
Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1483

*Corresponding Author: Hongfeng Zheng; E-mail: sxzhf1966@163.com

DOI: 10.53106/160792642022122307004

Research on Task Scheduling Strategy under Mobile Cloud Computing

Based on ICSO

Xuan Chen1, Hongfeng Zheng2*

1 Design and Art Branch, Zhejiang Industry Polytechnic College, China

2 School of Mechanical and Electrical Engineering, Zhejiang Industry Polytechnic College, China

chenxuan1979@sina.com, sxzhf1966@163.com

Abstract

With the gradual application of mobile terminals such as

cell phones in production and life, mobile cloud computing

has become an important part of the internet. Different from

traditional cloud computing task scheduling methods, mobile

cloud computing task scheduling needs to consider not only

task time minimization but also the lowest possible mobile

device energy consumption. We propose an improved chicken

swarm optimization (ICSO) algorithm applied to the task

scheduling strategy under mobile cloud computing. First, we

establish a multiobjective optimization strategy with

minimum completion time and minimum energy consumption.

Second, for the shortcomings of the chicken swarm

optimization algorithm that easily fall into local optimums

leading to algorithm stagnation, we use reverse learning

initialization for the chicken flock population to expand the

space of understanding and an adaptive strategy for learning

factors and following coefficients. To illustrate the

effectiveness of our algorithm in scheduling, we chose the

number of mobile devices as 50, 100, and 150 and compared

the improved chicken swarm optimization algorithm, ant

colony algorithm, particle swarm algorithm, and chicken

swarm optimization algorithm. The results illustrate that our

proposed algorithm can reduce the task completion time,

control the energy consumption of mobile devices well, and

save energy.

Keywords: Mobile cloud computing, Time, Energy, Task

scheduling

1 Introduction

With the rapid development of wireless networks and the

widespread use of mobile devices, mobile internet is gradually

playing an increasingly important role in people’s lives and

work. Users’ needs and requirements for mobile terminal

devices have also started to rise, and various large-scale

applications have begun to appear, but mobile devices still

have certain limitations due to the influence of the size and

battery of mobile terminal devices and the hardware system

itself. The emergence of the mobile cloud computing concept

[1] solves such problems by reducing the requirements of

applications for mobile terminal devices on the one hand and

improving the performance of devices in handling large

applications on the other. However, mobile cloud computing

task scheduling is affected by the computational storage

capacity of the device, the network connection status and

stability, and the device power [2-3], so mobile cloud

computing task scheduling is a fully NP problem. The

metaheuristic algorithm has achieved good results in solving

cloud computing task scheduling. We use the metaheuristic

algorithm to solve the mobile cloud computing task

scheduling problem by designing a fitness function applicable

to the mobile cloud environment. Chicken Swarm

Optimization is a new metaheuristic algorithm for population

intelligence that was proposed by Chinese scholars Meng et al.

in 2014 [4]. The algorithm takes the group behavior of roosters,

hens, and chicks in the animal kingdom as the research object.

There are three main bodies in the algorithm, the algorithm

structure is simple, and the algorithm steps are easy to

implement and are widely used in various engineering fields.

We propose a new algorithm, improved chicken swarm

optimization (ICSO), in which we introduce a backward

learning strategy in the initialization of the population to

improve the population diversity, enrich the number of

solutions, optimize the learning factor and the following

coefficient in the algorithm, avoid the algorithm falling into a

local optimum, and improve the quality of the algorithm

solution. The quality of the algorithm solution is improved.

We use ICSO in task scheduling for mobile cloud computing,

and simulations illustrate that the ICSO algorithm reduces task

completion time by 32%, 30%, and 20% compared to ACO,

PSO, and CSO, respectively, and reduces mobile device

energy consumption by 22%, 21%, and 18%, respectively.

This paper is structured as follows: In Section 2, we

describe the results of current scholars’ research in terms of

the task completion time of mobile cloud computing and the

energy consumption of mobile devices, and find the direction

of this paper’s research from these results. In Section 3, we

propose a new task scheduling model in a mobile environment

that implements a scheduling model with the goal of reducing

task completion time and reducing energy consumption of

mobile devices. In Section 4, we explain the principle of the

chicken flock optimization algorithm and propose

optimization measures in terms of population, algorithm

parameters, and coefficients for the shortcomings of this

algorithm and explain how to apply it in mobile cloud task

scheduling. In Section 5, we test the effectiveness of the

optimized algorithm and verify it in terms of both reduced task

time and reduced device energy consumption. Finally, we

conclude the paper in Section 6.

1484 Journal of Internet Technology Vol. 23 No. 7, December 2022

2 Related Work

The current research results are divided into two categories

[5]. One is research on task scheduling only under a single

mobile device [6-7], which usually considers only task

offloading between a single mobile device and a cloud data

center. The other category is the task allocation problem

between multiple mobile devices [8-10], which considers

multiple mobile devices (generally fewer mobile devices) to

form an autonomous system with shared resources and equal

mutual assistance.

Numerous research results have been published in

academia for the task scheduling problem oriented to a single

mobile computing device. C. Wang in [11] showed a dynamic

optimization algorithm that minimizes the combined resource

consumption of the CPU and bandwidth weighted sum as the

optimization objective. The experimental results show that the

algorithm can give the optimal task migration scheme. T.

Soyata in [12] showed a Cloudlet application framework,

MOCHA, which improves the QoS of task scheduling by

dividing the set of different tasks. P. Balakrishnan in [13]

believed that the task scheduling of mobile cloud computing

needs to consider not only the energy consumption of mobile

devices but also the energy consumption of the CPU in mobile

devices at any time. S. Saha in [14] showed a migration

decision algorithm for migrating tasks from mobile to cloud

execution, which finally achieves the optimization of

completion time. M. R. Ra in [15] showed an environment for

incremental greedy policies for mobile cloud computing.

Experiments illustrated the good results of this environment in

terms of task latency reduction.

In the process of multimobile task device task distribution,

as mobile devices need to consume more resources among

themselves, reducing the energy consumption and completion

time of the device becomes the main direction of optimization.

In terms of energy consumption, Y. B. Li in [16] showed an

energy-aware dynamic task scheduling algorithm with a

dynamic voltage scaling technique, and experimental results

showed that the algorithm can significantly reduce the energy

consumption of mobile terminals. M. Nir in [17] showed the

use of centralized agent nodes in mobile cloud computing to

optimize the energy consumption of all mobile devices, which

can reduce the energy consumption of mobile devices using

minimal search. The reliability of this approach was verified

in simulation experiments. A. Ali in [18] showed an energy-

efficient dynamic decision-based method that can improve the

decision-making ability of mobile devices during task

offloading. In simulation experiments, this method was shown

to reduce energy consumption. Chowdhury in [19] used

mobile cloud computing in wireless sensors to reduce the

energy consumption between nodes, and simulation

experiments illustrated that using mobile cloud computing

technology is indeed able to node process task energy

consumption. P. Akki in [20] used the powerful performance

of neural networks to reduce the energy consumption of

mobile devices, and simulation experiments illustrated a

30.3% reduction in energy consumption. In terms of

completion time, S. Ramu in [21] used the Capuchin search

algorithm for task scheduling under mobile cloud computing,

and simulation experiments showed significant advantages

over existing state-of-the-art methods in terms of completion

time, execution time, and resource utilization. M. G. Chen in

[22] presented a robust computation offloading strategy with

failure recovery in an intermittently connected cloudlet system,

and simulation experiments illustrated the great advantage of

this strategy in terms of task time reduction. B. Saemi in [23]

showed the flow of the water cycle algorithm, and simulation

experiments indicated that the algorithm reduces task

completion time by 23%, 28%, and 21% compared to the GA,

ACO, and PSO algorithms, respectively. V. Sundararaj in [24]

showed a hybrid queueing ant colony-artificial bee colony

optimization (Ant-Bee)-based algorithm for optimizing task

assignment in MCC environments, and simulation

experiments illustrated that this algorithm outperforms other

algorithms in terms of power consumption, average task

completion time, and dropout rate of mobile devices. H. Peng

in [25] applied the whale optimization algorithm to the

dynamic voltage-frequency scaling technique to better

schedule the execution location of tasks. Simulation

experiments showed that the algorithm can reduce the task

completion time by 29% and the energy consumption of

mobile devices by 13% compared to the WOA.

In other aspects of mobile cloud computing such as

mechanisms, P. Nawrocki in [26] showed a new security-

aware task allocation model strategy in mobile cloud

computing. This approach used machine learning methods to

predict resource utilization and select the best security service

for task execution, such as neural networks. S. P. Wen in [27]

showed a volume set kernel operation method in neural

networks that provides a reference for related computations

under mobile cloud computing.

3 Design of Mobile Cloud Computing Task

Scheduling Model

In the mobile cloud computing environment, the nodes

executing task assignment consist of a large number of

terminal devices with mobile characteristics, and the

computational storage energy, stability, and device energy

consumption of these devices become constraints for task

scheduling, which seriously affects the task scheduling

efficiency. We construct a multiobjective optimization model

based on the task scheduling model for mobile cloud

computing described in [28], which is based on the completion

time and energy consumption of mobile devices in task

scheduling and can reasonably schedule tasks for each mobile

device through a metaheuristic algorithm to minimize task

completion time and reduce device energy consumption. A set

of task resources is used to represent a subtask that can be

processed in parallel after the job submitted by the user is

divided, and N set T is used to represent

1 2{ , ,..., }NT T T T= . Each subtask can be executed in parallel

and has no correlation. The M mobile devices involved in

the execution of the task are selected and denoted by the set

D as 1 2{ , ,..., }MD D D D= . Therefore, the essence of task

allocation in mobile cloud computing is how to complete the

execution of N tasks in M mobile devices in the shortest

time and with the least energy consumption.

(1) Task completion time function

Mobile resources for executing tasks in mobile cloud

computing are dynamic and heterogeneous, and the same task

may take different times to complete on different mobile

devices because each device may have a different computing

Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1485

power itself. In general, for jD task iT assigned to a

particular device, the execution time ,i jte is determined

from length iL of the task iT and the CPU processing

power jC (MIPS) of that device, so the execution time is

expressed as follows.

,
(1)

i
i j

j cpu

L
te

C u
=

 −
, (1)

where
 cpuu denotes the CPU utilization rate of the mobile

device. Since mobile devices themselves have a certain

amount of energy consumption, especially the CPU, even

when it is idle, they will continue to generate energy

consumption, which affects the time to perform tasks on

mobile devices. Especially when the CPU utilization rate of

the mobile device is large, the task execution time will be

greatly increased, so setting cpuu is mainly considered when

using the CPU availability of the mobile device to calculate

the task time.

The task completion time is related not only to the

computing power of each mobile device but also to the

network transmission capability of the mobile device.

Different network bandwidths result in different data

transmission times for the task mapping to the mobile device

and the result return from the device. For task iT assigned to

mobile device jD , the task mapping time and return time are

ijts and ijtr , respectively, which are mainly determined by

input data sizes
in

id and
out

id and the network bandwidth

of device jB and are thus expressed as follows.

in

i
ij

j

d
ts

B
= . (2)

out

i
ij

j

d
tr

B
= . (3)

Thus, the time ijt for jD mobile device a to complete task

iT is expressed as follows.

ij ij ij ijt te ts tr= + + . (4)

Therefore, the final completion time Tt for all tasks in

the set of tasks 1 2{ , ,..., }NT T T T= is the time used to

complete the longest task among all tasks, i.e., Tt is

expressed as follows.

maxT ij
ij

t t= . (5)

(2) Equipment energy consumption function

In mobile cloud computing, mobile devices are the key

devices for task execution, but because they need to consume

power, we must consider the power consumption of these

mobile devices in the process of considering energy

consumption under mobile cloud computing. Under the

condition of its own power, the remaining power can be used

to perform mobile cloud computing tasks. Reference [29]

indicated that the power consumption of hardware is related to

the usage rate of the hardware itself, and [30] stated that the

energy consumption of a computer and the CPU are linearly

related, expressed as follows.

cpu cpu cpu cpuE   =  + , (6)

where
 cpuE denotes CPU power consumption,

 cpu

denotes CPU utilization, and
 cpu and cpu are fixed

coefficients.

In the mobile cloud environment, the main power-

consuming hardware modules of the device are the CPU and

memory modules, so the energy consumption generated by the

mobile device jD performing task iT is as follows.

ij cpu cpu ij mem mem ijer c te u c te=   +   , (7)

where
 cpu and memu denote CPU usage and memory

usage, respectively. cpuc and memc denote the power

consumption coefficients of CPU and memory modules,

respectively, and ijte is the execution time of task iT on

device jD .

Data transfer between mobile devices and proxy servers

also consumes energy, which is due to the different connection

methods used by mobile devices, and therefore the power

consumption of the devices varies. Since the energy

consumption of data transfer is proportional to the size of the

data transferred, the energy consumption caused by data

transfer between devices in a mobile environment ijed is as

follows.

in out

ij i ij n i ij ned d ts c d tr c=   +   , (8)

where

in

id and
out

id denote the input data size and output

data size of task iT , respectively;
 nc is the power

consumption factor of the network transmission module;
 ijts

is the task mapping time; and ijtr is the result return time.

The energy consumption ije of mobile resource device

jD to complete task iT is expressed as follows.

ij ij ije er ed= + . (9)

1486 Journal of Internet Technology Vol. 23 No. 7, December 2022

Therefore, for the set of tasks 1 2{ , ,..., }NT T T T= , the

final energy consumption of all tasks is the sum of the energy

consumption of all tasks, i.e., Te . The expression is as

follows.

T ij

ij

e e= . (10)

4 Improved Chicken Swarm

Optimization Algorithm for Mobile

Cloud Computing Task Scheduling

4.1 Chicken Swarm Algorithm

The backpropagation neural network is one of the most

widely used neural network models and mainly uses

backpropagation for multilayer feedback training network

models. It can achieve mapping capability from input to output,

and it is widely used for pattern recognition, data prediction,

and fault identification. However, the BP neural network has

certain limitations: it lacks simple and effective parameters,

resulting in the lack of stability of the BP algorithm. In

addition, BP neural networks have local minimization and

slow convergence, and the global optimum must be found by

resetting the initial parameter values, which increases the

algorithm running time.

The chicken swarm optimization algorithm is a new

algorithmic idea designed to simulate group behavior

generated by chickens in the animal kingdom during the

process of obtaining food. Like most metaheuristic algorithms,

it has the characteristics of a swarm intelligence optimization

algorithm in that it mainly uses the collaborative idea of local

solution between individuals and overall solution between

groups and populations to obtain the optimal solution of the

algorithm. Therefore, the algorithm has the characteristics of

fast convergence and strong merit-seeking ability. The

algorithm establishes the existence of different hierarchical

classifications and ways of finding food in the chicken flock.

It decomposes the whole swarm into several subflocks, and in

each small flock there is a rooster and several hens and chicks.

Different subflocks have different competitive relationships

with each other due to different hierarchical classifications.

The specific process is as follows.

(1) In the whole chicken swarm optimization algorithm,

we divide into several different subgroups, but each subgroup

contains a rooster and many hens and chicks.

(2) We call the individual with the best fitness value in

each subgroup a rooster, the individual with average fitness

value a hen, and the individual with the worst fitness value a

chick. The hen is free to choose any subgroup, and there is no

fixed relationship between the two, i.e., the hen and the chicks

can lead the chicks, and the chicks can leave the current hen at

any time.

(3) The hierarchical classification of the Chicken swarm,

the dominance relationship and the hen-chick relationship

remain unchanged until after the update;

(4) In each subgroup, individuals searched for food around

the rooster in the group while preventing other individuals

from taking their own food. Chicks were able to steal food

from other individuals randomly, each chick followed the hen

in searching for food, and some individuals in the Chicken

swarm had the competitive advantage of good dominance and

were able to obtain food first.

By analyzing the above rules, we have a clear

understanding of the three types of individual chickens in the

flock algorithm. In the algorithm, the rooster is the most

important individual whose task is to find food, and the final

position of the rooster is the optimal solution of the algorithm.

As the rooster in the subgroup, the influence of the hen and the

chick is significant, so we need to deal with the relationship

between the hen and the chick to make the rooster obtain the

best position in the subgroup. Therefore, we set all individuals

in the subgroup algorithm as N , and the position of the

chicken individual , ()i jx t denotes the position of the i th

individual in the j -dimensional space in the t th iteration.

The corresponding location of the rooster is updated as follows:

2

, ,(1) () (1 (0,))i j i jx t x t Randn + =  + , (11)

2

1

exp()
| |

i k

k i

i

if f f

f f
otherwise

f








= −
 +

, (12)

where
2(0,)Randn  is the mean value of 0,

2 is a

Gaussian distribution,  is a small constant, and k

represents another individual among all roosters.

The formula for updating the position of individual

roosters in the swarm optimization algorithm is as follows.

, , 1 1, , 2 2, ,(1) () (() ()) (() ())i j i j r j i j r j i jx t x t c rand x t x t c rand x t x t+ = +   − +   − . (13)

1 1exp(() ())i r ic f f abs f = − + . (14)

2 2exp()r ic f f= − . (15)

In Eq. (13), 1c , 2c denotes the learning factor in the hen

position update, rand denotes any random number with a

random value. 1r denotes the corresponding rooster in the

flock of the i th hen, 2r denotes any randomly selected

individual among the roosters and hens in the flock, and

1 2r r
,
 in Eq. (14-15), exp() denotes the learning factor

function, ()abs denotes the absolute value function,  is

a fixed parameter to prevent the denominator from being 0,

if denotes the individual fitness value, 1rf denotes the

fitness value of the roosters in this subgroup, and 2rf

denotes the fitness value of any rooster and hen in all groups.

The corresponding position of the chicks in the subgroup

is expressed as follows:

, , , ,(1) () (() ())i j i j m j i jx t x t F x t x t+ = +  − . (16)

Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1487

In Equation (16), we use , ()m jx t to denote the m th

hen corresponding to the i th chick, F to denote the

following coefficient, and , ,() ()m j i jx t x t− to denote the

hen leading the chick in search of food.

In this paper, the purpose of the model we construct is to

reduce the task execution time and the energy consumption

generated by the mobile device corresponding to the task, with

the two objectives of minimum task completion time and

minimum mobile device energy consumption as the goals of

the optimization of the algorithm in this paper. Since the

completion time adaptation function and the system

equipment energy consumption adaptation function have

different values and are both nonlinear functions, the

normalization method is used to adjust them so that the

adjusted function values are in the range of [0,1]. Let ()f x

denote the task completion time function Tt or the total

energy consumption function Te of the system equipment,

' ()f x denote the function after the normalization operation

of ()f x , and let max ()f x and min ()f x denote the

maximum and minimum values of the function ()f x ,

respectively. Therefore, the expression of the
' ()f x

function is as follows.

' min

max min

() ()
()

() ()

f x f x
f x

f x f x

−
=

−
. (17)

' '() ()ICSO t efitness f i f i =  +  . (18)

In Equation (18),
 ICSOfitness denotes the fitness

function of the locust algorithm, and
' ()tf i and

' ()ef i are

the normalized task completion time function and the system

equipment energy consumption function, respectively. 

and  are the weights of the two functions, and their sum is

1. Therefore, solving to obtain min GoAfitness is the goal

of the algorithm in this paper.

4.2 Improved Chicken Swarm Optimization

Algorithm

Most metaheuristic algorithms suffer from the drawbacks

of being locally trapped in the optimum and having slow

convergence, which leads to stagnation of the algorithm. The

chicken swarm optimization algorithm also suffers from these

problems, and we propose corresponding solution strategies to

avoid the shortcomings of the chicken flock optimization

algorithm from three aspects: the population of the swarm, the

learning factor, and the following coefficient.

(1) Population initialization

According to the description of the chicken swarm

optimization algorithm, the initial solutions of the chicken

swarm individuals are generated randomly, and the optimal

solutions generated by the algorithm cannot be uniformly

distributed in the space due to the randomness of the

individuals easily, so that the solution performance of the

algorithm decreases as the number of iterations keeps

increasing and therefore reduces the performance of the

algorithm. Inverse learning [31] is a machine learning strategy

suitable for population optimization that usually obtains the

reverse solutions of these current solutions in each iteration of

the algorithm and selects the solutions from each current and

reverse solution that are favorable to the evolution of the

algorithm, further reducing the blindness in the search of the

algorithm while expanding the search space of the solution by

increasing the number of individuals of the reverse and current

solutions. This improves the chicken flock optimization

algorithm with regard to the quality of the solution and

expands the scope of the global optimal solution generation.

The algorithm process is as follows:

Step 1: Randomly generate the initial population.

Randomly generate the initial population A of the chicken

swarm algorithm, where the solutions of the corresponding

individuals are obtained according to Equation (19):

min max min()j j j j

ix x rand x x= +  − , (19)

where W denotes the number of populations, D denotes

the dimension,
j

ix denotes the i th individual in the j

dimension, F ranges from [1, W], H ranges from [1, D],

and min

jx and max

jx denote the upper and lower spatial

boundaries, respectively.

Step 2: Solve for the inverse solution for each individual.

In population 1NP , we find the inverse solution for each

individual in this population according to Equation (20) to

obtain the inverse population
' ' '

1 2{ (), (),......, ()}op WNP x t x t x t= .

'

min max

j j j j

i ix x x x= + − . (20)

Step 3: Select the best individual in the population. First,

we obtain a reverse population by the operations in steps 1 and

2. Second, we select the individual with the best fitness value,

individual bestx , among the original population and the

reverse population. At the same time, we mix all individuals

of the two populations to find the average value of these

individuals meanx . We select the fitness value of the flock

individual c and fitness value of the flock individual meanx

among the two. Finally, we select the optimal value of the

fitness value of individual bestx and the fitness value of

individual d to obtain the optimal flock individual opbestx

according to Equation (21):

, () ()

,

best best mean

opbest

mean

x f x f x
x

x otherwise


= 


. (21)

By introducing backward learning in the results of

population initialization, we found that the chicken individuals

1488 Journal of Internet Technology Vol. 23 No. 7, December 2022

have more solutions after initialization and at the same time

have a larger search space. This increases the number of other

chicken individuals toward the optimal rooster individual

position and improves the performance of the algorithm

overall, thus providing a larger space of solutions to obtain the

optimal solution.

(2) Learning factor optimization

In the chicken swarm optimization algorithm, the role of

the learning factor reflects the relationship between the chicks

following the hen in the subgroup. Therefore, the magnitude

of the learning factor value reflects the extent to which the

chicks learn from the hen and the rooster. By using Eqs. (14-

15), we find that when the value of the learning factor is low,

we allow the chick to search for a better solution in the current

subgroup, and conversely, when the value of the learning

factor is high, the chick can search in a larger range and thus

can obtain the possibility of a better solution. However, we

find from the formula that such a setting method of the

learning factor tends to make the algorithm fall into a local

optimum and thus cause the algorithm to stall. To avoid this

situation from affecting the solution accuracy of the algorithm,

we reset the two learning factors, and in the process of setting

them, we relate them to the current number of iterations and

the total number of iterations. Through the minimum and

maximum factor values, we are able to dynamically adjust the

learning factor values to guide the chick to a better solution.

max
1 1 min

max1

min 1 min

,currentt t
c c c

tc

c c c

−
+ 

= 
 

. (22)

min
2 2 max

min2

max 2 max

,currentt t
c c c

tc

c c c

+
+ 

= 
 

. (23)

In Eqs. (22-23), the learning factor takes values in the

range [minc ,
 maxc], while currentt denotes the number of

iterations currently being performed and takes values in the

range [mint ,
 maxt].

(3) Follow factor optimization

In the chick’s position update, the following coefficient is

a fixed value; such a setting is not conducive to the chick’s

position update in each iteration, which makes the algorithm

fall into a local optimum to some extent. To avoid this

situation, the coefficient is set in this paper as follows:

max

(1)current i

obj

t f
F

t f
= −  . (24)

In Equation (24), we find that the following coefficient is

related to the current number of iterations (currentt), total

number of iterations (maxt), fitness value of the i th

individual (if), and fitness (objf) value of the optimal

individual of the population. In Eq. (24), the value of the

following coefficient F becomes gradually smaller as the

number of iterations gradually becomes larger to ensure that

the hen does not lead the chick all the time and to avoid the

result of algorithm stopping due to falling into local optimum:

4.3 Algorithm Steps

The task flow of mobile cloud computing based on ICSO

is shown in Figure 1.

Begin

Set the values of various parameters required

for the tasks in mobile cloud computing

According to the task scheduling model in

mobile cloud computing

Take the expression of the task scheduling

function as the fitness function for CSO

Reverse learning initialization in the

population

Optimization of learning factor parameters

Update the following coefficients

Calculate the objective function value of the

task corresponding to the individual chickens

T=Tmax?

Output is the best mobile cloud computing

task solute

No

Yes

End

Figure 1. Flowchart

5. Simulation Experiments

In this paper, we use the resource-to-VM mapping

mechanism in the C1oudSim resource pool to simulate the task

assignment process from proxy servers to mobile devices in

mobile cloud computing in order to realize the simulation

effect of the task assignment algorithm proposed in this paper.

The ant colony algorithm (ACO), particle swarm algorithm

(PSO), and CSO are selected as the comparison algorithms.

The hardware environment is as follows: CPU as Core I7,

memory as 8 GB, hard disk capacity of 1 T, and software

environment of Win10. The main parameters of the mobile

devices, tasks, and other mobile devices in this experiment for

mobile cloud computing are listed in Table 1. Table 2 lists the

values of the main parameters for the four algorithms.

Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1489

Table 1. Main parameters of mobile cloud computing

 Parameter Value

Mobile

devices

CPU processing power

(MIPS)

2000-10000

(Step 500)

Network transfer

capability

100-1000

(Step100)

CPU utilization rate
0.1-0.9

(Step 0.1)

CPU power

consumption factor
3.0

Task

Task length

10000-30000

(Step 2000)

Transfer data

100-1000

(Step 100)

Other

Memory power

consumption factor
2.5

Network transfer power

consumption factor
4G: 5 WiFi:1

Table 2. Main parameters of contrast algorithm

Algorithm Main parameters

ICSO
minc value is 0.1, maxc value is 1, value

is 0.01, rand value is 0.5, F value is 1

CSO  value is 0.01, rand value is 0.5, F value is 1

ACO

The value of pheromone of individual ant colony

is 0.005, the value of pheromone volatility

coefficient in the path is 0.01, and the probability

of path selection is 0.5

PSO

The value of inertia weights of individual

particles is 0.5, the array of two random learning

factors is 0.5, and the value of random number

weights is set to 0.5

5.1 Algorithm Performance Comparison

In this subsection, we verify the performance effect of the ICSO

algorithm. To better test the performance of the ICSO algorithm, we

tested ICSO with ACO, PSO, and CSO in 2-dimensional, 5-

dimensional, 10-dimensional and 30-dimensional arrangements

under nine benchmark test functions, as shown in Table 3. The

number of iterations is set to 1000, the data index results are shown

in Table 4 to Table 9, and the test index is the maximum value,

minimum value average and standard value.

Table 3. Test function

No Test function

F1

1
2 2 2

1

1

[100() (1)]
n

i i i

i

x x x
−

+

=

− + −

F2
2

1 1

1 1 1
20exp() exp(cos(2))

5

n n

i i

i i

x x
n n


= =

− − 

F3
2

1

(10cos(2) 10)
n

i i

i

x x
=

− +

F4
2

1

([0.5])
n

i

i

x
=

+

F5
2

1 1

1
cos() 1

1000

nn
i

i

i i

x
x

i= =

− + 

F6

1 1

| | | |
nn

i i

i i

x x
= =

+ 

Table 4. F1 test function result

Alg

orith

m

Di

me

nsi

on

Minimum

Value

Maximum

value
Mean

Standard

deviation

ACO

2 1.151 98.901 40.892 44.350

5 4.979 98.870 77.038 28.641

10 28.874 99.636 90.603 12.575

30 87.062 99.834 96.583 3.806

PSO

2 2.333E-06 1.116 1.007 1.017

5 1.051 5.485 1.855 1.884

10 5.196 19.512 11.652 3.667

30 15.841 39.906 26.712 5.985

CSO

2 9.173E-08 2.349E-02 1.893E-03 4.220E-03

5 2.922E-03 7.346E-02 2.728E-02 1.487E-02

10 1.823E-02 9.975E-02 6.390E-02 2.171E-02

30 6.550E-02 1.697E+01 1.333E+01 2.146E-02

ICSO

2 7.408E-11 4.882E-05 3.069E-06 8.231E-06

5 2.448E-10 3.814E-05 1.846E-05 6.841E-05

10 3.383E-10 1.600E-03 4.980E-05 2.352E-04

30 2.187E-11 1.363E-03 5.199E-05 2.174E-04

Table 5. F2 test function result

Alg

orith

m

Di

me

nsi

on

Minimum

Value

Maximum

value
Mean

Standard

deviation

ACO

2 1.172 79962.931 74916.871 22733.531

5 19.845 16782.762 23591.073 55016.221

10 260.879 32373.592 45288.364 9965.661

30 505.033 77681.35 14473.293 27452.502

PSO

2 4.536E-07 7.7018 0.249 2.102

5 1.638 1731.353 165.484 361.100

10 216.660 67022.206 8255.293 1345.592

30 1352.401 29054.250 847467.368 6346.300

CSO

2 7.135E-10 2.314E+02 7.926E-03 2.812E-03

5 8.137E-02 6.919E+02 3.912E+02 2.349E+01

10 7.374E+02 1.716E+03 2.338E+02 3.318E+02

30 2.312E+03 8.916E+04 2.816E+03 2.713E+03

ICSO

2 1.601 1.989 1.655 1.093

5 4.598 4.9743 4.891 1.106

10 9.498 10.069 9.875 1.095

30 29.493 29.848 28.704 1.046

Table 6. F3 test function result
Alg

orit

hm

Dim

ensi

on

Minimum

Value

Maximum

value

Mean Standard

deviation

ACO

2 1.033 1663.389 1698.460 4631.145

5 1.316 3057.926 4916.712 9140.773

10 611.799 5651.691 16125.421 17752.751

30 26202.126 1326.816 6921.981 35142.120

PSO

2 3.242E-10 1.004 1.091 1.781

5 1.000 13.333 2.124 3.120

10 13.1117 560.9040 143.552 115.685

1490 Journal of Internet Technology Vol. 23 No. 7, December 2022

30 1363.988 7473.098 3643.119 1311.625

CSO

2 5.704E-12 10.926E-04 7.431E-05 2.951E-04

5 9.987E-04 3.929E-01 5.114E-02 5.675E-02

10 10.370E-02 2.588E+01 5.122E-02 2.791E-02

30 1.314E+01 1.214E+02 4.299E+01 2.124E+01

ICSO

2 8.001E-10 2.372E-03 1.578E-04 4.2013E-04

5 5.947E-12 4.362E-02 1.590E-03 6.378E-03

10 6.447E-07 1.770E+01 1.180E-02 2.834E-02

30 2.840E-06 4.999E+00 4.621E-01 8.813E-01

Table 7. F4 test function result
Alg

orith

m

Dim

ensio

n

Minimum

Value

Maximum

value
Mean

Standard

deviation

ACO

2 2.777 55.279 25.327 13.159

5 33.047 133.306 81.638 18.575

10 88.077 239.859 173.640 35.095

30 484.405 645.319 544.770 38.159

PSO

2 7.323E-10 2.001 1.159 1.350

5 4.005 23.881 9.273 5.629

10 14.863 63.029 35.954 12.067

30 120.847 264.788 201.047 28.585

CSO

2 1.603E-11 1.992E+01 3.064E-02 5.525E-02

5 1.062E-06 2.009E+01 5.128E+00 3.697E+00

10 8.033E-01 5.856E+01 3.281E+01 2.020E+01

30 2.578E-01 3.215E+02 2.238E+02 7.525E+01

ICSO

2 4.552E-15 9.092E-05 4.813E-06 2.362E-05

5 3.062E-06 2.815E+00 4.827E-02 3.566E-01

10 2.065E-13 8.2853E-01 4.273E-02 2.438E-01

30 9.343E-11 10.239E+00 4.920E-01 2.563E+00

Table 8. F5 test function result

Alg

orith

m

Di

me

nsi

on

Minimum

Value

Maximum

value
Mean

Standard

deviation

ACO

2 2.034E-07 5.310E-04 3.503E-05 8.763E-05

5 7.609E-05 2.735E-02 6.880E-03 6.454E-03

10 3.513E-03 1.347E+01 3.342E-02 3.094E-02

30 1.378E-02 8.948E+01 2.487E+01 1.944E+01

PSO

2 1.983E-10 6.383E-42 4.172E-43 1.052E-43

5 2.277E-32 7.883E-26 3.344E-27 2.025E-26

10 9.473E-30 2.525E-22 6.799E-24 3.216E-23

30 4.240E-28 3.511E-21 3.215E-22 6.730E-22

CSO

2 6.535E-11 1.188E-06 9.397E-07 2.203E-08

5 8.429E-09 6.725E-04 9.290E-06 1.286E-04

10 4.559E-05 6.795E+04 1.561E+04 1.781E+05

30 1. 277E-33 1.173E-69 2.411E-71 1.659E-70

ICSO

2 3.876E-55 8.115E-47 1.856E-44 1.151E-45

5 2.011E-52 6.021E-36 1.379E-40 8.523E-38

10 5.665E-47 1.724E-35 4.873E-37 2.542E-37

30 2.840E-06 4.999E+00 4.621E-01 8.813E-01

Table 9. F6 test function result

Alg

orith

m

Di

me

nsi

on

Minimum

Value

Maximum

value
Mean

Standard

deviation

ACO

2
5.432E-09 1.893E-05 1.957E-06 3.729E-06

5
5.473E-08 3.095E-04 3.213E-05 5.294E-05

10
1.622E-07 1.366E-03 1.702E-04 3.209E-04

30
8.818E-06 3.191E-02 1.703E-03 4.590E-03

PSO

2
1. 671E-07 3.787E-11 3.663E-12 7.017E-12

5
1.205E-13 5.942E-10 5.904E-11 1.115E-10

10
1.182E-12 1.648E-09 2.508E-10 4.093E-10

30
4.588E-12 2.867E-08 2.393E-09 5.060E-09

CSO

2
4.919E-07 1.555E-02 1.262E-03 2.466E-03

5
1.125E-03 7.455E-02 2.771E-02 1.632E-02

10
3.538E-02 1.011E+01 6.949E-02 1.609E-02

30
1.036E+01 1.731E+01 1.367E+01 1.688E-02

ICSO

2
2. 367E-10 3.523E-16 2.404E-17 6.835E-16

5
3.180E-13 5.060E-02 3.298E-03 5.992E-03

10
8.375E-06 5.8473E-01 8.733E-02 2.017E-01

30
4.884E-02 7.1964E-01 5.310E-01 2.520E-01

From the results in Table 4 to Table 9, it is found that the

ICSO algorithm has better results in terms of the minimum,

maximum mean, and standard values of the three test

functions, and the PSO numerical results have obvious

advantages compared to ACO. Compared with the CSO

algorithm, ICSO also has certain advantages, especially when

the dimension is 10,30. The results of this paper’s algorithm

in four indices illustrate that the performance of the chicken

swarm optimization algorithm significantly improves after the

initialization of the population, learning factor optimization,

and subsequent coefficient optimization. This lays a

foundation for the subsequent scheduling of mobile cloud

computing tasks.

5.2 Task Completion Time

Figure 2 to Figure 4 compare the completion times of the

four algorithms for different numbers of tasks when the

number of mobile devices is 50, 100, and 150, respectively. In

Figure 1, the difference between the four algorithms in terms

of time required to complete the task with different numbers

of mobile devices is insignificant. When the number of mobile

devices is 100, there is a certain difference in the completion

time of the four algorithms. When the number of mobile

devices is 150, the difference in completion time between the

four algorithms is more obvious, and ICSO has a better

advantage over the other three algorithms in terms of

completion time with reductions of 49.7%, 47.3%, and 30.9%

compared to ACO, PSO, and CSO, respectively. This shows a

significant improvement in the algorithm performance of

ICSO after population initialization, learning factor, and

subsequent coefficient optimization.

Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1491

Figure 2. Number of tasks is 50

Figure 3. Number of tasks is 100

Figure 4. Number of tasks is 150

5.3 Task Completion Energy Consumption

Figure 5 to Figure 7 show the energy consumption of the

four algorithms for different numbers of tasks when the

number of mobile devices is 50, 100, and 150, respectively.

The overall energy consumption of the four algorithms with

50 mobile devices is shown in Figure 4. The energy

consumption of the four algorithms with different numbers of

tasks is not much different. The overall energy consumption

of the four algorithms with 100 mobile devices is shown in

Figure 5. The values of energy consumption of the four

algorithms vary greatly with the number of tasks completed.

However, the overall effect of CSO is significantly lower than

that of ICSO, which shows that our improvement measures for

the algorithms are effective. From the comparison results, the

algorithms in this paper reduce the energy consumption by

20%, 19%, and 12% on average compared to ACO, PSO, and

CSO. The overall energy consumption of the four algorithms

for 100 mobile devices is shown in Figure 6. The deviation of

the energy consumption values of the four algorithms for

completing different numbers of tasks is relatively large, and

the energy consumption corresponding to the four algorithms

increases with an increase in the number of tasks. The energy

consumption values of the ACO and PSO algorithms are

relatively large, while the energy consumption values of CSO

and ICSO are relatively small, but CSO is significantly lower

than ICSO in terms of overall effectiveness. The algorithms in

this paper have an overall reduction of 40%, 35%, and 17%

compared to ACO, PSO, and CSO.

Figure 5. Number of tasks is 50

Figure 6. Number of tasks is 100

100 200 300 400 500

0

20

40

60

80

100

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

50

100

150

200

250

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

100

200

300

400

500

600

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

20

40

60

80

100

T
as

k
 c

o
m

p
le

ti
o

n
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
(1

0
0

J)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

50

100

150

200

250

T
as

k
 c

o
m

p
le

ti
o

n
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
(1

0
0

J)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

1492 Journal of Internet Technology Vol. 23 No. 7, December 2022

Figure 7. Number of tasks is 150

6. Conclusion

In this paper, we researched how to reduce task completion

time and reduce the energy consumption of mobile devices.

We constructed a multiobjective task scheduling scheme that

minimizes the task completion time and energy consumption.

To ensure smooth implementation of this scheme, we used the

chicken flock optimization algorithm to complete the scheme.

To counter the shortcomings of the chicken flock optimization

algorithm in terms of convergence speed and low solution

accuracy, we proposed three improvement ideas in terms of

how to initialize the population, how to improve the learning

factor, and how to optimize the following coefficient. To

verify the effect of this improvement idea, we verified that the

performance of the improved chicken flock optimization

algorithm is good by benchmarking functions during the

simulation, especially under the conditions of different

numbers of mobile devices and different numbers of tasks. We

compared the results of the four algorithms ICSO, ACO, PSO,

and CSO in terms of reducing the completion time and

reducing the energy consumption of the devices and verified

that our proposed improvement strategy is effective. In future

research, we will continue to focus on research related to task

scheduling for mobile cloud computing.

References

[1] K. Kumar, Y. H. Lu, Cloud computing for mobile users:

Can offloading computation save energy? Computer,

Vol. 43, No. 4, pp. 51-56, April, 2010.

[2] A. Aliyu, A. H. Abdullah, O. Kaiwartya, S. H. H. Madni,

U. M. Joda, A. Ado, M. Tayyab, Mobile cloud

computing: taxonomy and challenges, Journal of

Computer Networks and Communications, Vol. 2020,

pp. 1-23, July, 2020.

[3] N. Parajuli, A. Alsadoon, P. W. C. Prasad, R. S. Ali, O.

H. Alsadoon, A recent review and a taxonomy for

multimedia application in Mobile cloud computing

based energy efficient transmission, Multimedia Tools

and Applications, Vol. 79, No. 41-42, pp. 31567-31594,

November, 2020.

[4] X. B. Meng, Y. Liu, X. Z. Gao, H. Z. Zhang, A new bio-

inspired algorithm: chicken swarm optimization,

International conference in swarm intelligence, Hefei,

China, 2014, pp. 86-94.

[5] N. Fernando, S. W. Loke, W. Rahayu, Mobile cloud

computing: A survey, Future generation computer

systems, Vol. 29, No. 1, pp. 84-106, January, 2013.

[6] H. S. Lee, J. W. Lee, Task offloading in heterogeneous

mobile cloud computing: Modeling, analysis, and

cloudlet deployment, IEEE Access, Vol. 6, pp. 14908-

14925, March, 2018.

[7] G. A. Lewis, S. Echeverría, S. Simanta, B. Bradshaw, J.

Root, Cloudlet-based cyber-foraging for mobile systems

in resource-constrained edge environments,

International Conference on Software Engineering,

Hyderabad, India, 2014, pp. 412-415.

[8] T. Verbelen, P. Simoens, F. D. Turck, B. Dhoedt,

Adaptive deployment and configuration for mobile

augmented reality in the cloudlet, Journal of Network

and Computer Applications, Vol. 41, pp. 206-216, May,

2014.

[9] S. Bohez, T. Verbelen, P. Simoens, B. Dhoedt, Discrete-

event simulation for efficient and stable resource

allocation in collaborative mobile cloudlets, Simulation

Modelling Practice and Theory, Vol. 50, pp. 109-129,

January, 2015.

[10] C. M. S. Magurawalage, K. Yang, L. Hu, J. M. Zhang,

Energy-efficient and network-aware offloading

algorithm for mobile cloud computing, Computer

Networks, Vol. 74, pp. 22-33, December, 2014.

[11] C. Wang, Z. Li, Parametric analysis for adaptive

computation offloading, Proceedings of the ACM

SIGPLAN 2004 Conference on Programming Language

Design and Implementation, Washington, DC, USA,

2004, pp. 119-130.

[12] T. Soyata, R. Muraleedharan, C. Funai, M. Kwon, W.

Heinzelman, Cloud-vision: Real-time face recognition

using a mobile-cloudlet-cloud acceleration architecture,

2012 IEEE symposium on computers and

communications (ISCC), Cappadocia, Turkey, 2012, pp.

000059-000066.

[13] P. Balakrishnan, C. K. Tham, Energy-efficient mapping

and scheduling of task interaction graphs for code

offloading in mobile cloud computing, 2013 IEEE/ACM

6th International Conference on Utility and Cloud

Computing, Dresden, Germany, 2013, pp. 34-41.

[14] S. Saha, M. S. Hasan, Effective task migration to reduce

execution time in mobile cloud computing, 2017 23rd

International Conference on Automation and

Computing (ICAC), Huddersfield, UK, 2017, pp. 1-5.

[15] M. R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall,

Odessa: enabling interactive perception applications on

mobile devices, Proceedings of the 9th international

conference on Mobile systems, applications, and

services, Bethesda, Maryland, USA, 2011, pp. 43-56.

[16] Y. B. Li, M. Chen, W. Y. Dai, M. K. Qiu, Energy

optimization with dynamic task scheduling mobile

cloud computing, IEEE Systems Journal, Vol. 11, No. 1,

pp. 96-105, March, 2017.

[17] M. Nir, A. Matrawy, M. St-Hilaire, An energy

optimizing scheduler for mobile cloud computing

environments, 2014 IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS),

Toronto, ON, Canada, 2014, pp. 404-409.

[18] A. Ali, M. M. Iqbal, H. Jamil, F. Qayyum, S. Jabbar, O.

100 200 300 400 500

0

100

200

300

400

500

600

T
as

k
 c

o
m

p
le

ti
o

n
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
(1

0
0

J)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

Research on Task Scheduling Strategy under Mobile Cloud Computing Based on ICSO 1493

Cheikhrouhou, M. Baz, F. Jamil, An efficient dynamic-

decision based task scheduler for task offloading

optimization and energy management in mobile cloud

computing, Sensors, Vol. 21, No. 13, pp. Article No.

4527, July, 2021.

[19] M. Chowdhury, Time and energy-efficient hybrid job

scheduling scheme for mobile cloud computing

empowered wireless sensor networks, International

Journal of Ad Hoc and Ubiquitous Computing, Vol. 37,

No. 1, pp. 26-36, May, 2021.

[20] P. Akki, V. Vijayarajan, Energy efficient resource

scheduling using optimization based neural network in

mobile cloud computing, Wireless Personal

Communications, Vol. 114, No. 2, pp. 1785-1804,

September, 2020.

[21] S. Ramu, R. Ranganathan, R. Ramamoorthy, Capuchin

search algorithm based task scheduling in cloud

computing environment, Yanbu Journal of Engineering

and Science, Vol. 19, No. 1, pp. 18-29, June, 2022.

[22] M. G. Chen, S. T. Guo, K. Liu, X. F. Liao, B. Xiao,

Robust computation offloading and resource scheduling

in cloudlet-based mobile cloud computing, IEEE

Transactions on Mobile Computing, Vol. 20, No. 5, pp.

2025-2040, May, 2021.

[23] B. Saemi, M. Sadeghilalimi, A. A. R. Hosseinabadi, M.

Mouhoub, S. Sadaoui, A New Optimization Approach

for Task Scheduling Problem Using Water Cycle

Algorithm in Mobile Cloud Computing, 2021 IEEE

Congress on Evolutionary Computation (CEC),
Kraków, Poland, 2021, pp. 530-539.

[24] V. Sundararaj, Optimal task assignment in mobile cloud

computing by queue based ant-bee algorithm, Wireless

Personal Communications, Vol. 104, No. 1, pp. 173-197,

January, 2019.

[25] H. Peng, W. S. Wen, M. L. Tseng, L. L. Li, Joint

optimization method for task scheduling time and

energy consumption in mobile cloud computing

environment, Applied Soft Computing, Vol. 80, pp. 534

-545, July, 2019.

[26] P. Nawrocki, J. Pajor, B. Sniezynski, J. Kolodziej,

Modeling adaptive security-aware task allocation in

mobile cloud computing, Simulation Modelling

Practice and Theory, Vol. 166, Article No. 102491,

April, 2022.

[27] S. P. Wen, J. D. Chen, Y. C. Wu, Z. Yan, Y. T. Cao, Y.

Yang, T. W. Huang, CKFO: Convolutional kernel first

operated algorithm with applications in memristor-

based convolutional neural network, IEEE Transactions

on Computer-Aided Design of Integrated Circuits and

Systems, Vol. 40, No. 8, pp. 1640-1647, August, 2021.

[28] L. Li, Z. L. Wang, X. H. Yang, Mobile resource

reliability-based task allocation for mobile cloud, 2015

Fifth International Conference on Instrumentation and

Measurement, Computer, Communication and Control

(IMCCC), Qinhuangdao, China, 2015, pp. 1746-1750.

[29] S. K. Choi, I. S. Cho, K. S. Chung, B. K. Song, H. C.

Yu, Group-based resource selection algorithm

supporting fault-tolerance in mobile grid, Third

International Conference on Semantics, Knowledge and

Grid (SKG 2007), Xi’an, China, 2007, pp. 426-429.

[30] S. H. Jang, J. S. Lee, Mobile resource reliability-based

job scheduling for mobile grid, KSII Transactions on

Internet and Information Systems (TIIS), Vol. 5, No. 1,

pp. 83-104, January, 2011.

[31] S. Rahnamayan, H. R. Tizhoosh, M. M. A. Salama,

Opposition-based differential evolution, IEEE

Transactions on Evolutionary computation, Vol. 12, No.

1, pp. 64-79, February, 2008.

Biographies

Xuan Chen is an associate professor at

Zhejiang Industry Polytechnic College. He

received his master degree from University

of Electronic Science and Technology of

China. His research interests include cloud

computing and algorithm design.

Hongfeng Zheng is a Professor at Zhejiang

Industry Polytechnic College. He received

his master’s degree from Huazhong

University of Science and Technology. His

research interests include power electronics

and applications, intelligent control, and

algorithm research.

