix

[The read size is larger than the Buffer size]

Padding data block

with zeros

[The read size is smaller

than the buffer size]

Write data to the file

Append data to the

file

[Not first

Encoding]

[First encoding]

Write encoding

information into file

[Last encoding]

[Not last encoding]

Figure 2. Activity diagram of data encoding process

The main steps are as follows:

1) Read file. The file will be read multiple times, and the

file content will be read according to the buffer defined in step

(2) each time. In this way, we can avoid when reading large

files, the computer’s main storage area reads too much data,

resulting in insufficient space and the system crashes.

2) Padding data block with zeros. The file is read multiple

times according to the specified buffer. When the file is read

for the last time, the size of the read file content is smaller than

the buffer size. The read content needs to be filled with zeros

to ensure that the read file data content can be equally divided

into k blocks.

3) File data is divided into blocks. Each time the content

of the read file needs to be divided into blocks to form a data

block matrix D composed of multiple vectors to implement

formula (4) and prepare for encoding to generate a check

matrix.

4) Generate check matrix. Multiply the Vandermonde

matrix in constructing the encoding matrix in Step (4) by D

generated in step 3) to get the check matrix. Since the

multiplication of the identity matrix by any matrix does not

change the matrix multiplied by it, the check matrix can be

obtained by directly multiplying the Vandermonde matrix by

the equipartition data block matrix, avoiding unnecessary

calculation. The equipartition data block matrix D combined

with the generated check matrix is the encoding result of the

data read this time [24].

5) Write the encoding result to the file. As shown in

Algorithm 3, when writing the encoding result to a file,

consider whether this is the first time to encode. When writing

1604 Journal of Internet Technology Vol. 23 No. 7, December 2022

the encoding result to a file for the first time, the file will be

written in the ‘wb’ write mode. If the file does not exist, the

file will be created, and the content of the encoding result will

be written to the file; otherwise, the content of the encoding

result will overwrite the original file’s content. When writing

the result of the non-first encoding to the file, the content of

the encoding result can be directly added to the file. Write the

encoding result into a file to convert each row vector of the

encoding result matrix into a byte stream and write this byte

stream into the corresponding file. The number of files after

encoding is the same as the number of rows in the encoding

result matrix(k+m) files. In addition, if the encoding process

performed is the last time, that is, the encoding process

performed after reading the file for the last time, after writing

the encoding result into the file, the encoding ends. Otherwise,

go to step 1) for the following encoding.

(6) Write a coding information file. After reading the file

and encoding for the last time and writing the encoding result,

write the encoded information to the encoded information file

for decoding. The encoding information file stores the content,

such as the file name, the number of equal-sized data blocks

that the file is divided into, the number of redundancy check

blocks, the buffer size, the times of reads, and the number of

zero paddings.

3.4 Implementation Process of Data Decoding

Based on RS Erasure Code

The pseudo-code of the file data decoding process is

shown in Algorithm 4.

Algorithm 4. Pseudo-code of the decoding process

1.Enter a file name

2.Decoding preprocessing

3.Construct Galois field

4.Construct encoding matrix

5.Get the residual matrix

6.Find the inverse of the residual matrix

7.Get file read buffer

8.loop:

9.Get the remaining coding block matrix

10.Decode

11.if Decode for the non-last time then

12. if Decode for the first time then

13. Write file

14. else

15. Append to file

16. end if

17. goto loop.

18.else

19. Remove zero padding part of decoding result

20. if Decode for the first time then

21. Write file

22. else

23. Append to file

24. end if

25.end if

The data decoding process based on RS erasure code is

shown in Figure 3.

The main steps of the data decoding implementation

process based on the RS erasure code are as follows:

(1) Input file name. Input the file name to be decoded.

(2) Decoding preprocessing. Read the content of the

corresponding encoded information file according to the input

file name. Store the read content in the dictionary. Obtain any

k remaining files numbers of non-failed data blocks including

segmented data blocks and check redundant data blocks, and

obtain the row numbers of the remaining vectors of the

corresponding encoding matrix simultaneously.

(3) Construct Galois field.

(4) Construct encoding matrix.

(5) Obtain the residual matrix. According to the row

number of the remaining vector acquired in step (2), the

residual matrix 𝑉′ is obtained from the encoding matrix

constructed in step (4).

(6) Invert the residual matrix. We invert the residual

matrix obtained in step (5) to get (𝑉′)−1.

(7) Get file read buffer. According to the buffer

information in the encoded information obtained in step (2),

the read file buffer is confirmed.

(8) Decoding. Decode according to the existing data and

restore the source file. When encoding file data, the file is read

and encoded multiple times, and the encoding results are

combined and spliced into the encoding result file multiple

times. Therefore, it is necessary to decode according to the

logical structure of the file written when encoding. The main

steps are as follows:

1) Obtain the remaining coding block matrix. Read the

remaining files obtained in step (2). The file read buffer is

obtained in step (7). The read buffer size corresponds to the

buffer size when the file is encoded. The content of the read

file is converted into a vector, and the remaining encoding

block matrix 𝑌′ is formed in the file reading order.

2) Decoding. On the basis of the Galois field and its

multiplication, the inverse matrix (𝑉′)−1 of the residual

matrix of the encoding matrix obtained in step (6) is multiplied

with the remaining coding block matrix 𝑌′ obtained in step

1), that is, the realization of formula (9) can be obtained

decoding result matrix.

3) Write decoding results to the file. As shown in

Algorithm 4, it is necessary to consider whether this decoding

is the last decoding when each decoding result is written to a

file. If yes, it is necessary to remove the zero of the file data in

the last encoding when encoding to ensure the accuracy of the

decoding result. When the decoding result is written to the file,

the writing mode ‘wb’ needs to be selected. The file is created

if the first decoding result is written; otherwise, the writing

content is overwritten. When the non-first decoding result is

written to the file, it is directly added to the file; the file content

is spliced. The times of decoding are the times of encodings

during encoding, which can be obtained from the content of

the encoding information file in step (2).

3.5 Numba and NumPy Accelerate PyRS

NumPy can provide vectors, matrices, and higher-

dimensional data structures that perform better than Python.

Its vectorization is implemented in C and Fortran code in

intensive computing tasks, thus achieving high performance.

Numba is a speed optimization compiler for Python. It

uses the industry-standard Low-Level Virtual Machine

(LLVM) compiler library to convert Python functions into

optimized machine code at runtime. Numba can instantly

optimize Python code for arrays and math-heavy operations

through simple comments, making its performance similar to

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1605

C, C++, and Fortran without switching languages or Python

interpreters. In addition, Numba supports the NumPy library,

so PyRS can use NumPy in the programs to speed up its

overall calculations. Numba works by allowing Python

functions to be specified with type signatures for “just-in-time”

or JIT compilation at run time. The main steps of the Numba

optimization are as follows:

Step 1: The Python function is passed into the Numba

compile task, optimized, and converted to the Numba

intermediate expressions.

Step 2: Type Interference is performed on the parameters

of the Python function to determine the parameters’ types.

Step 3: The Python function is converted to LLVM

interpretable codes.

Step 4: The codes are provided to LLVM’s just-in-time

compiler to generate machine code.

Input file name

Decoding

preprocessing

Construct Galois

field

Construct encoding

matrix

Obtain residual

matrix

Invert the residual

matrix

Get file read buffer

Obtain the remaining

coding block matrix

Decoding

Remove the filled zeros from the

decoding result

[Last decoding]

[Not

last decoding]
Write data to the file

Append data to the

file

[First

decoding]

[Not first decoding]

Write data to the file

Append data to the file

[First

decoding]
[Not first decoding]

Figure 3. Activity diagram of data decoding process

4 Experiments

4.1 Machines for Experiments

We employed two machines for experimentation. Both

machines are standard machines with 4 CPUs and 4GB of

random memory. The first machine is a Dell workstation with

an Intel(R) Core(TM) 4 CPU running at 2.30GHz with 4GB

of RAM, a 32KB L1 cache, a 256KB L2 cache, and a 3MB L3

cache. The operating system is Linux version 3.10.0-

957.el7.x86_64.

The second machine is a Lenovo workstation with Intel(R)

Core(TM) 4 CPUs running at 2.20GHz with 4GB of RAM, an

L1 cache of 32KB, an L2 cache of 256KB, and an L3 cache of

3MB. The operating system is Microsoft Windows 7 version

6.1.7601 Service Pack 1 Build 7601.

On either of the two machines, the encoder or decoder is

executed while no other user programs are being executed.

1606 Journal of Internet Technology Vol. 23 No. 7, December 2022

4.2 Performance Comparison with Jerasure on

Linux Platform

PyRS is compared with the Jerasure library whose

execution environment is the Linux platform. To ensure the

comparability and accuracy of the experimental data, both

PyRS and Jerasure are tested on the Centos7 platform with 4G

memory and a total number of processor cores of 4. The

encoding parameters are buffer bufferSize=1024*1024*10

(10MB), number of file segmented blocks k=4, number of

redundancy check blocks m=2.

4.2.1 Encoding/Decoding Speed Comparison

The encoding/decoding speed comparison experiment

results of PyRS and Jerasure library are shown in Table 2. The

line diagrams corresponding to Table 2 are shown in Figure 4.

(a) PyRS and Jerasure encoding time-consuming time

 (b) PyRS and Jerasure decoding time-consuming time

Figure 4. PyRS and Jerasure time-consuming line diagrams

on Linux platform

Table 2. Jerasure library and PyRS encoding/decoding time-

consuming experiment results

File size

 (MB)

Jerasure PyRS

Encoding

(seconds)

Decoding

(seconds)

Encoding

(seconds)

Decoding

(seconds)

10 0.89 0.81 0.78 0.98

20 1.7 1.56 1.72 0.93

30 2.8 2.4 1.49 1.05

40 3.47 3.39 1.25 1.15

50 4.52 4.23 1.33 1.37

60 5.28 5.09 1.44 1.53

70 6.16 6.18 1.60 1.68

80 7.49 7.04 1.55 1.79

90 8.42 8.24 1.66 1.97

100 11.19 8.93 1.84 2.07

110 12.03 9.03 1.77 2.09

120 16.62 10.36 1.85 2.69

130 17.39 11.21 2.17 2.49

In Figure 4, the encoding/decoding time of Jerasure is

significantly higher than that of PyRS, and with the increase

of file size, the encoding/decoding time gap between Jerasure

and PyRS keeps increasing.

4.2.2 CPU Usage Comparison

PyRS compares CPU usage with Jerasure. In this paper,

we design a program to collect the local CPU usage at an

interval of 0.1 seconds when the file is being encoded or

decoded. At the end of the file encoding or decoding, the

collecting of CPU usage also follows end. The average value

of CPU usage during encoding or decoding is taken as the

CPU usage rate. The experimental results are shown in Table

3. The line diagrams corresponding to Table 3 are shown in

Figure 5.

Table 3. CPU usage rate collection results of

encoding/decoding of PyRS and Jerasure

File size

(MB)

Jerasure PyRS

Encoding Decoding Encoding Decoding

10 27.6% 25.5% 28.3% 29.6%

20 25.2% 25.7% 30.2% 24.8%

30 26.3% 25.7% 27.6% 27.2%

40 25.0% 25.8% 27.3% 24.2%

50 25.5% 25.5% 26.9% 26.2%

60 26.8% 26.4% 23.4% 26.0%

70 28.4% 25.3% 34.4% 25.5%

80 27.7% 28.7% 26.4% 25.2%

90 28.3% 32.6% 25.3% 24.3%

100 24.5% 26.5% 23.8% 26.3%

110 24.5% 26.5% 24.4% 24.2%

120 47.8% 26.2% 23.4% 26.1%

130 27.9% 25.7% 27.8% 25.0%

In Figure 5, bufferSize is the value set in PyRS and

Jerasure library during encoding and decoding, so there is a

certain amount of data in file reading and writing, encoding

calculation, and decoding calculation of PyRS and Jerasure.

Therefore, when file encoding and decoding, the CPU usages

of PyRS and Jerasure are stable.

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1607

(a) PyRS and Jerasure encoding CPU usage line chart

(b) PyRS and Jerasure decoding CPU usage line chart

Figure 5. PyRS and Jerasure CPU usage line chart on Linux

platform

4.2.3 Memory Usage Comparison

Table 4. Memory usage rate collection results of

encoding/decoding of PyRS and Jerasure
File Jerasure PyRS

size(MB) Encoding Decoding Encoding Decoding

10 29.9% 30.2% 32.5% 32.5%

20 29.9% 30.1% 32.7% 32.7%

30 29.9% 30.1% 27.6% 33.3%

40 29.9% 30.1% 33.5% 33.5%

50 29.9% 30.1% 33.7% 33.8%

60 29.9% 30.1% 33.9% 33.9%

70 29.8% 30.1% 34.1% 33.9%

80 29.8% 30.1% 34.5% 34.0%

90 29.8% 30.1% 34.6% 34.0%

100 29.7% 30.1% 34.6% 34.2%

110 29.7% 30.1% 34.6% 34.2%

120 29.9% 30.1% 34.7% 34.2%

130 30.2% 30.1% 34.7% 34.0%

PyRS compares memory usage with the Jerasure library.

In this paper, we design a program to collect the local memory

usage at an interval of 0.1 seconds when the file is being

encoded or decoded. At the end of the file encoding or

decoding, the collecting of memory usage for the file encoding

or decoding also follows the end. The average value of

memory usage during encoding or decoding is taken as the

memory usage rate. The experimental results are shown in

Table 4. The line diagrams corresponding to Table 4 are

shown in Figure 6.

(a) PyRS and Jerasure library encoding memory line chart

(b) PyRS and Jerasure library decoding memory line chart

Figure 6. PyRS and Jerasure memory usage line charts

In Figure 6, Jerasure and PyRS are limited by the

parameter of bufferSize set before the encoding and decoding

during the encoding and decoding process. The two kinds of

memory usages are stable in the encoding and decoding

process.

4.2.4 Experimental Analysis

In Table 2, compared with Jerasure library, the

encoding/decoding time of PyRS is significantly less than that

of Jerasure. When the file size is 120MB, the

encoding/decoding time of Jerasure library is 8 times as much

as that of PyRS. Therefore, PyRS performs better than

Jerasure in terms of speed. For Jerasure, the encoding time is

always greater than the decoding time, and when the file size

is less than 90MB, the encoding and decoding time are very

close. As the file size increases, the ratio of encoding and

decoding time is always larger. When the file size is 120MB,

the ratio is 1.6. But for PyRS, the encoding time is less than

the decoding time in most cases, and the two values are very

close, and the difference between them is very small. And

with the increase of file size, the encoding time is less than the

decoding time. The ratio of encoding and decoding time does

not increase with the increase of file size, and the value of the

ratio changes little.

1608 Journal of Internet Technology Vol. 23 No. 7, December 2022

In Table 3, Jerasure has a significant change in CPU usage

during encoding, but the CPU usage is equivalent to PyRS

generally. In decoding, the CPU usage of PyRS is almost equal

to Jerasure. The CPU usage remains around 25% in most cases.

PyRS and Jerasure library have almost the same CPU resource

usage. For Jerasure and PyRS, the difference between the

encoding and decoding CPU usage rate is small.

In Table 4, the encoding and decoding memory usage rates

of PyRS are almost equivalent, as is the Jerasure library.

Compared with Jerasure, the memory usage rate of PyRS is

slightly larger, but for 4G memory, this gap can be ignored.

For Jerasure, the system memory usage rate is maintained at

about 30%. For PyRS, the system memory usage rate is

maintained at about 35%. Therefore, the memory load of

PyRS is not high. Compared with Jerasure, PyRS has a little

higher memory usage rate in the encoding and decoding

process, with a difference of about 5%. For Jerasure and PyRS,

the difference between the encoding and decoding memory

usage rate is small.

4.3 Test PyRS on the Windows Platform

To compare the performance of PyRS on Linux and

Windows platforms, PyRS is tested on the Windows7

platform with the same memory of 4G and a total number of

processor cores of 4. The experimental results of PyRS on the

Centos7 platform in Section 5.2.1 are selected as the

experimental results of PyRS on the Linux platform. To ensure

the comparability of the experimental results, PyRS is tested

on the Windows7 platform by choosing the same coding

parameters as the Centos7 platform test in Section 5.2.1.

4.3.1 Encoding/Decoding Speed Comparison

Table 5 compares the encoding and decoding time-

consuming of PyRS on the Linux and Windows platforms.

The corresponding line chart in Table 5 is shown in Figure 7.

Table 5. Linux platform and Windows platform, PyRS

encoding/decoding Time-Consuming

File size

(MB)

Windows Linux

Encoding

(seconds)

Decoding

(seconds)

Encoding

(seconds)

Decoding

(seconds)

10 0.56 0.79 0.78 0.98

20 0.95 0.88 1.72 0.93

30 1.04 1.01 1.49 1.05

40 1.09 1.08 1.25 1.15

50 1.17 1.19 1.33 1.37

60 1.24 1.35 1.44 1.53

70 1.40 1.40 1.60 1.68

80 1.44 1.48 1.55 1.79

90 1.47 1.60 1.66 1.97

100 1.53 1.69 1.84 2.07

110 1.58 1.77 1.77 2.09

120 1.75 1.87 1.85 2.69

130 2.20 2.07 2.17 2.49

In Figure 7, the encoding and decoding time-consuming of

PyRS on the Windows and Linux platforms have a small gap

of milliseconds, which can be ignored.

(a)PyRS encoding time-consuming line chart

(b)PyRS decoding time-consuming line chart

Figure 7. PyRS encoding and decoding time-consuming line

charts on the Windows and Linux platforms

4.3.2 CPU Usage Comparison

The same method used in Sections 5.2.2 is adopted to

collect the CPU usage rate during PyRS encoding and

decoding, and the collection results are shown in Table 6.

Figure 8 is the corresponding line diagram.

Table 6. CPU usage rate of PyRS encoding/decoding on

Windows and Linux platforms
File size Windows Linux

(MB) Encoding Decoding Encoding Decoding

10 46.43% 50.37% 28.3% 29.6%

20 49.11% 51.78% 30.2% 24.8%

30 48.96% 49.99% 27.6% 27.2%

40 48.23% 50.31% 27.3% 24.2%

50 48.41% 51.11% 26.9% 26.2%

60 48.42% 52.14% 23.4% 26.0%

70 48.51% 50.00% 34.4% 25.5%

80 47.87% 52.25% 26.4% 25.2%

90 53.57% 54.38% 25.3% 24.3%

100 49.29% 50.58% 23.8% 26.3%

110 54.28% 53.29% 24.4% 24.2%

120 52.95% 52.78% 23.4% 26.1%

130 50.65% 54.34% 27.8% 25.0%

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1609

(a) Line chart of CPU usage of PyRS encoding

(b) Line chart of CPU usage of PyRS decoding

Figure 8. Line diagram of PyRS CPU usage on Windows and

Linux platforms

4.3.3 Memory Usage Comparison

The same method used in Sections 4.2.3 is adopted to

collect the system memory usage rate during PyRS encoding

and decoding, and the collection results are shown in Table 7.

Figure 9 is the corresponding line diagram.

Table 7. Memory usage rate of PyRS encoding and decoding

on Windows and Linux platforms

File size

(MB)

Windows Linux

Encoding Decoding Encoding Decoding

10 20.68% 20.53% 32.5% 32.5%

20 21.06% 20.84% 32.7% 32.7%

30 21.69% 21.43% 27.6% 33.3%

40 22.41% 21.90% 33.5% 33.5%

50 23.18% 22.21% 33.7% 33.8%

60 23.78% 22.66% 33.9% 33.9%

70 24.70% 23.17% 34.1% 33.9%

80 25.65% 23.85% 34.5% 34.0%

90 26.28% 24.15% 34.6% 34.0%

100 26.93% 24.55% 34.6% 34.2%

110 26.97% 25.15% 34.6% 34.2%

120 25.47% 26.22% 34.7% 34.2%

130 26.95% 26.82% 34.7% 34.0%

(a) Line chart of Memory usage of PyRS encoding

(b) Line chart of Memory usage of PyRS decoding

Figure 9. Line diagram of PyRS Memory usage on Windows

and Linux platforms

4.3.4 Experimental Analysis

In Table 5, for PyRS on Windows, the encoding and the

decoding time are very close, and the difference between them

is very small. And the ratio of encoding and decoding time

does not increase with the increase of file size, and the value

of the ratio changes very little. The speed of PyRS on the

Windows platform and the Linux platform is almost

equivalent.

Table 6 shows that the CPU usage rate of PyRS encoding

and decoding on the Windows platform is higher than it on

Linux. The system CPU usage rate of PyRS on Windows is

maintained at about 50%, but it is about 25% on Linux. Table

7 shows that the memory usage rate of PyRS encoding and

decoding on the Windows platform is not high. The system

memory usage rate is maintained at about 25% on Windows,

but it is about 35% on Linux. Both on Windows and Linux,

the system CPU and memory usage is stable and is not affected

by the file size.

5 Conclusion

This paper designs and implements an Erasure Code

library PyRS based on RS Erasure Code for Windows and

Linux platforms. PyRS, developed in Python, has the

1610 Journal of Internet Technology Vol. 23 No. 7, December 2022

advantages of cross-platform, simple operation, and easy

environment configuration. In addition, PyRS ensures the

accuracy of the data through the Galois field and speeds up

encoding and decoding using Numba and NumPy libraries.

After the test, PyRS is up to 8 times faster than Jerasure in the

same Linux environment. PyRS has a CPU usage comparable

to Jerasure. Compared to Jerasure, PyRS has a higher memory

usage with a memory footprint difference of about 5%. And it

can be seen from the experimental results that PyRS has the

same speed on the Windows platform as on the Linux platform,

and the CPU and memory load of PyRS is not high.

Future research will focus on supporting 16-bit or 32-bit

words in the Galois field, using the Cauchy matrix to construct

a generation matrix for encoding and decoding, and storing

encrypted k+m data blocks in a distributed system or multi-

cloud storage system.

Acknowledgment

This work was supported by Foundation of Hebei

University of Science and Technology under Grant 2019-

ZDB02.

References

[1] J. S. Plank, Erasure codes for storage systems: A brief

primer, login: the magazine of USENIX & SAGE, Vol.

38, No. 6, pp. 44-50, December, 2013.

[2] L. Yang, L. Ma, C. A. Lv, Y. Li, M. Shang, F. Tong, On

Dynamic Replication Strategies of HDFS Cloud Storage

Based on RS Erasure Codes, Technology Innovation and

Application, Vol. 8, No. 24, pp. 38-39, August, 2018.

[3] H. Weatherspoon, J. D. Kubiatowicz, Erasure Coding Vs.

Replication: A Quantitative Comparison, International

Workshop on Peer-to-Peer Systems (IPTPS), Cambridge,

MA, USA, 2002, pp. 328-337.

[4] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P.

Gopalan, J. Li, S. Yekhanin, Erasure Coding in Windows

Azure Storage, Proceedings of the 2012 USENIX

conference on Annual Technical Conference, Boston,

MA, USA, 2012, pp. 1-12.

[5] S. Muralidhar, W. Lloyd, S. Roy, C. Hill, E. Lin, W. Liu,

S. Pan, S. Shankar, V. Sivakumar, L. Tang, S. Kumar, f4:

Facebook’s Warm BLOB Storage System, Proceedings

of the 11th USENIX conference on Operating Systems

Design and Implementation (OSDI’14), Broomfield,

CO, USA, 2014, pp. 383-398.

[6] J. S. Plank, S. Simmerman, C. D. Schuman, Jerasure: A

Library in C/C++ Facilitating Erasure Coding for

Storage Applications Version 1.2, Technical Report CS-

08-627, August, 2008.

[7] X. Chu, C. Liu, K. Ouyang, L. S. Yung, H. Liu, Y.-W.

Leung, PErasure: a Parallel Cauchy Reed-Solomon

Coding Library for GPUs, IEEE International

Conference on Communications (ICC), London, UK,

2015, pp. 436-441.

[8] S. Dai, X. Li, CUDA-based Performance Optimization

of RS Erasure Coding, Microcomputer Applications, Vol.

32, No. 1, pp. 70-72, January, 2016.

[9] L. Zhou, The Research and Application on Reed-

Solomon Codes Based on Distributed Storage System,

Master’s Thesis, Chengdu University of Technology,

Chengdu, China, 2017.

[10] X. Gong, C. W. Sung, Zigzag Decodable codes: Linear-

time erasure codes with applications to data storage,

Journal of Computer and System Sciences, Vol. 89, pp.

190-208, November, 2017.

[11] C. Liu, Q. Wang, X. Chu, Y.-W. Leung, G-CRS: GPU

Accelerated Cauchy Reed-Solomon Coding, IEEE

Transactions on Parallel and Distributed Systems, Vol.

29, No. 7, pp. 1484-1498, July, 2018.

[12] W. Liu, N. Zhou, X. Gao, L-Code: An Efficient Coding

Scheme for Recovering Single Disk Failure, 2018 8th

International Conference on Electronics Information

and Emergency Communication (ICEIEC), Beijing,

China, 2018, pp. 108-111

[13] X. Xie, C. Wu, J. Gu, H. Qiu, J. Li, M. Guo, X. He, Y.

Dong, Y. Zhao, AZ-Code: An Efficient Availability

Zone Level Erasure Code to Provide High Fault

Tolerance in Cloud Storage Systems, 2019 35th

Symposium on Mass Storage Systems and Technologies

(MSST), Santa Clara, CA, USA, 2019, pp. 230-243.

[14] H. Qiu, C. Wu, J. Li, M. Guo, T. Liu, X. He, Y. Dong, Y.

Zhao, EC-Fusion: An Efficient Hybrid Erasure Coding

Framework to Improve Both Application and Recovery

Performance in Cloud Storage Systems, 2020 IEEE

International Parallel and Distributed Processing

Symposium (IPDPS), New Orleans, LA, USA, 2020, pp.

191-201.

[15] Y. Fang, S. Wang, H. Tan, X. Zhang, J. Zhang, CLRC: a

New Erasure Code Localization Algorithm for HDFS,

2021 International Conference on Computer

Engineering and Artificial Intelligence (ICCEAI),

Shanghai, China, 2021, pp. 62-65.

[16] S. S. Arslan, Founsure 1.0: An erasure code library with

efficient repair and update features, SoftwareX, Vol. 13,

pp. 1-12, January, 2021.

[17] X. Li, R. Sun, J. Liu, Overview of Fault-tolerant

Techniques in Distributed Storage Systems, Radio

Communications Technology, Vol. 45, No. 5, pp. 463-

475, July, 2019.

[18] P. Li, J. Li, R. J. Stones, G. Wang, Z. Li, X. Liu, ProCode:

A Proactive Erasure Coding Scheme for Cloud Storage

Systems, 2016 IEEE 35th Symposium on Reliable

Distributed Systems (SRDS), Budapest, Hungary, 2016,

pp. 219-228.

[19] R. Li, X. Li, P. P. C. Lee, Q. Huang, Repair Pipelining

for Erasure-Coded Storage, Proceedings of the 2017

USENIX Annual Technical Conference (USENIX ATC

2017), Santa Clara, CA, USA, 2017, pp. 567-579.

[20] L. Zheng, X. Li, Low-cost Multi-node Failure Repair

Method for Erasure Codes, Computer Engineering, Vol.

43, No. 7, pp. 110-118+123, July, 2017.

[21] L. Sun, Y. Su, C. Zhang, T. Zhang, Research on Fault-

Tolerant Method of Erasure Code for Distributed

Storage System, Computer Engineering, Vol. 45, No. 11,

pp. 74-80, November, 2019.

[22] Y. Tang, F. Wang, Y. Xie, An Efficient Failure

Reconstruction Based on In-Network Computing for

Erasure-Coded Storage Systems, Journal of Computer

Research and Development, Vol. 56, No. 4, pp. 767-778,

April, 2019.

[23] I. S. Reed, G. Solomon, Polynomial Codes over Certain

Finite Fields, Journal of the Society for Industrial and

javascript:;

PyRS: Cross-platform Data Fault-tolerant Storage Library Based on RS Erasure Code 1611

Applied Mathematics, Vol. 8, No. 2, pp. 300-304, June,

1960.

[24] Y. Chen, S. Mu, J. Li, C. Huang, J. Li, A. Ogus, D.

Phillips, Giza: Erasure Coding Objects across Global

Data Centers, Proceedings of the 2017 USENIX Annual

Technical Conference (USENIX ATC ’17), Santa Clara,

USA, 2017, pp. 539-551.

Biographies

Junqiang Ma is currently a lecturer with

Department of Electrical Engineering,

Hebei Vocational University of Technology

and Engineering, Xingtai Hebei, China. His

research interest is computer control

technology.

Weihao Yan is currently pursuing the

master’s degree with the Hebei University of

Science and Technology. His research

interests include data processing and

security, image detection.

Xiaotian Zhang is currently pursuing the

master’s degree with the Hebei University

of Science and Technology. His research

interests include machine learning and deep

learning.

Min Huang is currently an associate

professor with School of Information

Science and Engineering, Hebei University

of Science and Technology. His research

interests include machine learning, data

processing and security, artificial

intelligence.

Jingyang Wang is currently a Professor

with School of Information Science and

Engineering, Hebei University of Science

and Technology. His research interests

include machine learning, big data

processing and distributed system.

