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Abstract 
 

The aim of Sudoku puzzle is to fill in the blank cells in a 

square matrix consisting of nine 3x3 blocks with the numbers 

1-9 in a way that no number appears more than once in any 

row, column, or block. We combined image processing, a 

convolutional neural network (CNN), and a Sudoku game 

algorithm to automatically place the numbers 1-9 in the blank 

cells of a Sudoku square matrix. An image of the Sudoku 

square matrix is first captured using a camera, and then the 

vertical lines, horizontal lines, and outer frame of the Sudoku 

square matrix are detected using Hough transform (HT). 

Based on the OpenCV module, we proposed an image 

processing algorithm that captures the numbers in the image 

and calculates the location coordinates of the numbers in the 

image. We trained the CNN using the MNIST handwritten 

digit dataset to recognize the numbers in the Sudoku square 

matrix. Finally, we used the Python programming language to 

design a Sudoku puzzle backtrace algorithm that automatically 

deduces and fills in the blank cells in the square matrix. This 

study provides further understanding of the critical operating 

principles of CNNs and lays down a foundation for future 

research. 

 

Keywords: Sudoku, Convolutional neural network, Hough 

transform, MNIST dataset, OpenCV 

 

1 Introduction 
 

Sudoku, meaning “number place” in its original language, 

is an intellectual game involving logical thinking to fill in 

numbers. The rules of the game are simple, and it requires only 

a pen to write the numbers 1-9 on a paper card. No other 

equipment is needed. The game swept the world over two 

decades ago and remains one of the most popular games. 

Sudoku involves a 9×9 grid, that is, a number puzzle with nine 

rows and nine columns containing a total of 81 cells. The grid 

also comprises nine 3×3 subgrids, also known as “blocks”, 

each of which consists of nine cells. At the beginning of the 

game, a portion of the numbers is already filled in as hints. 

This is called the “base grid”, as shown in Figure 1. The 

objective is to fill the cells with the numbers 1 through 9 so 

that each number appears only once in each row, column, and 

block [1]. Each base grid has a single solution, and for this 

reason, it is called Sudoku, which means “single number”. The 

completed Sudoku grid with all of the cells filled is called the 

“solution grid”, as shown in Figure 2, which means that this 

level has been successfully cleared [2]. 

 

 

Figure 1. Base grid of Sudoku 

 

 

Figure 2. Solution grid of Sudoku 

 

We adopted the Hough transform (HT) to search for the 

lines bordering the rows, columns, and frames in the image of 

a Sudoku game and then covered them using white lines so 

that the base grid looked like the grid in Figure 3. HT was first 

proposed by Paul Hough [3] in 1962 and then promoted by 

Duda and Hart [4] in 1972. HT is a feature extraction 

technique in image processing and is a way of detecting 

geometric shapes within images. It maps feature points in the 

image space to a parameter space for voting, and by testing the 

regional extreme points of the accumulated results, a set of 

points that fit a certain shape is obtained. For instance, curves 

or straight lines with the same shape in a space are mapped to 
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a point in the parameter space to form peak values, thereby 

converting a problem in arbitrary shape detection into a 

problem in peak value statistics. The classical HT is used to 

detect straight lines in images. HT was later expanded to 

identify circles [5], ellipses [6], and even arbitrary shapes. 

 

 

Figure 3. Image of covered lines 

 

HT has always held an important place in image 

processing because it perfectly combines image data and 

mathematical geometry. It uses the cold and massive pixel 

data in the image space, maps the data to the parameter space 

using mathematical deduction, and accumulates the local 

maxima via voting to obtain feature parameters that fit certain 

shape points. For instance, lines such as slopes and intercepts 

require a two-dimensional parameter space. Detecting circle 

patterns, including the center and radius, requires a three-

dimensional parameter space. Detecting an ellipse, including 

the center, radius, and the major and minor axes, requires a 

five-dimensional parameter space. Clearly, the conventional 

HT would require massive spatial complexity when it comes 

to detecting lines, circles, and ellipses. Voting in a 

multidimensional parameter space requires tremendous 

memory space and imposes a heavy computing load. Random 

Hough transform (RTH) [7] and gradient Hough transform [8] 

are basically modifications of the conventional HT, developed 

to reduce the computing load. For instance, the basic thought 

process of using conventional HT to detect circles is based on 

the premise that all of the non-zero pixels in the image are 

believed to be potential points on the circle. Thus, all non-zero 

pixels must be mapped via the parameter space to form a 

parameter trajectory, and votes are then accumulated to 

determine the local maxima of the three-dimensional space 

parameters. The maxima can be considered the center and 

radius of the detected circle. RHT first analyzes geometric 

properties to determine candidate circles and avoids wasting 

time on accumulating votes for each non-zero pixel. This 

effectively shortens the processing time and reduces the 

amount of memory storage space needed. 

In the field of image processing, numbers or letters are 

often the targets of detection and capture, such as license 

plates [9], invoice numbers, checks, or check digits. There are 

a number of ways to identify digits and letters in images. 

Akhtar (2020) [10] proposed an approach to processing 

vehicle license plates; after an image is captured using a 

camera, it is subjected to a process of four steps: pre-

processing, plate positioning, digit segmentation, and digit 

recognition. Pre-processing augments the image to facilitate 

subsequent processing. Plate positioning extracts the license 

plate region from the image. Digit segmentation separates the 

individual digits from the extracted plate region. A random 

forest classification algorithm then identifies the digits. 

Experimental results have indicated that this approach could 

reach an accuracy rate of 90.9%. Regarding the image 

segmentation methods in image processing, histogram-based 

methods are highly efficient, needing only to scan an entire 

image once and total the pixels in all of the rows (x coordinates) 

to establish a histogram of the image before classifying the 

peaks and valleys in the image. The contour extraction 

algorithm proposed by Suzuki (1985) [11] is also an effective 

approach, often used to capture the digits in images and 

screened using the area of the contour. For instance, all 81 

cells can be obtained in the grid displayed in Figure 1, and any 

black pixels in each cell are then detected. If the pixels are 

greater than the set threshold (eliminating noise), then whether 

a digit exists within the cell can be confirmed. Finally, contour 

extraction is again ap-plied to the cells containing digits to 

obtain the digital contours and contour bounding rectangle 

[12]. 

Machine learning (ML) and deep learning (DL) were both 

derived from artificial intelligence. The relationships among 

the three can be expressed using the yin-yang symbol in Figure 

4. The circle of the yin-yang symbol is divided into two 

interlocking “fish”, called the yin fish and the yang fish, by an 

S-like curve serving as the boundary. The head of the yang 

fish contains a yin eye, and the head of the yin fish contains a 

yang eye, signifying that mutual conversion exists among all 

things. This also means that there is yang in yin and yin in 

yang in this symbol, conveying that a mutual trade-off also 

exists among all things. This figure indicates that not only does 

a mutual trade-off exist between ML and DL during their 

development processes, but there is also mutual conversion. 

 

Deep
Learning

Machine
Learning

 

Figure 4. The relationship of ML/DL 

 

In the 1980s, research on artificial neural networks 

stagnated due to limitations in the computing capabilities of 

computers. Research on ML, in contrast, became extremely 

fruitful. Nine classic algorithms, including linear regression, 

logistic regression, support vector machine (SVM), k-nearest 

neighbors (KNN), k-means, naive Bayes classifiers, decision 

trees, random forest, and gradient boosting trees (GBT) [13], 

were all proposed during this period. In recent years, AI has 

led to the rapid enhancement and popularization of computer 

hardware, the internet, various sensors, cloud computing, and 

big data. After NVIDIA created Compute Unified Device 

Architecture (CUDA), computers were able to perform rapid 
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calculations using graphics processing units (GPUs), thereby 

enabling DL to flourish. 

Minsky (1969) [14] proved that in essence, single-layer 

sensors are just one type of linear model and cannot accurately 

classify (e.g., XOR classification) nonlinear problems. 

Rumelhar and Hinton (1986) [15] proposed multilayer 

perceptrons (MLPs), adding a hidden layer between input 

layers and output layers, as shown in Figure 5. Using MLPs to 

construct backpropagation (BP) algorithms can effectively 

solve the problem of nonlinear classification and learning. 

Hecht-Nielsen (1989) [16] demonstrated that the continuous 

functions in any closed interval can be approximated using a 

BP net-work containing a hidden layer. LeCun (1989) [17] 

proposed the convolutional neural network (CNN) framework 

LeNet-5, which uses BP for training. Reference [18] used the 

LeNet-5 model to establish a DL machine that can recognize 

handwritten text and successfully applied it to a check 

recognition system, again demonstrating the feasibility of the 

CNN framework. Salakhutdinov et al. (2006) [19] proposed 

the Restricted Boltzmann machine (RBM) model, and Hinton 

et al. (2006) [20] proposed the Deep Belief Network (DBN), 

in which multilayer neural networks were successfully trained. 

This was officially named deep learning (DL). 

 

 

Figure 5. A multilayer perceptron (MLP) 

 

Yann LeCun, the founding father of CNNs, was the first to 

use CNNs and the Modified National Institute of Standards 

and Technology (MNIST) database [21] to achieve handwrit-

ten digit recognition. The MNIST dataset, collected by LeCun 

et al., comprises 60,000 items of training data and 10,000 

items of test data. Each data item in the MNIST dataset 

contains images (images of digits) and labels (the true digits). 

Each digit image consists of 28×28 pixels, which equals 784 

pixels. Figure 6 shows some examples in the MNIST dataset. 

To reduce data collection time and accelerate the application 

needs of real-time recognition, we used the MNIST dataset 

and computer fonts that we established ourselves (shown in 

Figure 7) as samples for neural network training. 

 

 

Figure 6. MNIST handwritten dataset 

 

Symbol
10

Symbol
11

Symbol
12

Symbol
13

Symbol
14

Symbol
15

Symbol
16

Symbol
17

Symbol
18

Symbol
19

Symbol
00

Symbol
01

Symbol
02

Symbol
03

Symbol
04

Symbol
05

Symbol
06

Symbol
07

Symbol
08

Symbol
09

Symbol
20

Symbol
21

Symbol
22

Symbol
23

Symbol
24

Symbol
25

Symbol
26

Symbol
27

Symbol
28

Symbol
29

Symbol
30

Symbol
31

Symbol
32

Symbol
33

Symbol
34

Symbol
35

Symbol
36

Symbol
37

Symbol
38

Symbol
39

Symbol
40

Symbol
41

Symbol
42

Symbol
43

Symbol
44

Symbol
45

Symbol
46

Symbol
47

Symbol
48

Symbol
49

Symbol
50

Symbol
51

Symbol
52

Symbol
53

Symbol
54

Symbol
55

Symbol
56

Symbol
57

Symbol
58

Symbol
59  

Figure 7. Self creating computer font dataset 

 

CNNs imitate the way that the human brain works and are 

neural networks consisting of multiple layers. An entire CNN 

mainly consists of several parts: convolution layers, pooling 

layers, and fully connected layers [22]. The purpose of the 

convolution layers is to preserve the spatial arrangements of 

the image and obtain local images to serve as input features, 

which then take the CNN model from point comparison to 

two-dimensional local comparisons. Via the gradual stacking 

and comprehensive comparison of the features in a region, 

better recognition results can be derived. The purpose of the 

pooling layer is to compress images while preserving the 

important in-formation in the images, which can gradually 

eliminate redundant information and lighten the computing 

load on the neural network. The principle of convolutions is to 

slide a window with designated dimensions from left to right 

and from top to bottom in an orderly fashion to obtain the sum 

of the products of local regions in the images. This sliding 

window is referred to as a convolution kernel, also known as 

a filter, which can obtain features in the images. In Figure 8, 

for instance, there are five “   ” feature symbols that can be 

detected by the 3×3 kernels (or filters) in the image. With the 

original image, window sliding generates the extracted feature 

map, which contains the locations of the “   ” features. The 

operations of CNN convolution layers involve two important 

characteristics: local connectivity and weight sharing, which 

can reduce the computing load of the neural network [23]. The 

purpose of the pooling layer is to obtain the maximum value 

wherever the sliding window passes to achieve image 

downsampling so that the original image is scaled down n 

times, thereby shortening the time needed for subsequent 

calculations. Figure 9 illustrates that the pooling results enable 

the CNN to only consider whether recognition features appear 

in the image, regardless of their locations. The “■” feature 

appears in the upper-left corner, the lower-right corner, and 

the middle of the image. After calculations are performed for 

the convolution layer and pooling layer,  is similarly derived, 

meaning that the feature can be detected wherever it appears 

[24]. 
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Figure 8. Convolution layer extracting image features 
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Figure 9. Characteristics of pooling layer 

 

2 Research Methods 
 

2.1 System Structure 
 

This paper combined HT, CNN, and a Sudoku game algo-

rithm to design a system that automatically places the numbers 

1-9 in the blank cells in the nine blocks of a Sudoku game card. 

It then completes the solution and automatically displays it on 

the computer screen. The structure of the system is shown in 

Figure 10. Using a webcam, the image of a Sudoku puzzle card 

is first captured, as shown in Figure 10. In a Python platform 

environment, the image undergoes preprocessing such as 

grayscale conversion and binarization to produce the image of 

a Sudoku square matrix (base grid). 

 

(Hough Transform)

(Number Capture)

(Convolutional  
Neural Network

(Sudoku Final)

PC

Web Cam

 

Figure 10. Diagram of system structure 

 

Using HT, the vertical and horizontal lines within the 

Sudoku square matrix and the outer frame are obtained. White 

lines are used to cover these lines so that only the numbers 

remain. Based on the OpenCV module, we proposed an image 

processing algorithm for digit capture to capture each of the 

numbers in the image and calculate their coordinates in the 

image. The captured numbers remain in jpg format and are 

stored in a designated disk directory. Using the Python tensor-

flow keras package, we trained the CNN with the MNIST 

handwritten dataset. Once the parameter training in the CNN 

is complete, it automatically reads the images of numbers in 

the designated disk directory for recognition. Finally, we used 

the Python programming language to design a Sudoku game 

solution method that automatically deduces and fills in the 

blank cells in the square matrix. 

 

2.2 Hough Transform (HT) 
 

In real-life applications, Cartesian coordinate systems 

cannot be chosen for image spaces because any special lines 

that are perpendicular to the x-axis in the image space, such as 

𝑥 = 𝑐, will have infinite slopes that cannot be expressed in the 

parameter space. Using the polar coordinates (𝜌, 𝜃) to pro-

cess HT problems is therefore the best choice as it avoids the 

issue of an infinite slope. Here, we used the Hesse normal form 

to express the polar coordinate equation and define a straight 

line, as shown in Figure 11. The  𝜌  represents the vertical 

distance between this straight line and the origin 𝑂, and 𝜃 

indicates the angle between the x-axis and the vertical line. 

From the figure, we can obtain the following relationship: 

 

cos ( )cos ( tan )cos

  cos sin .

x x y

x y

     

 

= = + = +

= +
  (1) 

 

There are roughly three types of straight lines that may 

appear in the image space: (1) lines with negative slopes and 

positive intercepts, (2) lines with positive slopes and positive 

intercepts, and (3) lines with positive slopes and negative 

intercepts, all of which are respectively shown in Figure 12(A), 

Figure 12(B), and Figure 12(C). Eq. (1) shows how polar 

coordinates are expressed using the Hesse normal form, where 

represents the vertical distance between the straight line and 

the origin 𝑂, and 𝜃 indicates the angle between the x-axis 

and the vertical line in the clockwise direction. As shown with 

the straight line in Figure 12(A), 𝜌 > 0 and 0 < 𝜃 < 90𝑜 . 

With the straight line in Figure 12(B), 𝜌 > 0  and 90𝑜 <
𝜃 < 180𝑜 . However, with the straight line in Figure 12(C), 
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𝜃 < 180𝑜. To keep 𝜃 within 180 degrees, such lines are set 

as 𝜌 < 0 and 90𝑜 < 𝜃 < 180𝑜. 

 

 

Figure 11. Expression using Hesse normal form 

 

 

Figure 12. Types of straight lines that could appear in the 

image space 

 

The algorithm of conventional HT while processing votes 

to search for local peak values is as follows. First, a cumulative 

voting matrix 𝑀 with a two-dimensional array is established 

and initialized so that all of the elements are 0. Based on the 

schematic of cumulative voting in the parameter space in 

Figure 13, the horizontal axis is set as  , and the vertical axis 

is set as 𝜌. The size of the array exerts a direct impact on the 

resolution. If 𝜃 is precise to 1 degree and the range of the 

horizontal coordinates reaches 3.14 rad, then 0-180 

graduations (n = 181) are needed. For  𝜌 , pixel m on the 

diagonal of the image can serve as the number of rows in order 

for  𝜌  to be precise to the pixel level. Based on the 

specifications above, the size of the accumulator voting matrix 

in the parameter space is 𝑀 ∈ 𝑅𝑚×𝑛. 

 

 

Figure 13. Accumulator voting matrix M 

 

Suppose that there is a straight line consisting of N pixel 

points in the image, including the two ends of the straight line, 

which are 𝐴 = (𝑎1, 𝑏1)  and  𝐵 = (𝑎𝑁 , 𝑏𝑁) , as shown in 

Figure 14. Take the first point 𝑃1 = 𝐴 = (𝑎1, 𝑏1)  on the 

straight line and substitute it into Eq. (1), which gives: 

 

 

1 1 1: cos sinL a b  = + .              (2) 

 

 

Figure 14. A straight line in the image space 

 

Because 𝜃 is precise to 1 degree, substitute 0 180−  into 

Eq. (1) to obtain 181  𝜌  values. The values pairs (𝜌0, 0), 
(𝜌1, 1), (𝜌2, 2), … , (𝜌180, 180) correspond to locations in the 

accumulator voting array M, and 1 is added to the content of 

this location, as shown in Figure 13. If substituting 𝜃 =
𝜃∗ into Eq. (1) gives 𝜌 = 𝜌∗ , then the accumulator voting 

array 𝑀(𝜌∗, 𝜃∗) = 1. Take other pixels on the straight line, 

such as 𝑃2 = (𝑎2, 𝑏2) ,...,  𝑃𝑁 = (𝑎𝑁 , 𝑏𝑁2) , and repeat the 

above process to continuously update the content of 

accumulator voting array M. Once the operations of a point on 

the straight line have been completed, 1 will be added to the 

181 elements in the accumulator array. The voting process of 

conventional HT can be analyzed as follows: 

(1) total number of votes: n N ,  

(2) candidates (size of accumulator array): m n .  

The statistics of the contents of the accumulator voting array 

can be compiled to find the maximum value. 

 

( )* *( , ) argmax ( , ) ,M   =             (3) 

 

where 0 m   and 0 n  . 

If the value of   𝑀(𝜌∗, 𝜃∗) exceeds a specific threshold, 

indicating the existence of a straight line in the image space. 

Suppose that the statistical result is  (𝜌∗, 𝜃∗) = (71,45). It 

represents that in the accumulative voting process of the 

accumulative voting array M(71,45) coordinates received the 

highest number of votes. This indicates that there is a straight 

line in the image space, and the distance from the straight line 

to the origin is 71 pixels, and the angle between its vertical line 

and x-axis being 45°, as shown in Figure 14. 

 

2.3 Number Capture 
 

To enable the computer to understand the numbers on the 

Sudoku card, we must capture the numbers on the card and 

store them in a directory folder in jpg format. Aside from cap-

turing the images of the numbers, we must also confirm where 

the numbers are located in the image. Our approach was to 

store the coordinates of the upper-left corner (𝑥1, 𝑦1) and the 

coordinates of the lower-right corner  (𝑥2, 𝑦2) on a three-

dimensional array 𝑝𝑛𝑡[𝑘][2][2], where the coordinates of 

captured number k are expressed as follows: 

 

1 1[ ][0][0] ,    [ ][0][1]pnt k x pnt k y= =   

 2 2[ ][1][0] ,    [ ][1][1]pnt k x pnt k y= = .        (4) 
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First, obtain the size of the image as 𝑐𝑜𝑙×𝑟𝑜𝑤 pixels. The 

direction of scanning to capture the numbers is from left to 

right and from top to bottom, as shown in Figure 15. 

 

 

Figure 15. Scanning for number capture 

 

[Step I] Define the initial values of the three variables as 

𝑥 = 0 ,  𝑦 = 0 ,  𝑐 = 0 . Beginning from the top of the im-

age (𝑦 = 0), scan from left to right(𝑖 = 0,1,2, … , 𝑐𝑜𝑙 − 1) 

and scan a total of 𝑐𝑜𝑙 pixels. If the entire horizontal line con-

sists of white pixels or if the black pixels are less than the de-

fault threshold value (𝑐 < 𝑡ℎ𝑑), then it is determined that 

no numbers appeared during the scanning process. Add 1 to 

the content of 𝑦 and continue to scan the next row. Repeat 

the left-to-right scanning process until the black pixels are 

greater than the default threshold value  (𝑐 ≥ 𝑡ℎ𝑑) , which 

means that numbers appeared on that horizontal line. The 

value of 𝑦 at this point equals the vertical coordinate above 

the number block . Define it as 𝑦1, and then stop scanning. 

Write the above process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙). 

[Step II] Redefine the initial values of the three variables 

as 𝑥 = 0, 𝑦 = 𝑦1 , 𝑐 = 0. Beginning from the top  of the 

number block  (𝑦 = 𝑦1 ), scan from left to right (𝑖 =
0,1,2, … , 𝑐𝑜𝑙 − 1) and scan a total of 𝑐𝑜𝑙 pixels. If the black 

pixels in the entire horizontal line are greater than the 

default threshold value (𝑐 ≥ 𝑡ℎ𝑑) , the scanning process 

spans the number part. Add 1 to the content of   𝑦  and 

continue to scan the next row. Repeat the left-to-right 

scanning process until the black pixels are less than the 

default threshold value  (𝑐 < 𝑡ℎ𝑑) , which means that the 

horizontal line has moved to the blank space below and that 

no numbers appeared during the scanning process. The value 

of 𝑦 at this point equals the vertical coordinate below the 

number block . Define it as 𝑦2, and then stop scanning. 

Write the above process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙). 

[Step III] Define the initial values of the three variables as  

𝑥 = 0, 𝑦 = 0, 𝑐 = 0. Beginning from the left of the image 

(𝑥 = 0), scan from top to 𝑦2 (𝑗 = 0,1,2, … , 𝑦2 − 1) and scan 

a total of 𝑦2 pixels. If the entire vertical line consists of white 

pixels or if the black pixels are less than the default threshold 

value (𝑐 < 𝑡ℎ𝑑) , then it is determined that no numbers 

appeared during the scanning process. Add 1 to the content of   

and continue to scan the next row. Repeat the top to 𝑦2 

scanning process until the black pixels are greater than the 

default threshold value (𝑐 ≥ 𝑡ℎ𝑑), which means that numbers 

appeared on that vertical line. The value of at this point equals 

the coordinate to the left of the number block . Define it as 

𝑥1, and then stop scanning. Write the above process into an 

𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2). 

[Step IV] Define the initial values of the three variables 

as  𝑥 = 𝑥1 ,  𝑦 = 0 ,  𝑐 = 0 . Beginning from the left of the 

number block  (𝑥 = 𝑥1) , scan from top to 𝑦2 (𝑗 =
0,1,2, … , 𝑦2 − 1) and scan a total of 𝑦2 pixels. If the entire 

vertical line consists of white pixels or if the black pixels on 

the vertical line are greater than the default threshold value 
(𝑐 ≥ 𝑡ℎ𝑑), then it is determined that the scanned line passed 

through numbers. Add 1 to the content of, and continue to 

scan the next row. Repeat the top to 𝑦2 scanning process 

until the black pixels are less than the default threshold 

value (𝑐 < 𝑡ℎ𝑑), which means that the vertical line moved 

to the blank space to the right and that no numbers appeared 

during the scanning process. The value of 𝑥 at this point 

equals the coordinate to the right of the number block . 

Define it as  𝑥2  and then stop scanning. Write the above 

process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(𝑦2). 

[Step V] From [Steps I-IV], we can obtain the number “1” 

in the upper-left part of the image in Figure 15(A) and place 

the coordinates of the upper-left corner (𝑥1, 𝑦1)  and the 

lower-right corner (𝑥2, 𝑦2)  in a three-dimensional array 

𝑝𝑛𝑡[𝑘][𝑖][𝑗] , where  𝑘  represents the number of digits 

captured,  𝑖 = 0, 1 ,  𝑗 = 0, 1 . Currently, the algorithm cuts 

out images of the numbers using the coordinates of four 

points. If the image just precisely covers the number, it 

could affect the subsequent recognition performance of the 

neural network. We therefore moved the edges of the left, 

right and top, bottom to a distance  (Δ𝑥, Δ𝑦) outward before 

cutting for better recognition performance, as shown in 

Figure 15(B). 

[Step VI] After cutting out the number in the upper left 

corner of the image, store it in a jpeg file. According to the 

upper-left corner coordinates (𝑥1, 𝑦1)  and the lower-right 

corner coordinates  (𝑥2, 𝑦2) of the number, create a white 

block to cover the original digit.  

[Step VII] Repeat [Steps I-VI] to capture the next 

number. 

 

2.4 Convolutional Neural Networks (CNNs) 
 

CNNs are multilayer perceptrons (MLPs) similar to neural 

networks. Conventional DL networks use fully connected 

networks to recognize images. Two dimensional images must 

be decomposed into one dimension, and then each pixel is 

regarded as a feature and input into a deep neural network 

framework for training and learning. However, these input 

pixels lose their original spatial arrangement information. The 

purpose of the convolution layer in CNNs is to preserve the 

spatial arrangements of the image and obtain local images to 

serve as input features, which then take the CNN model from 

point comparison to two-dimensional local comparisons. 

Though the gradual stacking and comprehensive comparison 

of the features in a region, better recognition results can be 

derived. An entire CNN mainly consists of several parts: 

convolution layers, pooling layers, and fully connected layers. 

The convolution layer uses a window with designated 

dimensions sliding from left to right and from top to bottom in 

an orderly fashion to obtain the sum of the products of local 

regions in the images. A ReLU activation function outputs the 

feature values and then provides them to the next network. 

This sliding window is referred to as a convolution kernel, 

which is also known as a filter. Based on the original image, 

an-other simplified image (the feature map) is generated to 

extract image features. The operations of CNN convolution 

layers involve two important characteristics: local 

connectivity and weight sharing, which can reduce the 
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computing load of the neural network. The pooling layer is a 

way of compressing images while preserving important 

information. Via image down-sampling, the original image is 

scaled down. The objective of the down-sampling in the 

pooling layer is to reduce redundant information in the feature 

map without affecting the performance of image feature 

recognition and to shorten the time needed for subsequent 

computation. 

Figure 16 displays the structure of a CNN. The source 

images were 28×28 pixel images, and Convolution layer 1 

was given six kernels or filters. These six filters also 

generated images of six corresponding feature maps. The 

convolution operations did not change the size of the 

images; thus, they were still 28×28 pixels. Pooling layer 1 

performed down-sampling once, shrinking the six 28×28 pixel 

images to six 14×14 pixel images. Convolution layer 2 was 

given 16 kernels, generating 16 feature maps that were still 

14×14 pixels. Pooling layer 2 performed the second downsam-

pling, shrinking the sixteen 14×14 pixel images to sixteen 7×7 

pixel images. 

 

 

Figure 16. Structure of CNN 

 

2.5 Sudoku Puzzle Solving 
 

To simplify the explanation of the algorithm, a 9×9 

Sudoku grid is used, as shown in Figure 17. The easiest way 

for a computer to solve a Sudoku game is by trial and error, 

trying the numbers 1-9 for each cell and then continuing on to 

the next blank cell until all of the cells have been filled so that 

the rules of Sudoku are met. This is clearly not an efficient 

approach. Slightly modifying the trial and error method would 

greatly enhance the operating efficiency of the program. 

Making a list of all the possible numbers, or a candidate 

number list, for each blank cell. The values in the list are tested, 

and if they satisfy the conditions, then the program goes on to 

the next blank cell. If there are any contradictions, the program 

backtracks. This approach is called the candidate backtrack 

solution. The program defines the list 𝑠𝑢𝑑𝑜𝑘𝑢[ ] to store the 

numbers in the Sudoku grid. If a cell is blank, then 0 fills the 

spot, refer to Figure 17. 

 

 

Figure 17. 9×9 Sudoku card 

 

The program next establishes the five following functions: 

(1) 𝑟𝑜𝑤_𝑁𝑢𝑚(), which searches for the numbers appearing 

in an entire row in the grid and stores them in the list 𝑟𝑜𝑤[ ];  

(2) 𝑐𝑜𝑙_𝑁𝑢𝑚(), which searches for the numbers appearing in 

an entire column in the grid and stores them in the list 𝑐𝑜𝑙[ ];  

(3) 𝑏𝑙𝑘_𝑁𝑢𝑚() , which searches for all of the numbers 

appearing in the (3×3) blocks and stores them in the list 𝑏𝑙𝑘[ ]; 
(4)  𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑(), which display the Sudoku puzzle grid in 

the graphical user interface window showing the solution pro-

cess to players; and (5) 𝑐ℎ𝑒𝑐𝑘_𝑁𝑢𝑚(), which detects whether 

any numbers appear more than once in any rows, columns, or 

(3×3) blocks; if so, then the False response is given, and if not, 

then the True response is given. 

The entire base grid is searched for at which index 𝑘 the 

blank cell is located. For each blank cell, the three functions 

𝑟𝑜𝑤_𝑁𝑢𝑚(), 𝑐𝑜𝑙_𝑁𝑢𝑚() and 𝑏𝑙𝑘_𝑁𝑢𝑚() are called. Fol-

lowing the rule that no number can appear more than once in 

any row, column, or (3×3) block, all of the numbers that can 

be placed in the cell are identified, and the list 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[ ] 
is established. One by one, all of the blank cells that have not 

been filled are added to the list 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[ ]. The function 

𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑() is called, and the base grid of the Sudoku 

game is displayed on the screen for the player to see. 

We employed the candidate backtrack solution method to 

solve Sudoku puzzle. All of the numbers that may be placed 

in all of the blank cells were tested by trial and error. With the 

base grid in Figure 17, there are 51 blank cells. Thus, there are 

51 physical objects in 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[ ]. Take one physical object 

𝑝1 from 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[ ], the 𝑥 and  𝑦 coordinates of Sudoku 

grid can be determined by the 𝑘 value. 

 

1 1( . , . ) ( %9, // 9)p x p y k k= ,               (5) 

 

where % is the remainder of the division, // is the integer of 

the division. 

Suppose that its coordinates are (1,3), the grey grid shown 

in Figure 17. Therefore, 𝑝1. 𝑥 = 1 , 𝑝1. 𝑦 = 3 , and 

𝑝1. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[ ] = [1, 2, 5] , which means that the numbers 

that may be filled in this position are 1, 2 and 5, which are 

called candidate numbers. Test with the first possible number, 

and call 𝑐ℎ𝑒𝑐𝑘_𝑁𝑢𝑚()  to check whether any numbers 

appear more than once in the row, column, or (3×3) block. If 

the response is False, it means that there are numbers that 

appear more than once, and the test must then be repeated with 

the next possible number. If the response is true, it means that 

no numbers appear more than once in the row, column, or (3×3) 

block; therefore, the number is placed in the Sudoku grid. If 

none of numbers of 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[ ] is valid, previous call of the 

function will reset the value of the cell to 0 and continue 
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iterating to find the next valid number. Whether 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[ ] 
is empty is then examined. If that is the case, then all of the 

physical objects have been processed, and 𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑() is 

called to display the completed Sudoku grid on the screen. If 

pointList[] is not empty, then the next physical object 𝑝2 is 

taken from 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[ ] to confirm the number that should 

be placed in the next blank cell. The method for this is the 

same as above. 

 

3 Experiment Results 
 

We divide the process of solving the Sudoku game in the 

camera captured image into four steps. In Step (1), the vertical 

lines, horizontal lines, and outer frame are re-moved using HT. 

In Step (2), the left-to-right, top-to-bottom scanning method 

proposed in this paper is used to capture the numbers in the 

images, which are then stored in a directory folder. The 

locations of the numbers in the images are also obtained. In 

Step (3), the module kit of Tensorflow and Keras is used to 

construct a CNN, and the training samples in the MNIST 

handwritten number dataset are used to train the model. The 

images of numbers in the directory folder are introduced as 

test data to assess model performance. In Step (4), the 

candidate backtrack algorithm is used to automatically infer 

and fill in the blank cells in the grid, completing the solution 

to the Sudoku puzzle. In this section, we will present the 

experiment results of the four steps separately and evaluate the 

performance of the CNN. 

 

3.1 Straight Line Detection using HT 
 

The image in Figure 18 shows two intersecting straight 

lines. Line 1L  passes through points (0,100) and (0,500)   

whereas Line 
2L  straight line passes through points (100,0) 

and (0,500). Conversion to grayscale, binarization, and edge 

detection produced the image in Figure 19. The lines have 

widths, and the aforementioned image processing then 

generates four line segments: 𝐿11, 𝐿12, 𝐿21 and 
22L . The 

line segments detected using the HT straight line detection 

algorithm are presented in Table 1. 

 

 

Figure 18. Two straight lines  Figure 19. Four lines after 

edge detection 

 

Table 1. Four straight lines resulting from HT detection 

 
1L    

2L   

 
11L  12L   

21L  22L  

𝜌  92 102  92 102 

𝜃  1.3788 1.3788  0.1920 0.1920 

𝜃  79o  79o   11o  11o  

The results in Table 1 reveal that these two straight lines 

are both 10 pixels wide. Note that the axis definitions of Figure 

11 and Figure 18 differ. As 𝜃 defines the angle between the 

𝑥-axis and the vertical straight line, the 𝜃 in Figure 11 is the 

angle between the vertical axis and the vertical straight line. In 

contrast, the 𝜃  in Figure 19 is the angle between the 

horizontal axis and the vertical straight line. The 𝜃 angle of 

Line 𝐿1  derived using HT is 79 degrees, whereas the 𝜃 

angle of Line 𝐿2 derived using HT is 11 degrees. In the cu- 

mulative voting matrix 𝑀, elements 𝑀(92,79), 𝑀(102,79),  

 𝑀(92,11), 𝑀(102,11) received the highest number of votes 

and can be regarded as the regional peak values. 

Figure 20 displayed an image of a 4×4 grid similar to a  

4×4 Sudoku grid. We detected the horizontal lines, vertical 

lines, and outer frame of the image. Conversion to grayscale, 

binarization, and edge detection produced the image in Figure 

21. The results of straight line detection using HT are shown 

in Table 2. A total of 16 straight lines were detected, including 

8 horizontal lines and 8 vertical lines. Their angles were 0 

degrees and 90 degrees, respectively. 

 

 
Figure 20. 4×4 grid      Figure 21. Lines of 4×4 grid  

                      following edge detection 

 

Table 2. Four lines of 4×4 grid resulting from HT detection 

 
1L  2L  3L  4L  5L  6L  7L  8L  

  (pixels) 7 11 12 23 24 35 36 46 

  (degrees) 0o  0o  0o  0o  0o  0o  0o  0o  

         

 L9 L10 L11 L12 L13 L14 L15 L16 

  (pixels) 7 11 12 23 24 35 36 47 

  (degrees) 90o  90o  90o  90o  90o  90o  90o  90o  

 

3.2 Scanning for Number Capture 
 

The image processing algorithm proposed for number 

capture in this paper uses the Python program as its work 

platform to program four functions:  
 

𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙), 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙) 

𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2),  𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2)          (6) 

 

The numbers in the image are captured from left to right 

and from top to bottom, and the coordinates of their upper-left 

corner and their lower-right corner are stored in a three 

dimensional array 𝑝𝑛𝑡[𝑘][𝑖][𝑗] , where 𝑘  denotes the 

number of digits in the image and 𝑐𝑜𝑙  represents the 

column pixels of image. With the image in Figure 22 as an 

example, there are four numbers. The scanning goes from 



Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1581 

 

 

left to right and from top to bottom, and the four following 

functions are called to capture numbers: 

𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙)   𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙)    
𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2)  𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(𝑦2) 
Assume that the dimensions of the image are 600×800 pixels, 

so 𝑐𝑜𝑙 = 800. 

 

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(800)  obtains  𝑦1 = 50, 

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(800)  obtains 𝑦2 = 150, 

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(150)  obtains 𝑥1 = 50, 

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(150)  obtains 𝑥2 = 150.        (7) 

 

By repeating the steps in Section 3.2, the numbers  

“1”  “2”  “3”  “4” can be captured. 

 

1     2 
      

3     4    

(50,50) (350,50)

(150,150) (450,150)

(50,450) (350,450)

(150,550) (450,550)
 

Figure 22. The numbers are aligned left and right as well as 

up and down 

 

3.3 Digit Recognition using Neural Network 
 

Because each of the MNIST images is 28×28 pixels, they 

occupy 784 bytes of memory. They are moderate in size and 

are all binarized black and white images, making them 

extremely suitable for modeling, training, and prediction in 

this study. The MNIST dataset comprises 60,000 items of 

training data and 10,000 items of test data. Generally, 80% of 

the sample data serve as training data, and the other 20% serve 

as validation data. Thus, with 60,000 items of data in total, we 

divided the data into 60,000 × 0.8 = 48,000 items as training 

data and 60,000 × 0.2 = 12,000 items as validation data. We 

performed training and prediction validation of an MLP model 

and a CNN, explained separately as follows. 

 

(I) Multilayer perceptron (MLP) model 

 

The input layer of the MLP model has 784 input neurons, 

which is a one-dimensional array (of 784 items of data) con-

verted from 28 28  two-dimensional images, serving as the 

input neurons of the network. The hidden layer has a total of 

256 hidden neurons. The output layer contains a total of 10 

output neurons that correspond to the 10 prediction results 0-

9, the structure shown in Table 3.  

The feature values and true values of the 60,000 items of 

pre-processed data in the MNIST dataset were input into the 

MLP model for training. The trained model could then be used 

to predict number digits in various forms (including handwrit-

ten and computer fonts). We adopted four computer fonts to 

test the trained model: Arial Black, Arial Unicode MS, Hanyi 

Senty Finger Painting, and Hanyi Senty Garden Handwriting. 

The total number of weight parameters to be trained in the 

MLP model framework is as follows: 

 

256 784 256 256 10 10 200,960 2,570

                                              203,530

 + +  + = +

=
  (8) 

 

The accuracy rates of the MLP model in predicting numbers 

in Arial Black computer font, Arial Unicode MS, Hanyi Senty 

Finger Painting, and Hanyi Senty Garden Handwriting were 

0.63, 0.54, 0.48, and 0.42, respectively. None of the results 

were very satisfactory. 

 

Table 3. The structure of MLP model 

MLP model 

Layer (type) Output shape Parameter 

dense_5 (Dense) (None, 256) 200960 

dense_6 (Dense) (None, 10) 2570 

Total parameters: 203,530 

Trainable parameter: 203,530 

Non-Trainable parameters: 0 

 

(II) CNN 

 

The structure of the CNN adopted in this study included 

the following. 

Convolution layer 1: The size of the images of the input 

numbers was 28×28 pixels. The first convolution layer was 

given sixteen 5×5 kernels (also referred to as filters). In the 

other words, there are 25×16+16 = 416 weights that need to 

be updated at the same time in the same layer, and these 

16 filters will also generate images of 16 corresponding 

feature maps. The convolution operations do not change 

the size of the images; therefore, they are still 28×28 pixels. 

Pooling layer 1: This layer performs the first down-

sampling, shrinking the sixteen 28×28 pixel images to sixteen 

14×14 pixel images. 

Convolution layer 2: The size of the images of the input 

numbers was 14×14 pixels. The second convolution layer 

was given thirty-six 5×5 kernels. This means that there are 

25×36×16+36=14,436 weights that need to be trained and 

updated in the second convolution layer, and these 36 

filters will also generate images of 36 corresponding 

feature maps. The size of the images is still 14×14 pixels. 

Pooling layer 2: This layer performs the second 

downsampling, shrinking the thirty-six 14×14 pixel images to 

thirty-six 7×7 pixel images. In the neural network, 

Dropout(0.25) is added to the model to randomly abandon 

25% of the neurons in each training iteration in order to 

prevent overfitting. 

Flattening layer: This layer converts the thirty-six 7×7 

images output by Pooling layer 2 into a one dimensional array 

(including a total of 1,764 items of data), which correspond 

exactly to the 1,764 neurons in the flattening layer. 

Hidden layer: A hidden layer with 128 neurons is 

established, and a total of 1,764×128+128=225,920 weights 

need to be trained. Dropout(0.5) is added to the model to 

randomly abandon 50% of the neurons in each training 

iteration in order to prevent overfitting. 

Output layer: This layer contains a total of 10 neurons 

corresponding to the 10 digits 0-9. The feature values and true 

values of the 60,000 items of pre-processed data in the MNIST 

dataset were input into the CNN model for training, the CNN 

model is shown in Table 4. We adopted four computer fonts 
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to test the trained model: Arial Black, Arial Unicode MS, 

Hanyi Senty Finger Painting, and Hanyi Senty Garden 

Handwriting. The accuracy rates of the model were all around 

80%. From the experimental results, we can conclude that 

under the same training conditions, the CNN model had better 

predictive capabilities towards computer fonts than did the 

MLP model; however, the results were still not satisfactory. 

 

Table 4. The structure of CNN model 

CNN model 

Layer (type) Output shape Parameter 

conv2d_40(Conv2D) (None, 28,28,16) 416 

max_pooling2d_40   

(Maxpooling2D) (None, 14,14,16) 0 

conv2d_41(Conv2D) (None, 14,14,36) 14436 

max_pooling2d_41   

(Maxpooling2D) (None, 7,7,36) 0 

dropout_40(Dropout) (None, 7,7,36) 0 

flatten_20(Flatten) (None, 1764) 0 

dense_40(Dense) (None, 128) 225920 

dropout_41(Dropout) (None, 128) 0 

dense_41(Dense) (None, 10) 1290 

Total parameters: 242,062 

Trainable parameter: 242,062 

Non-Trainable parameters: 0 

 

(III) Self-made dataset with 4,580 training samples 

 

The MNIST dataset used so far contained 60,000 training 

images and 10,000 test images, which was an ample number 

of samples. However, this dataset contained handwritten digits, 

as shown in Figure 6, whereas the recognition targets on our 

Sudoku cards were computer script fonts. The substantial 

differences between them could explain why the accuracy of 

the CNN in digit prediction could not be increased. We 

therefore collected 4,580 images of digits in computer script 

fonts and used them to train the CNN model parameters before 

the digits extracted from Sudoku cards served as prediction 

targets for accuracy assessment. As for the method of 

collecting image pictures, various computer fonts, including 

Arial, Calibri, Time New Roman, etc., are used to capture 

image from 0 to 9. However, when using computer fonts to 

capture image from 0 to 9, there will be problems of image 

skew and offset. Among them, Figure 23 is the uncorrected 

self-made training sample, Figure 24 is the digital image 

training set after offset correction. Our experiments revealed 

that the reinforcement of the computer script font samples 

increased the prediction accuracy of the CNN to over 96%. 

 

symbol_0 symbol_1 symbol_2 symbol_3 symbol_4 symbol_5 symbol_6 symbol_7 symbol_8 symbol_9 symbol_10 symbol_11

symbol_12 symbol_13 symbol_14 symbol_15 symbol_16 symbol_17 symbol_18 symbol_19 symbol_20 symbol_21 symbol_22 symbol_23

symbol_24 symbol_25 symbol_26 symbol_27 symbol_28 symbol_29 symbol_30 symbol_31 symbol_32 symbol_33 symbol_34 symbol_35

symbol_36 symbol_37 symbol_38 symbol_39 symbol_40 symbol_41 symbol_42 symbol_43 symbol_44 symbol_45 symbol_46 symbol_47  

Figure 23. The uncorrected self-made training sample 

 

symbol_0 symbol_1 symbol_2 symbol_3 symbol_4 symbol_5 symbol_6 symbol_7 symbol_8 symbol_9 symbol_10 symbol_11

symbol_12 symbol_13 symbol_14 symbol_15 symbol_16 symbol_17 symbol_18 symbol_19 symbol_20 symbol_21 symbol_22 symbol_23

symbol_24 symbol_25 symbol_26 symbol_27 symbol_28 symbol_29 symbol_30 symbol_31 symbol_32 symbol_33 symbol_34 symbol_35

symbol_36 symbol_37 symbol_38 symbol_39 symbol_40 symbol_41 symbol_42 symbol_43 symbol_44 symbol_45 symbol_46 symbol_47

symbol_48 symbol_49 symbol_50 symbol_51 symbol_52 symbol_53 symbol_54 symbol_55 symbol_56 symbol_57 symbol_58 symbol_59  

Figure 24. The self-made training sample after offset 

correction 

 

3.4 Recognition of Digits on Sudoku Game Cards 

 

A camera was used to capture Sudoku card images, and 

HT was employed to cover the vertical lines, horizontal lines, 

and outer frames in the images. Using the image processing 

algorithm proposed in this paper, we captured the numbers in 

the images, calculated their location coordinates in the image, 

and stored them in a directory folder. The MNIST dataset was 

used to train a CNN in order to predict the numbers captured 

from the Sudoku cards. 

Using the CNN structure in Figure 16 and training with the 

4,580 images in the self-made dataset, we predicted the 

numbers in the images stored in the directory folder. As shown 

in Figure 25, the prediction results achieved an accuracy of 

96%, which indicates satisfactory recognition performance. 

 

 

Figure 25. Prediction performance with Sudoku card  

 

4 Conclusion 
 

Number puzzle games are the most natural means of 

introducing children to the world of mathematics. Challenging 

number puzzle games can be fascinating for children and 

encourages them to keep playing and wanting more. Hidden 

behind number puzzle games are generally logical reasoning 

and induction, which are two essential abilities in learning 

mathematics. Using computers to solve number puzzle games 

or fun magic is a matter of course. With Sudoku as an example, 

computerizing Sudoku games provides a unique solution tool; 

it attempts to provide humanistic solution methods, 

completely simulates the thinking process of the human brain 

during problem solving, and explains the reasons behind each 

step along the way. When children feel that a hard Sudoku 

game is impossible to solve, their first thought is often to give 

up. If suitable hints or directions could be given, their 

confidence in mathematics following success at the game 

could be regained. Traditional number puzzle games are 

usually presented using game cards or physical grids, such as 

Sudoku cards or Klotski sliding block puzzles. The means of 
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computerizing game cards, physical grids, and sliding block 

puzzles was thus the motivation behind this study. The 

contents of this paper include image capture by a camera, HT, 

number capture, the use of CNN for digit recognition, and a 

Sudoku game algorithm. In the future, children can watch the 

problem-solving process on a computer while manipulating 

sliding block puzzle pieces and work their way toward success. 

We adopted a Python work platform, incorporated OpenCV to 

read the image data of Sudoku cards, used HT to remove the 

excess straight lines and outer frames from the image, 

captured the numbers on Sudoku cards using an image 

processing algorithm, and stored them in a file directory. 

Using the Tensorflow and Keras embedded in the Python 

platform, we established a neural net-work model, read the 

images of the numbers in the file directory for recognition, and 

compared the recognition performances of an MLP model and 

a CNN model trained using the MNIST dataset. To enhance 

the recognition accuracy, we collected 4,580 images of digits 

in computer script fonts and used them to train the CNN model 

parameters before the digits extracted from Sudoku cards 

served as prediction targets for accuracy assessment. The 

accuracy reached 96%, thereby presenting good performance. 
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