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Abstract 
 

With the gradual application of mobile terminals such as 

cell phones in production and life, mobile cloud computing 

has become an important part of the internet. Different from 

traditional cloud computing task scheduling methods, mobile 

cloud computing task scheduling needs to consider not only 

task time minimization but also the lowest possible mobile 

device energy consumption. We propose an improved chicken 

swarm optimization (ICSO) algorithm applied to the task 

scheduling strategy under mobile cloud computing. First, we 

establish a multiobjective optimization strategy with 

minimum completion time and minimum energy consumption. 

Second, for the shortcomings of the chicken swarm 

optimization algorithm that easily fall into local optimums 

leading to algorithm stagnation, we use reverse learning 

initialization for the chicken flock population to expand the 

space of understanding and an adaptive strategy for learning 

factors and following coefficients. To illustrate the 

effectiveness of our algorithm in scheduling, we chose the 

number of mobile devices as 50, 100, and 150 and compared 

the improved chicken swarm optimization algorithm, ant 

colony algorithm, particle swarm algorithm, and chicken 

swarm optimization algorithm. The results illustrate that our 

proposed algorithm can reduce the task completion time, 

control the energy consumption of mobile devices well, and 

save energy. 

 

Keywords: Mobile cloud computing, Time, Energy, Task 

scheduling 

 

1 Introduction 
 

With the rapid development of wireless networks and the 

widespread use of mobile devices, mobile internet is gradually 

playing an increasingly important role in people’s lives and 

work. Users’ needs and requirements for mobile terminal 

devices have also started to rise, and various large-scale 

applications have begun to appear, but mobile devices still 

have certain limitations due to the influence of the size and 

battery of mobile terminal devices and the hardware system 

itself. The emergence of the mobile cloud computing concept 

[1] solves such problems by reducing the requirements of 

applications for mobile terminal devices on the one hand and 

improving the performance of devices in handling large 

applications on the other. However, mobile cloud computing 

task scheduling is affected by the computational storage 

capacity of the device, the network connection status and 

stability, and the device power [2-3], so mobile cloud 

computing task scheduling is a fully NP problem. The 

metaheuristic algorithm has achieved good results in solving 

cloud computing task scheduling. We use the metaheuristic 

algorithm to solve the mobile cloud computing task 

scheduling problem by designing a fitness function applicable 

to the mobile cloud environment. Chicken Swarm 

Optimization is a new metaheuristic algorithm for population 

intelligence that was proposed by Chinese scholars Meng et al. 

in 2014 [4]. The algorithm takes the group behavior of roosters, 

hens, and chicks in the animal kingdom as the research object. 

There are three main bodies in the algorithm, the algorithm 

structure is simple, and the algorithm steps are easy to 

implement and are widely used in various engineering fields. 

We propose a new algorithm, improved chicken swarm 

optimization (ICSO), in which we introduce a backward 

learning strategy in the initialization of the population to 

improve the population diversity, enrich the number of 

solutions, optimize the learning factor and the following 

coefficient in the algorithm, avoid the algorithm falling into a 

local optimum, and improve the quality of the algorithm 

solution. The quality of the algorithm solution is improved. 

We use ICSO in task scheduling for mobile cloud computing, 

and simulations illustrate that the ICSO algorithm reduces task 

completion time by 32%, 30%, and 20% compared to ACO, 

PSO, and CSO, respectively, and reduces mobile device 

energy consumption by 22%, 21%, and 18%, respectively. 

This paper is structured as follows: In Section 2, we 

describe the results of current scholars’ research in terms of 

the task completion time of mobile cloud computing and the 

energy consumption of mobile devices, and find the direction 

of this paper’s research from these results. In Section 3, we 

propose a new task scheduling model in a mobile environment 

that implements a scheduling model with the goal of reducing 

task completion time and reducing energy consumption of 

mobile devices. In Section 4, we explain the principle of the 

chicken flock optimization algorithm and propose 

optimization measures in terms of population, algorithm 

parameters, and coefficients for the shortcomings of this 

algorithm and explain how to apply it in mobile cloud task 

scheduling. In Section 5, we test the effectiveness of the 

optimized algorithm and verify it in terms of both reduced task 

time and reduced device energy consumption. Finally, we 

conclude the paper in Section 6. 
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2 Related Work 
 

The current research results are divided into two categories 

[5]. One is research on task scheduling only under a single 

mobile device [6-7], which usually considers only task 

offloading between a single mobile device and a cloud data 

center. The other category is the task allocation problem 

between multiple mobile devices [8-10], which considers 

multiple mobile devices (generally fewer mobile devices) to 

form an autonomous system with shared resources and equal 

mutual assistance. 

Numerous research results have been published in 

academia for the task scheduling problem oriented to a single 

mobile computing device. C. Wang in [11] showed a dynamic 

optimization algorithm that minimizes the combined resource 

consumption of the CPU and bandwidth weighted sum as the 

optimization objective. The experimental results show that the 

algorithm can give the optimal task migration scheme. T. 

Soyata in [12] showed a Cloudlet application framework, 

MOCHA, which improves the QoS of task scheduling by 

dividing the set of different tasks. P. Balakrishnan in [13] 

believed that the task scheduling of mobile cloud computing 

needs to consider not only the energy consumption of mobile 

devices but also the energy consumption of the CPU in mobile 

devices at any time. S. Saha in [14] showed a migration 

decision algorithm for migrating tasks from mobile to cloud 

execution, which finally achieves the optimization of 

completion time. M. R. Ra in [15] showed an environment for 

incremental greedy policies for mobile cloud computing. 

Experiments illustrated the good results of this environment in 

terms of task latency reduction. 

In the process of multimobile task device task distribution, 

as mobile devices need to consume more resources among 

themselves, reducing the energy consumption and completion 

time of the device becomes the main direction of optimization. 

In terms of energy consumption, Y. B. Li in [16] showed an 

energy-aware dynamic task scheduling algorithm with a 

dynamic voltage scaling technique, and experimental results 

showed that the algorithm can significantly reduce the energy 

consumption of mobile terminals. M. Nir in [17] showed the 

use of centralized agent nodes in mobile cloud computing to 

optimize the energy consumption of all mobile devices, which 

can reduce the energy consumption of mobile devices using 

minimal search. The reliability of this approach was verified 

in simulation experiments. A. Ali in [18] showed an energy-

efficient dynamic decision-based method that can improve the 

decision-making ability of mobile devices during task 

offloading. In simulation experiments, this method was shown 

to reduce energy consumption. Chowdhury in [19] used 

mobile cloud computing in wireless sensors to reduce the 

energy consumption between nodes, and simulation 

experiments illustrated that using mobile cloud computing 

technology is indeed able to node process task energy 

consumption. P. Akki in [20] used the powerful performance 

of neural networks to reduce the energy consumption of 

mobile devices, and simulation experiments illustrated a 

30.3% reduction in energy consumption. In terms of 

completion time, S. Ramu in [21] used the Capuchin search 

algorithm for task scheduling under mobile cloud computing, 

and simulation experiments showed significant advantages 

over existing state-of-the-art methods in terms of completion 

time, execution time, and resource utilization. M. G. Chen in 

[22] presented a robust computation offloading strategy with 

failure recovery in an intermittently connected cloudlet system, 

and simulation experiments illustrated the great advantage of 

this strategy in terms of task time reduction. B. Saemi in [23] 

showed the flow of the water cycle algorithm, and simulation 

experiments indicated that the algorithm reduces task 

completion time by 23%, 28%, and 21% compared to the GA, 

ACO, and PSO algorithms, respectively. V. Sundararaj in [24] 

showed a hybrid queueing ant colony-artificial bee colony 

optimization (Ant-Bee)-based algorithm for optimizing task 

assignment in MCC environments, and simulation 

experiments illustrated that this algorithm outperforms other 

algorithms in terms of power consumption, average task 

completion time, and dropout rate of mobile devices. H. Peng 

in [25] applied the whale optimization algorithm to the 

dynamic voltage-frequency scaling technique to better 

schedule the execution location of tasks. Simulation 

experiments showed that the algorithm can reduce the task 

completion time by 29% and the energy consumption of 

mobile devices by 13% compared to the WOA. 

In other aspects of mobile cloud computing such as 

mechanisms, P. Nawrocki in [26] showed a new security-

aware task allocation model strategy in mobile cloud 

computing. This approach used machine learning methods to 

predict resource utilization and select the best security service 

for task execution, such as neural networks. S. P. Wen in [27] 

showed a volume set kernel operation method in neural 

networks that provides a reference for related computations 

under mobile cloud computing. 

 

3 Design of Mobile Cloud Computing Task 

Scheduling Model 
 

In the mobile cloud computing environment, the nodes 

executing task assignment consist of a large number of 

terminal devices with mobile characteristics, and the 

computational storage energy, stability, and device energy 

consumption of these devices become constraints for task 

scheduling, which seriously affects the task scheduling 

efficiency. We construct a multiobjective optimization model 

based on the task scheduling model for mobile cloud 

computing described in [28], which is based on the completion 

time and energy consumption of mobile devices in task 

scheduling and can reasonably schedule tasks for each mobile 

device through a metaheuristic algorithm to minimize task 

completion time and reduce device energy consumption. A set 

of task resources is used to represent a subtask that can be 

processed in parallel after the job submitted by the user is 

divided, and N  set T  is used to represent

1 2{ , ,..., }NT T T T= . Each subtask can be executed in parallel 

and has no correlation. The M  mobile devices involved in 

the execution of the task are selected and denoted by the set 

D  as 1 2{ , ,..., }MD D D D= . Therefore, the essence of task 

allocation in mobile cloud computing is how to complete the 

execution of N  tasks in M  mobile devices in the shortest 

time and with the least energy consumption. 

 

(1) Task completion time function 

Mobile resources for executing tasks in mobile cloud 

computing are dynamic and heterogeneous, and the same task 

may take different times to complete on different mobile 

devices because each device may have a different computing 
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power itself. In general, for jD  task iT  assigned to a 

particular device, the execution time ,i jte  is determined 

from length iL  of the task iT  and the CPU processing 

power jC  (MIPS) of that device, so the execution time is 

expressed as follows. 

 

,
(1 )

i
i j

j cpu

L
te

C u
=

 −
,                        (1) 

 

where
 cpuu  denotes the CPU utilization rate of the mobile 

device. Since mobile devices themselves have a certain 

amount of energy consumption, especially the CPU, even 

when it is idle, they will continue to generate energy 

consumption, which affects the time to perform tasks on 

mobile devices. Especially when the CPU utilization rate of 

the mobile device is large, the task execution time will be 

greatly increased, so setting cpuu  is mainly considered when 

using the CPU availability of the mobile device to calculate 

the task time. 

The task completion time is related not only to the 

computing power of each mobile device but also to the 

network transmission capability of the mobile device. 

Different network bandwidths result in different data 

transmission times for the task mapping to the mobile device 

and the result return from the device. For task iT  assigned to 

mobile device jD , the task mapping time and return time are 

ijts  and ijtr , respectively, which are mainly determined by 

input data sizes 
in

id  and 
out

id  and the network bandwidth 

of device jB  and are thus expressed as follows. 
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Thus, the time ijt  for jD  mobile device a to complete task 

iT  is expressed as follows. 

 

ij ij ij ijt te ts tr= + + .                           (4) 

 

Therefore, the final completion time Tt  for all tasks in 

the set of tasks 1 2{ , ,..., }NT T T T=  is the time used to 

complete the longest task among all tasks, i.e., Tt  is 

expressed as follows. 

 

maxT ij
ij

t t= .                                (5) 

(2) Equipment energy consumption function 

In mobile cloud computing, mobile devices are the key 

devices for task execution, but because they need to consume 

power, we must consider the power consumption of these 

mobile devices in the process of considering energy 

consumption under mobile cloud computing. Under the 

condition of its own power, the remaining power can be used 

to perform mobile cloud computing tasks. Reference [29] 

indicated that the power consumption of hardware is related to 

the usage rate of the hardware itself, and [30] stated that the 

energy consumption of a computer and the CPU are linearly 

related, expressed as follows. 

 

cpu cpu cpu cpuE   =  + ,                     (6) 

 

where
 cpuE  denotes CPU power consumption,

 cpu  

denotes CPU utilization, and
 cpu  and cpu  are fixed 

coefficients. 

In the mobile cloud environment, the main power-

consuming hardware modules of the device are the CPU and 

memory modules, so the energy consumption generated by the 

mobile device jD  performing task iT  is as follows. 

 

ij cpu cpu ij mem mem ijer c te u c te=   +   ,       (7) 

 

where
 cpu  and memu  denote CPU usage and memory 

usage, respectively. cpuc  and memc  denote the power 

consumption coefficients of CPU and memory modules, 

respectively, and ijte  is the execution time of task iT  on 

device jD . 

Data transfer between mobile devices and proxy servers 

also consumes energy, which is due to the different connection 

methods used by mobile devices, and therefore the power 

consumption of the devices varies. Since the energy 

consumption of data transfer is proportional to the size of the 

data transferred, the energy consumption caused by data 

transfer between devices in a mobile environment ijed  is as 

follows. 

 
in out

ij i ij n i ij ned d ts c d tr c=   +   ,            (8) 

 

where
 

in

id  and 
out

id  denote the input data size and output 

data size of task iT , respectively;
 nc  is the power 

consumption factor of the network transmission module;
 ijts  

is the task mapping time; and ijtr  is the result return time. 

The energy consumption ije  of mobile resource device 

jD  to complete task iT  is expressed as follows. 

 

ij ij ije er ed= + .                              (9) 
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Therefore, for the set of tasks 1 2{ , ,..., }NT T T T= , the 

final energy consumption of all tasks is the sum of the energy 

consumption of all tasks, i.e., Te . The expression is as 

follows. 

 

T ij

ij

e e= .                                (10) 

 

4 Improved Chicken Swarm 

Optimization Algorithm for Mobile 

Cloud Computing Task Scheduling 
 

4.1 Chicken Swarm Algorithm 
 

The backpropagation neural network is one of the most 

widely used neural network models and mainly uses 

backpropagation for multilayer feedback training network 

models. It can achieve mapping capability from input to output, 

and it is widely used for pattern recognition, data prediction, 

and fault identification. However, the BP neural network has 

certain limitations: it lacks simple and effective parameters, 

resulting in the lack of stability of the BP algorithm. In 

addition, BP neural networks have local minimization and 

slow convergence, and the global optimum must be found by 

resetting the initial parameter values, which increases the 

algorithm running time. 

The chicken swarm optimization algorithm is a new 

algorithmic idea designed to simulate group behavior 

generated by chickens in the animal kingdom during the 

process of obtaining food. Like most metaheuristic algorithms, 

it has the characteristics of a swarm intelligence optimization 

algorithm in that it mainly uses the collaborative idea of local 

solution between individuals and overall solution between 

groups and populations to obtain the optimal solution of the 

algorithm. Therefore, the algorithm has the characteristics of 

fast convergence and strong merit-seeking ability. The 

algorithm establishes the existence of different hierarchical 

classifications and ways of finding food in the chicken flock. 

It decomposes the whole swarm into several subflocks, and in 

each small flock there is a rooster and several hens and chicks. 

Different subflocks have different competitive relationships 

with each other due to different hierarchical classifications. 

The specific process is as follows. 

(1) In the whole chicken swarm optimization algorithm, 

we divide into several different subgroups, but each subgroup 

contains a rooster and many hens and chicks. 

(2) We call the individual with the best fitness value in 

each subgroup a rooster, the individual with average fitness 

value a hen, and the individual with the worst fitness value a 

chick. The hen is free to choose any subgroup, and there is no 

fixed relationship between the two, i.e., the hen and the chicks 

can lead the chicks, and the chicks can leave the current hen at 

any time. 

(3) The hierarchical classification of the Chicken swarm, 

the dominance relationship and the hen-chick relationship 

remain unchanged until after the update; 

(4) In each subgroup, individuals searched for food around 

the rooster in the group while preventing other individuals 

from taking their own food. Chicks were able to steal food 

from other individuals randomly, each chick followed the hen 

in searching for food, and some individuals in the Chicken 

swarm had the competitive advantage of good dominance and 

were able to obtain food first. 

By analyzing the above rules, we have a clear 

understanding of the three types of individual chickens in the 

flock algorithm. In the algorithm, the rooster is the most 

important individual whose task is to find food, and the final 

position of the rooster is the optimal solution of the algorithm. 

As the rooster in the subgroup, the influence of the hen and the 

chick is significant, so we need to deal with the relationship 

between the hen and the chick to make the rooster obtain the 

best position in the subgroup. Therefore, we set all individuals 

in the subgroup algorithm as N , and the position of the 

chicken individual , ( )i jx t  denotes the position of the i th 

individual in the j -dimensional space in the t th iteration. 

The corresponding location of the rooster is updated as follows: 

 
2

, ,( 1) ( ) (1 (0, ))i j i jx t x t Randn + =  + ,      (11) 

 

2

1

exp( )
| |

i k

k i

i

if f f

f f
otherwise

f








= −
 +

,           (12) 

 

where 
2(0, )Randn   is the mean value of 0, 

2 is a 

Gaussian distribution,   is a small constant, and k  

represents another individual among all roosters. 

The formula for updating the position of individual 

roosters in the swarm optimization algorithm is as follows. 

 

, , 1 1, , 2 2, ,( 1) ( ) ( ( ) ( )) ( ( ) ( ))i j i j r j i j r j i jx t x t c rand x t x t c rand x t x t+ = +   − +   − . (13) 

 

1 1exp(( ) ( ) )i r ic f f abs f = − + .            (14) 

 

2 2exp( )r ic f f= − .                         (15) 

 

In Eq. (13), 1c , 2c denotes the learning factor in the hen 

position update, rand  denotes any random number with a 

random value. 1r denotes the corresponding rooster in the 

flock of the i th hen, 2r denotes any randomly selected 

individual among the roosters and hens in the flock, and 

1 2r r
,
 in Eq. (14-15), exp()  denotes the learning factor 

function, ()abs  denotes the absolute value function,   is 

a fixed parameter to prevent the denominator from being 0, 

if  denotes the individual fitness value, 1rf  denotes the 

fitness value of the roosters in this subgroup, and 2rf  

denotes the fitness value of any rooster and hen in all groups. 

The corresponding position of the chicks in the subgroup 

is expressed as follows: 

 

, , , ,( 1) ( ) ( ( ) ( ))i j i j m j i jx t x t F x t x t+ = +  − .        (16) 
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In Equation (16), we use , ( )m jx t  to denote the m th 

hen corresponding to the i th chick, F  to denote the 

following coefficient, and , ,( ) ( )m j i jx t x t−  to denote the 

hen leading the chick in search of food. 

In this paper, the purpose of the model we construct is to 

reduce the task execution time and the energy consumption 

generated by the mobile device corresponding to the task, with 

the two objectives of minimum task completion time and 

minimum mobile device energy consumption as the goals of 

the optimization of the algorithm in this paper. Since the 

completion time adaptation function and the system 

equipment energy consumption adaptation function have 

different values and are both nonlinear functions, the 

normalization method is used to adjust them so that the 

adjusted function values are in the range of [0,1]. Let ( )f x  

denote the task completion time function Tt  or the total 

energy consumption function Te  of the system equipment, 

' ( )f x  denote the function after the normalization operation 

of ( )f x , and let max ( )f x  and min ( )f x  denote the 

maximum and minimum values of the function ( )f x , 

respectively. Therefore, the expression of the 
' ( )f x  

function is as follows. 

 

' min

max min

( ) ( )
( )

( ) ( )

f x f x
f x

f x f x

−
=

−
.                 (17) 

 
' '( ) ( )ICSO t efitness f i f i =  +  .          (18) 

 

In Equation (18),
 ICSOfitness  denotes the fitness 

function of the locust algorithm, and 
' ( )tf i  and 

' ( )ef i  are 

the normalized task completion time function and the system 

equipment energy consumption function, respectively.   

and   are the weights of the two functions, and their sum is 

1. Therefore, solving to obtain min GoAfitness  is the goal 

of the algorithm in this paper. 

 

4.2 Improved Chicken Swarm Optimization 

Algorithm 
 

Most metaheuristic algorithms suffer from the drawbacks 

of being locally trapped in the optimum and having slow 

convergence, which leads to stagnation of the algorithm. The 

chicken swarm optimization algorithm also suffers from these 

problems, and we propose corresponding solution strategies to 

avoid the shortcomings of the chicken flock optimization 

algorithm from three aspects: the population of the swarm, the 

learning factor, and the following coefficient. 

 

(1) Population initialization 

According to the description of the chicken swarm 

optimization algorithm, the initial solutions of the chicken 

swarm individuals are generated randomly, and the optimal 

solutions generated by the algorithm cannot be uniformly 

distributed in the space due to the randomness of the 

individuals easily, so that the solution performance of the 

algorithm decreases as the number of iterations keeps 

increasing and therefore reduces the performance of the 

algorithm. Inverse learning [31] is a machine learning strategy 

suitable for population optimization that usually obtains the 

reverse solutions of these current solutions in each iteration of 

the algorithm and selects the solutions from each current and 

reverse solution that are favorable to the evolution of the 

algorithm, further reducing the blindness in the search of the 

algorithm while expanding the search space of the solution by 

increasing the number of individuals of the reverse and current 

solutions. This improves the chicken flock optimization 

algorithm with regard to the quality of the solution and 

expands the scope of the global optimal solution generation. 

The algorithm process is as follows: 

Step 1: Randomly generate the initial population. 

Randomly generate the initial population A of the chicken 

swarm algorithm, where the solutions of the corresponding 

individuals are obtained according to Equation (19): 

 

min max min( )j j j j

ix x rand x x= +  − ,             (19) 

 

where W  denotes the number of populations, D  denotes 

the dimension, 
j

ix  denotes the i th individual in the j  

dimension, F ranges from [1, W ], H ranges from [1, D  ], 

and min

jx  and max

jx  denote the upper and lower spatial 

boundaries, respectively. 

Step 2: Solve for the inverse solution for each individual. 

In population 1NP , we find the inverse solution for each 

individual in this population according to Equation (20) to 

obtain the inverse population
' ' '

1 2{ ( ), ( ),......, ( )}op WNP x t x t x t= . 

 
'

min max

j j j j

i ix x x x= + − .                      (20) 

 

Step 3: Select the best individual in the population. First, 

we obtain a reverse population by the operations in steps 1 and 

2. Second, we select the individual with the best fitness value, 

individual bestx , among the original population and the 

reverse population. At the same time, we mix all individuals 

of the two populations to find the average value of these 

individuals meanx . We select the fitness value of the flock 

individual c and fitness value of the flock individual meanx  

among the two. Finally, we select the optimal value of the 

fitness value of individual bestx  and the fitness value of 

individual d to obtain the optimal flock individual opbestx  

according to Equation (21): 

 

, ( ) ( )

,

best best mean

opbest

mean

x f x f x
x

x otherwise


= 


.           (21) 

 

By introducing backward learning in the results of 

population initialization, we found that the chicken individuals 
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have more solutions after initialization and at the same time 

have a larger search space. This increases the number of other 

chicken individuals toward the optimal rooster individual 

position and improves the performance of the algorithm 

overall, thus providing a larger space of solutions to obtain the 

optimal solution. 

 

(2) Learning factor optimization 

In the chicken swarm optimization algorithm, the role of 

the learning factor reflects the relationship between the chicks 

following the hen in the subgroup. Therefore, the magnitude 

of the learning factor value reflects the extent to which the 

chicks learn from the hen and the rooster. By using Eqs. (14-

15), we find that when the value of the learning factor is low, 

we allow the chick to search for a better solution in the current 

subgroup, and conversely, when the value of the learning 

factor is high, the chick can search in a larger range and thus 

can obtain the possibility of a better solution. However, we 

find from the formula that such a setting method of the 

learning factor tends to make the algorithm fall into a local 

optimum and thus cause the algorithm to stall. To avoid this 

situation from affecting the solution accuracy of the algorithm, 

we reset the two learning factors, and in the process of setting 

them, we relate them to the current number of iterations and 

the total number of iterations. Through the minimum and 

maximum factor values, we are able to dynamically adjust the 

learning factor values to guide the chick to a better solution. 

 

max
1 1 min

max1

min 1 min

,currentt t
c c c

tc

c c c

−
+ 

= 
 

.            (22) 

 

min
2 2 max

min2

max 2 max

,currentt t
c c c

tc

c c c

+
+ 

= 
 

.            (23) 

 

In Eqs. (22-23), the learning factor takes values in the 

range [ minc ,
 maxc  ], while currentt  denotes the number of 

iterations currently being performed and takes values in the 

range [ mint ,
 maxt  ]. 

 

(3) Follow factor optimization 

In the chick’s position update, the following coefficient is 

a fixed value; such a setting is not conducive to the chick’s 

position update in each iteration, which makes the algorithm 

fall into a local optimum to some extent. To avoid this 

situation, the coefficient is set in this paper as follows: 

 

max

(1 )current i

obj

t f
F

t f
= −  .                      (24) 

 

In Equation (24), we find that the following coefficient is 

related to the current number of iterations ( currentt ), total 

number of iterations ( maxt ), fitness value of the i th 

individual ( if ), and fitness ( objf ) value of the optimal 

individual of the population. In Eq. (24), the value of the 

following coefficient F  becomes gradually smaller as the 

number of iterations gradually becomes larger to ensure that 

the hen does not lead the chick all the time and to avoid the 

result of algorithm stopping due to falling into local optimum: 

 

4.3 Algorithm Steps 
 

The task flow of mobile cloud computing based on ICSO 

is shown in Figure 1. 

 

Begin

Set the values of various parameters required 

for the tasks in mobile cloud computing

According to the task scheduling model in 

mobile cloud computing

Take the expression of the task scheduling 

function as the fitness function for CSO

Reverse learning initialization in the 

population

Optimization of learning factor parameters

Update the following coefficients

Calculate the objective function value of the 

task corresponding to the individual chickens

T=Tmax?

Output  is the best mobile cloud computing 

task solute

No

Yes

End
 

Figure 1. Flowchart 

 

5. Simulation Experiments 
 

In this paper, we use the resource-to-VM mapping 

mechanism in the C1oudSim resource pool to simulate the task 

assignment process from proxy servers to mobile devices in 

mobile cloud computing in order to realize the simulation 

effect of the task assignment algorithm proposed in this paper. 

The ant colony algorithm (ACO), particle swarm algorithm 

(PSO), and CSO are selected as the comparison algorithms. 

The hardware environment is as follows: CPU as Core I7, 

memory as 8 GB, hard disk capacity of 1 T, and software 

environment of Win10. The main parameters of the mobile 

devices, tasks, and other mobile devices in this experiment for 

mobile cloud computing are listed in Table 1. Table 2 lists the 

values of the main parameters for the four algorithms. 
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Table 1. Main parameters of mobile cloud computing 

 Parameter Value 

Mobile 

devices 

CPU processing power 

(MIPS) 

2000-10000  

(Step 500) 

Network transfer 

capability 

100-1000 

(Step100) 

CPU utilization rate 
0.1-0.9 

(Step 0.1) 

CPU power 

consumption factor 
3.0 

Task 

Task length 

 

10000-30000  

(Step 2000) 

Transfer data 

 

100-1000 

(Step 100) 

Other 

Memory power 

consumption factor 
2.5 

Network transfer power 

consumption factor 
4G: 5 WiFi:1 

 

Table 2. Main parameters of contrast algorithm 

Algorithm Main parameters 

ICSO 
minc value is 0.1, maxc  value is 1,  value 

is 0.01, rand  value is 0.5, F  value is 1 

CSO  value is 0.01, rand value is 0.5, F value is 1 

ACO 

The value of pheromone of individual ant colony 

is 0.005, the value of pheromone volatility 

coefficient in the path is 0.01, and the probability 

of path selection is 0.5 

PSO 

The value of inertia weights of individual 

particles is 0.5, the array of two random learning 

factors is 0.5, and the value of random number 

weights is set to 0.5 

 

5.1 Algorithm Performance Comparison 
 

In this subsection, we verify the performance effect of the ICSO 

algorithm. To better test the performance of the ICSO algorithm, we 

tested ICSO with ACO, PSO, and CSO in 2-dimensional, 5-

dimensional, 10-dimensional and 30-dimensional arrangements 

under nine benchmark test functions, as shown in Table 3. The 

number of iterations is set to 1000, the data index results are shown 

in Table 4 to Table 9, and the test index is the maximum value, 

minimum value average and standard value. 

 

Table 3. Test function 

No Test function 

F1 

1
2 2 2

1

1

[100( ) ( 1) ]
n

i i i

i

x x x
−

+

=

− + −  

F2 
2

1 1

1 1 1
20exp( ) exp( cos(2 ))

5

n n

i i

i i

x x
n n


= =

− −   

F3 
2

1

( 10cos(2 ) 10)
n

i i

i

x x
=

− +  

F4 
2

1

([ 0.5])
n

i

i

x
=

+  

F5 
2

1 1

1
cos( ) 1

1000

nn
i

i

i i

x
x

i= =

− +   

F6 

1 1

| | | |
nn

i i

i i

x x
= =

+   

Table 4. F1 test function result 

Alg

orith

m 

Di

me

nsi

on 

Minimum 

Value 

Maximum 

value 
Mean 

Standard 

deviation 

ACO 

2 1.151 98.901 40.892 44.350 

5 4.979 98.870 77.038 28.641 

10 28.874 99.636 90.603 12.575 

30 87.062 99.834 96.583 3.806 

PSO 

2 2.333E-06 1.116 1.007 1.017 

5 1.051 5.485 1.855 1.884 

10 5.196 19.512 11.652 3.667 

30 15.841 39.906 26.712 5.985 

CSO 

2 9.173E-08 2.349E-02 1.893E-03 4.220E-03 

5 2.922E-03 7.346E-02 2.728E-02 1.487E-02 

10 1.823E-02 9.975E-02 6.390E-02 2.171E-02 

30 6.550E-02 1.697E+01 1.333E+01 2.146E-02 

ICSO 

2 7.408E-11 4.882E-05 3.069E-06 8.231E-06 

5 2.448E-10 3.814E-05 1.846E-05 6.841E-05 

10 3.383E-10 1.600E-03 4.980E-05 2.352E-04 

30 2.187E-11 1.363E-03 5.199E-05 2.174E-04 

 

Table 5. F2 test function result 

Alg

orith

m 

Di

me

nsi

on 

Minimum 

Value 

Maximum 

value 
Mean 

Standard 

deviation 

ACO 

2 1.172 79962.931 74916.871 22733.531 

5 19.845 16782.762 23591.073 55016.221 

10 260.879 32373.592 45288.364 9965.661 

30 505.033 77681.35 14473.293 27452.502 

PSO 

2 4.536E-07 7.7018 0.249 2.102 

5 1.638 1731.353 165.484 361.100 

10 216.660 67022.206 8255.293 1345.592 

30 1352.401 29054.250 847467.368 6346.300 

CSO 

2 7.135E-10 2.314E+02 7.926E-03 2.812E-03 

5 8.137E-02 6.919E+02 3.912E+02 2.349E+01 

10 7.374E+02 1.716E+03 2.338E+02 3.318E+02 

30 2.312E+03 8.916E+04 2.816E+03 2.713E+03 

ICSO 

2 1.601 1.989 1.655 1.093 

5 4.598 4.9743 4.891 1.106 

10 9.498 10.069 9.875 1.095 

30 29.493 29.848 28.704 1.046 

 

Table 6. F3 test function result 
Alg

orit

hm 

Dim

ensi

on 

Minimum 

Value 

Maximum 

value 

Mean Standard 

deviation 

ACO 

2 1.033 1663.389 1698.460 4631.145 

5 1.316 3057.926 4916.712 9140.773 

10 611.799 5651.691 16125.421 17752.751 

30 26202.126 1326.816 6921.981 35142.120 

PSO 

2 3.242E-10 1.004 1.091 1.781 

5 1.000 13.333 2.124 3.120 

10 13.1117 560.9040 143.552 115.685 
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30 1363.988 7473.098 3643.119 1311.625 

CSO 

2 5.704E-12 10.926E-04 7.431E-05 2.951E-04 

5 9.987E-04 3.929E-01 5.114E-02 5.675E-02 

10 10.370E-02 2.588E+01 5.122E-02 2.791E-02 

30 1.314E+01 1.214E+02 4.299E+01 2.124E+01 

ICSO 

2 8.001E-10 2.372E-03 1.578E-04 4.2013E-04 

5 5.947E-12 4.362E-02 1.590E-03 6.378E-03 

10 6.447E-07 1.770E+01 1.180E-02 2.834E-02 

30 2.840E-06 4.999E+00 4.621E-01 8.813E-01 

 

Table 7. F4 test function result 
Alg

orith

m 

Dim

ensio

n 

Minimum 

Value 

Maximum 

value 
Mean 

Standard 

deviation 

ACO 

2 2.777 55.279 25.327 13.159 

5 33.047 133.306 81.638 18.575 

10 88.077 239.859 173.640 35.095 

30 484.405 645.319 544.770 38.159 

PSO 

2 7.323E-10 2.001 1.159 1.350 

5 4.005 23.881 9.273 5.629 

10 14.863 63.029 35.954 12.067 

30 120.847 264.788 201.047 28.585 

CSO 

2 1.603E-11 1.992E+01 3.064E-02 5.525E-02 

5 1.062E-06 2.009E+01 5.128E+00 3.697E+00 

10 8.033E-01 5.856E+01 3.281E+01 2.020E+01 

30 2.578E-01 3.215E+02 2.238E+02 7.525E+01 

ICSO 

2 4.552E-15 9.092E-05 4.813E-06 2.362E-05 

5 3.062E-06 2.815E+00 4.827E-02 3.566E-01 

10 2.065E-13 8.2853E-01 4.273E-02 2.438E-01 

30 9.343E-11 10.239E+00 4.920E-01 2.563E+00 

 

Table 8. F5 test function result 

Alg

orith

m 

Di

me

nsi

on 

Minimum 

Value 

Maximum 

value 
Mean 

Standard 

deviation 

ACO 

2 2.034E-07 5.310E-04 3.503E-05 8.763E-05 

5 7.609E-05 2.735E-02 6.880E-03 6.454E-03 

10 3.513E-03 1.347E+01 3.342E-02 3.094E-02 

30 1.378E-02 8.948E+01 2.487E+01 1.944E+01 

PSO 

2 1.983E-10 6.383E-42 4.172E-43 1.052E-43 

5 2.277E-32 7.883E-26 3.344E-27 2.025E-26 

10 9.473E-30 2.525E-22 6.799E-24 3.216E-23 

30 4.240E-28 3.511E-21 3.215E-22 6.730E-22 

CSO 

2 6.535E-11 1.188E-06 9.397E-07 2.203E-08 

5 8.429E-09 6.725E-04 9.290E-06 1.286E-04 

10 4.559E-05 6.795E+04 1.561E+04 1.781E+05 

30 1. 277E-33 1.173E-69 2.411E-71 1.659E-70 

ICSO 

2 3.876E-55 8.115E-47 1.856E-44 1.151E-45 

5 2.011E-52 6.021E-36 1.379E-40 8.523E-38 

10 5.665E-47 1.724E-35 4.873E-37 2.542E-37 

30 2.840E-06 4.999E+00 4.621E-01 8.813E-01 

 

 

 

Table 9. F6 test function result 

Alg

orith

m 

Di

me

nsi

on 

Minimum 

Value 

Maximum 

value 
Mean 

Standard 

deviation 

ACO 

2 
5.432E-09 1.893E-05 1.957E-06 3.729E-06 

5 
5.473E-08 3.095E-04 3.213E-05 5.294E-05 

10 
1.622E-07 1.366E-03 1.702E-04 3.209E-04 

30 
8.818E-06 3.191E-02 1.703E-03 4.590E-03 

PSO 

2 
1. 671E-07 3.787E-11 3.663E-12 7.017E-12 

5 
1.205E-13 5.942E-10 5.904E-11 1.115E-10 

10 
1.182E-12 1.648E-09 2.508E-10 4.093E-10 

30 
4.588E-12 2.867E-08 2.393E-09 5.060E-09 

CSO 

2 
4.919E-07 1.555E-02 1.262E-03 2.466E-03 

5 
1.125E-03 7.455E-02 2.771E-02 1.632E-02 

10 
3.538E-02 1.011E+01 6.949E-02 1.609E-02 

30 
1.036E+01 1.731E+01 1.367E+01 1.688E-02 

ICSO 

2 
2. 367E-10 3.523E-16 2.404E-17 6.835E-16 

5 
3.180E-13 5.060E-02 3.298E-03 5.992E-03 

10 
8.375E-06 5.8473E-01 8.733E-02 2.017E-01 

30 
4.884E-02 7.1964E-01 5.310E-01 2.520E-01 

 

From the results in Table 4 to Table 9, it is found that the 

ICSO algorithm has better results in terms of the minimum, 

maximum mean, and standard values of the three test 

functions, and the PSO numerical results have obvious 

advantages compared to ACO. Compared with the CSO 

algorithm, ICSO also has certain advantages, especially when 

the dimension is 10,30. The results of this paper’s algorithm 

in four indices illustrate that the performance of the chicken 

swarm optimization algorithm significantly improves after the 

initialization of the population, learning factor optimization, 

and subsequent coefficient optimization. This lays a 

foundation for the subsequent scheduling of mobile cloud 

computing tasks. 

 

5.2 Task Completion Time 
 

Figure 2 to Figure 4 compare the completion times of the 

four algorithms for different numbers of tasks when the 

number of mobile devices is 50, 100, and 150, respectively. In 

Figure 1, the difference between the four algorithms in terms 

of time required to complete the task with different numbers 

of mobile devices is insignificant. When the number of mobile 

devices is 100, there is a certain difference in the completion 

time of the four algorithms. When the number of mobile 

devices is 150, the difference in completion time between the 

four algorithms is more obvious, and ICSO has a better 

advantage over the other three algorithms in terms of 

completion time with reductions of 49.7%, 47.3%, and 30.9% 

compared to ACO, PSO, and CSO, respectively. This shows a 

significant improvement in the algorithm performance of 

ICSO after population initialization, learning factor, and 

subsequent coefficient optimization. 
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Figure 2. Number of tasks is 50 

 

 

Figure 3. Number of tasks is 100 

 

 

Figure 4. Number of tasks is 150 

 

5.3 Task Completion Energy Consumption 
 

Figure 5 to Figure 7 show the energy consumption of the 

four algorithms for different numbers of tasks when the 

number of mobile devices is 50, 100, and 150, respectively. 

The overall energy consumption of the four algorithms with 

50 mobile devices is shown in Figure 4. The energy 

consumption of the four algorithms with different numbers of 

tasks is not much different. The overall energy consumption 

of the four algorithms with 100 mobile devices is shown in 

Figure 5. The values of energy consumption of the four 

algorithms vary greatly with the number of tasks completed. 

However, the overall effect of CSO is significantly lower than 

that of ICSO, which shows that our improvement measures for 

the algorithms are effective. From the comparison results, the 

algorithms in this paper reduce the energy consumption by 

20%, 19%, and 12% on average compared to ACO, PSO, and 

CSO. The overall energy consumption of the four algorithms 

for 100 mobile devices is shown in Figure 6. The deviation of 

the energy consumption values of the four algorithms for 

completing different numbers of tasks is relatively large, and 

the energy consumption corresponding to the four algorithms 

increases with an increase in the number of tasks. The energy 

consumption values of the ACO and PSO algorithms are 

relatively large, while the energy consumption values of CSO 

and ICSO are relatively small, but CSO is significantly lower 

than ICSO in terms of overall effectiveness. The algorithms in 

this paper have an overall reduction of 40%, 35%, and 17% 

compared to ACO, PSO, and CSO. 

 

 

Figure 5. Number of tasks is 50 

 

 

Figure 6. Number of tasks is 100 

100 200 300 400 500

0

20

40

60

80

100

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

50

100

150

200

250

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

100

200

300

400

500

600

T
as

k
 c

o
m

p
le

ti
o

n
 t

im
e(

m
s)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

20

40

60

80

100

T
as

k
 c

o
m

p
le

ti
o

n
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
(1

0
0

J)

Number of tasks

 ACO

 PSO

 CSO

 ICSO

100 200 300 400 500

0

50

100

150

200

250

T
as

k
 c

o
m

p
le

ti
o

n
 e

n
er

g
y

 c
o

n
su

m
p

ti
o

n
(1

0
0

J)

Number of tasks

 ACO

 PSO

 CSO

 ICSO



1492 Journal of Internet Technology Vol. 23 No. 7, December 2022 

 

 

 

Figure 7. Number of tasks is 150 

 

6. Conclusion 
 

In this paper, we researched how to reduce task completion 

time and reduce the energy consumption of mobile devices. 

We constructed a multiobjective task scheduling scheme that 

minimizes the task completion time and energy consumption. 

To ensure smooth implementation of this scheme, we used the 

chicken flock optimization algorithm to complete the scheme. 

To counter the shortcomings of the chicken flock optimization 

algorithm in terms of convergence speed and low solution 

accuracy, we proposed three improvement ideas in terms of 

how to initialize the population, how to improve the learning 

factor, and how to optimize the following coefficient. To 

verify the effect of this improvement idea, we verified that the 

performance of the improved chicken flock optimization 

algorithm is good by benchmarking functions during the 

simulation, especially under the conditions of different 

numbers of mobile devices and different numbers of tasks. We 

compared the results of the four algorithms ICSO, ACO, PSO, 

and CSO in terms of reducing the completion time and 

reducing the energy consumption of the devices and verified 

that our proposed improvement strategy is effective. In future 

research, we will continue to focus on research related to task 

scheduling for mobile cloud computing. 
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