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Abstract 
 

Video surveillance applications play an important role in 

smart cities. Recently, intelligent video surveillance methods 

have been widely investigated to address large-scale video 

data, among which multi-object tracking (MOT) is the most 

popular method, which aims to track every object appearing in 

the video for monitoring. MOT is essential for deep intelligent 

perception. Considering inference speed, joint detection and 

embedding (JDE) has become a new paradigm for MOT. JDE 

is to obtain detection results and object features through one 

forward propagation. However, most JDE models lack 

instance awareness ability and multi-part feature extraction 

ability, which may lead to the lack of discrimination of 

extracted instance features. To address these problems, in this 

paper we propose an instance-aware and multi-part decoupled 

network (IAMPDNet), which can perceive all instances in the 

environment and extract multi-part features from the instances. 

Specifically, our IAMPDNet consists of three key modules: a 

complementary attention module used to perceive all 

instances in the environment, a feature extraction module used 

to decouple multi-part features from the instances, and an 

adaptive aggregation module used to fuse multi-level features 

of instances. Extensive experiments on multiple MOT 

benchmarks demonstrate that our IAMPDNet achieves higher 

tracking accuracy and lower identity switches against recent 

MOT methods. 

 

Keywords: Video surveillance applications, Joint Detection 

and Embedding (JDE), Instance awareness, 

Multi-part feature decouple 

 

1 Introduction 
 

Multi-object tracking (MOT) aims to detect all objects and 

track them automatically in a period of continuous video 

frames, which has great application significance in intelligent 

video surveillance. In the past, with the rapid development of 

object detection models, MOT usually followed the paradigm 

of tracking-by-detection [1-3]. This approach is in high 

accuracy but low inference speed. Considering the demand for 

real-time computation, joint detection and embedding (JDE) 

has become a new paradigm [4-7]. 

Generally speaking, JDE aims to integrate object detection 

and feature extraction into one model, and then the detected 

boxes and object features can be obtained after one forward 

propagation. Typical JDE models include FairMOT [4], 

CenterTrack [5], and TRMOT [6], all of which follow a 

similar framework, as shown in Figure 1. Given an image 

frame, generic visual features are extracted by a strong 

backbone, and multiple heads perform object box detection 

and feature extraction on generic visual features separately. 

Although this framework has achieved a good trade-off 

between speed and accuracy, it still has two limitations. 1) 

There is a lack of instance awareness ability. Each extracted 

instance feature only depends on the corresponding instance 

but does not interact with other instance features. Then, the 

extracted instance features are usually not optimal. 2) There is 

a lack of multi-part feature extraction ability. Each instance 

feature is extracted according to the overall appearance of the 

instance, and therefore the extracted instance features are not 

fine-grained enough. 

To extract more discriminative instance features, the 

above two limitations of JDE are expected to be addressed. 

Therefore, three key modules are proposed in this paper to 

remedy them. 1) A complementary attention module is 

proposed for modeling the interaction between instance 

features. This is beneficial to perceive other instances in the 

environment for each instance. 2) A module is presented for 

extracting multi-part features of an instance. This module can 

offer more fine-grained instance features. 3) An adaptive 

aggregation module is developed for fusing multi-part features 

of an instance. This module can make better use of both the 

overall features and multi-part features of the instances. 

Then, our contributions can be summarized as follows. 

1) We propose an instance-aware and multi-part 

decoupling network (IAMPDNet), which can make up for the 

lack of instance feature interaction and the lack of fine-grained 

features in the joint detection and embedding models. 

2) We propose a complementary attention module for 

perceiving all instances in the environment. 

3) Our proposed multi-part feature extraction module can 

offer more fine-grained instance features. 

4) We conduct extensive experiments on multiple MOT 

challenges [8], verifying the effectiveness of our proposed 

IAMPDNet for multi-object tracking. 

The remainder of this paper is organized as follows. 

Section 2 overviews some recent works on JDE. The proposed 

method is described in Section 3. Our experimental results are 

presented in Section 4. The conclusion of this paper is 

provided in Section 5. 
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Figure 1. The general framework for joint detection and embedding 

 

2 Related Work 
 

2.1 Tracking-by-detection 
 

Tracking-by-detection [9-11] models regard object 

detection and instance feature extraction as two independent 

tasks. Firstly, an object detection model is used to detect all 

objects, then the detected object areas are cropped and 

inputted into the instance features extraction networks. 

Deepsort [3] is a classic tracking-by-detection model, which 

detects the objects in the image by an object detector firstly 

and then adopts a deep network to extract instance features. 

MAT [11] is an enhanced MOT framework, which introduces 

a motion localization module, a dynamic reconnection context 

module, and a 3D integral image module to perform multi-

object tracking. MOTR [12] introduces a tracking query into 

DETR [13] to better model the tracked objects in the input 

video. TrackFormer [14] treats MOT tasks as a frame-to-frame 

set prediction problem, and an end-to-end MOT framework 

was proposed using an encoder-decoder network. However, 

the tracking-by-detection models cannot meet the real-time 

requirement generally in some cases. 

 

2.2 Joint Detection and Embedding 
 

JDE models integrate object detection and feature 

extraction into a single model, which greatly improves the 

inference speed. While some advancements have been made 

in the applications of various deep learning models [15-17], 

then the recently developed JDE models also achieve some 

good performance. Track-RCNN [7] adds a feature extraction 

head on top of the backbone network and regresses a bounding 

box and an instance feature for each proposal. Similarly, 

TRMOT [6] is built on top of YOLOv3 [18] and greatly 

improves the inference speed. FairMOT [4] is a classic JDE 

model based on the CenterNet [5]. FairMOT is trained on six 

public datasets and has achieved state-of-the-art performance 

on MOT17 [8]. GTREID [19] builds a graph neural network 

and combines detection and association along with a re-

identification feature for multi-object tracking. TGraM [20] 

rethinks MOS tasks from the multi-task learning perspective 

and models MOT as a graph information reasoning. However, 

most of the above JDE models cannot perceive other instance 

features for an instance feature and cannot offer more fine-

grained features. 

 

3 Methodology 
 

3.1 Overview 
 

For MOT, most JDE models cannot perceive other 

instance features for an instance feature and cannot extract 

fine-grained instance features. Our method tackles the above 

limitations by integrating three key modules, including a 

complementary attention module, a multi-part feature 

extraction module, and an adaptive aggregation module. The 

whole pipeline of our method is shown in Figure 2. 

 

 

Figure 2. The architecture of our proposed IAMPDNet, which consists of a base model and three key additive modules: 

1) complementary attention module, 2) multi-part feature extraction module, and 3) adaptive aggregation module 
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3.2 Base Model 
 

Considering feature misalignment introduced by the 

anchor-based detector and the superior performance of 

FairMOT [4], we follow FairMOT to build our base model. As 

shown in Figure 1, our base model consists of a backbone, a 

detection head, and a re-identification (ReID) head. We adopt 

DLASeg [5] as our backbone for extracting generic visual 

features. DLASeg adopts ResNet-34 and an enhanced deep 

layer aggregation (DLA) to extract and fuse multi-scale 

features, and it is beneficial to extract more semantic features 

and achieve a good balance between accuracy and speed. In 

DLASeg, deformable convolution is used to replace all up-

sampling layers, adjusting the receptive field dynamically 

according to the size of objects. The detection head consists of 

a heatmap head, a box size head and a center offset head. All 

heads are implemented via several convolution layers. In 

addition, the loss function 𝐿𝑑 and  𝐿𝑟1
 are utilized to jointly 

supervise the training process of the base model, as shown in 

Figure 2. 

 

3.3 The Complementary Attention Module 
 

The attention mechanism can effectively aggregate similar 

features and is not limited by the receptive field, thus it is 

widely used in the field of computer vision. However, the 

attention mechanism directly discards dissimilar features, 

which are valuable in some scenarios. For example, in MOT, 

dissimilar features also contribute to the extraction of instance 

features. Therefore, we propose the complementary attention 

module to aggregate similar and dissimilar instance features 

respectively. Using aggregated similar and dissimilar features, 

we can further refine the instance features extracted by the 

base model. 

To model the interaction between instance features, we 

propose a complementary attention module on top of the base 

model, as shown in Figure 3. Given normalized instance 

features {𝑓𝑖}𝑖=1
𝑁  where 𝑁  denotes the total number of 

instances, we firstly calculate cosine similarity Sim ∈ ℝ𝑁×𝑁  
between instance features as the formula below: 

 

Sim𝑖𝑗 = 𝑓𝑖
T𝑓𝑗,                        (1) 

 

where Sim𝑖𝑗  represents the cosine similarity between 𝑖 -th 

and 𝑗-th instance features.  

Then, an aggregation operator is performed for perceiving 

all instance features in the environment and the 𝑖 -th 

aggregated instance feature 𝑓𝑖
1 can be calculated by: 

 

𝑓𝑖
1 = ∑ Sim𝑖𝑗𝑓𝑗

𝑁
𝑗=1 .                    (2) 

 

It is noted that when Sim𝑖𝑗 is close to 0, the aggregated 

instance features 𝑓𝑖
1  is hardly affected by the 𝑗 -th 

normalized instance features. However, all instance features 

should be perceived and thus an improved version is proposed 

here. Specifically, we calculate the complementary aggregated 

instance features 𝑓𝑖
2 by: 

 

𝑓𝑖
2 = ∑ 𝜙(Sim𝑖𝑗)𝑓𝑗

𝑁
𝑗=1 ,                 (3) 

 

where 𝜙(∗) is a transform function defined as: 

 

𝜙(𝑥) = {
1 − 𝑥,           𝑥 > 0,
𝑥 − 1,   otherwise.

            (4) 

 

Due to the complementary aggregated instance features, 

all instance features can be perceived. Then the final instance 

feature f
i

̂  can be calculated via the concatenation of the 

original instance feature 𝑓𝑖 , the aggregated instance feature 

𝑓𝑖
1 and the complementary aggregated instance feature 𝑓𝑖

2. 

Specifically, the following equation is given for the final 

instance feature: 

 

f
i

̂ = 𝛷(𝑓𝑖⨁𝑓𝑖
1⨁𝑓𝑖

2),                   (5) 

 

where 𝛷(∗) is implemented by two fully connected layers, 

and ⨁  denotes the concatenation operation. Here, the 

instance features f
i

̂  is supervised by the cross entropy loss 

𝐿𝑟2
. 

 

3.4 The Multi-part Feature Extraction Module 
 

The fine-grained features are beneficial to improving the 

accuracy of feature matching, which is critical for MOT. To 

extract features from different parts, spatial attention 

mechanisms are usually employed. The spatial attention 

mechanism can effectively make the neural network pay 

attention to different parts of an instance. However, the spatial 

attention mechanism has a large amount of calculation and is 

difficult to meet the real-time requirements. Thus, we propose 

the multi-part feature extraction module to extract features 

from different parts. This module is lightweight and utilizes an 

extra person re-identification model for supervision, which 

makes our models focus on different parts of each instance. 

Furthermore, in the inference stage, the person re-

identification model can be discarded without incurring 

additional inference time. 

To offer more fine-grained instance features, we propose 

a multi-part feature extraction module, which can extract the 

head part, middle part, and bottom part of an instance 

separately. As shown in Figure 2, the multi-part feature 

extraction module is built on top of the complementary 

attention module. Given aggregated instance features {f
i

̂}
𝑖=1

𝑁
, 

three decoupled heads are used to extract the head part 𝑓𝑖
ℎ, 

middle part 𝑓𝑖
𝑚  and bottom part 𝑓𝑖

𝑏  of an instance 

respectively by: 

 

𝑓𝑖
ℎ = 𝛷ℎ(f

i
̂),                        (6) 

 

𝑓𝑖
𝑚 = 𝛷𝑚(f

i
̂),                       (7) 

 

𝑓𝑖
𝑏 = 𝛷𝑏(f

i
̂),                        (8) 

 

where 𝛷ℎ(∗), 𝛷𝑚(∗) and 𝛷𝑏(∗) are implemented by fully 

connected layers. 

In order to focus our model’s attention on different parts 

of an instance, we use a person re-identification model [21] for 

deep supervision, as shown in Figure 4.  
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Figure 3. Details of the complementary attention module 

Figure 4. Details of the multi-part feature extraction module 

Note. We use a person ReiD model to auxiliary supervise the training. Specifically, each instance region is cropped into three 

parts, which are passed through a person ReID model to generate fine-grained features of three parts for auxiliary supervision. 

Figure 5. Details of the adaptive aggregation module 

 

 

We feed different parts of an instance into the person re-

identification model, and then use the cosine loss function 𝐿𝑐ℎ
, 

𝐿𝑐𝑚
 and 𝐿𝑐𝑏

 to supervise the features f i
ḣ , f i

ṁ  and f i
ḃ 

extracted by the person re-identification model and the 

features 𝑓𝑖
ℎ, 𝑓𝑖

𝑚 and 𝑓𝑖
𝑏 extracted by our multi-part feature 

extraction module: 

 

𝐿𝑐ℎ
= −

1

𝑁
∑ (Norm(𝑓𝑖

ℎ)
T

Norm (f i
ḣ))𝑁

𝑖=1 ,    (9) 

 

 𝐿𝑐𝑚
= −

1

𝑁
∑ (Norm(𝑓𝑖

𝑚)TNorm(f i
ṁ))𝑁

𝑖=1 ,  (10) 

 

𝐿𝑐𝑏
= −

1

𝑁
∑ (Norm(𝑓𝑖

𝑏)
T

Norm (f i
ḃ))𝑁

𝑖=1 ,   (11) 

 

where Norm(∗)  denotes the normalization operation. 

Furthermore, we use 𝐿𝑟ℎ
, 𝐿𝑟𝑚

 and 𝐿𝑟𝑏
 to supervise the 

personal re-identification model. 

 

3.5 The Adaptive Aggregation Module 
 

To fuse various features, the adaptive aggregation methods 

can adaptively generate different weights according to the 

importance of various features, which is more efficient than 

manually searching weights. To this end, we propose the 
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adaptive aggregation module. It is worth noting that our 

method performs a self-attention operation before outputting 

the weights, which strengthens the interaction between the 

features from different levels and aggregates rich information 

for generating the weights. 

Through the above complementary attention module and 

multi-part feature extraction module, we can obtain multi-

level features 𝑓𝑖 , f
i

̂ , 𝑓𝑖
ℎ , 𝑓𝑖

𝑚  and 𝑓𝑖
𝑏 . How to utilize these 

features for better tracking performance? An intuitive 

approach is to directly perform a weighted average, which 

lacks the interaction between multi-level features and requires 

manual assignment for weights. Therefore, we propose an 

adaptive aggregation module shown in Figure 5. 

Specifically, given normalized multi-level features 𝑓𝑖, f
i

̂, 

𝑓𝑖
ℎ , 𝑓𝑖

𝑚  and 𝑓𝑖
𝑏 , we concatenate them as 𝑓𝑖

concat ∈ ℝ5×𝐶 , 

where 𝐶 denotes the feature dimension: 

 

𝑓𝑖
concat = 𝑓𝑖⨁f

i
̂⨁𝑓𝑖

ℎ⨁𝑓𝑖
𝑚⨁𝑓𝑖

𝑏.         (12) 

 

Then, a cosine similarity 𝑊 ∈ ℝ5×5 between multi-level 

features can be calculated by: 

 

𝑊 = 𝑓𝑖
concat𝑓𝑖

concatT
.                 (13) 

 

In addition, an aggregated feature can be calculated 

through the aggregation operation: 

 

𝑓𝑖
agg

= 𝑓𝑖
concat + 𝑊𝑓𝑖

concat.            (14) 

 

Finally, the multi-level features are adaptively fused by: 

 

𝑊fused = Softmax (𝛷𝑤(𝑓𝑖
agg

)),        (15) 

 

𝑓𝑖
fused = 𝑊fused

T𝑓𝑖
concat,              (16) 

 

where 𝛷𝑤(∗) is implemented by three fully connected layers. 

It is noted that the calculation of 𝑓𝑖
fused is supervised by the 

cross entropy loss 𝐿𝑟3
 here. Moreover, 𝑓𝑖

concat  contains 

multi-level instance features and 𝑓𝑖
agg

 aggregates different 

levels of features for each level of features, which provides 

rich information to generate the importance weights of each 

level of features. In (15), three full connection layers and a 

Softmax operation are implemented on 𝑓𝑖
agg

 to generate 

importance weights of each level of features. Then, 𝑓𝑖
concat 

containing multi-level features can be efficiently aggregated 

by using generated importance weights in (16). 

 

3.6 Training Loss 
 

The training loss 𝐿𝑡1
 and 𝐿𝑡2

for supervising our 

IAMPDNet are defined as: 

 

𝐿𝑡1
=

1

2
(

1

𝑒𝑤1
𝐿𝑑 +

1

𝑒𝑤2
(𝐿𝑟1

+ 𝐿𝑟2
) + 𝑤1 + 𝑤2), (17) 

 

𝐿𝑡2
= 𝐿𝑟1

+ (𝐿𝑟2
+ 𝐿𝑟ℎ

+ 𝐿𝑟𝑚
+ 𝐿𝑟𝑏

)𝑤𝑟           

 +𝐿𝑟3
𝑤𝑓+(𝐿𝑐ℎ

+ 𝐿𝑐𝑚
+ 𝐿𝑐𝑏

)𝑤𝑐,        (18) 

 

where 𝑤1 and 𝑤2 are the trainable parameters to balance the 

detection task and the re-identification task. Moreover, 𝑤𝑟 , 

𝑤𝑓  and 𝑤𝑐 are hyper-parameters to weight different loss. All 

𝐿𝑟−
 are the cross entropy loss. The definition of 𝐿𝑑  is the 

same as FairMOT [4]. 

In multi-task learning, deep neural networks usually learn 

different tasks simultaneously. The weights of different tasks 

have a very large impact on the results. Thus, how to assign 

the weights is an important issue. Then, an uncertain method 

was proposed to learn the weights [22], and it is widely used 

in MOT. In (17), we also adopt the uncertain method to 

balance the object detection task and the re-identification task 

by two trainable parameters 𝑤1 and 𝑤2. 

The network weight update process of our proposed 

method is described in Algorithm 1. In Line 1, the base model 

detects all objects in the input image and extracts 

corresponding features. To generate more discriminative 

features, the complementary attention module and the multi-

part feature extraction module are utilized to aggregate 

features and refine features in Lines 2-3. Then, multi-level 

features should be fused for subsequent feature matching. In 

Line 4, the adaptive aggregation module can adaptively search 

weights of different features and fuse them. To update the 

weights of the network, the training losses are calculated in 

Lines 5-9. Finally, we can calculate gradients and update 

parameters by back-propagation algorithm in Line 10. 

 

Algorithm 1. Network weights update process 

Input: image 𝑥. 

Output: updated network weights 𝑤network. 

1. Generate boxes {box𝑖}𝑖=1
𝑁  and instance features {𝑓𝑖}𝑖=1

𝑁  of detected objects in image 𝑥 by the base model; 

2. Generate aggregated instance features {f
i

̂}
𝑖=1

𝑁
 by the complementary attention module; 

3. Generate fine-grained instance features {𝑓𝑖
ℎ}

𝑖=1

𝑁
, {𝑓𝑖

𝑚}𝑖=1
𝑁  and {𝑓𝑖

𝑏}
𝑖=1

𝑁
 by the multi-part feature extraction module; 

4. Generate fused instance features {𝑓𝑖
fused}

𝑖=1

𝑁
 by the adaptive aggregation module; 

5. Calculate loss 𝐿𝑑 and 𝐿𝑟1
 using {box𝑖}𝑖=1

𝑁  and {𝑓𝑖}𝑖=1
𝑁 ; 

6. Calculate loss 𝐿𝑟2
 using {f

i
̂}

𝑖=1

𝑁
; 

7. Calculate loss 𝐿𝑟ℎ
, 𝐿𝑟𝑚

 and 𝐿𝑟𝑏
 using {𝑓𝑖

ℎ}
𝑖=1

𝑁
, {𝑓𝑖

𝑚}𝑖=1
𝑁  and {𝑓𝑖

𝑏}
𝑖=1

𝑁
; 

8. Calculate loss 𝐿𝑐ℎ
, 𝐿𝑐𝑚

 and 𝐿𝑐𝑏
 using (9)-(11); 

9. Calculate total loss 𝐿𝑡1
 and 𝐿𝑡2

 using (17) and (18); 

10. Update network weights 𝑤network using 𝐿𝑡1
 and 𝐿𝑡2

; 

11. Return 𝑤network. 
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4 Experiments 
 

4.1 Experimental Settings and Metrics 
 

All experiments are implemented with the Pytorch 

framework and Python 3.7.3 on GeForce GTX 1080 Ti GPUs. 

Specifically, the Adam optimizer is utilized to train our model 

with 50 epochs. The initial learning rate is set as 0.0001, and 

it reduces in steps to 0.00001 at the 20th epoch. The batch size 

is 4. In addition, 𝑤1 and  𝑤2 are initialized to -1.85 and -

1.05, respectively. Moreover, 𝑤𝑟, 𝑤𝑓, and 𝑤𝑐 are set as 0.1, 

0.01, and 0.01. 

Due to the authority and comprehensiveness of the 

CLEAR metrics [23], they are often used to evaluate MOT 

algorithms. Following those works in relation to MOT [4-6], 

we also adopt some common CLEAR metrics to evaluate our 

proposed method. 

Several common CLEAR metrics [23], including multi-

object tracking accuracy (MOTA), identity F1 score (IDF1), 

mostly tracked (MT), mostly lost (ML), identity switch 

(IDSW) and frame per second (FPS), are computed to evaluate 

the overall tracking performance. 

In Table 1 to Table 9, the arrows appearing on the first row 

are defined as follows. The upward arrow indicates that the 

higher the value, the better the performance. The downward 

arrow indicates that the smaller the value, the better the 

performance. 

 

4.2 Datasets 
 

In this paper, we conduct experiments on two MOT 

challenges, i.e., MOT16 and MOT17 [8], to verify the 

effectiveness of our proposed IMAPDNet. 

Like most methods, we firstly use half of the train splits in 

MOT17 for training. Then, the performance evaluation is 

conducted on the remaining train splits. Finally, extra 

supporting experiments for performance comparison are 

conducted on the test splits of MOT16 and MOT17. 

 

4.3 Quantitative Results 
 

In this section, we train our IMAPDNet only using train 

splits of MOT17 and compare the performance with the SOTA 

methods on the test splits of MOT16 and MOT17 [8]. As 

depicted in Table 1 and Table 2, our IAMPDNet achieves 

better performance in MOT16 and MOT17 compared with 

other methods. 

 

4.3.1 Discriminative Instance Features 

 

First, in our IAMPDNet, the complementary attention 

module can perceive all instances in the environment, which 

is beneficial to extracting more discriminative instance 

features due to the interaction between all instances. 

Second, the multi-part feature extraction module can 

decouple instance features into three different parts, which 

provides more fine-grained features. 

Third, the adaptive aggregation module can adaptively 

fuse multi-level features. Therefore, on test splits of MOT16 

and MOT17, our IAMPDNet ranks 1 in IDF1 and ranks 2 in 

IDSW, which demonstrates that the instance features extracted 

by our IAMPDNet are more discriminative. 

 

4.3.2 Tracking Accuracy 

 

Due to discriminative instance features extracted by our 

IAMPDNet, better tracking accuracy has been achieved by our 

IMAPDNet. As shown in Table 1 and Table 2, our IAMPDNet 

ranks 1 in MOTA, IDF1, MT and ML and ranks 2 in IDSW. 

 

 

Table 1. Performance comparison on test splits of MOT16 [8] 

Method Publication Year JDE MOTA IDF1 MT ML IDSW 

SORT [14] ICIP 2016  0.598 0.538 0.254 0.227 1423 

MCMOT-HDM [15] ECCV 2016  0.624 0.516 0.315 0.242 1394 

Vmaxx [24] ICIP 2018  0.626 0.492 0.327 0.211 1389 

TRMOT [6] ECCV 2020 ✓ 0.644 0.558 0.354 0.200 1544 

CtrackerV1 [25] ECCV 2020 ✓ 0.676 0.572 0.329 0.231 1897 

TraDeS [26] CVPR 2021 ✓ 0.701 0.647 0.373 0.200 1144 

IAMPDNet (Ours)   ✓ 0.711 0.711 0.381 0.197 1233 

 

Table 2. Performance comparison on test splits of MOT17 [8] 

Method Publication Year JDE MOTA IDF1 MT ML IDSW 

SST [27] PAMI 2019 ✓ 0.524 0.495 0.214 0.307 8431 

CTrackerV1 [25] ECCV 2020 ✓ 0.666 0.574 0.322 0.242 5529 

CenterTrack [5] ECCV 2020 ✓ 0.673 0.599 0.349 0.248 2898 

FairMOT [4] IJCV 2021 ✓ 0.698 0.699 - - 3996 

IAMPDNet (Ours)   ✓ 0.701 0.703 0.372 0.215 3803 

Note. Here, ‘-’ denotes that the result is not available from the corresponding paper. 
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4.3.3 Inference Speed 

 

Table 3 lists the inference speed of our IAMPDNet and 

other methods. As shown in Table 3, our IAMPDNet can 

achieve 24.8 frames per second (FPS) while the fastest method 

FairMOT only achieves 25.9 FPS, which illustrates that our 

IAMPDNet infers faster than most of the methods and can 

meet real-time requirements. 

 

4.4 Ablation Analysis 
 

We conduct extensive comparative experiments on the 

validation split of MOT17 [8] to verify the effectiveness of our 

IMAPDNet from three aspects: the complementary attention 

module (CAM), the multi-part feature extraction module 

(MFEM) and the adaptive aggregation module (AAM). As 

depicted in Table 4, we design 4 different experiment settings: 

1) original FairMOT [4] without CAM, MFEM and AAM; 2) 

original FairMOT with CAM; 3) original FairMOT with CAM 

and MFEM; and 4) original FairMOT with CAM, MFEM and 

AAM. 

 

4.4.1 The Complementary Attention Module 

 

As shown in Table 4, adding CAM into original FairMOT 

[4] improves MOTA (0.685 vs 0.675), IDF1 (0.717 vs 0.699), 

and IDSW (364 vs 408). This is because the complementary 

attention module is beneficial to perceive other instances for 

each instance. As shown in Figure 6, the complementary 

attention module can aggregate similar instances and 

dissimilar instances. Accepting similar instance features and 

dissimilar instance features as input, our model can generate 

more discriminative instance features, and it is key to identity 

association and thus improve the performance of multi-object 

tracking. 

 

4.4.2 The Multi-part Feature Extraction Module 

 

Comparing experiment settings 2) and 3), it is obvious that 

adding MFEM into FairMOT with CAM furthermore 

decreases IDSW (358 vs 364), since the MFEM generates 

more fine-grained features for different parts of an instance. 

However, adding MFEM hinders the overall performance of 

tracking. Specifically, adding MFEM decreases MOTA 

(0.684 vs 0.685), IDF1 (0.708 vs 0.717), MT (144 vs 145) and 

increase ML (61 vs 60). This may be due to the lack of the 

adaptive aggregation module. Instead of the adaptive 

aggregation module, we simply average all features, which 

may lead to poor performance. To evaluate the effect of 

feature weights, we compare various feature weights 

combination 𝑤𝑓𝑖
, 𝑤fi

̂ , 𝑤
𝑓𝑖

ℎ , 𝑤𝑓𝑖
𝑚 and 𝑤

𝑓𝑖
𝑏 in Table 9. The 

results show that different weights combination can lead to 

different performances and the average strategy indeed 

hinders the performance. 

 

4.4.3 The Adaptive Aggregation Module 

 

Comparing experiments setting 3) and 4), we can find that 

original FairMOT with CAM, MFEM and AAM achieves the 

better performance on MOTA (0.689 vs 0.684), IDF1 (0.722 

vs 0.708), MT (150 vs 144), ML (60 vs 61) and IDSW (353 vs 

358). Especially, IDSW is decreased from 408 (original 

FariMOT) to 353, which verifies the effectiveness of our 

AAM. To furthermore illustrate the role of AAM, we compare 

different weights combinations 𝑤𝑓𝑖
, 𝑤fi

̂ , 𝑤
𝑓𝑖

ℎ , 𝑤𝑓𝑖
𝑚  and 

𝑤
𝑓𝑖

𝑏. As shown in Table 9, the first row represents the weights 

combinations generated by our AAM, which achieves superior 

performance. The results show that the weights combinations 

are key to improving performance and searching weights 

manually is time-consuming and difficult to find suitable 

values. 

 

4.4.4 Ablation Study on Loss Weight  

 

To explore more loss weight combinations, we search 

different 𝑤𝑟, 𝑤𝑓, and 𝑤𝑐. The results are listed in Table 5, 

Table 6, and Table 7. The results show that when setting 𝑤𝑟, 

𝑤𝑓  and 𝑤𝑐 as 0.1, 0.01 and 0.01, the best performance can 

be achieved. 

 

4.4.5 Ablation Study on Backbones 

 

To illustrate that our proposed modules can be applied in 

different backbones, we conducted experiments on extra two 

backbones like HRNet-W18 and ResNet-34-FPN. As shown 

in Table 8, using our proposed modules on HRNet-W18 and 

ResNet-34-FPN both improve the performance, which 

demonstrates that our proposed modules can be utilized in 

various backbones with better performance. 

 

4.5 Qualitative Results 
 

In this section, we use figures to more intuitively illustrate 

the role of the complementary attention module and the 

adaptive aggregation module. 

 

4.5.1 Visualization of Complementary Attention Module 

 

In order to illustrate the effect of the complementary 

attention module more directly, we visualize the cosine 

similarity Sim𝑖  and 𝜙(Sim𝑖) of the 𝑖-th object in various 

scenes. In Figure 6(a), the 𝑖-th objects in three scenes are 

marked in red dots. In Figure 6(b), the cosine similarity Sim𝑖  

of the 𝑖-th object in three scenes are marked in blue. The 

complementary attention module can assign high weights to 

similar objects. In Figure 6(c), the cosine similarity 𝜙(Sim𝑖) 

of 𝑖 -th object in three scenes are marked in yellow. The 

complementary attention module can assign high weights to 

dissimilar objects. Due to the complementary attention 

module, each object can perceive similar objects and 

dissimilar objects simultaneously, which is beneficial to 

generating more discriminative features.  

 

4.5.2 Fusion Weights Visualization 

 

To illustrate the role of the adaptive aggregation module, 

we analyze each image in validation sets. Specifically, for 𝑖-

th instance in each image, we generate 𝑓𝑖 , f
i

̂ , 𝑓𝑖
ℎ , 𝑓𝑖

𝑚  and 

𝑓𝑖
𝑏 sequentially through the base model, the complementary 

attention module and the multi-part feature extraction module. 

Then, the importance weights 𝑊fused  of each level of 

features can be calculated according to (12)-(15). After 
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generating all importance weights 𝑊fused  of images in 

validation sets, we average the weights 𝑊fused and visualize 

it as shown in Figure 7. The visualization shows that the 

weights of 𝑓𝑖  and f
i

̂  are almost three times the weights of 

𝑓𝑖
ℎ , 𝑓𝑖

𝑚  and 𝑓𝑖
𝑏 , which is reasonable since 𝑓𝑖  and f

i
̂  are 

global features while 𝑓𝑖
ℎ , 𝑓𝑖

𝑚  and 𝑓𝑖
𝑏  are local features 

used to assist the global features. The 𝑓𝑖 and f
i

̂ have similar 

weights since they are both global features and assigning them 

similar weights can act as an ensemble model, achieving better 

results than using extreme weights as shown in Table 9. 

As shown in Figure 7, the weights assigned to 𝑓𝑖, f
i

̂, 𝑓𝑖
ℎ, 

𝑓𝑖
𝑚 and 𝑓𝑖

𝑏 are 0.360, 0.330, 0.098, 0.110 and 0.098, and it 

is different from the simple average. We also compare 

different weight combinations 𝑤𝑓𝑖
, 𝑤fi

̂ , 𝑤
𝑓𝑖

ℎ , 𝑤𝑓𝑖
𝑚  and 𝑤

𝑓𝑖
𝑏 

to evaluate the effectiveness of our AAM. As shown in Table 

9, 𝑓𝑖  and f
i

̂  have dominant contributions for multi-object 

tracking. Increasing weights of 𝑓𝑖
ℎ, 𝑓𝑖

𝑚 and 𝑓𝑖
𝑏 slightly can 

improve the performance, which verifies that the fine-grained 

features are beneficial to multi-object tracking. 

 

 

Figure 6. The visualization of cosine similarity Sim𝑖  and 𝜙(Sim𝑖) of 𝑖-th object in various scenes 

 

Figure 7. Fusion weights visualization 

 

Table 3. Inference speed comparison 

Method Publication Year JDE FPS 

SST [27] PAMI 2019 ✓ 3.9 

CTrackerV1 [25] ECCV 2020 ✓ 6.8 

CenterTrack [5] ECCV 2020 ✓ 22.0 

TRMOT [6] ECCV 2020 ✓ 22.2 

FairMOT [4] IJCV 2021 ✓ 25.9 

TraDeS [18] CVPR 2021 ✓ 17.5 

MAT [21] Neurocomputing 2022  9.0 

IAMPDNet (Ours)   ✓ 24.8 
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Table 4. Ablation study on the validation splits of MOT17 [8] 

CAM MFEM AAM MOTA IDF1 MT ML IDSW 

   0.675 0.699 - - 408 

✓   0.685 0.717 145 60 364 

✓ ✓  0.684 0.708 144 61 358 

✓ ✓ ✓ 0.689 0.722 150 60 353 

 

Table 5. Ablation study on loss weight  𝑤𝑟 

𝑤𝑟  𝑤𝑓  𝑤𝑐  MOTA IDF1 MT ML IDSW 

0.100 0.010 0.010 0.689 0.722 150 60 353 

0.010 0.010 0.010 0.687 0.716 144 59 355 

1.000 0.010 0.010 0.686 0.715 150 59 364 

 

Table 6. Ablation study on loss weight 𝑤𝑓 

𝑤𝑟  𝑤𝑓  𝑤𝑐  MOTA IDF1 MT ML IDSW 

0.100 0.010 0.010 0.689 0.722 150 60 353 

0.100 0.001 0.010 0.688 0.717 145 60 368 

0.100 0.100 0.010 0.685 0.711 147 59 383 

 

Table 7. Ablation study on loss weight 𝑤𝑐 

𝑤𝑟  𝑤𝑓  𝑤𝑐  MOTA IDF1 MT ML IDSW 

0.100 0.010 0.010 0.689 0.722 150 60 353 

0.100 0.010 0.001 0.685 0.708 147 58 389 

0.100 0.010 0.100 0.687 0.715 143 59 386 

 

Table 8. Ablation study on backbones 

Backbone Using proposed module MOTA IDF1 MT ML IDSW  

HRNet-W18  0.595 0.634 102 77 533 

HRNet-W18 ✓ 0.611 0.661 124 66 519 

ResNet-34-FPN  0.582 0.636 118 69 570 

ResNet-34-FPN ✓ 0.597 0.649 124 69 566 

 

Table 9. Ablation study on different weight combinations 

𝑤𝑓𝑖
 𝑤fi

̂   𝑤
𝑓𝑖

ℎ 𝑤𝑓𝑖
𝑚 𝑤

𝑓𝑖
𝑏 MOTA IDF1 MT ML IDSW 

0.360 0.330 0.098 0.110 0.098 0.689 0.722 150 60 353 

1.000 0.000 0.000 0.000 0.000 0.687 0.726 143 60 414 

0.000 1.000 0.000 0.000 0.000 0.687 0.720 142 59 394 

0.000 0.000 0.330 0.330 0.330 0.688 0.695 146 58 434 

0.500 0.500 0.000 0.000 0.000 0.688 0.724 143 60 396 

0.450 0.450 0.030 0.030 0.030 0.688 0.723 143 60 390 

0.200 0.200 0.200 0.200 0.200 0.688 0.710 145 57 410 

0.100 0.100 0.260 0.260 0.260 0.689 0.703 145 58 422 

0.050 0.050 0.300 0.300 0.300 0.689 0.701 146 58 416 

 

 

5 Conclusion 
 

In this paper, we propose a novel model IAMPDNet with 

three key modules for MOT. Firstly, a complementary 

attention module is designed to model the interaction between 

instance features, which remedies the lack of feature 

interaction ability in JDE models. Secondly, a multi-part 

feature extraction module is proposed to extract more fine-

grained instance features. Finally, an adaptive aggregation 

module is designed to interact between multi-level features 

and adaptively fuse them. Compared with state-of-the-art 

methods in MOT16 and MOT17 [8], our IAMPDNet ranks 1 

on MOTA, IDF1, MT, ML and ranks 2 on IDSW. The ablation 

study and qualitative results demonstrate that: 1) the 

complementary attention module is beneficial to perceive 

other instance features for an instance feature; 2) the multi-

part feature extraction module can extract more fine-grained 
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instance features and the adaptive aggregation module can use 

multi-level instance features better than the weighted average.  

However, our proposed method in this paper is only 

trained on a single image and does not utilize temporal 

information. In the future, a transformer model can be used to 

extract temporal features, and then we extend 2D MOT to 3D 

MOT method. 
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