
IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1505

*Corresponding Author: Qiong Huang; E-mail: qhuang@scau.edu.cn

DOI: 10.53106/160792642022122307006

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor

Ying Miao1, Qiong Huang1,2*, Meiyan Xiao1, Willy Susilo3

1 College of Mathematics and Informatics, South China Agricultural University, China

2 Guangzhou Key Laboratory of Intelligent Agriculture, China
3 Institute of Cybersecurity and Cryptology, School of Computing and Information Technology, Australia

yingmiao2021@163.com, qhuang@scau.edu.cn, maymayxiao@scau.edu.cn, wsusilo@uow.edu.au

Abstract

Cloud storage provides convenience in managing data

for users. Data integrity becomes important because data

owner (DO) loses control of their data once it is uploaded

to the cloud server (CS). Public auditing is used to check

data integrity in cloud storage. Traditional public auditing

schemes introduce a third-party auditor (TPA) to help users

check their data. However, TPA is assumed to be trusted in

these schemes, which may not be practical. A dishonest

TPA may provide a good report to DO without executing

the auditing task timely. If the data loss could not be

detected timely, it may cause a great loss to DO. In this

paper we aim to solve these problems using blockchain

technique. In our scheme DO, TPA and CS interact with

blockchain via smart contracts. We utilize a time-locked

deposit smart contract to incentive TPA and CS for their

fulfillment in the auditing task honestly. Otherwise, they

would be amerced. We use storage smart contracts to

ensure the auditing process transparency, and utilize zero-

knowledge proof to protect DO’s privacy. The scheme is

extended to support batch auditing to reduce the user’s cost.

Experimental results show that our scheme is efficient and

practical.

Keywords: Blockchain, Public auditing, Incentive,

Procrastinating auditor

1 Introduction

With the rapid development of Internet of Things (IoT)

and Artificial Intelligence (AI), the digital world is thriving.

Various data generated in our daily life promote a rapid

demand of cloud storage. Cloud storage service provides a

convenient, fast and scalable environment, making storage

become easier, thus many infrastructures utilize cloud storage.

There are many cloud storage services providers (CSP), such

as Amazon AWS Cloudfront, Akamai, Google Drive and etc.

According to Gartner1, public cloud service market worldwide

will grow by 17% in 2020, from 227.8 billion dollars in 2019

to 266.4 billion dollars in 2020. However, cloud storage also

brings problems [1], such as single point of failure, data breach,

data privacy, and data loss. Particularly, data loss accidents are

growing rapidly. According to the research by Gemalto2, there

1 https://www.gartner.com/en/newsroom/press-releases/2019-11-13-gartner-forecasts-

worldwide-public-cloud-revenue-to-grow-17-percent-in-2020

were about 2.6 billion pieces of data stolen, lost or

compromised globally in 2017. As valuable resources, data

loss may be fatal for data owners or companies. Cloud storage

services would hide data loss accidents for their own interests.

Therefore, people have tried to seek a way to find out data loss

timely in recent years. Public data integrity verification

technique [2-3] emerged to solve it, which provides a way for

the cloud to prove data possession without transmitting all the

data. In order to further provide convenience for users, it

introduces a trusted third-party auditor. The traditional third-

party auditing model includes three entities, as shown in

Figure 1. First of all, the DO splits its data into blocks, signs

each one, and outsources the data blocks with the

corresponding signatures to the cloud. Secondly, the DO

delegates a TPA to check the data integrity timely. After

receiving the auditing task, TPA chooses a random subset of

data blocks as a challenge. The CS then responds with a piece

of proof information according to the challenge. Finally, the

TPA verifies the proof and sends the auditing result to the DO.

Figure 1. Traditional public auditing

1.1 Problem Statement

Public auditing has been studied for many years, such as

privacy preservation for data users, dynamic data auditing,

auditing in group data sharing and etc., e.g. [4-11]. However,

there are two major problems in these schemes.

1.1.1 On the Vulnerability of Malicious Auditors

In most existing public auditing schemes [4, 5-7, 10-11],

users usually do not take participate in the auditing process,

thus the auditor is assumed to be honest and reliable. However,

if the auditor is dishonest/malicious, it may not conduct the

2 https://www.globaldots.com/blog/2-6-billion-records-were-stolen-lost-or-exposed-

worldwide-in-2017

1506 Journal of Internet Technology Vol. 23 No. 7, December 2022

auditing but always generate a ‘fake’ data integrity report.

Especially, most cloud service providers and third-party

auditing services charge for these services. In this case, it is

unfair for users since they pay for the service and should have

the right to audit the auditor’s behavior at the end of each

auditing task instead of only knowing the checking result, e.g.,

𝑡𝑟𝑢𝑒 or 𝑓𝑎𝑙𝑠𝑒. Only a few schemes [12-13] consider the loss

of users, but these schemes can not resist a procrastinating

auditor.

1.1.2 On the Vulnerability of Procrastinating Auditors

Existing public auditing schemes require the auditor to

execute auditing tasks periodically in order to find data

corruption as soon as possible. Time-sensitive is important in

many systems. For example, in the cloud-assisted electronic

health system, the electronic health records (EHRs) is time-

sensitive [14-15] since the information relates to the state of

an illness for patients. What is more, it relates to a patient’s

life in case of an emergency. Therefore, it is important to

check the data’s integrity periodically. However, most

existing public auditing schemes could not resist a

procrastinating auditor. Usually, the agreed frequency of data

integrity check is weekly, monthly, or quarterly [16-17] which

is not high, due to the cost issue and the burden on the CS side.

An honest auditor would perform the check as scheduled,

however, a procrastinating auditor may not conduct the

auditing task timely until the last second. To avoid such a case,

there should be some way to check whether the auditor

honestly finishes its obligation.

In order to address these problems, many researchers have

studied public data auditing based on blockchain (and smart

contracts) technology recently, such as [12-13, 16, 18, 33-34].

However, these schemes only utilize blockchain technique to

check the correctness of the proof information but could not

resist the procrastinating auditor. And none of these schemes

take both of these problems into consideration simultaneously.

1.2 Our Contributions

In this paper, we study the construction of a public auditing

scheme aiming to solve the aforementioned problems. We

utilize the blockchain technology to protect the interest of DO

and to resist the procrastinating TPA and CS. The core idea of

our scheme is to use cryptocurrency and smart contracts in

blockchain to reward or amerce the TPA and CS automatically

according to their fulfillment. Overall, our contributions in this

paper could be summarized as follows.

⚫ We analyze the existing problems in recent public

auditing schemes and then demonstrate that existing

schemes rely on a trust TPA. It cannot resist a

procrastinating auditor who may not perform the auditing

task but always generate a good report for DO, which

violates the core idea of public auditing, i.e., finding the

data corruption as soon as possible.

⚫ We propose a public auditing scheme (IPAPA) with

incentives based on blockchain, which can resist a

malicious auditor and procrastinating ones. We design

blockchain-based smart contracts to achieve the auditing

process transparency and authenticity and use a time-

locked deposit smart contract to resist the procrastinating

auditor. Our scheme does not depend on any centralized

third party to accomplish the auditing task and can also

guarantee the user’s privacy by making use of zero-

knowledge proof in the auditing process.

⚫ We further extend IPAPA to support batch auditing of

user data, in order to reduce the cost on the data owner

side. Finally, we implement the proposed scheme based

on the public test network of Ethereum. Experimental

results show that our scheme is practical and efficient.

1.3 Paper Organization

The remainder of this paper is organized as follows. We

introduce related works in Section 2 and preliminaries in 3. In

Section 4 we show the system model, threat model and design

goals. The proposed public auditing scheme with incentive is

described in Section 5. We then present the security analysis

and efficiency analysis in Sections 6 and 7, respectively.

Finally, we draw the conclusion in Section 8.

2 Related Works

2.1 Provable Data Procession

2.1.1 Traditional Public Auditing

To check the integrity of cloud storage data, Juels et al. [2]

proposed a proof-of-retrievability (POR) scheme in 2007,

which utilizes indistinguishable blocks hidden in file blocks as

sentinels to detect data corruption. However, their POR

scheme does not take public auditing into consideration and

does not support the unbounded number of challenge queries

either. Later, Ateniese et al. [3] firstly proposed a public

verification scheme based on proof of data possession (PDP),

which adopts the challenge and response model and supports

unbounded number of challenge queries. Nevertheless, their

scheme cannot protect user’s privacy. Shacham and Waters

[19] then proposed a public-private key based POR scheme,

which utilizes homomorphic authenticators to generate

compact proofs and supports public auditing.

Following Shacham et al.’s work, many public auditing

schemes have been proposed in recent years. These schemes

solved different problems in public auditing, such as privacy

preservation, data dynamic, data sharing in group and etc. To

check the integrity of the outsourced data without leaking any

privacy information of the DO, some schemes utilize specific

signature technique. For instance, Wang et al. [4] utilized ring

signature to protect the signer’s privacy, and Li et al. [18]

utilized online/offline signatures to reduce online computation

overhead with the offline pre-computed results. While some

other schemes [5-7] utilized random masking technique or

zero knowledge proof to hide data information during the

response phase. To support public auditing and data dynamics,

existing schemes usually utilized Merkle Hash Tree (MHT) or

index table to support data blocks addition, insertion,

modification and deletion, such as [8-11, 31-32]. MHT based

schemes usually need heavy computation cost and

communication cost, while index table solves this problem

commendably. Furthermore, there are many schemes [20-21]

which focus on checking the integrity of data shared in a group.

Many of these schemes utilized proxy-resignature to deal with

user revocation.

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1507

2.1.2 Blockchain-based Public Auditing

Recently, many researchers have focused on decentralized

provable data possession. Specifically, the emerging

blockchain technology provides a good solution to provable

data possession. In order to resist a malicious TPA, Armknecht

et al. [22] firstly utilized Bitcoin as the unpredictable

pseudorandomness provider to generate challenge information.

Following Armknecht et al.’s work, many schemes [16, 23-26]

utilized random block hash or nonce in block to generate

challenge blocks. Some schemes utilized blockchain to store

information. Yu et al. [30] utilized consortium chain to store

audit information. However, it needs the DO to verify the

correctness of proof information. Li et al. [18] utilized public

chain to store file information to remove central third-party

auditor. However, their scheme needs the data user to generate

a challenge. Huang et al. [27] utilized three different

transactions to record data dynamics in blockchain. Some

schemes utilized smart contracts to realize fair judgement

recently. For instance, Wang et al. [12] utilized smart contract

to achieve fairness in judgement in their scheme. Concretely,

smart contract instead of the TPA checks the correctness of

proof information. If the check fails, the CS would be amerced

according to the smart contract; otherwise, the CS would

receive a reward for its honest service. Yuan et al. [13] utilized

the same idea to achieve data deduplication and fair arbitration.

However, these schemes [12-13] cannot resist a

procrastinating auditor.

3 Preliminaries

3.1 Bilinear Pairings

Let 𝐺1 and 𝐺𝑇 be two multiplicative cyclic groups of

prime order 𝑝 , respectively, 𝑔 be a generater of 𝐺1 . The

map 𝑒: 𝐺1 × 𝐺1 → 𝐺𝑇 is a bilinear pairing if it satisfies the

following properties: (1) Bilinearity: for all 𝑢, 𝑣 ∈ 𝐺1 and

𝑎, 𝑏 ∈ 𝑍𝑝 , 𝑒(𝑢𝑎, 𝑣𝑏) = 𝑒(𝑢, 𝑣)𝑎𝑏 ; (2) Computability: for

any 𝑢, 𝑣 ∈ 𝐺1, 𝑒(𝑢, 𝑣) could be efficiently computed; and (3)

Non-degeneracy: 𝑒(𝑔, 𝑔) ≠ 1𝑇, where 1𝑇 is the identity of

𝐺𝑇.

3.2 Mathematical Assumptions

Let 𝐺 be a cyclic group of prime order 𝑝 , 𝑔 be a

random generator of 𝐺, and 𝑎, 𝑏 be random elements of 𝑍𝑝.

⚫ Computational Diffie-Hellman (CDH) Assumption

Given (𝑔, 𝑔𝑎, 𝑔𝑏), it is computationally intractable to

compute 𝑔𝑎𝑏. That is, for any probabilistic polynomial-

time (PPT) adversary 𝒜, the probability of solving CDH

problem is negligible, namely,

𝑃𝑟[𝑎, 𝑏 ← 𝒜𝐶𝐷𝐻(𝑔, 𝑔
𝑎, 𝑔𝑏): 𝑍 = 𝑔𝑎𝑏] ≤ 𝜀,

where 𝜀 is a negligible function in 𝑛.

⚫ Discrete Logarithm(DL) Assumption Given h ∈ G, it

is computationally intractable to compute ℎ = 𝑔𝑎, That

is, for any PPT adversary 𝒜, the probability of solving

DL problem is negligible, namely,

𝑃𝑟[𝑎 ← 𝒜𝐷𝐿(𝑔, ℎ): 𝑎 = 𝑙𝑜𝑔𝑔ℎ] ≤ 𝜀.

3.3 Blockchain Structure

The blockchain structure is shown in Figure 2. A block

usually contains two parts: block header and block body.

Block header stores the basic information of a block, including

the previous block hash (𝑃𝑟𝑒𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ), the current block

hash (𝐵𝑙𝑜𝑐𝑘𝐻𝑎𝑠ℎ), the time when the block was generated

(𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝), a nonce, the current difficulty to find a solution

(𝑑𝑖𝑓𝑓𝑖𝑐𝑢𝑙𝑡𝑦) and some other basic information. The block

body stores the origin data which is packaged as a series of

transactions and stored as a Merkle tree. A transaction usually

contains: from (message sender), to (message recipient), value

(from the sender to the recipient), data (sent to the recipient)

and gas.

Figure 2. Blockchain structure

4.Public Auditing Scheme with Incentive

4.1 System Model Description

There are three entities in decentralized public auditing

scheme with incentive, i.e. data owner (DO), cloud server (CS)

and third-party auditor (TPA), as shown in Figure 3. Different

from traditional public provable data possession schemes, the

CS and TPA not only interact with each other but also interact

with the blockchain based on smart contracts.

(1) Public Provable Data Possession Algorithms

⚫ 𝐒𝐞𝐭𝐮𝐩(𝟏𝛌) → 𝐩𝐩. It is run by the DO. It takes as input a

security parameter 1λ, and outputs the public parameter

𝑝𝑝.

⚫ 𝐊𝐞𝐲𝐆𝐞𝐧(𝐩𝐩) → (𝐩𝐤, 𝐬𝐤). It is run by the DO. It takes

as input 𝑝𝑝 , and outputs a publicssecret key pair

(𝑝𝑘, 𝑠𝑘).

Figure 3. Decentralized system model

1508 Journal of Internet Technology Vol. 23 No. 7, December 2022

⚫ 𝐀𝐮𝐭𝐡𝐆𝐞𝐧(𝐬𝐤, 𝐅) → 𝐚𝐮𝐭𝐡𝐞𝐧𝐭𝐢𝐜𝐚𝐭𝐨𝐫𝐬. It is run by the

DO. It takes as input 𝑠𝑘 and a file 𝐹 = (𝑚1, 𝑚2,⋅··
, 𝑚𝑛), and outputs a set of authenticators 𝜎𝑓𝑖 and public

verification parameters for 𝐹.

⚫ 𝐏𝐫𝐨𝐨𝐟(𝐓𝐏𝐀, 𝐂𝐒) → 𝐓𝐫𝐮𝐞/𝐅𝐚𝐥𝐬𝐞. It is run interactively

between the TPA and CS. Their common input includes

𝑝𝑝 and 𝑝𝑘.

(2) Smart Contract Design

⚫ Delegation Contract (DLC): The contract is executed

by the DO. It specifies three entities, DO, TPA and CS,

and contains file information and task description.

⚫ Time-locked Deposit-Withdraw Contract (TDWC): It

is executed by the entities DO, TPA and CS, which

should deposit some coins according to the task

description based on DLC first.

⚫ Challenge Information Storage Contract (CISC): It is

executed by the TPA. It records the challenge

information during the auditing process.

⚫ Proof Information Storage Contract (PISC): It is

executed by the CS. It records the proof information

during the audit process.

4.2 Formal Security Definition of Data Integrity

Data auditing could be passed only if the CS maintains

data intactly. Consider the following game played between a

challenger 𝒞 and a PPT adversary 𝒜.

(1) Challenger 𝒞 calls KeyGen(pp) to generate

(𝑝𝑘, 𝑠𝑘) and gives 𝑝𝑘 to 𝒜.

(2) 𝒜 interacts with 𝒞 and makes queries adaptively for

some file blocks of 𝐹 for polynomially many times, 𝒞 runs

𝐴𝑢𝑡ℎ𝐺𝑒𝑛(𝑠𝑘, 𝐹) and outputs the corresponding tag

information of 𝐹.

(3) Finally, 𝒜 outputs proof information for file 𝐹′, the

proof information includes at least one file block which does

not be queried before and can pass verification.

Define the advantage of 𝒜 is 𝐴𝑑𝑣𝒜 =
Pr [𝑃𝑟𝑜𝑜𝑓(𝑇𝑃𝐴, 𝐶𝑆) = 𝑇𝑟𝑢𝑒]. We say the adversary wins the

above game, if 𝐴𝑑𝑣𝒜 is non-negligible.

Definition 1. A public auditing scheme with incentive

satisfies data integrity if no PPT adversary 𝒜 could win the

game above with non-negligible probability.

4.3 Other Security Properties

A secure decentralized public auditing scheme with

incentive should also satisfy the following security properties.

Data privacy: It requires the auditing process should

preserve the DO’s data privacy so that no one could acquire

any information about the data through the whole process.

Auditing process publicity and non-modifiability: It

requires the auditing process should be public and tamper-

proof, in order to prohibit the TPA or CS from cheating.

Timeliness: It requires that the TPA should conduct the

auditing task and return the auditing result timely, in order to

resist the procrastinating TPA.

Incentive: It requires any dishonest party who does not

finish the auditing task timely should be monetarily penalized

and honest parties could obtain corresponding rewards fairly.

Batch auditing: It requires multiple auditing tasks from

the same DO could be verified simultaneously, in order to

reduce gas cost for DO.

5 Our Public Auditing Scheme with

Incentive

5.1 Blockchain-based Incentive Mechanism

We design an incentive mechanism based on blockchain

and smart contracts. Basically, each entity in the system

deposits some coins on the blockchain system, and if the TPA

and CS fulfill their obligation honestly, they would be

rewarded; otherwise, they would be amerced. Some works

have been done to achieve time-locked blockchain deposit

protocols, e.g. [28-29], which enable a party (payer) to

exchange with other parties (payee) to lock a certain number

of coins as guarantee deposit on blockchain. To prevent any

malicious party who redeems the deposit arbitrarily, the party

cannot redeem the deposit until the deadline even if it owns

the secret key.

To make the incentive automatically, smart contract is

utilized. Concretely, we design four smart contracts, including

Delegation Contract (DLC), Time-locked Deposit-Withdraw

Contract (TDWC), Challenge Information Storage Contract

(CISC) and Proof Information Storage Contract (PISC). Data

structure and relationship of the contracts are shown in Figure

4. The left part of Figure 4 shows the data structure of each

contract, and the right part shows the relationship between the

entities and the contracts. All the functions of each contract

are described inside the corresponding box.

Figure 4. The structure of smart contracts and the call

relationship

Delegation Contract (DLC). Before an auditing task

starts, the DO should post the task. The delegation contract

includes basic file information, e.g. file name, size, hash and

etc. It publishes the auditing task execution time period, e.g.

task start time 𝑇𝑠 and task end time 𝑇𝑑 . The contract also

includes three wallet addresses/public keys, e.g. DO address,

TPA address, and CS address. Only the one with the secret

wallet key could transfer and sign the task.

Time-locked Deposit-Withdraw Contract (TDWC). To

improve the credibility, each entity in the system is required

to make a time-locked deposit as a guarantee to regulate its

behavior and to follow the protocol, which will be assigned to

designated entities by the predefined smart contracts after the

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1509

appointed time. The contract can only be executed by the DO,

CS and TPA, respectively, described as below.

(Deposit phase). Each auditing task starts from time 𝑇𝑠
and ends at time 𝑇𝑑 . Before 𝑇𝑠 , the three entities should

deposit a certain number of coins in the contract. The coins are

then locked on the contract until 𝑇𝑑, and the deposit could be

withdrawn later, which is controlled by the contract based on

if the task is completed successfully. The deposit process of

TDWC contract is shown in Table 1.

(Incentive phase). We utilize interactive public provable

data possession scheme. In order to prevent the TPA or CS

from being procrastinating, we propose to use the reward-or-

amerce and time locked deposit to improve their positivity.

The reward-or-amerce depends on different states of the TPA

and CS. In this paper we define six different states, including

𝑇𝑠1, 𝑇𝑠2, 𝑇𝑠3 for TPA, and 𝐶𝑠1, 𝐶𝑠2, 𝐶𝑠3 for CS. As shown

in Table 2 and Figure 5, there are four cases in the auditing

process.

The first case is (𝐶𝑠1 , 𝑇𝑠1), meaning the TPA does not

raise a challenge for auditing as scheduled, and its deposit

would then be deducted and transferred to the DO. The second

case includes (𝐶𝑠1 , 𝑇𝑠2) and (𝐶𝑠2 , 𝑇𝑠2), meaning the CS does

not enter the first proof phase and the second phase timely

respectively, and its deposit would be deducted and transferred

to the DO. The third case is (𝐶𝑠3 , 𝑇𝑠2), meaning the TPA does

not finish the verification timely, and its deposit would be

deducted and transferred to the DO. The last case is (𝐶𝑠3 , 𝑇𝑠3),

meaning both the TPA and CS fulfill their obligation in the

auditing task, and the TPA would get the service fee 𝑓𝑒𝑒𝑇𝑃𝐴.

Besides, if the auditing result shows that the DO’s data is

intact, the CS should be rewarded for the data storage service;

otherwise, 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 would be deducted and transferred to

the DO.

Table 1. The deposit process of TDWC

DODeposit. Before 𝑇𝑠, the DO sends

𝐷𝑂𝐷𝑒𝑝𝑜𝑠𝑖𝑡𝑖 ≔ {𝑜𝑤𝑛𝑒𝑟𝑖 , 𝑎𝑑𝑑𝑟𝑒𝑠𝑠, 𝑛𝑜𝑤,
𝑇𝑠, 𝑇𝑑 , 𝑐𝑜𝑖𝑛𝑠(𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆)} to the blockchain, where

𝑐𝑜𝑖𝑛𝑠(𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆) is the deposit that can only be

unlocked after 𝑇𝑑 and will be transferred into CS

account and TPA account only if CS and TPA fulfill

their tasks delegated by the DO honestly.

CSDeposit. Before 𝑇𝑠, the CS should be authorized and

receive its storage task (from the DO). The CS sends

𝐶𝑆𝐷𝑒𝑝𝑜𝑠𝑖𝑡 ≔ {𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆, 𝑛𝑜𝑤, 𝑇𝑠, 𝑇𝑑 ,
𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆)} to the blockchain, where

𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆) is the deposit that can only be unlocked after

𝑇𝑑, and is also the fine if the CS does not

pass the auditing check, i.e. the CS does not store the

DO’s data intactly.

TPADeposit. Before 𝑇𝑠, TPA should be authorized and

receive its auditing task from DO. The TPA sends

 𝑇𝑃𝐴𝐷𝑒𝑝𝑜𝑠𝑖𝑡 ≔ {𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴, 𝑛𝑜𝑤, 𝑇𝑠, 𝑇𝑑 ,
𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴)}, where 𝑐𝑜𝑖𝑛𝑠(𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴) is the

deposit that can only be unlocked after 𝑇𝑑, and is also

the fine if the TPA does not execute the auditing task

as scheduled.

Table 2. Incentive based on four different states

States 𝑇𝑠1 𝑇𝑠2 𝑇𝑠3

𝐶𝑠1 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝐷𝑂 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝑇𝑃𝐴

 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐶𝑆 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐷𝑂 ——

 𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂 𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂

𝐶𝑠2 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐷𝑂

 —— 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝑇𝑃𝐴 ——

 𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂

𝐶𝑠3 𝑇𝑟𝑢𝑒

 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 + 𝑓𝑒𝑒𝑇𝑃𝐴 → 𝑇𝑃𝐴

 —— 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 → 𝐷𝑂 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 + 𝑓𝑒𝑒𝐶𝑆 → 𝐶𝑆

 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 → 𝐶𝑆 𝐹𝑎𝑙𝑠𝑒

 𝑓𝑒𝑒𝑇𝑃𝐴 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 + 𝑓𝑒𝑒𝑇𝑃𝐴 → 𝑇𝑃𝐴

 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 + 𝑓𝑒𝑒𝐶𝑆 → 𝐷𝑂

Storage Contracts. The storage contracts include

challenge information storage contract (CISC) and proof

information storage contract (PISC). CISC includes functions

𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 and 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛. It can only be executed by the

TPA before 𝑇𝑑, and requires that the TPA should have enough

balance on the smart contract. The 𝑐ℎ𝑎𝑙𝑙𝑒𝑛𝑔𝑒 function

stores the challenge information generated by the TPA, and

the 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function stores the verification result.

PISC includes functions 𝑝𝑟𝑜𝑜𝑓1 and 𝑝𝑟𝑜𝑜𝑓2. It can only be

executed by the CS before 𝑇𝑑, and requires that the CS should

have enough balance on the smart contract. Both 𝑝𝑟𝑜𝑜𝑓1

and 𝑝𝑟𝑜𝑜𝑓2 store the proof information returned by the CS.

5.2 Our Scheme

In this part we introduce our decentralized public auditing

scheme with incentive. Formally, our scheme works as

follows.

(1) 𝒑𝒑 ← 𝑺𝒆𝒕𝒖𝒑(𝟏𝝀). Taking a security parameter 1𝜆

as input, the algorithm chooses a large prime 𝑝 , two

multiplicative cyclic groups 𝐺, 𝐺𝑇 , a generator 𝑔 of 𝐺, a

bilinear pairing 𝑒: 𝐺 × 𝐺 → 𝐺𝑇, cryptographic hash functions

𝐻0, 𝐻1: {0,1}
∗ → 𝐺 , 𝐻2: {0,1}

∗ → 𝑍𝑝
∗ ， a pseudorandom

function 𝜋: 𝑍𝑝
∗ × [1, 𝑛] → 𝑍𝑝

∗ and a pseudorandom

permutation 𝜙：𝑍𝑝
∗ × [1, 𝑛] → [1, 𝑛]. Besides, the algorithm

1510 Journal of Internet Technology Vol. 23 No. 7, December 2022

picks at random ℎ, 𝑢1, 𝑢2, . . . , 𝑢𝑠 ∈ 𝐺 and computes 𝜂 =
e(g, h) . It outputs the public parameter 𝑝𝑝 =
(𝑝, 𝐺, 𝐺𝑇 , 𝑔, 𝑒, 𝐻0, 𝐻1, 𝐻2, ℎ, 𝑢1, 𝑢2, . . . , 𝑢𝑠, 𝜂, 𝜋, 𝜙).

(2) 𝑲𝒆𝒚𝑮𝒆𝒏(𝒑𝒑) . The algorithm takes the public

parameter 𝑝𝑝 as input, and generates a signing key pair

(𝑠𝑝𝑘, 𝑠𝑠𝑘) with 𝑠𝑝𝑘 = 𝑔𝑠𝑠𝑘 and another key pair (𝛼 ∈
𝑍𝑝, v = 𝑔

𝛼) which is used for generating authenticators of

file blocks. It outputs (𝑝𝑘, 𝑠𝑘) = ((𝑠𝑝𝑘, 𝑣), (𝛼, 𝑠𝑠𝑘)) as the

public/secret key pair of the DO. Let 𝜂𝑖 denote 𝑒(𝑢𝑖 , 𝑣) for

𝑖 ∈ [1, 𝑠] , which could be pre-computed by the relevant

entities given the public key 𝑣 and 𝑝𝑝.

(3) 𝑨𝒖𝒕𝒉𝑮𝒆𝒏(𝒔𝒌, 𝑭). The algorithm takes a file 𝐹 and

the DO’s secret key as input. It firstly applies an erasure code

such as RS code on 𝐹 to obtain an encoded version 𝐹′, and

splits 𝐹′ into 𝑛 blocks. Let 𝑓 denote the unique identifier of

file 𝐹 . Each block is further fragmented into 𝑠 sectors

{{𝑚𝑓𝑖,𝑗}𝑗=1
𝑠 }𝑖=1

𝑛 , which is an element of 𝑍𝑝. The DO selects a

unique file name 𝐹𝑓𝑛 from a sufficiently large domain. Let

𝑡𝑓𝑛 = 𝐹𝑓𝑛||𝑛. The DO computes 𝑇𝑓𝑛 = 𝐻0(𝑡𝑓𝑛)
𝑠𝑠𝑘 and sets

the file tag 𝑓𝑡𝑓𝑛 = 𝑡𝑓𝑛||𝑇𝑓𝑛 . For each 𝑖 ∈ [1, 𝑛] , the DO

computes an authenticator 𝜎𝑓𝑖 for block 𝑖 as 𝜎𝑓𝑖 =

(𝐻1(𝐹𝑓𝑛||𝑓𝑖) · ∏ 𝑢
𝑗

𝑚𝑓𝑖,𝑗𝑠
𝑗=1)𝛼.

The DO then uploads {𝑓𝑡𝑓𝑛 , {{𝑚𝑓𝑖,𝑗}𝑗=1
𝑠 , 𝜎𝑓𝑖}𝑖=1

𝑛 } to the

cloud. Finally, it posts an auditing task based on DLC to the

blockchain, as shown in Table 3.

Table 3. Post delegation task based on delegation contract

(DLC)

Input: file name, file size, file hash, file blocks,

Owner’s signature, TPA address, TPA’s signature,

CS address, CS’s signature, r, start_time, end_time,

delegation fee, CS fee, CS deposit, TPA deposit.

Output: Update contract DLC

1 require(now<𝑇𝑠);

2 𝑜𝑤𝑛𝑒𝑟 = 𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟;
3 owner_message=prefixed(keccak256(msg.sender,

 file name, file size, file hash, file blocks, r));

4 CS_message=prefixed(keccak256(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆,
 file name, file size, file hash, file blocks, r));

5 TPA_message=prefixed(keccak256(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴,

file name, file size, file hash, file blocks, r));

6 require(recoversigner(owner_message,𝜎𝑜𝑤𝑛𝑒𝑟)
==owner);

7 require(recoversigner(CS_message, 𝜎𝐶𝑆)
 == 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
8 require(recoversigner(TPA_message, 𝜎𝑇𝑃𝐴)

 ==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

9 TPA ← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴; csp← 𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆;
10 start_time ← 𝑇𝑠; end_time ← 𝑇𝑑;

11 𝑓𝑒𝑒𝑇𝑃𝐴 = _𝑓𝑒𝑒𝑇𝑃𝐴; 𝑓𝑒𝑒𝐶𝑆 = _𝑓𝑒𝑒𝐶𝑆;
12 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆 = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆;

13 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴 = _𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴;

(4) 𝑻𝒓𝒖𝒆/𝑭𝒂𝒍𝒔𝒆 ← 𝑷𝒓𝒐𝒐𝒇(𝑷(𝑭, {𝝈𝒊}, 𝒇𝒕), 𝑽(𝒑𝒌)) .

After the DO launches an auditing task, the DO, TPA and CS

make their deposit respectively via the deposit process of the

TDWC contract. Then they run the following interactive proof

protocol.

Individual file auditing: The auditing task refers to a

single file 𝐹𝑓𝑛.

(a) The TPA chooses at random 𝑘1, 𝑘2, 𝑘, 𝜓 ∈ 𝑍𝑝 and a

random integer 𝑐 ∈ [1, 𝑛], and computes Ψ = 𝑔𝑘ℎ𝜓. It sends

the commitment Ψ and challenge 𝑐ℎ𝑎𝑙 = {𝑐, 𝑘1, 𝑘2} to the

CS, and sends the challenge to the blockchain based on CISC

as in Table 4. Finally, the TPA sends the blockheight and

transaction id 𝐶 = {𝐶ℎ𝑡 , 𝐶𝑖𝑥} to the CS.

Table 4. Challenge Information Storage Contract (CISC)

Output: Update contract CISC

enum ContractStates{open, midstate, closed}

enum TPAStates{𝑇𝑠1 , 𝑇𝑠2 , 𝑇𝑠3}

ContractStates contractstate←ContractStates.open;

TPAStates tpastate←TPAStates. 𝑇𝑠1;

function challenge (𝑢𝑖𝑛𝑡[𝑐]_𝑖𝑛𝑑𝑒𝑥, 𝑢𝑖𝑛𝑡[𝑐]_𝑣𝑐 ,
𝑢𝑖𝑛𝑡 _Ψ) 𝑝𝑢𝑏𝑙𝑖𝑐

1 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

2 require(now<𝑇𝑑);

3 require(𝑏𝑎𝑙𝑎𝑛𝑐𝑒𝑂𝑓[𝑚𝑠𝑔. 𝑠𝑒𝑛𝑑𝑒𝑟]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴);

4 require(tpastate==𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠1);

5 require(contractstate==ContractStates.open);

6 𝐼𝑛𝑑𝑒𝑥 ← _𝑖𝑛𝑑𝑒𝑥; _𝑉𝑐 = _𝑣𝑥; Ψ = _Ψ;
7 tpastate← 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠3;

8 contractstate←ContractStates.midstate;

function verification (𝑢𝑖𝑛𝑡 _𝑘, 𝑢𝑖𝑛𝑡 _𝜓,
 bool_audit result)
1 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

2 require(now<𝑇𝑑);

3 require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴);

4 require(tpastate== 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠2);
5 require(contractstate==ContractStates.midstate);

6 𝑘 ← _𝑘; 𝜓 ← _𝜓;

7 audit result← audit result;

8 tpastate← 𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠3;

9 contractstate←ContractStates.closed;

(b) Upon receiving 𝑐ℎ𝑎𝑙, the CS computes

𝐾1 = 𝐻2(𝐹𝑓𝑛||𝑘1||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),

𝐾2 = 𝐻2(𝐹𝑓𝑛||𝑘2||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),

where 𝑛𝑜𝑛𝑐𝑒1，𝑛𝑜𝑛𝑐𝑒2，… ，𝑛𝑜𝑛𝑐𝑒𝜑 are 𝜑 successive

random numbers in blocks from height 𝐶ℎ𝑡 − 𝜑 + 1 to 𝐶ℎ𝑡.
Then it sets the challenge set as 𝐶𝑓 = {(𝑖𝑓, 𝑣𝑖𝑓)}𝑖∈[1,𝑐], where

𝑖𝑓 = 𝜙(𝐾1, 𝑖) , 𝑣𝑖𝑓 = 𝜋(𝐾2, 𝑖) , chooses at random

𝑟, 𝜌𝑟 , 𝜌1, . . . , 𝜌𝑠 ∈ 𝑍𝑝
∗, computes 𝜎 = h𝑟∏ 𝜎

𝑓𝑖𝑓

𝑣𝑖𝑓
(𝑖𝑓,𝑣𝑖𝑓

)∈𝐶𝑓
, 𝑇 =

𝜂𝜌𝑟∏ 𝜂
𝑗

𝜌𝑗𝑠
𝑗=1 , and executes the 𝑝𝑟𝑜𝑜𝑓1 function of contract

PISC (see Table 5). The CS uploads 𝜎 and 𝑇 to the

blockchain, and sends the blockheight and transaction id 𝑃1 =
{𝑃1ℎ𝑡, 𝑃1𝑖𝑥} to the TPA.

(c) After receiving 𝑃1, the TPA sends (𝑘, 𝜓) to the CS.

(d) The CS checks if Ψ = 𝑔𝑘ℎψ, and aborts if it does not

hold. It then computes 𝑧𝑟 = 𝜌𝑟 − 𝑘𝑟, and

∀𝑗 ∈ [1, 𝑠], 𝜇𝑗 = ∑ 𝑣𝑖𝑓𝑚𝑓𝑖𝑓,𝑗(𝑖𝑓,𝑣𝑖𝑓
∈𝐶𝑓)

, 𝑧𝑗 = 𝜌𝑗 − 𝑘𝜇𝑗.

It executes the 𝑝𝑟𝑜𝑜𝑓2 function of PISC, uploads

𝑧𝑟 , 𝑧1,⋅⋅⋅, 𝑧𝑠 to the blockchain, and sends the blockheight and

transaction id 𝑃2 = {𝑃2ℎ𝑡 , 𝑃2𝑖𝑥} to the TPA.

(e) After receiving 𝑃2, the TPA verifies the file tag 𝑓𝑡𝑓𝑛

by checking if 𝑒(𝑔, 𝑇𝑓𝑛) = 𝑒(𝑠𝑝𝑘, 𝐻0(𝑡𝑓𝑛)) and

(
𝑒(𝜎,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓𝑛||𝑓𝑖𝑓)
𝑣𝑖𝑓

(𝑖𝑓,𝑣𝑖𝑓
)∈𝑐ℎ𝑎𝑙 ,𝑣)

) 𝑘 =
𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2 ...𝜂𝑠
𝑧𝑠,

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1511

and aborts if either equation fails to hold. It then uploads the

auditing result to the blockchain via 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 function

of CISC and sends the blockheight and transaction id 𝑉 =
{𝑉ℎ𝑡, 𝑉𝑖𝑥} to the CS.

Table 5. Proof Information Storage Contract (PISC)

Output: Update contract PISC

enum ContractStates{open,midstate,closed}

enum CSStates{𝐶𝑠1,𝐶𝑠2,𝐶𝑠3}

ContractStates contractstate←ContractStates.open;

CSStates csstate←CSStates. 𝐶𝑠1;

function 𝑝𝑟𝑜𝑜𝑓1(𝑢𝑖𝑛𝑡 _𝜎, 𝑢𝑖𝑛𝑡 _𝑇) public

1 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
2 require(now<𝑇𝑑);

3 require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆);
4 require(csstate==𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠1);
5 require(contractstate==ContractStates.open);

6 𝜎 ← _𝜎; 𝑇 = _𝑇;
7 csstate← 𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠2;

8 contractstate ← ContractStates.midstate;

function 𝑝𝑟𝑜𝑜𝑓2(𝑢𝑖𝑛𝑡[𝑠 + 1] _𝑍) public

1 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
2 require(now<𝑇𝑑);

3 require(contractstate==ContractStates.midstate);

4 require(csstate==𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠2);

5 require(balanceOf[msg.sender]> 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆);
6 𝑍 ← _𝑍;

7 csstate← 𝐶𝑆𝑆𝑡𝑎𝑡𝑒𝑠. 𝐶𝑠3;

8 contractstate← ContractStates.closed;

Batch files auditing: Suppose the auditing task refers to

multiple files. Let 𝐴𝐹 be the set of files to be audited.

(a) This step is the same as individual file auditing (a).

(b) Upon receiving 𝑐ℎ𝑎𝑙 from the TPA, for each file 𝑓 ∈
𝐴𝐹, the CS computes

𝐾1 = 𝐻2(𝐹𝑓𝑛||𝑘1||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),

𝐾2 = 𝐻2(𝐹𝑓𝑛||𝑘2||𝑛𝑜𝑛𝑐𝑒1||𝑛𝑜𝑛𝑐𝑒2|| ··· ||𝑛𝑜𝑛𝑐𝑒𝜑),

where 𝑛𝑜𝑛𝑐𝑒1，𝑛𝑜𝑛𝑐𝑒2，…，𝑛𝑜𝑛𝑐𝑒𝜑 are 𝜑 successive

random numbers in blocks from height 𝐶ℎ𝑡 − 𝜑 + 1 to 𝐶ℎ𝑡.
Then it sets the challenge set 𝐶 = {𝐶𝑓}𝑓∈𝐴𝐹 , where 𝐶𝑓 =

{(𝑖𝑓, 𝑣𝑖𝑓)}𝑖∈[1,𝑐] and 𝑖𝑓 = 𝜙(𝐾𝑓1, 𝑖), 𝑣𝑖𝑓 = 𝜋(𝐾𝑓2, 𝑖) . It also

chooses at random 𝑟, 𝜌𝑟 , 𝜌1, . . . , 𝜌𝑠 ∈ 𝑍𝑝
∗ and computes

𝜎 = h𝑟∏ (∏ 𝜎
𝑓𝑖𝑓

𝑣𝑖𝑓)(𝑖𝑓,𝑣𝑖𝑓
)∈𝐶𝑓𝑓∈𝐴𝐹 , 𝑇 = 𝜂𝜌𝑟∏ 𝜂

𝑗

𝜌𝑗𝑠
𝑗=1 .

It executes the 𝑝𝑟𝑜𝑜𝑓1 function of PISC, uploads 𝜎 and

𝑇 to the blockchain, and sends the blockheight and

transaction id 𝑃1 = {𝑃1ℎ𝑡, 𝑃1𝑖𝑥} to the TPA.

(c) After receiving 𝑃1, the TPA sends (𝑘, 𝜑) to the CS.

(d) The CS checks if Ψ = 𝑔𝑘ℎψ, and abort if it does not

hold. It computes 𝑧𝑟 = 𝜌𝑟 − 𝑘𝑟 and for each 𝑗 ∈ [1, 𝑠],

𝜇𝑗 = ∑ (∑ 𝑣𝑖𝑓𝑚𝑓𝑖𝑓,𝑗)(𝑖𝑓,𝑣𝑖𝑓
∈𝐶𝑓)𝑓∈𝐴𝐹 , 𝑧𝑗 = 𝜌𝑗 − 𝑘𝜇𝑗.

It executes the 𝑝𝑟𝑜𝑜𝑓2 function of PISC, uploads

𝑧𝑟 , 𝑧1,⋅⋅⋅, 𝑧𝑠 to the blockchain, and sends the blockheight and

transaction id 𝑃2 = {𝑃2ℎ𝑡, 𝑃2𝑖𝑥} to the TPA.

(e) After obtaining the proof from the blockchain, the TPA

verifies the file tag 𝑓𝑡𝑓𝑛 by checking if

𝑒(𝑔,∏ 𝑇𝑓𝑛𝑓∈𝐴𝐹) = 𝑒(𝑠𝑝𝑘,∏ 𝐻0(𝑡𝑓𝑛)𝑓∈𝐴𝐹), and

(

 𝑒(𝜎,𝑔)

𝑒(∏ (∏ 𝐻1(𝐹𝑓𝑛||𝑓𝑖𝑓)
𝑣𝑖𝑓)

(𝑖𝑓,𝑣𝑖𝑓
)∈𝑐ℎ𝑎𝑙

𝑓∈𝐴𝐹 ,𝑣)

)

𝑘

=

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2…𝜂𝑠
𝑧𝑠 . (1)

and abort if either equation fails to hold. The TPA sends the

auditing result to the blockchain via the 𝑣𝑒𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

function of CISC and sends the blockheight and transaction id

𝑉 = {𝑉ℎ𝑡 , 𝑉𝑖𝑥} to the CS.

(5) 𝑰𝒏𝒄𝒆𝒏𝒕𝒊𝒗𝒆 . This phase includes 𝑝𝑎𝑦𝐶𝑆 part and

𝑝𝑎𝑦𝑇𝑃𝐴 part, which are shown in Table 6. After the task

deadline 𝑇𝑑 , the TPA and CS would be rewarded or amerced

by the smart contract according to the task state. Since the

transcript of an auditing process as well as the TPA’s auditing

result would be uploaded onto the blockchain, if the TPA

reports a fake auditing result, although it may get the auditing

fee, the information on the chain could serve as the evidence

of the TPA’s misbehavior, and the DO could resort to the court

for juridical help.

Table 6. Time-locked Deposit-Withdraw Contract (TDWC)

Output: Update contract TDWC

enum ContractStates{open,midstate,closed}

ContractStates contractstate←ContractStates.open;

function payCS() public payable

1 require(balanceOf[CS]>= 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝐶𝑆);
2 require(balanceOf[owner]> 𝑓𝑒𝑒𝑇𝑃𝐴+𝑓𝑒𝑒𝑇𝑃𝐴);

3 require(balanceOf[TPA]>= 𝑑𝑒𝑝𝑜𝑠𝑖𝑡𝑇𝑃𝐴);

4 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
5 require(now>𝑇𝑑);

6 require(contractstate==ContractStates.open);

7 if((tpastate==𝑇𝑠2) && (csstate==𝐶𝑠3))

8 balanceCS← balanceOf[CS];

9 balanceOf[CS]→0;

10 msg.owner.transfer(balanceCS);

11 contractstate←ContractStates.midstate;

12 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
13 end

14 if((tpastate==𝑇𝑠3) && (csstate==𝐶𝑠3)) &&

(audit_result==true)

15 balanceOf[owner]← balanceOf[owner]- 𝑓𝑒𝑒𝐶𝑆;
16 balanceCS←balanceOf[CS]; balanceOf[CS]→0;

17 msg.owner.transfer(𝑓𝑒𝑒𝐶𝑆+balanceCS);

18 contractstate←ContractStates.midstate;

19 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
20 end

21 if(tpastate==𝑇𝑃𝐴𝑆𝑡𝑎𝑡𝑒𝑠. 𝑇𝑠1)

22 balanceCS← balanceOf[CS]; balanceOf[CS]→0;

23 msg.owner.transfer(balanceCS);

24 contractstate←ContractStates.midstate;

25 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝐶𝑆);
26 end

function withdraw_owner() public payable

1 require(msg.sender==owner);

2 require(now>𝑇𝑑);

3 require(contractstate==ContractStates.closed);

4 balanceowner=balanceOf[owner];

5 balanceCS=balanceOf[CS];

6 balanceTPA=balanceOf[TPA];

1512 Journal of Internet Technology Vol. 23 No. 7, December 2022

7 balanceOf[owner]→0; balanceOf[CS]→0;

balanceOf[TPA]→0;

8 msg.sender.transfer(balanceowner+balanceTPA

+balanceCS);

9 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑜𝑤𝑛𝑒𝑟);
function payTPA() public payable

1 require(balanceOf[owner]> 𝑓𝑒𝑒𝑇𝑃𝐴);

2 require(now>𝑇𝑑);

3 require(msg.sender==𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

4 require(contractstate==ContractStates.midstate);

5 if((csstate==𝐶𝑠1) && (tpatate==𝑇𝑠2))

6 balanceTPA←balanceOf[TPA];

7 balanceOf[TPA]→ 0;

8 msg.sender.transfer(balanceTPA);

9 contractstate←ContractStates.closed;

10 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

11 end

12 if((csstate==𝐶𝑠2) && (tpatate==𝑇𝑠2))

13 balanceTPA←balanceOf[TPA];

14 balanceOf[TPA]→ 0;

15 msg.sender.transfer(balanceTPA);

16 contractstate←ContractStates.closed;

17 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

18 end

19 if((csstate== CSStates.ℎ𝑜𝑛𝑒𝑠𝑡𝐶𝑆) &&

(tpastate==TPAStates.𝑇𝑆1)&& (audit_ result==true))

20 balanceOf[CS]← balanceOf[CS]- 𝑓𝑒𝑒𝑇𝑃𝐴;

21 balanceTPA← balanceOf[TPA]; balanceTPA→ 0;

22 msg.sender.transfer(𝑓𝑒𝑒𝑇𝑃𝐴+balanceTPA);

23 contractstate←ContractStates.closed;

24 selfdestruct(𝐴𝑑𝑑𝑟𝑒𝑠𝑠𝑇𝑃𝐴);

25 end

Figure 5 shows the entire interaction process among the

DO, TPA, CS and the blockchain.

Figure 5. Interaction with the blockchain

6 Security Analysis

6.1 Security Proof of Data Integrity

The correctness of our scheme could be verified in a

straightforward way, so we omit it here. Below we show our

scheme satisfies data integrity defined in Sect. 4.2.

The theorem below shows that our scheme could protect

users’ data from being modified without authentication.

Theorem 1: The CS could pass the auditing by the TPA

only if it possesses the DO’s data intactly.

Proof. The proof is based on Theorem 4.2 of [19]. A

challenger 𝒞 controls the random oracles 𝐻0(·)，𝐻1(·)

and 𝐻2(·) and provides valid responses. The CS is treated as

an adversary 𝒜 against data integrity. If 𝒜 wins with non-

negligible probability, we construct a simulator 𝒮 playing the

role of 𝒞, to solve the CDH and DL problems.

Game 0. This game is simply the challenge game defined

in Sect. 4,2. 𝒮 generates the public parameters, sets 𝑣 = 𝑔𝛼

and 𝑢𝑗 = 𝑔
𝑎𝑗𝑔𝑏𝑏𝑗 where 𝑗 ∈ [1, 𝑠], 𝑎𝑗 , 𝑏𝑗 ∈ 𝑍𝑝, and sends all

the public parameters to 𝒜. For each challenge block 𝑖, 𝒮

chooses 𝑟𝑖 ∈ 𝑍𝑝 , sets 𝐻1(𝐹𝑓𝑛||𝑓𝑖) = 𝑔
𝑟𝑖/∏ (𝑔𝑎𝑗𝑚𝑓𝑖,𝑗 ·𝑠

𝑗=1

𝑔𝑏𝑏𝑖𝑚𝑓𝑖,𝑗) , and computes 𝜎𝑓𝑖 = (𝐻1(𝐹𝑓𝑛||𝑓𝑖) ·

∏ 𝑢
𝑗

𝑚𝑓𝑖,𝑗𝑠
𝑗=1)𝛼 = 𝑔𝛼𝑟𝑖. For a challenge from the TPA, suppose

that the CS outputs 𝑝𝑟𝑜𝑜𝑓 = {𝑇, 𝜎, 𝑧𝑟 , 𝑧1,···, 𝑧𝑠} that would

be obtained from an honest prover and could pass the

verification.

Game 1. It is the same as Game 0, with the exception that

the adversary is able to forge part of the proof information. 𝒞

records each response generated by 𝒜 . Let 𝑝𝑟𝑜𝑜𝑓 =
{𝑇, 𝜎, 𝑧𝑟 , 𝑧1,···, 𝑧𝑠} be the expected proof from the CS for a

given challenge. 𝒞 declares failure and aborts if

(1) the response 𝑝𝑟𝑜𝑜𝑓′ = {𝑇, 𝜎, 𝑧𝑟, 𝑧1,···, 𝑧𝜉
′ ,···, 𝑧𝑠} is

valid, and

(2) the response 𝑝𝑟𝑜𝑜𝑓′ is different from the expected

𝑝𝑟𝑜𝑜𝑓.

Analysis. By the correctness, the expected proof would

make the following equation hold:

(

𝑒(𝜎,𝑔)

𝑒

(

∏ 𝐻1
(𝑖
𝑓′

,𝑣𝑖
𝑓′

)∈𝑐ℎ𝑎𝑙

(𝐹
𝑓′𝑛

||𝑓′𝑖
𝑓′
)

𝑣𝑖
𝑓′ ,𝑣

)

)

𝑘

=

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂𝑠
𝑧𝑠 . (2)

Assume that the adversary’s output is valid as well and is

different from the expected one at position 𝜉. Then we have

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1513

(

 𝑒(𝜎,𝑔)

𝑒(∏ 𝐻1
(𝑖
𝑓′
,𝑣𝑖
𝑓′
)∈𝑐ℎ𝑎𝑙

(𝐹𝑓′𝑛||𝑓′𝑖𝑓′)
𝑣𝑖
𝑓′ ,𝑣)

)

𝑘

=

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂
𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠

 . (3)

Dividing Eq. (3) by Eq. (2), we obtain

𝑒(𝑢𝜉 , 𝑣)
𝑧𝜉 = 𝑒(𝑢𝜉 , 𝑣)

𝑧𝜉
′

,

and then 𝑢
𝜉

Δ𝑧𝜉 = (𝑔𝑎𝜉𝑔𝑏𝑏𝜉)Δ𝑧𝜉 = 1 , (e.g. Δ𝑧𝜉 = 𝑧𝜉
′ − 𝑧𝜉 ≠

0) , which gives a solution to the DL problem, i.e. 𝑔𝑏 =

𝑔−𝑎𝜉/𝑏𝜉 , that is, 𝑏 = −𝑎𝜉/𝑏𝜉(𝑚𝑜𝑑 𝑝) . Notice that the

probability of game failure is the same as that of 𝑏𝜉 =

0(𝑚𝑜𝑑 𝑝) , which is 1/𝑝 . Therefore, the probability of

solving DL problem is 𝜖𝐷𝐿 = (1 − 1/𝑝)𝜖1, where 𝜖1 is the

probability of 𝒜 winning in Game 1. If 𝜖1 is non-

negligible, so is 𝜖𝐷𝐿.

Game 2. It is the same as Game 1, except that 𝒜 is able

to forge some more part of the proof information. Namely, 𝒞

records each response generated by 𝒜, declares failure and

aborts if

(1) the response 𝑝𝑟𝑜𝑜𝑓′′ = {𝑇, 𝜎′, 𝑧𝑟 , 𝑧1,···, 𝑧𝜉
′ ,···, 𝑧𝑠} is

valid, and

(2) the response 𝑝𝑟𝑜𝑜𝑓′′ is different from the expected

𝑝𝑟𝑜𝑜𝑓.

Analysis. For the adversary’s output, we have

(
𝑒(𝜎′,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓′𝑛||𝑓
′𝑖𝑓′)

𝑣𝑖
𝑓′ ,𝑣(𝑖

𝑓′
,𝑣
𝑖𝑓′

)∈𝑐ℎ𝑎𝑙))

)

𝑘

=

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2···𝜂
𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠

 . (4)

Dividing Eq. (4) by Eq. (2), we obtain 𝑒(𝜎/𝜎′, 𝑔)𝑘 =

𝜂
𝜉

−(𝑧𝜉−𝑧𝜉
′)

, that is,

𝑒 ((
𝜎

𝜎′
)
𝑘

, 𝑔) = 𝑒(𝑢𝜉 , 𝑣)
−(𝑧𝜉−𝑧𝜉

′)
=

𝑒(𝑔−𝑎𝜉Δ𝑧𝜉𝑎𝑔−𝑏𝑏𝜉Δ𝑧𝜉𝑎, 𝑔),

Hence, we have 𝑔𝑎𝑏 = (
𝜎′𝑘

𝜎𝑘𝑣
𝑎𝜉Δ𝑧𝜉

)
1

𝑏𝜉Δ𝑧𝜉.

Notice that the probability of game failure is the same as

that of 𝑏𝜉Δ𝑧𝜉 = 0(𝑚𝑜𝑑 𝑝). Because 𝑏𝜉 is chosen randomly

by 𝒞 , the probability that 𝑏𝜉Δ𝑧𝜉 = 0(𝑚𝑜𝑑 𝑝) is 1/𝑝 .

Therefore, the probability of solving CDH problem is 𝜖𝐶𝐷𝐻 =
(1 − 1/𝑝)𝜖2, where 𝜖2 is the probability of 𝒜 winning in

Game 2. If 𝜖2 is non-negligible, so is 𝜖𝐶𝐷𝐻.

Game 3. It is the same as Game 2, except that 𝒜 is able

to forge any part of the proof information. Namely, 𝒞 records

each response generated by 𝒜, declares failure and aborts if

(1) the response 𝑝𝑟𝑜𝑜𝑓′′′ = {𝑇, 𝜎′, 𝑧𝑟 , 𝑧1
′ ,···, 𝑧𝜉

′ ,···, 𝑧𝑠
′} is

valid, and

(2) the response 𝑝𝑟𝑜𝑜𝑓′′′ is different from the expected

𝑝𝑟𝑜𝑜𝑓.

Analysis. For the adversary’s output, we have

(
𝑒(𝜎′,𝑔)

𝑒(∏ 𝐻1(𝐹𝑓′𝑛||𝑓
′𝑖𝑓′)

𝑣𝑖𝑓′ ,𝑣(𝑖𝑓′,𝑣𝑖𝑓′)∈𝑐ℎ𝑎𝑙)
)
)𝑘 =

𝑇

𝜂𝑧𝑟𝜂1
𝑧1𝜂2

𝑧2
′
···𝜂

𝜉

𝑧𝜉
′

···𝜂𝑠
𝑧𝑠
′
 . (5)

Dividing Eq. (5) by Eq. (2), we obtain

𝑒 ((
𝜎

𝜎′
)
𝑘

, 𝑔) = 𝑒(𝑢1, 𝑣)
−(𝑧1−𝑧1

′) ··· 𝑒(𝑢𝑠, 𝑣)
−(𝑧𝑠−𝑧𝑠

′) =

 ∏ 𝑒(𝑢𝑗 , 𝑣)
−(𝑧𝑗−𝑧𝑗

′)𝑠
𝑗=1 . (6)

For each 𝑗 ∈ [1, 𝑠], denote by Δ𝑧𝑗 = 𝑧𝑗 − 𝑧𝑗
′. Since 𝑧𝑗 ≠

𝑧𝑗
′, it holds that Δ𝑧𝑗 ≠ 0. From Eq. (6), we know that

(σ/𝜎′)𝑘 = 𝑔−𝑎∑ 𝑎𝑗
𝑠
𝑗=1 Δ𝑧𝑗𝑔−𝑎𝑏∑ 𝑏𝑗Δ𝑧𝑗

𝑠
𝑗=1 ,

which gives a solution to the CDH problem, e.g.

𝑔𝑎𝑏 = (
𝜎′𝑘

𝜎𝑘𝑔
𝑎∑ 𝑎𝑗Δ𝑧𝑗

𝑠
𝑗=1

)

1

∑ 𝑏𝑗Δ𝑧𝑗
𝑠
𝑗=1 .

Notice that the probability of game failure is the same as

that of ∑ 𝑏𝑗Δ𝑧𝑗 = 0
𝑠
𝑗=1 (𝑚𝑜𝑑 𝑝) , which is 1/𝑝 . Therefore,

the probability that solving CDH problem is (1 − 1/p)𝜖3 ,

where 𝜖3 is the probability of 𝒜 winning in Game 3. If 𝜖3

is non-negligible, so is 𝜖𝐶𝐷𝐻.

Combining the results above, we have that the CS could

only pass the auditing with a negligible probability if the data

stored on it is not intact.

This completes the proof of the theorem.

6.2 Analysis of Other Security Properties

Data Privacy: In our scheme, the TPA and CS

interactively perform the auditing process by zero-knowledge

proof. So there is not any data leakage within the process and

TPA could not acquire any information about the DO’s data.

Therefore, data privacy is achieved in our scheme.

Auditing process publicity and non-modifiability: In

our scheme, the auditing process is public and tamper-proof

since the whole process is executed and recorded via smart

contract in blockchain. Therefore, the scheme is successful to

prohibit the TPA or CS from cheating.

Timeliness: Each auditing task starts from time 𝑇𝑠 and

ends at time 𝑇𝑑 in our scheme. TPA conducts the auditing

task and returns the auditing result before 𝑇𝑑 , otherwise, it

will be punished. Therefore, the timeliness of the scheme is

achieved.

Incentive: In our scheme, Once the DO launches an

auditing task, TPA and CS make their deposit respectively via

the deposit phase in the TDWC contract. Each entity would be

rewarded if it finishes the auditing task timely, so incentive is

realized in our scheme.

Batch Auditing: In our scheme, multiple auditing tasks

from the same DO can be verified simultaneously, thus the

cost of DO is reduced. Therefore, batch auditing is realized in

our scheme.

7 Comparison and Efficiency

7.1 Property Comparison

We compare our scheme with some related auditing

schemes, e.g. [5, 12-13] in Table 7, in terms of the properties

1514 Journal of Internet Technology Vol. 23 No. 7, December 2022

of privacy preservation, auditing process publicity and non-

modifiability, batch auditing, timeliness and incentive. It can

be seen that all the schemes support privacy preservation, and

all achieve the auditing process publicity and non-

modifiability except [5]. Both our scheme and [13] support

batch auditing. Only our scheme achieves timeliness and

incentive. From the comparison, we know that our scheme has

the advantage in resisting the procrastinating TPA and in the

auditing process transparency.

Table 7. Property comparison

Property [5] [12] [13] IPAPA

Privacy preservation √ √ √ √

Auditing* × √ √ √

Batch auditing × × √ √

Timeliness × × × √

Incentive × × × √

Auditing*: Auditing process publicity and non-modifiability

7.2 Efficiency Comparison

We analyze the overheads of blockchain, and computation

overheads of our scheme and [5, 12-13]. We set the security

parameter 𝜆 to be of 80 bits, and 𝑝 to be of 2𝜆 = 160 bits.

Table 8. Storage overhead of blockchain

 Blockchain

[12] 𝑙𝑜𝑔𝑐 + (2𝑐 + 4)𝑙𝑜𝑔𝑝 + (𝑐 + 2)160

[13] 𝑙𝑜𝑔𝑐 + (2𝑐 + 1)𝑙𝑜𝑔𝑝 + (𝑐 + 4)320

IPAPA 𝑙𝑜𝑔𝑐 + (2𝑐 + 𝑠 + 4)𝑙𝑜𝑔𝑝 + 320

IPAPA w/batch

auditing
𝑙𝑜𝑔𝑐 + (2𝑐𝑓0 + 𝑠 + 4)𝑙𝑜𝑔𝑝 + 320

Storage overhead on blockchain. We show a comparison

of storage overhead on the blockchain including challenge and

proof phase in Table 8, where 𝑙𝑜𝑔 𝑝 is the length of 𝑝, 𝑙𝑜𝑔 𝑐

is the length of 𝑐. In [5], both the TPA and DO need store the

challenge information locally. While in other schemes, e.g.

[12-13] and IPAPA, it is stored on the blockchain, and the

storage overheads are of little difference.

Moreover, the storage overhead in the batch auditing in

IPAPA does not increase when compared with the individual

file auditing case, because we utilize the aggregation

technique. While that of [13] grow linearly with the number

of files to be audited. Notice that batch auditing is not

supported in [5].

Computation overhead. We show a comparison of

computation overhead of the DO and TPA in Table 9, where

𝐻𝑝 denotes a hash mapping to 𝑍𝑝 , 𝐸 denotes an

exponentiation in 𝐺 , 𝐸𝑇 denotes an exponentiation in 𝐺𝑇 ,

𝑀𝑃 denotes a multiplication in 𝑍𝑝 , 𝑀𝐺 denotes a

multiplication in 𝐺, 𝑀𝑇 denotes a multiplication in 𝐺𝑇, and

𝑃 denotes a bilinear pairing. Compared with [5], the

computation overhead is the same on the TPA side. But it is a

little bigger on the CS side. That is because the challenge

information set is chosen by TPA itself instead of algorithm in

[5], which cannot guarantee the randomness, we provide a

random seed for challenge information generation algorithm.

While in the batch auditing, the computation overhead grows

linearly with the number of auditing files.

7.3 Experimental Evaluation

We used public test blockchain Kovan and Ropsten in

Ethereum to demonstrate the efficiency of our scheme.

Consensus mechanism of Ropsten and Kovan are PoW and

PoA respectively. The smart contract language is Solidity. The

transaction fee is estimated as

𝑇𝑜𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 = 𝑎𝑐𝑡𝑢𝑎𝑙 𝑔𝑎𝑠 𝑢𝑠𝑒𝑑 × 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒.

1 𝐸𝑇𝐻 = 1018𝑤𝑒𝑖 = 1019𝐺𝑤𝑒𝑖.

We published all smart contracts (DLC, CISC, PISC,

TDWC) into Kovan and Ropsten on June 7, 2021.

Table 9. Computation overhead

 TPA CS

[5] 4𝑃 + (2𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + (𝑐 + 1)𝑀𝐺 + 𝑠𝑀𝑇 (𝑐 + 1)𝐸 + 𝑐𝐸𝐺 + (𝑠 + 1)𝐸𝑇 + 𝑠𝑀𝑇 + (𝑐 + 𝑠 + 1)𝑀𝑝

IPAPA 4𝑃 + (2𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + (𝑐 + 1)𝑀𝐺 + 𝑠𝑀𝑇 2𝐻𝑝 + 2𝑐𝑀𝑝 + (𝑐 + 1)𝐸 + 𝑐𝑀𝐺 + (𝑠 + 1)𝐸𝑇 + 𝑠𝑀𝑇

 (𝑐 + 𝑠 + 1)𝑀𝑝

IPAPA 4𝑃 + (2𝑓0𝑐 + 5)𝐸 + (2𝑠 + 3)𝐸𝑇 + 𝑓0(𝑐 + 1)𝑀𝐺 + 2𝐻𝑝 + 2𝑐𝑓0𝑀𝑝 + (2𝑐𝑓0 + 1)𝐸 + 𝑐𝑓0𝑀𝐺 + (𝑠𝑓0 +

/batch* (𝑠 + 1)𝑀𝑝 + 𝑠𝑀𝑇 1)𝐸𝑇 + 𝑠𝑀𝑇 + (𝑐𝑓0 + 𝑠 + 1)𝑀𝑝

batch*: batch auditing

Table 10. Gas consumption estimation of smart contracts

Contract DLC CISC PISC TDWC

PoW (June 7, 2021) gas price=1 Gwei

A* 10389493 10389507 10389513 10389523

B* 13 33 13 52

C* 431870 291068 313559 1195525

D* 0.000432 0.000291 0.000314 0.001196

PoA (June 7, 2021) gas price=5 Gwei

A* 25321889 25321939 25322000 25322032

B* 2 0 1 2

C* 431870 291068 313559 1195525

D* 0.002159 0.001455 0.001568 0.005978

A*: Blockcheight B*: TxIndex C*: Actual gas used (wei)

D*: Total cost (ETH)

Currently, the price configuration in Ropsten is

𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 = 1𝐺𝑤𝑒𝑖 and 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒 = 5𝐺𝑤𝑒𝑖 in Kovan.

The costs include two parts: issuing smart contracts and

calling functions in each smart contract. The blockheight,

transaction id, actual gas used and total cost are showed in

Table 10.

In addition, we tested each function transaction fees.

Figure 6 shows the gas cost estimation of each smart contract

and all the functions. Figure 6(a) is gas consumption of each

function into PoW and PoA respectively, there is little

difference of the cost under PoW and PoA. Figure 6(b) shows

the gas consumption, gas cost does not grow with the increase

challenge block numbers, because IPAPA only stores

challenge information. While it grows linearly with the

increase of segment numbers. Figure 6(c) shows the gas cost

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1515

of individual file auditing and batch files auditing. The

challenge function cost does not grow with file numbers no

matter in individual file auditing or batch files auditing. While

the 𝑝𝑟𝑜𝑜𝑓2 function cost grows linearly in individual file

auditing. In Figure 6(d), the gas cost has similar trend.

Furthermore, we implemented our scheme and did the test

on a host machine with Windows 10, Intel i7 2.5GHz CPU and

8GB memory. Figure 7 shows the computational efficiency of

our scheme. The time complexity of each function is shown in

Figure 7(a), which depends on the time needed for the next

new block generation and the confirmation numbers by other

nodes. In our experiment, we counted the confirmation time

after a transaction being confirmed by 500 nodes. From Figure

7(a) we know that the confirmation of each function needs

about 5 to 30 seconds. The computation time of executing an

auditing task on the TPA side and CS side are shown in Figure

7(b). The computation time grows linearly with the number of

challenge blocks. The computation time of batch auditing is

shown in Figure 7(c). The time complexity grows linearly with

the number of files to be audited.

(a) Gas consumption of each function (b) Gas consumption with different challenge block numbers and segment numbers

based on PoW and PoA (c) Gas consumption with batch auditing and individual auditing based on PoW and PoA when

s=300 (d) Gas consumption with batch auditing and individual auditing based on PoW and PoA when s=460

Figure 6. Gas cost estimation

(a) The time complexity of each function in smart contract posting into Kovan (b) The operation time with the change of

different challenge block numbers (c) The operation time of batch auditing when c=300 and c=460 respectively

Figure 7. Time complexity

8 Conclusion

Aiming to improve the auditing process transparency and

resisting the procrastinating TPA and CS, we proposed a

public auditing scheme with incentive based on blockchain

and smart contracts. Specifically, our scheme utilizes smart

contracts to implement a time-locked incentive mechanism to

reward or amerce the entities according to the status of an

auditing task after the deadline. The TPA would be rewarded

if it finishes the auditing task timely and the CS would be

rewarded if it maintains the DO’s data intactly; otherwise, they

would be amerced. Moreover, the auditing transcript and

result are uploaded to the blockchain to achieve the auditing

process transparency. If there is a dispute, the information

stored on the blockchain could serve as a witness. Our scheme

achieves privacy preservation property so that an auditing task

would not leak information about the DO’s data. Our scheme

achieves timely auditing and resists the procrastinating TPA

and CS, and supports batch auditing so that multiple files

could be audited simultaneously without increasing the

transaction fees. Experimental results show that our scheme is

efficient.

Acknowledgement

This work is supported by the Major Program of

Guangdong Basic and Applied Research (2019B030302008),

National Natural Science Foundation of China (62272174),

and Science and Technology Program of Guangzhou

(201902010081).

1516 Journal of Internet Technology Vol. 23 No. 7, December 2022

References

[1] P. Yang, N. Xiong, J. Ren, Data security and privacy

protection for cloud storage: A survey, IEEE Access, Vol.

8, pp. 131723-131740, July, 2020.

[2] A. Juels, B. S. Kaliski Jr, Pors: Proofs of retrievability

for large files, Proceedings of the 14th ACM conference

on Computer and communications security, Alexandria,

Virginia, USA, 2007, pp. 584-597.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L.

Kissner, Z. Peterson, D. Song, Provable data possession

at untrusted stores, Proceedings of the 14th ACM

conference on Computer and communications security,

Alexandria, Virginia, USA, 2007, pp. 598-609.

[4] K. Zhao, D. Sun, G. Ren, Y. Zhang, Public auditing

scheme with identity privacy preserving based on

certificateless ring signature for wireless body area

networks, IEEE Access, Vol. 8, pp. 41975-41984,

February, 2020.

[5] Y. Yu, Y. Li, M. H. Au, W. Susilo, K.-K. R. Choo, X.

Zhang, Public cloud data auditing with practical key

update and zero knowledge privacy, Australasian

Conference on Information Security and Privacy,

Melbourne, Australia, 2016, pp. 389-405.

[6] Y. Yu, M. H. Au, G. Ateniese, X. Huang, W. Susilo, Y.

Dai, G. Min, Identity-based remote data integrity

checking with perfect data privacy preserving for cloud

storage, IEEE Transactions on Information Forensics

and Security, Vol. 12, No. 4, pp. 767-778, April, 2017.

[7] H. Tian, F. Nan, C.-C. Chang, Y. Huang, J. Lu, Y. Du,

Privacy-preserving public auditing for secure data

storage in fog-to-cloud computing, Journal of Network

and Computer Applications, Vol. 127, pp. 59-69,

February, 2019.

[8] L. Chen, S. Zhou, X. Huang, L. Xu, Data dynamics for

remote data possession checking in cloud storage,

Computers & Electrical Engineering, Vol. 39, No. 7, pp.

2413-2424, October, 2013.

[9] H. Tian, Y. Chen, C.-C. Chang, H. Jiang, Y. Huang, Y.

Chen, J. Liu, Dynamic-hash-table based public auditing

for secure cloud storage, IEEE Transactions on Services

Computing, Vol. 10, No. 5, pp. 701-714, September-

October, 2017.

[10] J. Shen, J. Shen, X. Chen, X. Huang, W. Susilo, An

efficient public auditing protocol with novel dynamic

structure for cloud data, IEEE Transactions on

Information Forensics and Security, Vol. 12, No. 10, pp.

2402-2415, October, 2017.

[11] H. Yu, X. Lu, Z. Pan, An authorized public auditing

scheme for dynamic big data storage in cloud computing,

IEEE Access, Vol. 8, pp. 151465-151473, August, 2020.

[12] H. Wang, H. Qin, M. Zhao, X. Wei, H. Shen, W. Susilo,

Blockchain-based fair payment smart contract for public

cloud storage auditing, Information Sciences, Vol. 519,

pp. 348-362, May, 2020.

[13] H. Yuan, X. Chen, J. Wang, J. Yuan, H. Yan, W. Susilo,

Blockchain-based public auditing and secure

deduplication with fair arbitration, Information Sciences,

Vol. 541, pp. 409-425, December, 2020.

[14] H. Li, Y. Yang, Y. Dai, S. Yu, Y. Xiang, Achieving secure

and efficient dynamic searchable symmetric encryption

over medical cloud data, IEEE Transactions on Cloud

Computing, Vol. 8, No. 2, pp. 484–494, April-June, 2020.

[15] Y. Xiang, J. Xu, Y. Si, Z. Li, L. Rasmy, Y. Zhou, F.

Tiryaki, F. Li, Y. Zhang, Y. Wu, X. Jiang, W. J. Zheng,

D. Zhi, C. Tao, H. Xu, Time-sensitive clinical concept

embeddings learned from large electronic health records,

BMC medical informatics and decision making, Vol. 19,

No. Suppl 2, pp. 139-148, April, 2019.

[16] Y. Zhang, C. Xu, X. Lin, X. S. Shen, Blockchain-based

public integrity verification for cloud storage against

procrastinating auditors, IEEE Transactions on Cloud

Computing, Vol. 9, No. 3, pp. 923-937, July-September,

2021.

[17] S. Lins, S. Thiebes, S. Schneider, A. Sunyaev, What is

really going on at your cloud service provider? creating

trustworthy certifications by continuous auditing, 2015

48th Hawaii International Conference on System

Sciences. IEEE, Kauai, HI, USA, 2015, pp. 5352-5361.

[18] J. Li, J. Wu, G. Jiang, T. Srikanthan, Blockchain-based

public auditing for big data in cloud storage,

Information Processing & Management, Vol. 57, No. 6,

Article No. 102382, November, 2020.

[19] H. Shacham, B. Waters, Compact proofs of retrievability,

International Conference on the Theory and Application

of Cryptology and Information Security, Melbourne,

Australia, 2008, pp. 90-107.

[20] H. Tian, F. Nan, H. Jiang, C.-C. Chang, J. Ning, Y.

Huang, Public auditing for shared cloud data with

efficient and secure group management, Information

Sciences, Vol. 472, pp. 107-125, January, 2019.

[21] B. Wang, B. Li, H. Li, Panda: Public auditing for shared

data with efficient user revocation in the cloud, IEEE

Transactions on Services Computing, Vol. 8, No. 1, pp.

92-106, January-February, 2015.

[22] F. Armknecht, J.-M. Bohli, G. O. Karame, Z. Liu, C. A.

Reuter, Outsourced proofs of retrievability, Proceedings

of the 2014 ACM SIGSAC Conference on Computer and

Communications Security, Scottsdale, Arizona, USA,

2014, pp. 831-843.

[23] Y. Zhang, C. Xu, S. Yu, H. Li, X. Zhang, Sclpv: Secure

certificateless public verification for cloud-based cyber-

physical-social systems against malicious auditors,

IEEE Transactions on Computational Social Systems,

Vol. 2, No. 4, pp. 159-170, December, 2015.

[24] J. Xue, C. Xu, J. Zhao, J. Ma, Identity-based public

auditing for cloud storage systems against malicious

auditors via blockchain, Science China Information

Sciences, Vol. 62, No. 3, pp. 41-56, March, 2019.

[25] Y. Miao, Q. Huang, M. Xiao, H. Li, Decentralized and

privacy-preserving public auditing for cloud storage

based on blockchain, IEEE Access, Vol. 8, pp. 139813-

139826, July, 2020.

[26] H. Yu, Z. Yang, R. O. Sinnott, Decentralized big data

auditing for smart city environments leveraging

blockchain technology, IEEE Access, Vol. 7, pp. 6288-

6296, December, 2018.

[27] L. Huang, G. Zhang, S. Yu, A. Fu, J. Yearwood, SeShare:

Secure cloud data sharing based on blockchain and

public auditing, Concurrency and Computation:

Practice and Experience, Vol. 31, No. 22, Article No.

e4359, November, 2019.

[28] R. Kumaresan, I. Bentov, How to use bitcoin to

incentivize correct computations, Proceedings of the

2014 ACM SIGSAC Conference on Computer and

IPAPA: Incentive Public Auditing Scheme against Procrastinating Auditor 1517

Communications Security, Scottsdale, Arizona, USA,

2014, pp. 30-41.

[29] X. Yu, M. S. Thang, Y. Li, R. H. Deng, Collusion attacks

and fair time-locked deposits for fast-payment

transactions in bitcoin, Journal of Computer Security,

Vol. 27, No. 3, pp. 375-403, June, 2019.

[30] X. Yang, M. Wang, X. Wang, G. Chen, C. Wang,

Stateless cloud auditing scheme for non-manager

dynamic group data with privacy preservation, IEEE

Access, Vol. 8, pp. 212888-212903, November, 2020.

[31] J. Mao, Y. Zhang, P. Li, T. Li, Q. Wu, J. Liu, A position-

aware merkle tree for dynamic cloud data integrity

verification, Soft Computing, Vol. 21, No. 8, pp. 2151-

2164, April, 2017.

[32] L. Rao, H. Zhang, T. Tu, Dynamic outsourced auditing

services for cloud storage based on batch-leaves-

authenticated merkle hash tree, IEEE Transactions on

Services Computing, Vol. 13, No. 3, pp. 451-463, May-

June, 2020.

[33] X. Zhang, J. Zhao, C. Xu, H. Li, H. Wang, Y. Zhang,

CIPPPA: Conditional Identity Privacy-Preserving

Public Auditing for Cloud-Based WBANs Against

Malicious Auditors, IEEE Transactions on Cloud

Computing, Vol. 9, No. 4, pp. 1362-1375, October-

December, 2021.

[34] A. Yang, J. Xu, J. Weng, J. Zhou, D. S. Wong,

Lightweight and Privacy-Preserving Delegatable Proofs

of Storage with Data Dynamics in Cloud Storage, IEEE

Transactions on Cloud Computing, Vol. 9, No. 1, pp.

212-225, January-March, 2021.

Biographies

Ying Miao received her M.S. degree from

South China Agricultural University. She is

currently working as a research assistant at

College of Mathematics and Informatics,

South China Agricultural University. Her

research interests include data security and

blockchain.

Qiong Huang received his Ph.D. degree

from City University of Hong Kong. Now he

is a professor at College of Mathematics and

Informatics, South China Agricultural

University, China. His research interests

include cryptography and information

security, in particular, cryptographic

protocols design and analysis.

Meiyan Xiao received her PhD degree from

South China Agricultural University, and

now is a lecturer at College of Mathematics

and Informatics, South China Agricultural

University, China. Her research interests

include data security and blockchain.

Willy Susilo (IEEE Fellow) received the

Ph.D. degree in computer science from the

University of Wollongong, Australia. He is

a Professor and the Head of School of

Computing and Information Technology

and the Director of Institute of

Cybersecurity and Cryptology with the

University of Wollongong. He has authored

or co-authored over 300 research papers in the area of

cybersecurity and cryptology. His main research interests

include cybersecurity, cryptography, and information security.

