
Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1573

*Corresponding Author: Ter-Feng Wu; E-mail: tfwu@niu.edu.tw

DOI: 10.53106/160792642022122307012

Integrating of Image Processing and Number Recognition in

Sudoku Puzzle Cards Digitation

Pu-Sheng Tsai1, Ter-Feng Wu2*, Jen-Yang Chen1, Jen-Feng Huang3

1 Department of Electronic Engineering, Ming Chuan University, Taiwan
2 Department of Electrical Engineering, National Ilan University, Taiwan

3 Department of Electronic Engineering, China University of Science and Technology, Taiwan

pusheng@mail.mcu.edu.tw, tfwu@niu.edu.tw, jychen@mail.mcu.edu.tw, gofon.gofon@msa.hinet.net

Abstract

The aim of Sudoku puzzle is to fill in the blank cells in a

square matrix consisting of nine 3x3 blocks with the numbers

1-9 in a way that no number appears more than once in any

row, column, or block. We combined image processing, a

convolutional neural network (CNN), and a Sudoku game

algorithm to automatically place the numbers 1-9 in the blank

cells of a Sudoku square matrix. An image of the Sudoku

square matrix is first captured using a camera, and then the

vertical lines, horizontal lines, and outer frame of the Sudoku

square matrix are detected using Hough transform (HT).

Based on the OpenCV module, we proposed an image

processing algorithm that captures the numbers in the image

and calculates the location coordinates of the numbers in the

image. We trained the CNN using the MNIST handwritten

digit dataset to recognize the numbers in the Sudoku square

matrix. Finally, we used the Python programming language to

design a Sudoku puzzle backtrace algorithm that automatically

deduces and fills in the blank cells in the square matrix. This

study provides further understanding of the critical operating

principles of CNNs and lays down a foundation for future

research.

Keywords: Sudoku, Convolutional neural network, Hough

transform, MNIST dataset, OpenCV

1 Introduction

Sudoku, meaning “number place” in its original language,

is an intellectual game involving logical thinking to fill in

numbers. The rules of the game are simple, and it requires only

a pen to write the numbers 1-9 on a paper card. No other

equipment is needed. The game swept the world over two

decades ago and remains one of the most popular games.

Sudoku involves a 9×9 grid, that is, a number puzzle with nine

rows and nine columns containing a total of 81 cells. The grid

also comprises nine 3×3 subgrids, also known as “blocks”,

each of which consists of nine cells. At the beginning of the

game, a portion of the numbers is already filled in as hints.

This is called the “base grid”, as shown in Figure 1. The

objective is to fill the cells with the numbers 1 through 9 so

that each number appears only once in each row, column, and

block [1]. Each base grid has a single solution, and for this

reason, it is called Sudoku, which means “single number”. The

completed Sudoku grid with all of the cells filled is called the

“solution grid”, as shown in Figure 2, which means that this

level has been successfully cleared [2].

Figure 1. Base grid of Sudoku

Figure 2. Solution grid of Sudoku

We adopted the Hough transform (HT) to search for the

lines bordering the rows, columns, and frames in the image of

a Sudoku game and then covered them using white lines so

that the base grid looked like the grid in Figure 3. HT was first

proposed by Paul Hough [3] in 1962 and then promoted by

Duda and Hart [4] in 1972. HT is a feature extraction

technique in image processing and is a way of detecting

geometric shapes within images. It maps feature points in the

image space to a parameter space for voting, and by testing the

regional extreme points of the accumulated results, a set of

points that fit a certain shape is obtained. For instance, curves

or straight lines with the same shape in a space are mapped to

1574 Journal of Internet Technology Vol. 23 No. 7, December 2022

a point in the parameter space to form peak values, thereby

converting a problem in arbitrary shape detection into a

problem in peak value statistics. The classical HT is used to

detect straight lines in images. HT was later expanded to

identify circles [5], ellipses [6], and even arbitrary shapes.

Figure 3. Image of covered lines

HT has always held an important place in image

processing because it perfectly combines image data and

mathematical geometry. It uses the cold and massive pixel

data in the image space, maps the data to the parameter space

using mathematical deduction, and accumulates the local

maxima via voting to obtain feature parameters that fit certain

shape points. For instance, lines such as slopes and intercepts

require a two-dimensional parameter space. Detecting circle

patterns, including the center and radius, requires a three-

dimensional parameter space. Detecting an ellipse, including

the center, radius, and the major and minor axes, requires a

five-dimensional parameter space. Clearly, the conventional

HT would require massive spatial complexity when it comes

to detecting lines, circles, and ellipses. Voting in a

multidimensional parameter space requires tremendous

memory space and imposes a heavy computing load. Random

Hough transform (RTH) [7] and gradient Hough transform [8]

are basically modifications of the conventional HT, developed

to reduce the computing load. For instance, the basic thought

process of using conventional HT to detect circles is based on

the premise that all of the non-zero pixels in the image are

believed to be potential points on the circle. Thus, all non-zero

pixels must be mapped via the parameter space to form a

parameter trajectory, and votes are then accumulated to

determine the local maxima of the three-dimensional space

parameters. The maxima can be considered the center and

radius of the detected circle. RHT first analyzes geometric

properties to determine candidate circles and avoids wasting

time on accumulating votes for each non-zero pixel. This

effectively shortens the processing time and reduces the

amount of memory storage space needed.

In the field of image processing, numbers or letters are

often the targets of detection and capture, such as license

plates [9], invoice numbers, checks, or check digits. There are

a number of ways to identify digits and letters in images.

Akhtar (2020) [10] proposed an approach to processing

vehicle license plates; after an image is captured using a

camera, it is subjected to a process of four steps: pre-

processing, plate positioning, digit segmentation, and digit

recognition. Pre-processing augments the image to facilitate

subsequent processing. Plate positioning extracts the license

plate region from the image. Digit segmentation separates the

individual digits from the extracted plate region. A random

forest classification algorithm then identifies the digits.

Experimental results have indicated that this approach could

reach an accuracy rate of 90.9%. Regarding the image

segmentation methods in image processing, histogram-based

methods are highly efficient, needing only to scan an entire

image once and total the pixels in all of the rows (x coordinates)

to establish a histogram of the image before classifying the

peaks and valleys in the image. The contour extraction

algorithm proposed by Suzuki (1985) [11] is also an effective

approach, often used to capture the digits in images and

screened using the area of the contour. For instance, all 81

cells can be obtained in the grid displayed in Figure 1, and any

black pixels in each cell are then detected. If the pixels are

greater than the set threshold (eliminating noise), then whether

a digit exists within the cell can be confirmed. Finally, contour

extraction is again ap-plied to the cells containing digits to

obtain the digital contours and contour bounding rectangle

[12].

Machine learning (ML) and deep learning (DL) were both

derived from artificial intelligence. The relationships among

the three can be expressed using the yin-yang symbol in Figure

4. The circle of the yin-yang symbol is divided into two

interlocking “fish”, called the yin fish and the yang fish, by an

S-like curve serving as the boundary. The head of the yang

fish contains a yin eye, and the head of the yin fish contains a

yang eye, signifying that mutual conversion exists among all

things. This also means that there is yang in yin and yin in

yang in this symbol, conveying that a mutual trade-off also

exists among all things. This figure indicates that not only does

a mutual trade-off exist between ML and DL during their

development processes, but there is also mutual conversion.

Deep
Learning

Machine
Learning

Figure 4. The relationship of ML/DL

In the 1980s, research on artificial neural networks

stagnated due to limitations in the computing capabilities of

computers. Research on ML, in contrast, became extremely

fruitful. Nine classic algorithms, including linear regression,

logistic regression, support vector machine (SVM), k-nearest

neighbors (KNN), k-means, naive Bayes classifiers, decision

trees, random forest, and gradient boosting trees (GBT) [13],

were all proposed during this period. In recent years, AI has

led to the rapid enhancement and popularization of computer

hardware, the internet, various sensors, cloud computing, and

big data. After NVIDIA created Compute Unified Device

Architecture (CUDA), computers were able to perform rapid

Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1575

calculations using graphics processing units (GPUs), thereby

enabling DL to flourish.

Minsky (1969) [14] proved that in essence, single-layer

sensors are just one type of linear model and cannot accurately

classify (e.g., XOR classification) nonlinear problems.

Rumelhar and Hinton (1986) [15] proposed multilayer

perceptrons (MLPs), adding a hidden layer between input

layers and output layers, as shown in Figure 5. Using MLPs to

construct backpropagation (BP) algorithms can effectively

solve the problem of nonlinear classification and learning.

Hecht-Nielsen (1989) [16] demonstrated that the continuous

functions in any closed interval can be approximated using a

BP net-work containing a hidden layer. LeCun (1989) [17]

proposed the convolutional neural network (CNN) framework

LeNet-5, which uses BP for training. Reference [18] used the

LeNet-5 model to establish a DL machine that can recognize

handwritten text and successfully applied it to a check

recognition system, again demonstrating the feasibility of the

CNN framework. Salakhutdinov et al. (2006) [19] proposed

the Restricted Boltzmann machine (RBM) model, and Hinton

et al. (2006) [20] proposed the Deep Belief Network (DBN),

in which multilayer neural networks were successfully trained.

This was officially named deep learning (DL).

Figure 5. A multilayer perceptron (MLP)

Yann LeCun, the founding father of CNNs, was the first to

use CNNs and the Modified National Institute of Standards

and Technology (MNIST) database [21] to achieve handwrit-

ten digit recognition. The MNIST dataset, collected by LeCun

et al., comprises 60,000 items of training data and 10,000

items of test data. Each data item in the MNIST dataset

contains images (images of digits) and labels (the true digits).

Each digit image consists of 28×28 pixels, which equals 784

pixels. Figure 6 shows some examples in the MNIST dataset.

To reduce data collection time and accelerate the application

needs of real-time recognition, we used the MNIST dataset

and computer fonts that we established ourselves (shown in

Figure 7) as samples for neural network training.

Figure 6. MNIST handwritten dataset

Symbol
10

Symbol
11

Symbol
12

Symbol
13

Symbol
14

Symbol
15

Symbol
16

Symbol
17

Symbol
18

Symbol
19

Symbol
00

Symbol
01

Symbol
02

Symbol
03

Symbol
04

Symbol
05

Symbol
06

Symbol
07

Symbol
08

Symbol
09

Symbol
20

Symbol
21

Symbol
22

Symbol
23

Symbol
24

Symbol
25

Symbol
26

Symbol
27

Symbol
28

Symbol
29

Symbol
30

Symbol
31

Symbol
32

Symbol
33

Symbol
34

Symbol
35

Symbol
36

Symbol
37

Symbol
38

Symbol
39

Symbol
40

Symbol
41

Symbol
42

Symbol
43

Symbol
44

Symbol
45

Symbol
46

Symbol
47

Symbol
48

Symbol
49

Symbol
50

Symbol
51

Symbol
52

Symbol
53

Symbol
54

Symbol
55

Symbol
56

Symbol
57

Symbol
58

Symbol
59

Figure 7. Self creating computer font dataset

CNNs imitate the way that the human brain works and are

neural networks consisting of multiple layers. An entire CNN

mainly consists of several parts: convolution layers, pooling

layers, and fully connected layers [22]. The purpose of the

convolution layers is to preserve the spatial arrangements of

the image and obtain local images to serve as input features,

which then take the CNN model from point comparison to

two-dimensional local comparisons. Via the gradual stacking

and comprehensive comparison of the features in a region,

better recognition results can be derived. The purpose of the

pooling layer is to compress images while preserving the

important in-formation in the images, which can gradually

eliminate redundant information and lighten the computing

load on the neural network. The principle of convolutions is to

slide a window with designated dimensions from left to right

and from top to bottom in an orderly fashion to obtain the sum

of the products of local regions in the images. This sliding

window is referred to as a convolution kernel, also known as

a filter, which can obtain features in the images. In Figure 8,

for instance, there are five “ ” feature symbols that can be

detected by the 3×3 kernels (or filters) in the image. With the

original image, window sliding generates the extracted feature

map, which contains the locations of the “ ” features. The

operations of CNN convolution layers involve two important

characteristics: local connectivity and weight sharing, which

can reduce the computing load of the neural network [23]. The

purpose of the pooling layer is to obtain the maximum value

wherever the sliding window passes to achieve image

downsampling so that the original image is scaled down n

times, thereby shortening the time needed for subsequent

calculations. Figure 9 illustrates that the pooling results enable

the CNN to only consider whether recognition features appear

in the image, regardless of their locations. The “■” feature

appears in the upper-left corner, the lower-right corner, and

the middle of the image. After calculations are performed for

the convolution layer and pooling layer, is similarly derived,

meaning that the feature can be detected wherever it appears

[24].

1576 Journal of Internet Technology Vol. 23 No. 7, December 2022

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

4 0 4

0 4 0

4 0 4

1 0 1

Kernel

0 1 0

0 1 0

 feature maps

Image pixels

Figure 8. Convolution layer extracting image features

0 0 0

0 1 2
0 2 4

4 2 0

2 1 0
0 0 0

2 2 1

4 4 2
4 4 2

4

1 1 1

1 1 1
1 1 1

Kernel

0 0 0

0 0 0

0 0 0

0 0 0

1

1

0

0

1

1

0

0

0 0 000

0 0 0

0 0 0

0 0 0

0 1 1

0

0

0

0

0

0

0

0

0 1 100

0 0 0

0 0 0

1 0 0

1 0 0

0

0

1

1

0

0

0

0

0 0 000

1 1 1

1 1 1
1 1 1

Kernel

4

1 1 1

1 1 1
1 1 1

Kernel

4

Convolution
Lavel

Pooling
Level

3x3 Max
Pooling

3x3 Max
Pooling

3x3 Max
Pooling

Figure 9. Characteristics of pooling layer

2 Research Methods

2.1 System Structure

This paper combined HT, CNN, and a Sudoku game algo-

rithm to design a system that automatically places the numbers

1-9 in the blank cells in the nine blocks of a Sudoku game card.

It then completes the solution and automatically displays it on

the computer screen. The structure of the system is shown in

Figure 10. Using a webcam, the image of a Sudoku puzzle card

is first captured, as shown in Figure 10. In a Python platform

environment, the image undergoes preprocessing such as

grayscale conversion and binarization to produce the image of

a Sudoku square matrix (base grid).

(Hough Transform)

(Number Capture)

(Convolutional
Neural Network

(Sudoku Final)

PC

Web Cam

Figure 10. Diagram of system structure

Using HT, the vertical and horizontal lines within the

Sudoku square matrix and the outer frame are obtained. White

lines are used to cover these lines so that only the numbers

remain. Based on the OpenCV module, we proposed an image

processing algorithm for digit capture to capture each of the

numbers in the image and calculate their coordinates in the

image. The captured numbers remain in jpg format and are

stored in a designated disk directory. Using the Python tensor-

flow keras package, we trained the CNN with the MNIST

handwritten dataset. Once the parameter training in the CNN

is complete, it automatically reads the images of numbers in

the designated disk directory for recognition. Finally, we used

the Python programming language to design a Sudoku game

solution method that automatically deduces and fills in the

blank cells in the square matrix.

2.2 Hough Transform (HT)

In real-life applications, Cartesian coordinate systems

cannot be chosen for image spaces because any special lines

that are perpendicular to the x-axis in the image space, such as

𝑥 = 𝑐, will have infinite slopes that cannot be expressed in the

parameter space. Using the polar coordinates (𝜌, 𝜃) to pro-

cess HT problems is therefore the best choice as it avoids the

issue of an infinite slope. Here, we used the Hesse normal form

to express the polar coordinate equation and define a straight

line, as shown in Figure 11. The 𝜌 represents the vertical

distance between this straight line and the origin 𝑂, and 𝜃

indicates the angle between the x-axis and the vertical line.

From the figure, we can obtain the following relationship:

cos ()cos (tan)cos

 cos sin .

x x y

x y

= = + = +

= +
 (1)

There are roughly three types of straight lines that may

appear in the image space: (1) lines with negative slopes and

positive intercepts, (2) lines with positive slopes and positive

intercepts, and (3) lines with positive slopes and negative

intercepts, all of which are respectively shown in Figure 12(A),

Figure 12(B), and Figure 12(C). Eq. (1) shows how polar

coordinates are expressed using the Hesse normal form, where

represents the vertical distance between the straight line and

the origin 𝑂, and 𝜃 indicates the angle between the x-axis

and the vertical line in the clockwise direction. As shown with

the straight line in Figure 12(A), 𝜌 > 0 and 0 < 𝜃 < 90𝑜 .

With the straight line in Figure 12(B), 𝜌 > 0 and 90𝑜 <
𝜃 < 180𝑜 . However, with the straight line in Figure 12(C),

Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1577

𝜃 < 180𝑜. To keep 𝜃 within 180 degrees, such lines are set

as 𝜌 < 0 and 90𝑜 < 𝜃 < 180𝑜.

Figure 11. Expression using Hesse normal form

Figure 12. Types of straight lines that could appear in the

image space

The algorithm of conventional HT while processing votes

to search for local peak values is as follows. First, a cumulative

voting matrix 𝑀 with a two-dimensional array is established

and initialized so that all of the elements are 0. Based on the

schematic of cumulative voting in the parameter space in

Figure 13, the horizontal axis is set as , and the vertical axis

is set as 𝜌. The size of the array exerts a direct impact on the

resolution. If 𝜃 is precise to 1 degree and the range of the

horizontal coordinates reaches 3.14 rad, then 0-180

graduations (n = 181) are needed. For 𝜌 , pixel m on the

diagonal of the image can serve as the number of rows in order

for 𝜌 to be precise to the pixel level. Based on the

specifications above, the size of the accumulator voting matrix

in the parameter space is 𝑀 ∈ 𝑅𝑚×𝑛.

Figure 13. Accumulator voting matrix M

Suppose that there is a straight line consisting of N pixel

points in the image, including the two ends of the straight line,

which are 𝐴 = (𝑎1, 𝑏1) and 𝐵 = (𝑎𝑁 , 𝑏𝑁) , as shown in

Figure 14. Take the first point 𝑃1 = 𝐴 = (𝑎1, 𝑏1) on the

straight line and substitute it into Eq. (1), which gives:

1 1 1: cos sinL a b = + . (2)

Figure 14. A straight line in the image space

Because 𝜃 is precise to 1 degree, substitute 0 180− into

Eq. (1) to obtain 181 𝜌 values. The values pairs (𝜌0, 0),
(𝜌1, 1), (𝜌2, 2), … , (𝜌180, 180) correspond to locations in the

accumulator voting array M, and 1 is added to the content of

this location, as shown in Figure 13. If substituting 𝜃 =
𝜃∗ into Eq. (1) gives 𝜌 = 𝜌∗ , then the accumulator voting

array 𝑀(𝜌∗, 𝜃∗) = 1. Take other pixels on the straight line,

such as 𝑃2 = (𝑎2, 𝑏2) ,..., 𝑃𝑁 = (𝑎𝑁 , 𝑏𝑁2) , and repeat the

above process to continuously update the content of

accumulator voting array M. Once the operations of a point on

the straight line have been completed, 1 will be added to the

181 elements in the accumulator array. The voting process of

conventional HT can be analyzed as follows:

(1) total number of votes: n N ,

(2) candidates (size of accumulator array): m n .

The statistics of the contents of the accumulator voting array

can be compiled to find the maximum value.

()* *(,) argmax (,) ,M = (3)

where 0 m and 0 n .

If the value of 𝑀(𝜌∗, 𝜃∗) exceeds a specific threshold,

indicating the existence of a straight line in the image space.

Suppose that the statistical result is (𝜌∗, 𝜃∗) = (71,45). It

represents that in the accumulative voting process of the

accumulative voting array M(71,45) coordinates received the

highest number of votes. This indicates that there is a straight

line in the image space, and the distance from the straight line

to the origin is 71 pixels, and the angle between its vertical line

and x-axis being 45°, as shown in Figure 14.

2.3 Number Capture

To enable the computer to understand the numbers on the

Sudoku card, we must capture the numbers on the card and

store them in a directory folder in jpg format. Aside from cap-

turing the images of the numbers, we must also confirm where

the numbers are located in the image. Our approach was to

store the coordinates of the upper-left corner (𝑥1, 𝑦1) and the

coordinates of the lower-right corner (𝑥2, 𝑦2) on a three-

dimensional array 𝑝𝑛𝑡[𝑘][2][2], where the coordinates of

captured number k are expressed as follows:

1 1[][0][0] , [][0][1]pnt k x pnt k y= =

 2 2[][1][0] , [][1][1]pnt k x pnt k y= = . (4)

1578 Journal of Internet Technology Vol. 23 No. 7, December 2022

First, obtain the size of the image as 𝑐𝑜𝑙×𝑟𝑜𝑤 pixels. The

direction of scanning to capture the numbers is from left to

right and from top to bottom, as shown in Figure 15.

Figure 15. Scanning for number capture

[Step I] Define the initial values of the three variables as

𝑥 = 0 , 𝑦 = 0 , 𝑐 = 0 . Beginning from the top of the im-

age (𝑦 = 0), scan from left to right(𝑖 = 0,1,2, … , 𝑐𝑜𝑙 − 1)

and scan a total of 𝑐𝑜𝑙 pixels. If the entire horizontal line con-

sists of white pixels or if the black pixels are less than the de-

fault threshold value (𝑐 < 𝑡ℎ𝑑), then it is determined that

no numbers appeared during the scanning process. Add 1 to

the content of 𝑦 and continue to scan the next row. Repeat

the left-to-right scanning process until the black pixels are

greater than the default threshold value (𝑐 ≥ 𝑡ℎ𝑑) , which

means that numbers appeared on that horizontal line. The

value of 𝑦 at this point equals the vertical coordinate above

the number block . Define it as 𝑦1, and then stop scanning.

Write the above process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙).

[Step II] Redefine the initial values of the three variables

as 𝑥 = 0, 𝑦 = 𝑦1 , 𝑐 = 0. Beginning from the top of the

number block (𝑦 = 𝑦1), scan from left to right (𝑖 =
0,1,2, … , 𝑐𝑜𝑙 − 1) and scan a total of 𝑐𝑜𝑙 pixels. If the black

pixels in the entire horizontal line are greater than the

default threshold value (𝑐 ≥ 𝑡ℎ𝑑) , the scanning process

spans the number part. Add 1 to the content of 𝑦 and

continue to scan the next row. Repeat the left-to-right

scanning process until the black pixels are less than the

default threshold value (𝑐 < 𝑡ℎ𝑑) , which means that the

horizontal line has moved to the blank space below and that

no numbers appeared during the scanning process. The value

of 𝑦 at this point equals the vertical coordinate below the

number block . Define it as 𝑦2, and then stop scanning.

Write the above process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙).

[Step III] Define the initial values of the three variables as

𝑥 = 0, 𝑦 = 0, 𝑐 = 0. Beginning from the left of the image

(𝑥 = 0), scan from top to 𝑦2 (𝑗 = 0,1,2, … , 𝑦2 − 1) and scan

a total of 𝑦2 pixels. If the entire vertical line consists of white

pixels or if the black pixels are less than the default threshold

value (𝑐 < 𝑡ℎ𝑑) , then it is determined that no numbers

appeared during the scanning process. Add 1 to the content of

and continue to scan the next row. Repeat the top to 𝑦2

scanning process until the black pixels are greater than the

default threshold value (𝑐 ≥ 𝑡ℎ𝑑), which means that numbers

appeared on that vertical line. The value of at this point equals

the coordinate to the left of the number block . Define it as

𝑥1, and then stop scanning. Write the above process into an

𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2).

[Step IV] Define the initial values of the three variables

as 𝑥 = 𝑥1 , 𝑦 = 0 , 𝑐 = 0 . Beginning from the left of the

number block (𝑥 = 𝑥1) , scan from top to 𝑦2 (𝑗 =
0,1,2, … , 𝑦2 − 1) and scan a total of 𝑦2 pixels. If the entire

vertical line consists of white pixels or if the black pixels on

the vertical line are greater than the default threshold value
(𝑐 ≥ 𝑡ℎ𝑑), then it is determined that the scanned line passed

through numbers. Add 1 to the content of, and continue to

scan the next row. Repeat the top to 𝑦2 scanning process

until the black pixels are less than the default threshold

value (𝑐 < 𝑡ℎ𝑑), which means that the vertical line moved

to the blank space to the right and that no numbers appeared

during the scanning process. The value of 𝑥 at this point

equals the coordinate to the right of the number block .

Define it as 𝑥2 and then stop scanning. Write the above

process into a function 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(𝑦2).

[Step V] From [Steps I-IV], we can obtain the number “1”

in the upper-left part of the image in Figure 15(A) and place

the coordinates of the upper-left corner (𝑥1, 𝑦1) and the

lower-right corner (𝑥2, 𝑦2) in a three-dimensional array

𝑝𝑛𝑡[𝑘][𝑖][𝑗] , where 𝑘 represents the number of digits

captured, 𝑖 = 0, 1 , 𝑗 = 0, 1 . Currently, the algorithm cuts

out images of the numbers using the coordinates of four

points. If the image just precisely covers the number, it

could affect the subsequent recognition performance of the

neural network. We therefore moved the edges of the left,

right and top, bottom to a distance (Δ𝑥, Δ𝑦) outward before

cutting for better recognition performance, as shown in

Figure 15(B).

[Step VI] After cutting out the number in the upper left

corner of the image, store it in a jpeg file. According to the

upper-left corner coordinates (𝑥1, 𝑦1) and the lower-right

corner coordinates (𝑥2, 𝑦2) of the number, create a white

block to cover the original digit.

[Step VII] Repeat [Steps I-VI] to capture the next

number.

2.4 Convolutional Neural Networks (CNNs)

CNNs are multilayer perceptrons (MLPs) similar to neural

networks. Conventional DL networks use fully connected

networks to recognize images. Two dimensional images must

be decomposed into one dimension, and then each pixel is

regarded as a feature and input into a deep neural network

framework for training and learning. However, these input

pixels lose their original spatial arrangement information. The

purpose of the convolution layer in CNNs is to preserve the

spatial arrangements of the image and obtain local images to

serve as input features, which then take the CNN model from

point comparison to two-dimensional local comparisons.

Though the gradual stacking and comprehensive comparison

of the features in a region, better recognition results can be

derived. An entire CNN mainly consists of several parts:

convolution layers, pooling layers, and fully connected layers.

The convolution layer uses a window with designated

dimensions sliding from left to right and from top to bottom in

an orderly fashion to obtain the sum of the products of local

regions in the images. A ReLU activation function outputs the

feature values and then provides them to the next network.

This sliding window is referred to as a convolution kernel,

which is also known as a filter. Based on the original image,

an-other simplified image (the feature map) is generated to

extract image features. The operations of CNN convolution

layers involve two important characteristics: local

connectivity and weight sharing, which can reduce the

Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1579

computing load of the neural network. The pooling layer is a

way of compressing images while preserving important

information. Via image down-sampling, the original image is

scaled down. The objective of the down-sampling in the

pooling layer is to reduce redundant information in the feature

map without affecting the performance of image feature

recognition and to shorten the time needed for subsequent

computation.

Figure 16 displays the structure of a CNN. The source

images were 28×28 pixel images, and Convolution layer 1

was given six kernels or filters. These six filters also

generated images of six corresponding feature maps. The

convolution operations did not change the size of the

images; thus, they were still 28×28 pixels. Pooling layer 1

performed down-sampling once, shrinking the six 28×28 pixel

images to six 14×14 pixel images. Convolution layer 2 was

given 16 kernels, generating 16 feature maps that were still

14×14 pixels. Pooling layer 2 performed the second downsam-

pling, shrinking the sixteen 14×14 pixel images to sixteen 7×7

pixel images.

Figure 16. Structure of CNN

2.5 Sudoku Puzzle Solving

To simplify the explanation of the algorithm, a 9×9

Sudoku grid is used, as shown in Figure 17. The easiest way

for a computer to solve a Sudoku game is by trial and error,

trying the numbers 1-9 for each cell and then continuing on to

the next blank cell until all of the cells have been filled so that

the rules of Sudoku are met. This is clearly not an efficient

approach. Slightly modifying the trial and error method would

greatly enhance the operating efficiency of the program.

Making a list of all the possible numbers, or a candidate

number list, for each blank cell. The values in the list are tested,

and if they satisfy the conditions, then the program goes on to

the next blank cell. If there are any contradictions, the program

backtracks. This approach is called the candidate backtrack

solution. The program defines the list 𝑠𝑢𝑑𝑜𝑘𝑢[] to store the

numbers in the Sudoku grid. If a cell is blank, then 0 fills the

spot, refer to Figure 17.

Figure 17. 9×9 Sudoku card

The program next establishes the five following functions:

(1) 𝑟𝑜𝑤_𝑁𝑢𝑚(), which searches for the numbers appearing

in an entire row in the grid and stores them in the list 𝑟𝑜𝑤[];

(2) 𝑐𝑜𝑙_𝑁𝑢𝑚(), which searches for the numbers appearing in

an entire column in the grid and stores them in the list 𝑐𝑜𝑙[];

(3) 𝑏𝑙𝑘_𝑁𝑢𝑚() , which searches for all of the numbers

appearing in the (3×3) blocks and stores them in the list 𝑏𝑙𝑘[];
(4) 𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑(), which display the Sudoku puzzle grid in

the graphical user interface window showing the solution pro-

cess to players; and (5) 𝑐ℎ𝑒𝑐𝑘_𝑁𝑢𝑚(), which detects whether

any numbers appear more than once in any rows, columns, or

(3×3) blocks; if so, then the False response is given, and if not,

then the True response is given.

The entire base grid is searched for at which index 𝑘 the

blank cell is located. For each blank cell, the three functions

𝑟𝑜𝑤_𝑁𝑢𝑚(), 𝑐𝑜𝑙_𝑁𝑢𝑚() and 𝑏𝑙𝑘_𝑁𝑢𝑚() are called. Fol-

lowing the rule that no number can appear more than once in

any row, column, or (3×3) block, all of the numbers that can

be placed in the cell are identified, and the list 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[]
is established. One by one, all of the blank cells that have not

been filled are added to the list 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[]. The function

𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑() is called, and the base grid of the Sudoku

game is displayed on the screen for the player to see.

We employed the candidate backtrack solution method to

solve Sudoku puzzle. All of the numbers that may be placed

in all of the blank cells were tested by trial and error. With the

base grid in Figure 17, there are 51 blank cells. Thus, there are

51 physical objects in 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[]. Take one physical object

𝑝1 from 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[], the 𝑥 and 𝑦 coordinates of Sudoku

grid can be determined by the 𝑘 value.

1 1(. , .) (%9, // 9)p x p y k k= , (5)

where % is the remainder of the division, // is the integer of

the division.

Suppose that its coordinates are (1,3), the grey grid shown

in Figure 17. Therefore, 𝑝1. 𝑥 = 1 , 𝑝1. 𝑦 = 3 , and

𝑝1. 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[] = [1, 2, 5] , which means that the numbers

that may be filled in this position are 1, 2 and 5, which are

called candidate numbers. Test with the first possible number,

and call 𝑐ℎ𝑒𝑐𝑘_𝑁𝑢𝑚() to check whether any numbers

appear more than once in the row, column, or (3×3) block. If

the response is False, it means that there are numbers that

appear more than once, and the test must then be repeated with

the next possible number. If the response is true, it means that

no numbers appear more than once in the row, column, or (3×3)

block; therefore, the number is placed in the Sudoku grid. If

none of numbers of 𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒[] is valid, previous call of the

function will reset the value of the cell to 0 and continue

1580 Journal of Internet Technology Vol. 23 No. 7, December 2022

iterating to find the next valid number. Whether 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[]
is empty is then examined. If that is the case, then all of the

physical objects have been processed, and 𝑠ℎ𝑜𝑤_𝐵𝑜𝑎𝑟𝑑() is

called to display the completed Sudoku grid on the screen. If

pointList[] is not empty, then the next physical object 𝑝2 is

taken from 𝑝𝑜𝑖𝑛𝑡𝐿𝑖𝑠𝑡[] to confirm the number that should

be placed in the next blank cell. The method for this is the

same as above.

3 Experiment Results

We divide the process of solving the Sudoku game in the

camera captured image into four steps. In Step (1), the vertical

lines, horizontal lines, and outer frame are re-moved using HT.

In Step (2), the left-to-right, top-to-bottom scanning method

proposed in this paper is used to capture the numbers in the

images, which are then stored in a directory folder. The

locations of the numbers in the images are also obtained. In

Step (3), the module kit of Tensorflow and Keras is used to

construct a CNN, and the training samples in the MNIST

handwritten number dataset are used to train the model. The

images of numbers in the directory folder are introduced as

test data to assess model performance. In Step (4), the

candidate backtrack algorithm is used to automatically infer

and fill in the blank cells in the grid, completing the solution

to the Sudoku puzzle. In this section, we will present the

experiment results of the four steps separately and evaluate the

performance of the CNN.

3.1 Straight Line Detection using HT

The image in Figure 18 shows two intersecting straight

lines. Line 1L passes through points (0,100) and (0,500)

whereas Line
2L straight line passes through points (100,0)

and (0,500). Conversion to grayscale, binarization, and edge

detection produced the image in Figure 19. The lines have

widths, and the aforementioned image processing then

generates four line segments: 𝐿11, 𝐿12, 𝐿21 and
22L . The

line segments detected using the HT straight line detection

algorithm are presented in Table 1.

Figure 18. Two straight lines Figure 19. Four lines after

edge detection

Table 1. Four straight lines resulting from HT detection

1L

2L

11L 12L

21L 22L

𝜌 92 102 92 102

𝜃 1.3788 1.3788 0.1920 0.1920

𝜃 79o 79o 11o 11o

The results in Table 1 reveal that these two straight lines

are both 10 pixels wide. Note that the axis definitions of Figure

11 and Figure 18 differ. As 𝜃 defines the angle between the

𝑥-axis and the vertical straight line, the 𝜃 in Figure 11 is the

angle between the vertical axis and the vertical straight line. In

contrast, the 𝜃 in Figure 19 is the angle between the

horizontal axis and the vertical straight line. The 𝜃 angle of

Line 𝐿1 derived using HT is 79 degrees, whereas the 𝜃

angle of Line 𝐿2 derived using HT is 11 degrees. In the cu-

mulative voting matrix 𝑀, elements 𝑀(92,79), 𝑀(102,79),

 𝑀(92,11), 𝑀(102,11) received the highest number of votes

and can be regarded as the regional peak values.

Figure 20 displayed an image of a 4×4 grid similar to a

4×4 Sudoku grid. We detected the horizontal lines, vertical

lines, and outer frame of the image. Conversion to grayscale,

binarization, and edge detection produced the image in Figure

21. The results of straight line detection using HT are shown

in Table 2. A total of 16 straight lines were detected, including

8 horizontal lines and 8 vertical lines. Their angles were 0

degrees and 90 degrees, respectively.

Figure 20. 4×4 grid Figure 21. Lines of 4×4 grid

 following edge detection

Table 2. Four lines of 4×4 grid resulting from HT detection

1L 2L 3L 4L 5L 6L 7L 8L

 (pixels) 7 11 12 23 24 35 36 46

 (degrees) 0o 0o 0o 0o 0o 0o 0o 0o

 L9 L10 L11 L12 L13 L14 L15 L16

 (pixels) 7 11 12 23 24 35 36 47

 (degrees) 90o 90o 90o 90o 90o 90o 90o 90o

3.2 Scanning for Number Capture

The image processing algorithm proposed for number

capture in this paper uses the Python program as its work

platform to program four functions:

𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙), 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙)

𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2), 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2) (6)

The numbers in the image are captured from left to right

and from top to bottom, and the coordinates of their upper-left

corner and their lower-right corner are stored in a three

dimensional array 𝑝𝑛𝑡[𝑘][𝑖][𝑗] , where 𝑘 denotes the

number of digits in the image and 𝑐𝑜𝑙 represents the

column pixels of image. With the image in Figure 22 as an

example, there are four numbers. The scanning goes from

Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1581

left to right and from top to bottom, and the four following

functions are called to capture numbers:

𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(𝑐𝑜𝑙) 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(𝑐𝑜𝑙)
𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(𝑦2) 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(𝑦2)
Assume that the dimensions of the image are 600×800 pixels,

so 𝑐𝑜𝑙 = 800.

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦1(800) obtains 𝑦1 = 50,

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑦2(800) obtains 𝑦2 = 150,

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥1(150) obtains 𝑥1 = 50,

 𝑜𝑏𝑡𝑎𝑖𝑛_𝑥2(150) obtains 𝑥2 = 150. (7)

By repeating the steps in Section 3.2, the numbers

“1” “2” “3” “4” can be captured.

1 2

3 4

(50,50) (350,50)

(150,150) (450,150)

(50,450) (350,450)

(150,550) (450,550)

Figure 22. The numbers are aligned left and right as well as

up and down

3.3 Digit Recognition using Neural Network

Because each of the MNIST images is 28×28 pixels, they

occupy 784 bytes of memory. They are moderate in size and

are all binarized black and white images, making them

extremely suitable for modeling, training, and prediction in

this study. The MNIST dataset comprises 60,000 items of

training data and 10,000 items of test data. Generally, 80% of

the sample data serve as training data, and the other 20% serve

as validation data. Thus, with 60,000 items of data in total, we

divided the data into 60,000 × 0.8 = 48,000 items as training

data and 60,000 × 0.2 = 12,000 items as validation data. We

performed training and prediction validation of an MLP model

and a CNN, explained separately as follows.

(I) Multilayer perceptron (MLP) model

The input layer of the MLP model has 784 input neurons,

which is a one-dimensional array (of 784 items of data) con-

verted from 28 28 two-dimensional images, serving as the

input neurons of the network. The hidden layer has a total of

256 hidden neurons. The output layer contains a total of 10

output neurons that correspond to the 10 prediction results 0-

9, the structure shown in Table 3.

The feature values and true values of the 60,000 items of

pre-processed data in the MNIST dataset were input into the

MLP model for training. The trained model could then be used

to predict number digits in various forms (including handwrit-

ten and computer fonts). We adopted four computer fonts to

test the trained model: Arial Black, Arial Unicode MS, Hanyi

Senty Finger Painting, and Hanyi Senty Garden Handwriting.

The total number of weight parameters to be trained in the

MLP model framework is as follows:

256 784 256 256 10 10 200,960 2,570

 203,530

 + + + = +

=
 (8)

The accuracy rates of the MLP model in predicting numbers

in Arial Black computer font, Arial Unicode MS, Hanyi Senty

Finger Painting, and Hanyi Senty Garden Handwriting were

0.63, 0.54, 0.48, and 0.42, respectively. None of the results

were very satisfactory.

Table 3. The structure of MLP model

MLP model

Layer (type) Output shape Parameter

dense_5 (Dense) (None, 256) 200960

dense_6 (Dense) (None, 10) 2570

Total parameters: 203,530

Trainable parameter: 203,530

Non-Trainable parameters: 0

(II) CNN

The structure of the CNN adopted in this study included

the following.

Convolution layer 1: The size of the images of the input

numbers was 28×28 pixels. The first convolution layer was

given sixteen 5×5 kernels (also referred to as filters). In the

other words, there are 25×16+16 = 416 weights that need to

be updated at the same time in the same layer, and these

16 filters will also generate images of 16 corresponding

feature maps. The convolution operations do not change

the size of the images; therefore, they are still 28×28 pixels.

Pooling layer 1: This layer performs the first down-

sampling, shrinking the sixteen 28×28 pixel images to sixteen

14×14 pixel images.

Convolution layer 2: The size of the images of the input

numbers was 14×14 pixels. The second convolution layer

was given thirty-six 5×5 kernels. This means that there are

25×36×16+36=14,436 weights that need to be trained and

updated in the second convolution layer, and these 36

filters will also generate images of 36 corresponding

feature maps. The size of the images is still 14×14 pixels.

Pooling layer 2: This layer performs the second

downsampling, shrinking the thirty-six 14×14 pixel images to

thirty-six 7×7 pixel images. In the neural network,

Dropout(0.25) is added to the model to randomly abandon

25% of the neurons in each training iteration in order to

prevent overfitting.

Flattening layer: This layer converts the thirty-six 7×7

images output by Pooling layer 2 into a one dimensional array

(including a total of 1,764 items of data), which correspond

exactly to the 1,764 neurons in the flattening layer.

Hidden layer: A hidden layer with 128 neurons is

established, and a total of 1,764×128+128=225,920 weights

need to be trained. Dropout(0.5) is added to the model to

randomly abandon 50% of the neurons in each training

iteration in order to prevent overfitting.

Output layer: This layer contains a total of 10 neurons

corresponding to the 10 digits 0-9. The feature values and true

values of the 60,000 items of pre-processed data in the MNIST

dataset were input into the CNN model for training, the CNN

model is shown in Table 4. We adopted four computer fonts

1582 Journal of Internet Technology Vol. 23 No. 7, December 2022

to test the trained model: Arial Black, Arial Unicode MS,

Hanyi Senty Finger Painting, and Hanyi Senty Garden

Handwriting. The accuracy rates of the model were all around

80%. From the experimental results, we can conclude that

under the same training conditions, the CNN model had better

predictive capabilities towards computer fonts than did the

MLP model; however, the results were still not satisfactory.

Table 4. The structure of CNN model

CNN model

Layer (type) Output shape Parameter

conv2d_40(Conv2D) (None, 28,28,16) 416

max_pooling2d_40

(Maxpooling2D) (None, 14,14,16) 0

conv2d_41(Conv2D) (None, 14,14,36) 14436

max_pooling2d_41

(Maxpooling2D) (None, 7,7,36) 0

dropout_40(Dropout) (None, 7,7,36) 0

flatten_20(Flatten) (None, 1764) 0

dense_40(Dense) (None, 128) 225920

dropout_41(Dropout) (None, 128) 0

dense_41(Dense) (None, 10) 1290

Total parameters: 242,062

Trainable parameter: 242,062

Non-Trainable parameters: 0

(III) Self-made dataset with 4,580 training samples

The MNIST dataset used so far contained 60,000 training

images and 10,000 test images, which was an ample number

of samples. However, this dataset contained handwritten digits,

as shown in Figure 6, whereas the recognition targets on our

Sudoku cards were computer script fonts. The substantial

differences between them could explain why the accuracy of

the CNN in digit prediction could not be increased. We

therefore collected 4,580 images of digits in computer script

fonts and used them to train the CNN model parameters before

the digits extracted from Sudoku cards served as prediction

targets for accuracy assessment. As for the method of

collecting image pictures, various computer fonts, including

Arial, Calibri, Time New Roman, etc., are used to capture

image from 0 to 9. However, when using computer fonts to

capture image from 0 to 9, there will be problems of image

skew and offset. Among them, Figure 23 is the uncorrected

self-made training sample, Figure 24 is the digital image

training set after offset correction. Our experiments revealed

that the reinforcement of the computer script font samples

increased the prediction accuracy of the CNN to over 96%.

symbol_0 symbol_1 symbol_2 symbol_3 symbol_4 symbol_5 symbol_6 symbol_7 symbol_8 symbol_9 symbol_10 symbol_11

symbol_12 symbol_13 symbol_14 symbol_15 symbol_16 symbol_17 symbol_18 symbol_19 symbol_20 symbol_21 symbol_22 symbol_23

symbol_24 symbol_25 symbol_26 symbol_27 symbol_28 symbol_29 symbol_30 symbol_31 symbol_32 symbol_33 symbol_34 symbol_35

symbol_36 symbol_37 symbol_38 symbol_39 symbol_40 symbol_41 symbol_42 symbol_43 symbol_44 symbol_45 symbol_46 symbol_47

Figure 23. The uncorrected self-made training sample

symbol_0 symbol_1 symbol_2 symbol_3 symbol_4 symbol_5 symbol_6 symbol_7 symbol_8 symbol_9 symbol_10 symbol_11

symbol_12 symbol_13 symbol_14 symbol_15 symbol_16 symbol_17 symbol_18 symbol_19 symbol_20 symbol_21 symbol_22 symbol_23

symbol_24 symbol_25 symbol_26 symbol_27 symbol_28 symbol_29 symbol_30 symbol_31 symbol_32 symbol_33 symbol_34 symbol_35

symbol_36 symbol_37 symbol_38 symbol_39 symbol_40 symbol_41 symbol_42 symbol_43 symbol_44 symbol_45 symbol_46 symbol_47

symbol_48 symbol_49 symbol_50 symbol_51 symbol_52 symbol_53 symbol_54 symbol_55 symbol_56 symbol_57 symbol_58 symbol_59

Figure 24. The self-made training sample after offset

correction

3.4 Recognition of Digits on Sudoku Game Cards

A camera was used to capture Sudoku card images, and

HT was employed to cover the vertical lines, horizontal lines,

and outer frames in the images. Using the image processing

algorithm proposed in this paper, we captured the numbers in

the images, calculated their location coordinates in the image,

and stored them in a directory folder. The MNIST dataset was

used to train a CNN in order to predict the numbers captured

from the Sudoku cards.

Using the CNN structure in Figure 16 and training with the

4,580 images in the self-made dataset, we predicted the

numbers in the images stored in the directory folder. As shown

in Figure 25, the prediction results achieved an accuracy of

96%, which indicates satisfactory recognition performance.

Figure 25. Prediction performance with Sudoku card

4 Conclusion

Number puzzle games are the most natural means of

introducing children to the world of mathematics. Challenging

number puzzle games can be fascinating for children and

encourages them to keep playing and wanting more. Hidden

behind number puzzle games are generally logical reasoning

and induction, which are two essential abilities in learning

mathematics. Using computers to solve number puzzle games

or fun magic is a matter of course. With Sudoku as an example,

computerizing Sudoku games provides a unique solution tool;

it attempts to provide humanistic solution methods,

completely simulates the thinking process of the human brain

during problem solving, and explains the reasons behind each

step along the way. When children feel that a hard Sudoku

game is impossible to solve, their first thought is often to give

up. If suitable hints or directions could be given, their

confidence in mathematics following success at the game

could be regained. Traditional number puzzle games are

usually presented using game cards or physical grids, such as

Sudoku cards or Klotski sliding block puzzles. The means of

Integrating of Image Processing and Number Recognition in Sudoku Puzzle Cards Digitation 1583

computerizing game cards, physical grids, and sliding block

puzzles was thus the motivation behind this study. The

contents of this paper include image capture by a camera, HT,

number capture, the use of CNN for digit recognition, and a

Sudoku game algorithm. In the future, children can watch the

problem-solving process on a computer while manipulating

sliding block puzzle pieces and work their way toward success.

We adopted a Python work platform, incorporated OpenCV to

read the image data of Sudoku cards, used HT to remove the

excess straight lines and outer frames from the image,

captured the numbers on Sudoku cards using an image

processing algorithm, and stored them in a file directory.

Using the Tensorflow and Keras embedded in the Python

platform, we established a neural net-work model, read the

images of the numbers in the file directory for recognition, and

compared the recognition performances of an MLP model and

a CNN model trained using the MNIST dataset. To enhance

the recognition accuracy, we collected 4,580 images of digits

in computer script fonts and used them to train the CNN model

parameters before the digits extracted from Sudoku cards

served as prediction targets for accuracy assessment. The

accuracy reached 96%, thereby presenting good performance.

References

[1] J. F. Crook, A pencil-and-paper algorithm for solving

Sudoku puzzles, Notices of the American Mathematical

Society, Vol. 56, No 4, pp. 460-468, April, 2009.

[2] O. Eva, B. Desmond, B. Dunka, A Hybrid Backtracking

and Pencil and Paper Sudoku Solver, International

Journal of Computer Applications, Vol. 181, No. 47, pp.

39-43, April, 2019.

[3] P. V. C. Hough, Method and means for recognizing

complex patterns, United States: No. US3069654A,

December, 1962.

[4] R. O. Duda, P. E. Hart, Use of the Hough Transform to

Detect Lines and Curves in Pictures, Communications of

the ACM, Vol. 15, No. 1, pp. 11-15, January, 1972.

[5] V. J. Schneider, Real time circle detection by simplified

Hough transform on smartphones, Proc. SPIE 11736,

Real-Time Image Processing and Deep Learning 2021,

117360F, The International Society for Optics and

Photonics, Bellingham, Washington, 2021.

[6] F. Han, Y. Guo, L. Wang, A New Ellipse Detector Based

on Hough Transform, 2009 Second International

Conference on Information and Computing Science,
Manchester, UK, 2009, pp. 301-305.

[7] L. Xu, E. Oja, P. Kultanen, A new curve detection

method: Randomized hough transform (RHT), Pattern

Recognition Letters, Vol. 11, No. 5, pp. 331-338, May,

1990.

[8] R. Cucchiara, F. Filicori, The Vector-Gradient Hough

Transform, IEEE Transactions on Pattern Analysis and

Machine Intelligence, Vol. 20, No. 7, pp. 746-750, July,

1998.

[9] S. Luo, J. Liu, Research on Car License Plate

Recognition Based on Improved YOLOv5m and

LPRNet, IEEE Access, Vol. 10, pp. 93692-93700,

September, 2022, doi: 10.1109/ACCESS.2022.3203388.

[10] Z. Akhtar, R. Ali, Automatic Number Plate Recognition

Using Random Forest Classifier, SN Computer Science,

Vol. 1, No. 3, pp. 1-9, May, 2020.

[11] S. Suzuki, K. Abe, Topological structural analysis of

digitized binary images by border following, Computer

Vision, Graphics, and Image Processing, Vol. 30, No. 1,

pp. 32-46, April, 1985.

[12] M. Sun, M. Shi, H. Han, Contour Extraction and

Vectorization Algorithm for Paper-Cut Pattern, 2016 4th

Intl Conf on Applied Computing and Information

Technology/3rd Intl Conf on Computational

Science/Intelligence and Applied Informatics/1st Intl

Conf on Big Data, Cloud Computing, Data Science &

Engineering (ACIT-CSII-BCD), Las Vegas, Nevada,

USA, 2016, pp. 342-347.

[13] Jrunw, Illustrated Top 10 Classics for Getting Started

with Machine Learning, Retrieved from:

https://reurl.cc/95dKLa, December, 2021.

[14] M. Minsky, S. Papert, Perceptrons: an introduction to

computational geometry, The MIT Press, 1969.

[15] D. Rumelhart, G. Hinton, R. Williams, Learning

representations by back-propagating errors, Nature, Vol.

323, No. 6088, pp. 533-536, October, 1986.

[16] R. Hecht-Nielsen, Theory of the backpropagation neural

network, International 1989 Joint Conference on Neural

Networks, DC, Washington, USA, 1989, pp. 593-605.

[17] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, L. D. Jackel, Backpropagation

Applied to Handwritten Zip Code Recognition, Neural

Computation, Vol. 1, No. 4, pp. 541-551, December,

1989.

[18] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, L. D. Jackel, Handwritten digit

recognition with a back-propagation network, Advances

in Neural Information Processing Systems 2, Denver,

CO, USA, 1989, pp. 396-404.

[19] R. Salakhutdinov, A. Mnih, G. Hinton, Restricted

Boltzmann machines for collaborative filtering,

Proceedings of the 24th international conference on

Machine learning – ICML, Corvalis, Oregon, USA,

2007, pp. 791-798.

[20] G. E. Hinton, S. Osindero, Y.-W. Teh, A Fast Learning

Algorithm for Deep Belief Nets, Neural Computation,

Vol. 18, No. 7, pp. 1527-1554, July, 2006.

[21] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, Gradient-

based learning applied to document recognition,

Proceedings of the IEEE, Vol. 86, No. 11, pp. 2278-2324,

November, 1998.

[22] H. Y. Lee, Convolutional Neural (CNN), Retrieved from:

https: // hackmd. Io /@allen 108108/rkn-oVGA4,

December, 2021.

[23] S. Weidman, Deep Learning from Scratch, Building with

python First Principles, O’Reilly, 2019.

[24] I. Naseer, S. Akram, T. Masood, A. Jaffar, M. A. Khan,

A. Mosavi, Performance Analysis of State-of-the-Art

CNN Architectures for LUNA16, Sensors, Vol. 22, No.

12, Article No. 4426, June, 2022, doi:

10.3390/s22124426.

1584 Journal of Internet Technology Vol. 23 No. 7, December 2022

Biographies

Pu-Sheng Tsai was born in Taiwan, R.O.C.,

in 1962. He received the M.S. degree in

automatic control from the Feng Chia

University, Taichung, Taiwan, R.O.C., in

1985 and the Ph.D. degree in electrical

engineering from the National Taiwan

University, in 1998. He is currently an

Associate Professor in the Department of

Electronic Engineering at Ming Chuan University, Taoyuan,

Taiwan. His main research interests are artificial intelligence,

virtual reality somatosensory interaction, internet of things,

Embedded Micro-controller application and design.

Ter-Feng Wu was born in Taiwan in 1962.

He received the B.S. degree in Department

of Industrial Education from National

Taiwan Normal University, Taipei, Taiwan,

in 1986. He received the M.S. degree in

Department of Control Engineering from

National Chiao Tung University, Hsinchu,

Taiwan, in 1993. He received the Ph.D.

degree in Department Electrical Engineering from National

Taiwan University, Taipei, Taiwan, in 2006. He is currently a

professor and will be a dean of College of Electrical

Engineering & Computer Science, National Ilan University,

Yilan, Taiwan, since February 1, 2023. His research interests

include intelligent control, neural network, fuzzy CMAC,

green energy, unmanned aerial vehicles (UAVs) and mobile

robot, etc.

Jen-Yang Chen was born in Hsin-Chu,

Taiwan, R.O.C., in May 1960. He received

the Ph.D. in electrical engineering from

Tamkang University, in 2000. He is

currently a full professor in the Department

of Electronic Engineering at Ming Chuan

University. His research interests include

intelligent control, soft computing, science

education, robotic control, and adaptive control.

Jen-Feng Huang was born in Taiwan,

R.O.C., in 1974. He received the M.S.

degree in electronic engineering from

China University of Science and

Technology, Taipei, Taiwan, R.O.C., in

2021. He currently works in Jian Quan

Clinc Medical Test Center as a senior

quality control & test engineer. His main

research interests are Embedded Micro-

controller application, mechanical vision, medical testing and

artificial intelligence.

