
Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1391

*Corresponding Author: Chang Choi; E-mail: enduranceaura@gmail.com

DOI: 10.53106/160792642022112306021

Edge Computing Offloading at Middle-sea Scenario for

Maritime Video Surveillances

Ziyang Gong1, Ziyi Wang2, Xin Su2, Chang Choi1*

1 Department of Computer Engineering, Gachon University, South Korea

2 College of IoT Engineering, Hohai University, China

gongzy0123@163.com, wzy721617@163.com, leosu8622@163.com, enduranceaura@gmail.com

Abstract

Video surveillance has broad application prospects in

maritime rescue, ship transportation and other fields. Mobile

edge computing can effectively guarantee low-latency and

highly reliable data transmission in maritime video

surveillance. This paper comprehensively formulates the edge

computing offloading schemes in the middle-sea scenario. The

middle-sea scenario has sufficient edge computing nodes as in

the offshore scenario and delay constraints due to limited

network connectivity as in the far-sea scenario. Taking into

account these characteristics, a single-user single-hop unicast

offloading model is established and extends to a multi-user

model. In addition, for the sufficient and limited edge

computing nodes, the multi-user model is further divided into

the multi-user single-hop unicast situation 1 and 2 models. We

split the mixed-integer nonlinear programming problem and

approximate the optimal transmission power by the binary

search method. We use the offloading decision allocation

algorithm based on alternating selection, offloading decision

allocation algorithm based on multi-objective alternating

selection, and offloading decision allocation algorithm based

on node redistribution to optimize the offloading decisions of

the above models. Subsequently, we analyze the simulation

results from algorithm comparisons, changes in the number of

subtasks, data, and oceanic user equipments. We verify the

effectiveness of the proposed schemes and algorithms in

saving delay.

Keywords: Maritime video surveillance, Maritime network,

Mobile edge computing, Binary search algorithm,

Multi-user offloading

1 Introduction

Advances in maritime information intelligent networks

have been able to provide a variety of surveillance applications

[1-3]. They can carry out all-weather, fully automatic

maritime observation, target situational awareness, integrated

maritime services, among other services. However, low-

latency and high-reliability performance metrics are critical

requirements for these services [4-5]. Mobile edge computing

(MEC) technology can effectively fulfil these requirements

[6-8]. Furthermore, it can offload the cloud data center to the

edge of the networks and enable edge nodes to provide

computing, storage, and communication capabilities closer to

users [9-11].

Complex maritime surveillance applications can cause

network data overload and sharp increases in network

overhead. Thus, realizing flexible adaptation is a primary

problem in maritime network (MN) resources. Compared with

traditional terrestrial cellular and vehicle-mounted networks,

MN has complex environmental factors and distinct node

differences. In particular, the geographic location of the

middle-sea scenario is between the offshore scenario and

the far-sea scenario. The high density of offshore edge

nodes, uneven distribution of edge computing capabilities,

and complex resource scheduling need to be considered. In

addition, it needs to be considered that the connectivity of

the far-sea network is easily affected by factors such as

weather and severe sea conditions. Therefore, it is difficult

to guarantee the stability of maritime application services.

How to propose the edge data offloading models and

algorithms that adapt to the middle-sea scenario is also a

problem that needs to be solved. In our study, we combine the

previous works on MEC offloading technology [12-14] and

the networking challenges of MN to meet the requirements of

low-latency and high-reliability of maritime applications. This

paper focuses on the research of MEC offloading technology

in MN. This paper is organized as below:

In this study, we combined the characteristics of offshore

and far-sea scenarios into MN. Furthermore, we considered

the number of users and the adequacy of edge computing

nodes. We introduce data splitting technology to establish the

single-user single-hop unicast (SSU) and multi-user single-

hop unicast models (MSUS1 and MSUS2) separately in the

middle-sea scenario. The mixed-integer nonlinear

programming (MINLP) problem proposed in this paper is split

into two sub-problems. Furthermore, we used binary search to

allocate transmission power effectively. However, the

offloading decision optimization algorithm varies among the

models. In the SSU model, we propose an offloading

algorithm based on alternating selection (OAAS) to replace

the subtask sets with strategies and compare in detail

according to the corresponding priority. In the MSUS1 model,

the OAAS is extended to include multi-objective alternating

selection (OAMOAS) to the multi-user model. OAMOAS sets

a priority function for multiple users to ensure objective

selection.

The MSUS2 model considers the scenario where the

subtask sets require nodes redistribution when the number of

1392 Journal of Internet Technology Vol. 23 No. 6, November 2022

edge computing nodes is limited. In addition, edge nodes with

limited number of computing resources will cause

considerable queuing delays if they are reused. Therefore, we

propose a node redistribution offloading algorithm (OANR)

that allocates edge nodes based on the proportion of user’s

data volume. The OANR makes the offloading decisions

based on actual factors.

2 Related Works

MEC is the core technology of future mobile

communications [15-18]. Combining the advantages of MEC

and the edge computing features of MN, we propose a set of

optimized offloading schemes for middle-sea scenario.

However, the results of applying MEC to MNs to improve

network performances are relatively scarce. Therefore, this

paper focuses on analyzing the research results of the MEC

offloading schemes based on the terrestrial scene.

2.1 Single-user Mobile Edge Computing

The single-user edge computing model can adapt well to

the limitations of mobile terminals, bringing a better user

experience by improving the utilization of computing and

storage resources. [19] offloaded all the terminal data to an

edge server and proposed offline strategies based on pre-

calculations to optimize the scheduling and offloading of radio

computing resources. The application of MEC technology can

not only save energy but also has a considerable effect in

reducing latency. [20] proposed an adaptive algorithm based

on Lyapunov theory to optimize the weighted sum of delay

and energy consumption. Their results showed that offloading

schemes have improved latency and energy consumption

compared to local processing. However, the above schemes

treat the terminal data as a whole and can achieve either local

processing or complete offloading. The overall efficiency of

the system is still limited.

One data splitting and offloading scheme is dividing the

data into multiple subtasks. Each subtask determines whether

to offload. To meet the future 5G demands for low-latency

processing, [21] studied the offloading decisions of each

subtask and their computing resources. They proposed delay-

optimal task scheduling (DOTS) algorithm for optimization.

[22] further introduced reinforcement learning (RL) to

optimize the execution time and energy consumption.

However, the optimization goal should also include

scheduling offloading, resource allocation, and other

computational metrics along with the weighted delay and

energy consumption. [23] studied the problem of minimizing

the weighted sum of delay and energy consumption in a multi-

subtasks MEC system. They proposed partial offloading

decision and scheduling based on Johnson (POJ) to optimize

offloading scheduling and resource allocation. However, for

diversified maritime application requirements, the single-user

model is not suitable for the envisioned smart oceans of the

future. In the increasingly complex data migration

environment, the rational allocation of resources needs to be

further studied to improve user experience of the multi-user

model.

2.2 Multi-user Mobile Edge Computing

[24] studied the joint optimization for the MEC networks.

To solve the MINLP, they adopted the modified branch and

bound (MBB) method to obtain accurate solutions, thereby

reducing the delay. Regarding energy savings, [25] studied the

offloading model of a multi-user single-server. They proposed

select maximum saved energy first (SMSEF) and greedy

selection algorithms to optimize channel and resource

allocation. [26] applied time-division multiple access

technology to a mobile edge computing multi-user offloading

model. They proposed an optimization algorithm for

communication and resource allocation to reduce delay. [27]

introduced orthogonal frequency division multiple access

(OFDMA) technology to optimize system overhead. However,

with the surge in maritime applications, the multi-user single-

server offloading models cannot meet the needs of users. [28]

studied the offloading model between multiple users and

servers. They proposed the Lagrange dual decomposition

algorithm to optimize offload decision-making and computing

resources. However, scaling offloading decisions lacks

practical significance. [29] adopted the multiple-input

multiple-output (MIMO) multi-cell system to minimize the

overall energy consumption of the user while meeting the

delay constraint. They proposed an iterative algorithm based

on a continuous convex approximation to obtain sub-optimal

solutions for offloading decision-making and resource

allocation. [30] studied the offloading model between multiple

users and servers. They introduced a new big data

reinforcement learning method to optimize resource allocation

and offloading strategies jointly; thus, improving the quality

of experience for delay-sensitive users. [31] analyzed the

problem of minimizing the weighted sum of delay and energy

consumption, giving priority to user groups who could not

complete tasks locally. Furthermore, they proposed the user

equipment (UE) with largest saved energy consumption

accepted first (CAR-E) and smallest required data rate

accepted first (CAR-D) algorithms. However, user data in

these models are inseparable, and the flexibility of offloading

is poor. Subsequently, [32] divided the tasks and calculated

the waiting delay of each subtask on the server. They proposed

the Lyapunov algorithm to optimize dynamic multi-objectives,

thereby reducing the overall delay of users. The offloading

model and research content of [33] were the same as those of

[32]. [33] proposed a resource scheduling algorithm that

minimized the weighted sum of communication and

calculation delays. [34] studied the problem of resource

allocation based on quality of service (QoS). After reordering

the tasks according to the delay tolerance, the reinforcement

learning algorithm was used to allocate resources intelligently.

However, the existing multi-user edge computing

offloading model constraints and specifications considerations

are not comprehensive. An algorithm that relaxes the binary

offloading decision variables to continuous variables is

difficult to apply in practice. In addition, a heuristic algorithm

ignores the calculation delay and energy consumption

constraints of the servers are ignored. Furthermore, the multi-

user, multi-server models can overlook the limited number of

servers and their waiting delay. They cannot meet the needs of

various applications of maritime observation monitoring

sensory networks. Thus, this study applied the data division

method of a single-user model to a multi-user model for the

middle-sea scenario. Our results show that it is possible to

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1393

develop a flexible partial offloading program. Furthermore,

the designed models are suitable for MN with limited

communication, computing resources, and network

connection delays [35].

3 System Model

Figure 1 shows the edge computing-based offloading

model on the maritime observation monitoring sensory

networks in the middle-sea scenario. It is composed of oceanic

user equipments (OUEs) and oceanic edge computing nodes

(OECNs).

Figure 1. System model diagram of the middle-sea scenario

The OUEs have limited local computing power and signal

coverage and are sensitive to energy consumption. They can

perform maritime observation monitoring services in any

weather and are fully automatic. OUEs include light

unmanned submarines, offshore buoys, small ships, and

unmanned ships. Light unmanned submarines can be used for

port reconnaissance and surveillance, minefield detection, and

seabed surveys of specific destinations. Offshore buoys can

collect data for scientific research, offshore oil (gas)

development, and port construction. Small ships have sensing

and communication capabilities. They can perform

hydrographic surveys and maritime environment monitoring

and resource development. Unmanned ships help in shipwreck

salvaging, deep-water exploration, and underwater cable

laying operations. OUEs equipped with video surveillance

cameras can execute the application in Figure 1. Ship target

detection using video surveillance has attracted much

attention in underwater cultural heritage protection and

maritime aquaculture and transportation. Video surveillance

of navigation marks ensures their safety. The safe and stable

operation of navigation aids is the primary prerequisite for

navigation aids to fully play the role of navigation aid,

navigation, and warning. Maritime intrusion detection can be

safely guaranteed for incidents such as small ships

approaching oil platforms or illegally logging on to unguarded

platforms. Oil spill monitoring is extremely important for

preventing accidents in offshore oil and gas field exploitation.

OECNs have sufficient internal energy, strong local

computing capabilities, and extended signal coverage to

perform maritime observation monitoring services effectively.

OECNs include medium to large ships and seacoast base

stations (SBS). Medium and large ships can be used as edge

computing nodes to process real-time OUE node outsourcing

tasks. They can also access the self-organized water surface

networks to expand the coverage of the SBS networks. As an

air interface, SBS can realize the link between the maritime

stereoscopic monitoring equipment terminal and terrestrial

cloud server. It can also be used as an edge server to support

high-reliability and low-latency services effectively. The

middle-sea scenario is far from the offshore scenarios.

Therefore, OECNs include only medium and large ships.

Figure 1 describes the real-time parallel execution of multi-

task sets in the middle-sea scenario. A large amount of real-

time data is generated in a local area of the maritime networks.

These data can be processed locally or by fusion clustering and

separately offloaded to nearby medium and large ships for

simultaneous processing. Based on the above factors, such as

the number of OUEs and the adequacy of OECNs, we

establish SSU, MSUS1, and MSUS2 models. Compared to the

far-sea scenario, the middle-sea scenario has a richer number

of OECNs, considering the limited network connection delay.

Therefore, the SSU model formulates a single-hop offloading

mechanism between a single OUE and M OECNs, as shown

in the yellow circle in Figure 1. We divide the to-be-processed

data of a single OUE into S subtasks of varied sizes. The set

of subtasks is denoted as  1 2, ,...,i STask Task Task Task .

Each subtask can be processed locally or offloaded to a nearby

OECN for processing. To meet the network connection delay

constraints and avoid resource competition, this paper

stipulates that the subtasks have a one-to-one correspondence

with OECNs. The demand of iTask can be represented by

()max,a , ,
i i i iTask Task Task Task iJ D E Task=  , where,

iTaskD is the

data volume of iTask , a is the average calculation density of

iTask , and maxiTaskE is the maximum energy consumption

allowed by iTask . We define variable  = ,
iTask ix TaskX

as the pairing decision between the subtasks and OECNs. The

MSUS1 model is based on the SSU model and considers the

single-hop offloading mechanism between
KS and M

OECNs among K OUEs. As shown in the green circle in

Figure 1, any OUE offloading model can be regarded as an

SSU model. In the communication range, multiple SSU

models form a MSUS1 model. The above two offloading

models assume that the number of OECNs is sufficient

compared to the total number of subtasks to be processed.

Multiple OECNs can complete the offloading of all subtasks

in a single or multiple OUEs. Previous research on sub-task

offloading decision assignment satisfies the condition that the

number of edge computing nodes for selection is sufficient

[36]. However, with the increasing OUE demands, this

OUE1

远海区域

本地处理

OUE2

Offshore

OUE2

OUE1

Coastal

Edge server
SBS

Middle-sea

T1 T2 T3 T4

MSUS1

T1 T2 T3 TS

SSU

T1 T2 T4T1 T2 T3 T5 T6 T7 T8

OUE4

OUE3

MSUS2

 Far-sea

OUEs OECNs

Light unmanned submarines

 Offshore buoys
 Small ships

Unmanned ships

Medium and large ships

Camera

Ship target detection Beacon collision surveillance

Intrusion prevention Oil spill monitoring

Maritime video surveillance applications

Navigation mark collision surveillance

detection

1394 Journal of Internet Technology Vol. 23 No. 6, November 2022

premise is difficult to achieve. Therefore, we establish an

MSUS2 model suitable for the scenario where the number of

OECN M is limited compared with the number of K OUE,

where  1,2,...,k K and neutron tasks

 1 2, ,...,
Kk

S S S S , as shown in the red circle in Figure 1.

We note that the number of OECNs composed of medium and

large ships is significantly less than the total number of tasks

divided by the two OUEs. The MSUS2 model stipulates that a

sub-task can select only one OECN to offload at most. After

the initial OECN assignment of the sub-task sets, all OECNs

are assigned sub-tasks. There is no free OECN left. However,

there could be unallocated subtasks that should be

redistributed by OECNs. The optimal offloading decisions are

determined by comparing the local processing and total

offloading delays.

Based on the offloading decisions, we can obtain the local

computing and computing offloading models for each subtask:

1) Local Computing Model: Taking the SSU model as

an example, all other models are satisfied. iTask ,

0
iTaskx = . In this step, energy consumption is given by

2a
i i

l

Task k TaskE l fl D= and delay is denoted as
a

i

i

Taskl

Task

k

D
t

fl
= .

Here, kfl is the local calculation frequency of OUE k and

l depends on the coefficient of the processor chip structures.

2) Computing Offloading Model: Taking the SSU

model as an example, if iTask chooses to offload, the value

of iTask is the corresponding OECN label, which is

,
iTaskx m m=  . The uplink transmission rate of iTask on

OECN m is:
,

, 2 2
log 1 i

i

Task m m

Task m

p g
r B



 
= + 

 
, where B

and ,iTask mp respectively represent the bandwidth and

transmission power of iTask on OECN m ,
2 represents

Gaussian white noise on OECN m , and mg represents the

channel gain on OECN m . Therefore, the data transmission

delay
i

r

Taskt and energy consumption ,i

o

Task mE of iTask on

OECN m can be expressed as:

,

, ,i

i

i

Taskr

Task i

Task m

D
t Task m

r
=  , (1)

, , ,
i i i

o r

Task Task m Task iE p t Task m=  . (2)

OECN m processing delay can be expressed as:

a
, ,i i

i

Task Taskm

Task i

m

D
t Task m

f
=  , (3)

where, mf represents the calculation frequency of OECN

m .

At time T , a subtask can only select at most one OECN

offload. The offloading decision constraint condition is:

()
1

, 1,
i

M

Task i

m

I x m Task
=

  . (4)

At time T , an OECN can only be selected by one sub-

task. The offloading decision constraint condition is:

()
1

, 1,
S

i

i

Task

Task

Task

I x m m
=

  . (5)

Here I represents the XNOR function. In other words,

the values of the two variables in the function are the same.

The value of the function is either 1 or 0.

4 Problem Formulation and Analysis

For the SSU model, according to Formulas (1) and (3), the

total delay of iTask offloading is calculated as

, ,
i i i

o r m

Task Task Task it t t Task m= +  . The total delay of the subtask

is the smaller of the local processing and total offloading

delays. In addition, there are M OECNs within the

communication range that simultaneously process S subtasks

in a single OUE. The overall OUE delay is the maximum of

the total delays of all subtasks, that is,

()()max max min , ,
i i

o l

Task Task it t t Task m=  .

Thus, this study aimed to reduce the overall OUE delay as

part of the optimization goal, that is, ()maxmin t . The

optimization problem can be expressed as:

()

()

()

() ()

max
{ }

1

2

1

3

1

4 ,

 min

 s.t. C : {0,1,..., },

 C : , 1,

 C : , 1,

 C : ,0 ,

i

i

S

i

i

i i i i

Task i

M

Task i

m

Task

Task

Task

l o

Task Task Task Task m

t

x M Task

I x m Task

I x m m

I x E I x m E

=

=

 

 

 

+





X,P

max

5 , max

 , ,

 C : 0 , ,

i

i i

Task i

Task m Task i

E Task m

p p Task m

 

  

, (6)

Where  ,= ,
i Taski

Task x ip TaskP is the transmission power

allocated by iTask , maxiTaskE is the maximum energy

consumption allowed by iTask , maxiTaskp is the rated

transmission power allowed by iTask , and constraint 1C is

the value range of the offloading decisions. Constraints 2C

and 3C ensure a one-to-one correspondence between subtasks

and OECNs. Constraint 4C ensures that the actual energy

consumption of each subtask does not exceed its maximum

energy consumption. Constraint 5C ensures that the

transmission power of each subtask does not exceed its rated

power.

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1395

Similarly, from Formula (6), we can directly obtain the

optimization problem of the MSUS1 model:

()

()

()

,max
{ }

6 ,

7 ,
=1 1

8 ,
=1 1

 min , ,

 s.t. C : {0,1,..., }, ,

 C : , 1, ,

 C : , 1, ,

i

i

Sk

i

i

k i

ik Task

K M

ik Task
k m

TaskK

k Task
k Task

t k Task

x M k Task

I x m k Task

I x m k m

=

=



 

 

 



 

X,P

() ()9 , , , , ,

, max

10 , , ,

 C : ,0 ,

 , , ,

 C : 0

i i i i

i

i

l o

k Task k Task k Task k Task m

ik Task

k Task m k Tas

I x E I x m E

E k Task m

p p

+

 

 
max

, , ,
i

ik
k Task m

. (7)

The definition of the related parameters is similar to

Formula (6), and the only difference is the number of OUEs.

The above-mentioned SSU and MSUS1 models satisfy the

condition that the number of OECNs is sufficient for

processing the total number of subtasks. However, current

research on subtask offloading does not consider the limited

number of edge computing nodes [37]. The MSUS2 model

established in this paper aims to solve the above problems.

After the subtask sets are matched with the available OECNs

for the first time, some subtasks might not get a match. These

subtasks are redistributed to OECNs after further processing.

They compare their local processing delay with the total

redistribution delay, and make optimal offloading decisions.

Due to the limited number of computing resources of OECNs,

the total delay of redistribution of these subtasks have to

consider the waiting delay
, i

w

k Task
t on the corresponding

OECNs.

()
1 1

1

,

1, , ,

0,
= , ,

max 0,i

i i i

i
w

ik Task m r r

ik Task k Task k Task

Task Task
t k Task

t t t Task Task
− −

 =



+ − 

,

. (8)

Formula (8) shows that
, i

w

k Task
t of the

i
Task includes two

parts. One part is the total offloading delay
1 1, ,i i

m r

k Task k Task
t t

− −

+

for the selected OECN to complete the previous subtask. The

other part is the offloading transmission delay
, i

r

k Task
t of

i
Task . If

i
Task has been offloaded through OECN during the

initial allocation, then
,

=0
i

w

k Task
t . If

1 1, , ,i i i

m r r

k Task k Task k Task
t t t

− −

+  , then
i

Task does not need to wait

in a queue on the OECN, the same
,

=0
i

w

k Task
t . Otherwise,

i
Task exists in

, i

w

k Task
t .

From this analysis, we conclude that the total offloading

delay of each subtask is
, , ,

= , ,
i i i

o w m

ik Task k Task k Task
t t t k Task+  ,

and the corresponding optimization problem is as follows:

. (9)

Constraint C11 is the value range of the offloading

decisions. Constraint C12ensures that each subtask in an OUE

can select only one OECN to complete the offloading.

Constraint C13ensures that an OECN can serve multiple

subtasks. Constraint C14 ensures that the actual energy

consumption of each subtask does not exceed its maximum

energy consumption. Constraint C15 ensures that the

transmission power of each subtask does not exceed its rated

power.

5 Heuristic Algorithm

5.1 Problem Analysis

Problems (6), (7), and (9), including the discrete

offloading decision and continuous transmission power

variables, are MINLP problems. In this paper, we divide these

complex problems into two sub-problems: transmission power

allocation and offloading decision optimizations, then solve

them separately.

Optimizing transmission power allocation depends the

offloading. Taking the SSU model as an example, we assume

that all subtasks are offloaded, that is, ,
iTask ix m Task=  .

The optimal transmission power is only related to the

transmission delay. Therefore, the simplified Formula (6) is:

{ }

16 , max 5

 min ,

 s.t. C : , , and C

i

i i

r

Task i

o

Task m Task i

t Task

E E Task m



 

P
. (10)

Let
1

,
i

i

Task ir

Task

Task
t

 =  , then we get:

()17

18 max

 max ,

 s.t. C : 0,

 C : ,

i

i i

i i

Task i

Task Task i

Task Task i

Task

H Task

Task





 



 

 

, (11)

where ()
2

max 2 1
Taski

Taski

i i i i

D

B
Task Task Task Task

m

H E
g


 

 
= − − 

 
 

,

max

max 2 2
log 1 , ,i

i

i

Task m

Task i

Task

p gB
Task m

D




 
= +  

 
.

()

()

()

,max{ }

11 ,

12 ,
1=1

13 ,
=1

 min , ,

 s.t. C : {0,1,..., }, ,

 C : , 1, , ,

 C : , ,

i

i

i

k

ik

ik Task

K M

ik Task
mk

K

k Task k
Sk

t k Task

x M k Task

I x m k Task m

I x m S k

=



 

 

 





X,P

() ()14 , , , , ,

, max

15

, ,

 C : ,0 ,

 , , ,

 C : 0

i i i i

i

i

l o

k Task k Task k Task k Task m

ik Task

Task m

I x E I x m E

E k Task m

+

 


, , , max

, , ,
i i

ik Task m k Task
p p k Task m 

1396 Journal of Internet Technology Vol. 23 No. 6, November 2022

Taking the derivative of ()
i iTask TaskH  , we have:

()
2

'

max

2 ln 2
, ,

Taski
Taski

i

i i i

D

B

Task

Task Task Task i

m

D
H E Task m

g B




 = −  . (12)

Formula (12) shows that ()
i iTask TaskH  is a unimodal

function with a maximum value. Then the optimal solution of

the objective function of Formula (12) is the smaller value

between the non-zero zero point of ()
i iTask TaskH  and

maxiTask . ()=0
i iTask TaskH  is difficult to solve directly, and

[11] used the extreme points of the equation to replace the

above-mentioned non-zero zero, the optimization effect is not

obvious. Therefore, this study used binary search to

approximate the optimal value *

iTask of ()=0
i iTask TaskH  .

Thus, the optimized transmission power
,

*

Task mi

p is obtained,

and the expression is shown as:

*

,

2
* 2 1 , ,

Taski
Taski

Task mi

D

B
i

m

p Task m
g

  
= −  

 
 

. (13)

The pseudocode of the transmission power allocation

algorithm is shown in Algorithm 1.

Algorithm 1. Transmission power allocation algorithm

based on binary search

Input: S, M, D, pmax, Emax, f,
g

σ2
, B, λlower = 0.001,

𝑒 = 0.05

Output: 𝑝𝑇𝑎𝑠𝑘𝑖

∗

1: for i = 1: S for j = 1: M

2: 𝝀𝑢𝑝𝑝𝑒𝑟(𝑖, 𝑗) =
𝐵𝑙𝑜𝑔2(1+

𝑝𝑚𝑎𝑥𝒈(𝑗)

𝜎2)

𝑫(𝑖)

3: 𝝀𝑏𝑒𝑠𝑡(𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜(𝜆𝑙𝑜𝑤𝑒𝑟 , 𝜆𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗), 𝑒)

4: end end

5: p* =
𝜎2(2

𝐷𝜆𝑏𝑒𝑠𝑡
𝐵 −1)

𝒈
 Step 3 function specific operation

process:

6: 𝝀(i, j) =
𝜆𝑙𝑜𝑤𝑒𝑟+𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖,𝑗)

2
,

 𝝑(𝑖, 𝑗) = 𝐸𝑚𝑎𝑥𝝀(𝑖, 𝑗) −
𝜎2(2

𝐷(𝑖)𝜆(𝑖,𝑗)
𝐵 −1)

𝒈(𝑗)

7: 𝝑1(𝑖, 𝑗) = 𝐸𝑚𝑎𝑥𝝀(𝑖, 𝑗) −
𝜎2(2

𝑫(𝑖)𝜆𝑙𝑜𝑤𝑒𝑟
𝐵 −1)

𝒈(𝑗)

8: if (𝝑(𝑖, 𝑗) = 𝝑1(𝑖, 𝑗) < 0) q = 𝝀(𝑖, 𝑗) − 𝜆𝑙𝑜𝑤𝑒𝑟

9: if (q > 𝑒) 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗) = 𝝀(𝑖, 𝑗)

10: 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜 (𝜆𝑙𝑜𝑤𝑒𝑟 , 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗), 𝑒)

11: else 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝝀(𝑖, 𝑗) end

12: else 𝑞 = 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗) − 𝝀(𝑖, 𝑗)

13: if (𝑞 > �̂�)𝜆𝑙𝑜𝑤𝑒𝑟 = 𝝀(𝑖, 𝑗)

14: 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜 (𝜆𝑙𝑜𝑤𝑒𝑟 , 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗), 𝑒)

15: else 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝝀(𝑖, 𝑗) end end

5.2 Offloading Decision Allocation

5.2.1 Offloading Decision Allocation Algorithm Based on

Alternating Selection (OAAS)

This section proposes OAAS to allocate OECNs to the

SSU model effectively. The initial idea is to allocate the

OECN offloading having the best communication and

computing resources to the subtask with the highest priority in

each iteration. This selection process is two-way. Subtask

priority judgment rule: the greater the local processing delay

of the subtask, the easier it is to reduce the delay through

offloading, and the higher the offloading priority. OECN

priority judgment rule: by comparing the total offloading

delay of a fixed subtask on each OECN, the smaller the total

offloading delay, the greater the OECN priority. First, we sort

the subtask sets and set the OECNs based on the

corresponding priority rules, specifically taking

 , 1,5
iTaskx i i=  as an example. 1Task with the highest

priority is offloaded to OECN1 with the highest priority. This

strategy saves delay for some high-priority subtasks. However,

this does not guarantee reduction of the delay of the entire

OUE. Therefore, we must analyze different scenarios,

ignoring the local processing ability.

S1: () () () () ()
1 2 3 4 5

1 2 3 4 5o o o o o

Task Task Task Task Taskt t t t t   

The subscript of Task represents the priority of the subtask

after sorting. () is the priority of OECN after sorting.

()
1

1o

Taskt represents the total offloading delay of 1Task

processed by OECN1. This scenario is ideal. Each iteration

can successfully match the current subtask based on its priority

to the corresponding OECN having the best communication

and computing resources. Compared with other allocation

methods, the total offloading delay of OUE is small and only

depends on ()
1

1o

Taskt .

S2: () () () () ()
1 2 3 4 5

1 2 3 4 5o o o o o

Task Task Task Task Taskt t t t t    . As

the size relationship between ()
1

1o

Taskt and ()
5

5o

Taskt cannot

be determined, it is not conducive to optimizing the overall

OUE delay.

The main idea of OAAS is to transform S2 into an ideal

S1. We carry out strategy replacement and step-by-step

comparison of 5Task to solve the problem of not

determining the relationship between ()
1

1o

Taskt , ()
2

2o

Taskt ,

()
3

3o

Taskt , and ()
5

5o

Taskt in S2. Specific improvement

measures taken are as follows: first, we compare the size

relationship between () ()()
4 5

max 5 , 4o o

Task Taskt t , and

()
5

5o

Taskt after the strategy change and judge whether the

()
5

5o

Taskt partial offloading delay can be reduced.

() ()() ()
4 5 5

max 5 , 4 5o o o

Task Task Taskt t t implies that the strategy

transformation saves more local delay at current ()
5

5o

Taskt .

() ()()
4 5

max 5 , 4o o

Task Taskt t continues to compare with

()
3

3o

Taskt , ()
2

2o

Taskt , and ()
1

1o

Taskt stepwise to determine

whether a new round of strategy replacement can be

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1397

performed. Consequently, we get the optimal offloading

decision of ()
5

5o

Taskt . In addition,

() ()() ()
4 5 5

max 5 , 4 5o o o

Task Task Taskt t t implies that the current

5Task cannot be replaced by strategy with OECN4. 5Task

continues to conduct strategy replacement and step-by-step

comparison of the subtasks that have made the offloading

decision. Algorithm 2 shows the pseudo-code of OAAS.

Algorithm 2. Offloading decision allocation algorithm

based on alternating selection (OAAS)

Input: 𝑆, 𝑀, 𝑫, 𝒑max, Emax, 𝒇,
𝒈

𝝈𝟐 , 𝐵, 𝒕𝒐, 𝒕𝒍

Output: 𝑿

1: [𝒕𝒍, 𝒙𝒖𝒉𝒂𝒐]=sort(𝒕𝒍, 'descend')

2: The p* obtained by Algorithm 1 is prioritized

p*= 𝒑∗(𝒙𝒖𝒉𝒂𝒐, :)

3: 𝒕𝒐 =
𝑫(𝒙𝒖𝒉𝒂𝒐)

𝐵log2(1+𝒑∗ 𝑔

𝜎2)
+

𝑫(𝒙𝒖𝒉𝒂𝒐)𝒂(𝒙𝒖𝒉𝒂𝒐)

𝒇

4: Sort OECN [𝒂𝒂, 𝐢𝐚𝐚]=sort(𝒕𝒐(1, :))

5: if 𝐚𝐚(1) > 𝒕𝒍(1) 𝒙(1)=0 else 𝒙(1) = 𝒊𝒂𝒂(1) end

6: for 𝑖=2:𝑆 𝑦=sum(𝒙~=0)+1 𝐱(𝑖) = 𝒊𝒂𝒂(𝑦)

 Ideal situation:

7: if 𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))<=𝒕𝒍(𝑖) &&𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))<

𝒕𝒐(𝑖-1, 𝒙(𝑖-1))

8: 𝒙(𝑖) = 𝒊𝒂𝒂(𝑦) Non ideal situation:

9: else if 𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))<=𝒕𝒍(𝑖)&&𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦)) ≥

 𝒕𝒐(𝑖-1, 𝒙(𝑖-1))

Strategy transformation: 𝑗 = 𝑖 𝒙(𝑗) = 𝒊𝒂𝒂(𝑦) 𝑖𝑖 = 𝑖

10: while (𝑖𝑖~=1) if 𝒕𝒐(𝑖𝑖-1, 𝒊𝒂𝒂(𝑦))<= 𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))

11: while (𝑗~ = 1) if 𝒕𝒐(𝑗-1, 𝒙(𝑗))< 𝒕𝒐(𝑗, 𝒙(𝑗))

 xx=𝒙(𝑗) 𝒙(𝑗) = 𝒙(𝑗 − 1) 𝒙(𝑗 − 1)=xx 𝑗 = 𝑗 − 1
12: else 𝑗 = 𝑗 − 1 end end break

13: else 𝑖𝑖 = 𝑖𝑖 − 1 Try to find other tasks for policy

change. end end

14: else 𝒙(𝑖)=0 end end

5.2.2 Offloading Decision Allocation Algorithm Based on

Multi-objective Alternative Selection (OAMOAS)

The SSU and MSUS1 models satisfy the condition that the

total number of subtasks to be processed is less than the total

number of assignable OECNs. Therefore, OAMOAS for the

MSUS1 model is an extension of OAAS for the multi-user

scenarios. The optimization goal of the MSUS1 is to reduce

the overall delay of multiple OUEs. Due to the significant

differences between OUEs, OUEs must be prioritized during

OECN matching to meet optimization requirements. In this

section, we determine the priority order of OUEs by

comparing the total local processing delay of each OUE. If the

OUE with high local processing delay selects the OECNs that

have excellent computing and communication resources, the

offloading effect of saving delay will be clearer. Consequently,

once the priority is assigned, the real-time update of the

relevant parameters is completed. Then, OAAS is performed

on each OUE to obtain the optimal offloading decision of each

subtask. The selected OECN must be removed to ensure the

one-to-one correspondence between subtasks and OECNs.

The pseudo-code of OAMOAS is shown in Algorithm 3.

Algorithm 3. Offloading decision allocation algorithm

based on multi-objective alternative selection (OAMOAS)

Input: 𝐾, �̑�, �̑�𝒐, �̑�𝒍

Output: �̑�

Determine the offloading priority of each OUE

1: [~, 𝒑𝒐𝒓]= sort(�̑�𝒍, 'descend')

2: Update relevant parameters

3: for 𝑘=1:𝐾

4: The p* obtained by Algorithm 1

5: end

6: Then we can get �̑�𝒐

7: for 𝑘=1:𝐾

8: Complete the offloading decision allocation according

to Algorithm 2

9: Update OECN �̑� = �̑� − �̑�{𝑘}

10: end

5.2.3 Offloading Decision Allocation Algorithm Based on

Node Redistribution (OANR)

Due to the limited number of edge computing nodes for

selection, the MSUS2 model cannot process all tasks in OUEs

simultaneously. Therefore, it is necessary to redistribute the

OECNs, for which we propose OANR. The specific operation

process is as follows:

First, we determine the offloading priority of each OUE by

comparing the total local processing delay of each OUE.

Simultaneously, we determine the OECN priority by

comparing the total delay of the OUE offloaded by each

OECN. Subsequently, based on the limited number of OECNs,

OECN resources are divided so that a single OUE can obtain

a certain number of OECNs to complete the offloading. The

number of allocated OECNs is determined according to the

proportion of the total amount of data to be processed in a

single OUE in the total amount of all OUE data. This ensures

that the OUEs do not interfere with each other and that fairness

is maintained Let
Number

k
m denote the number of OECNs that

OUE k can use for offloading (Formula (14)). Subsequently,

we can obtain the value range of the OUE’s offloading

decisions. Furthermore, there is a non-negligible queuing

delay from the current subtask to the corresponding OECN,

except for the first assignment of the OECN. Therefore, it is

also necessary to obtain the number of times the OUEs need

to perform nodes reallocation according to Formula (15). The

OUE neutron subtask sets are prioritized according to the local

processing delay. Subtasks with high priority should be

offloaded by OECNs first. It minimizes the queuing delay of

the subtasks that are strongly required to be offloaded on

OECNs. Finally, the subtask and OECN sets selected by OUE

in each iteration are offloaded and distributed through OAAS.

The pseudo-code of OANR is shown in Algorithm 4.

1398 Journal of Internet Technology Vol. 23 No. 6, November 2022

Algorithm 4. Offloading decision allocation algorithm

based on node redistribution (OANR)

Input: �̃�, �̃�, �̃�, �̃�𝒐, �̃�𝒍

Output: �̃�

1: Sort OUE[~, 𝒑𝒐𝒓]= sort(�̃�𝒍, 'descend')

2: Sort OECN. Update relevant parameters.

3: Develop OECN allocation scheme according to priority

4: 𝑚�̃�
𝑁𝑢𝑚𝑏𝑒𝑟 is determined according to Formula (14)

5: Update OECN value range:

6: for �̃� − 1: 𝐾 if �̃�~ = 1 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 = 𝑂𝐸𝐶𝑁�̃�−1𝑚𝑖𝑛

 + 𝑚�̃�−1
𝑁𝑢𝑚𝑏𝑒𝑟 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 is the lower limit of 𝑂𝐸𝐶𝑁

obtain by OUE �̃�

7: else 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 = 1 end

8: 𝑂𝐸𝐶𝑁�̃�𝑚𝑎𝑥 = 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 + 𝑚�̃�
𝑁𝑢𝑚𝑏𝑒𝑟 − 1 end

9: for �̃� = 1: 𝐾

10: Sort each subtask in OUE �̃� and update data

11: According to Formula (15), 𝑶(�̃�) is obtained. end

12: for �̃� = 1: 𝐾 for 𝑗̃ = 1: 𝑶(�̃�) Execute Algorithm 2

end end

1

1

,

,
1

= * ,

Sk

i

i

Sk

i

i

Task

k Task
Task TaskNumber

k Task
K

k Task
Task Taskk

D

m k

D

=

==





 

M . (14)

()
()

= ,
Number

k

k
k k

m


S
O . (15)

6 Simulation Results

This section focuses on the experimental simulations of

the algorithms proposed to verify the effectiveness of the

design schemes and algorithms in reducing delay.

6.1 Setting SSU Model Simulation Parameters

and Analyzing Results

Setting S = 6, M = [10, 15, 20, 25, 30, 35, 40]. In other

words, there are six simultaneous subtasks sending offloading

requests to various MEC servers in OECNs. SSU model

parameter values are shown in Table 1.

We compare the performance of OAAS with the following

proposed algorithms. Algorithm 1 assigns the OECN with the

best channel condition and computing resources to the subtask

with the highest priority in the current iteration for processing

[18]. Algorithm 2 ignores the priorities of subtasks and

executes Algorithm 1 according to the initial order of each

subtask. In addition, we compare our results with artificial fish

swarm algorithm (AFSA) [38], particle swarm optimization

algorithm (PSO) [39], and ISS-AFSA [18]. Figure 2 describes

the delay comparison of a single OUE on different OECNs.

The delay of a single OUE decreases with the increase of the

number of OECNs. Results show that the greater the number

of OECNs, the greater is the chance that the subtask selects

OECN with excellent channel conditions and computing

resources for offloading. Thus, it is easier to save delays. In

addition, Figure 2 compares the delay of a single OUE using

different algorithms. Algorithm 1 can effectively reduce the

offloading delay of subtasks in poor conditions. However, the

overall delay of OUE is not considered. Compared with

Algorithm 1, OAAS considers the delay of each subtask and

the overall delay of OUE. Executing strategy replacement

between the current and the high priority subtasks can further

reduce the overall delay of OUE. Algorithm 2 ignores the

priorities between subtasks. Therefore, subtasks with high

priorities are offloaded to OECNs with low priorities. The

overall delay of OUE is the highest compared with other

algorithms.

Table 1. SSU model simulation parameters

Parameter Value

Average calculated density a [500, 1000] cycles/bit

Mobile nodes computing frequency

f

[10, 20] GHZ

Maximum energy consumption of

subtasks
maxE

4 J

Rated power of subtasks
maxp 0.4 W

Local computing frequency fl 0.01 GHZ

Channel bandwidth B 1 MHZ

Channel gain to noise ratio
2

g
σ

 [0.01, 0.2] W-1

Task data volume D [2, 8] KB

Figure 2. Comparison of OUE latency for the selected OECNs

and algorithms

We take M =30, subtask data volume D (KB) = [2,8], [9,

15], [16, 22], [23, 29], [30, 36], S = 6 as an example. Figure 3

describes the OUE delay comparison for different subtask data

volumes. When the number of OECNs is sufficient, the OUE

delay increases with the increase in the volume of subtask data.

Figure 3 compares OAAS with ISS-AFSA, AFSA, and PSO

algorithms. OAAS can find the optimal offloading decision

allocation by comparing each subtask in stages and replacing

strategies. We note that to improve the performance of other

algorithms, they have to randomize the offloading strategies

through continuous iterations. As there is no optimal

resolution for the iterative convergence of parameter settings,

the optimal solution is difficult to achieve. Among the

discussed algorithms, AFSA and PSO have relatively constant

parameter settings, limiting their abilities to optimize locally.

However, we note that using step-size randomization process,

ISS-AFSA has marginally improved its local optimization. In

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1399

addition, because OAAS does not need to perform iterative

convergence, it can reduce the program execution delay.

Figure 3. Comparison of OUE latency for different OECN

data volumes and algorithms

We take M = 30, S = [6, 8, 10, 12] as an example. Figure

4 depicts the comparison of OUE delay for different numbers

of subtasks. Results show that the OUE delay increases as the

number of subtasks increases because, with every iteration, the

unassigned subtasks can be offloaded to an OECN with a

relatively low priority. Thus, the offloading delay of each of

these subtasks contributes to the total OUE delay. Therefore,

the overall OUE delay continues to increase. Figure 4

compares the OUE delays for different algorithms. Results

show that OAAS saves more time when dealing with large

number of subtasks than other algorithms. We note that other

algorithms may require many iterations to converge. Thus, the

more the subtasks, the easier to fall into an optimal local

situation. Therefore, saving delay can be difficult.

Figure 4. Comparison of OUE delays for different number of

subtasks and algorithms

6.2 MSUS1 Model Experiment Parameter

Setting and Result Analysis

Setting  = 1,2,3,4,5 , 30K M = . In other words, the

subtasks in K OUEs simultaneously send offloading requests

to the MEC servers in thirty OECNs. The parameter values of

the MSUS1 model are shown in Table 2.

Table 2. MSUS1 model simulation parameters

Parameter Value

Average calculated density a [500, 1000] cycles/bit

Mobile nodes computing frequency

f

[10, 20] GHZ

Maximum energy consumption of

subtasks
maxE

4 J

Rated power of subtasks
maxp [0.4, 0.6] W

Number of subtasks S [2, 5]

Local computing frequency fl [0.01, 0.1] GHZ

Channel bandwidth B 1 MHZ

Channel gain to noise ratio
2

g
σ

 [0.01, 0.2] W-1

Task data volume D [1, 10] KB

Figure 5 compares the average delay of different numbers

of OUEs. Figure 5 shows that the average delay of multiple

OUEs increases as the number of OUEs increases. When the

number of OECNs is sufficient, the more the OUEs to be

offloaded, the greater the demand for OECNs. Thus, it is easier

for subtasks to choose OECNs with relatively poor

communication and computing resources for offloading.

Therefore, the average delay of multiple OUEs continues to

rise. In addition, Figure 5 compares the average delay of

multiple OUEs using different algorithms. Experimental

results show that OAMOAS saves more node allocation delay

as compared to the AFSA and PSO algorithms that require

considerable iterative convergence. When K = 1, K = 2, K = 3

with sufficient number of OECNs, the difference in OUE

offloading delay with and without priorities is marginal. As

the number of OUEs increases, the number and quality of the

selected OECNs continue to decrease. The OUE priority

assignment is particularly important in cases where K = 4, K =

5. We conclude that OAMOAS can cope well with a large

number of OUEs.

Figure 5. Comparison of OUE delays for different numbers

and algorithms

6.3 Setting MSUS2 Model Simulation

Parameters and Analyzing Results

Setting K̃ = [4, 5, 6, 7], M ̃= 10. In other words, different

numbers of subtasks in the K OUEs simultaneously send

offloading requests to the MEC servers in ten OECNs. The

1400 Journal of Internet Technology Vol. 23 No. 6, November 2022

parameter values of the MSUS2 model are shown in Table 3.

To verify the effectiveness of OANR in the MSUS2 model,

we compare its performance with the following proposed

algorithms. A limited number of OECNs are allocated to the

subtask sets in each OUE based on Formulas (14) and (15).

Subsequently, Algorithm 1 is executed in each node allocation

iteration of Algorithm 3. Algorithm 4 ignores the priorities

between multiple OUEs when executing OANR. Algorithm 3

randomizes the number of OECNs obtained by each OUE and

implements OANR on this basis. In Algorithm 4, when all

OECNs are assigned, the remaining subtasks are processed

locally, that is, the OECNs are not reused.

Table 3. MSUS2 model simulation parameters

Parameter Value

Average calculated density a [500, 1000] cycles/bit

Mobile nodes computing frequency

f

[5, 10] GHZ

Maximum energy consumption of

subtasks
maxE

4 J

Rated power of subtasks maxp [0.4, 1] W

Number of subtasks S [2, 5]

Local computing frequency fl [0.05, 0.1] GHZ

Channel bandwidth B 1 MHZ

Channel gain to noise ratio g
 2

[0.1, 2] W-1

Task data volume D [1, 10] KB

Figure 6 compares the average delay of each OUE for a

limited number of OECNs. It shows that the average delay of

OUEs increases as the number of OUEs increases. The more

the OUEs to be offloaded, the greater the demand for OECNs.

Thus, it is easier for subtasks to choose OECNs with relatively

poor communication and computing resources for offloading.

Due to the limited number of OECNs, subtasks have to

compare their local processing delay with the total offloading

delay when OECNs are redistributed. Therefore, the average

OUE delay is larger than the sufficient-OECN scenario.

Figure 6 also compares the average OUE delay for different

algorithms. Compared with Algorithm 3, OANR considers the

overall OUE delay and introduces strategy replacement. Thus,

the effect of saving OUE delay is more obvious. We note that

when =7K is due to 10M = , there are fewer OECNs

compared to the number of OUEs to be processed. Each OUE

can only be assigned a maximum of two OECNs. The

selection of OECNs for OUE neutron tasks are also very

limited. Only the best and worst cases are included. Therefore,

OANR and Algorithm 3 have approximately the same delay-

saving effect owing to insufficient local computing power. In

addition, in Algorithm 4, poor OUEs will select OECNs with

relatively poor communication and computing resources for

offloading. In contrast, a good OUE allocates OECNs with

excellent communication and computing resources for

offloading, resulting in the wastage of OECNs. Both are not

conducive to saving delay. Algorithm 3 randomly allocates

OECNs to each OUE, resulting in the assignment of OUEs

with a small number of subtasks to considerable OECNs.

However, OUEs with a large number of subtasks should use a

limited number of OECNs for offloading. It wastes OECN’s

communication and computing resources. The effect of saving

delay is not good.

Figure 6. Comparison of OUE delays for different numbers

and algorithms

Figure 7. Comparison of OUE delays for different local

calculation frequencies and algorithms

Figure 7 compares the average OUE delay for different

numbers of OUEs and local computing frequencies. It also

shows that the average OUE delay increases as the number of

OUEs increases. However, it decreases with the increase in

OUE’s local calculation frequency. The greater the frequency

of OUE’s local calculation, the easier it is for subtasks to

choose local processing. Thus, the unselected OECNs can

process other subtasks, saving considerable delay. In addition,

Figure 7 compares various algorithms. Unlike in the OANR,

Algorithm 3 does not consider the delay of a single OUE.

Algorithm 4 ignores the differences in offloading

requirements between multiple OUEs. Algorithm 4 only

performs OECN allocation once. Owing to the limited

frequency of OUE’s local calculation, the effect of saving

delay is not ideal. In particular, when

 ()=6, 0.05,0.1 GHZK fl = , OUEs are overburdened and

the number of OECNs is limited. When each OUE undergoes

an OECN allocation, the remaining subtasks are processed

locally. In addition, the limited local calculation frequency of

OUEs leads to a significant average OUE using Algorithm 3.

However, the aim of Algorithm 3 is to save delay when the

local calculation frequency of OUEs is sufficient. When

 ()=6, 1,5 GHZK fl = , because the OUE’s local

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1401

calculation frequency is sufficient, OANR chooses local

processing when comparing offloading strategies. The effect

is consistent with Algorithm 4.

7 Conclusions

Faced with massive maritime video surveillance

information, we combine MEC with abundant node resources,

and the network connectivity delay characteristics. We then

establish SSU, MSUS1, and MSUS2 models based on the

middle-sea scenario. The MSUS1 model is an extension of the

SSU model in the multi-user scenario. Compared with the

MSUS1 model, the MSUS2 model considers a limited number

of OECNs. We divide the optimization problems into two sub-

problems. A binary search method is proposed to optimize the

transmission power allocation. We propose OAAS,

OAMOAS, and OANR to optimize the offloading decision

allocation. We analyze the simulation results from algorithm

comparisons and changes in the number of subtasks, data, and

OUEs. Therefore, we can verify the effectiveness of the design

schemes and algorithms in saving delay. We believe that

further research is needed to establish the trust between

OECNs in specific maritime video surveillance applications

and reduce the dependency between subtasks.

Acknowledgment

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government. (MSIT) (2021R1A2B5B02087169) and the

Gachon University research fund of 2021 (GCU-

202103440001).

References

[1] H. Gao, J. Xiao, Y. Yin, T. Liu, J. Shi, A Mutually

Supervised Graph Attention Network for Few-Shot

Segmentation: The Perspective of Fully Utilizing

Limited Samples, IEEE Transactions on Neural

Networks and Learning Systems, March, 2022, doi:

10.1109/TNNLS.2022.3155486.

[2] H. Gao, B. Qiu, R. J. D. Barroso, W. Hussain, Y. Xu, X.

Wang, TSMAE: A Novel Anomaly Detection Approach

for Internet of Things Time Series Data Using Memory-

Augmented Autoencoder, IEEE Transactions on

Network Science and Engineering, March, 2022,

doi:10.1109/TNSE.2022.3163144.

[3] Y. Xu, Y. Wu, H. Gao, S. Song, Y. Yin, X. Xiao,

Collaborative APIs recommendation for Artificial

Intelligence of Things with information fusion, Future

Generation Computer Systems, Vol. 125, pp. 471-479,

December, 2021.

[4] P. Liang, Z. Yao, J. Li, Marine Meteorological

Observation Technology and Application Based On

Large Floating Platform, 2019 International Conference

on Meteorology Observations (ICMO), Chengdu, China,

2019, pp. 1-4.

[5] X. Yang, H. Xing, A data complementary method for

thunderstorm point charge localization based on

atmospheric electric field apparatus array group, Digital

Communications and Networks, Vol. 7, No. 2, pp. 170-

177, May, 2021.

[6] P. Porambage, J. Okwuibe, M. Liyanage, M. Ylianttila,

T. Taleb, Survey on multi-access edge computing for

Internet of things realization, IEEE Communications

Surveys & Tutorials, Vol. 20, No. 4, pp. 2961-2991,

Fourth Quarter, 2018.

[7] C. Chen, C. Wang, T. Qiu, M. Atiquzzaman, D. Wu,

Caching in vehicular named data networking:

architecture, schemes and future directions, IEEE

Communications Surveys & Tutorials, Vol. 22, No. 4, pp.

2378-2407, Fourth Quarter, 2020.

[8] S. Safavat, N. N. Sapavath, D. Rawat, Recent advances

in mobile edge computing and content caching, Digital

Communications and Networks, Vol. 6, No. 2, pp. 189-

194, May, 2020.

[9] L. Huang, X. Feng, C. Zhang, L. Qian, Y. Wu, Deep

reinforcement learning-based joint task offloading and

bandwidth allocation for multi-user mobile edge

computing, Digital Communications and Networks, Vol.

5, No. 1, pp. 10-17, February, 2019.

[10] J. Zhang, K. Letaief, Mobile edge intelligence and com-

puting for the Internet of vehicles, Proceedings of the

IEEE, Vol. 108, No. 2, pp. 246- 261, February, 2020.

[11] Y. Wu, L. P. Qian, J. Zheng, H. Zhou, X. S. Shen, Green-

Oriented Traffic Offloading through Dual Connectivity

in Future Heterogeneous Small Cell Networks, IEEE

Communications Magazine, Vol. 56, No. 5, pp. 140-147,

May, 2018.

[12] Y. Li, H. Ma, L. Wang, S. Mao, G. Wang, Optimized

Content Caching and User Association for Edge

Computing in Densely Deployed Heterogeneous

Networks, IEEE Transactions on Mobile Computing,

Vol. 21, No. 6, pp. 2130-2142, June, 2022.

[13] S. Xia, Z. Yao, Y. Li, S. Mao, Online Distributed

Offloading and Computing Resource Management With

Energy Harvesting for Heterogeneous MEC-Enabled

IoT, IEEE Transactions on Wireless Communications,

Vol. 20, No. 10, pp. 6743-6757, October, 2021.

[14] Y. Li, C. Liao, Y. Wang, C. Wang, Energy-Efficient

Optimal Relay Selection in Cooperative Cellular

Networks Based on Double Auction, IEEE Transactions

on Wireless Communications, Vol. 14, No. 8, pp. 4093-

4104, August, 2015.

[15] N. Abbas, Y. Zhang, A. Taherkordi, T. Skeie, Mobile

Edge Computing: A Survey, IEEE Internet of Things

Journal, Vol. 5, No. 1, pp. 450-465, February, 2018.

[16] Y. Zhou, L. Liu, L. Wang, N. Hui, X. Cui, J. Wu, Y. Peng,

Y. Qi, C. Xing, Service-aware 6G: an intelligent and

open network based on the convergence of

communication, computing and caching, Digital

Communications and Networks, Vol. 6, No. 3, pp. 253-

260, August, 2020.

[17] K. Sha, T. Yang, W. Wei, S. Davari, A survey of edge

computing-based designs for IoT security, Digital

Communications and Networks, Vol. 6, No. 2, pp. 195-

202, May, 2020.

[18] X. Su, Z. Wang, Y. Wang, S. Zhou, Multi-access edge

computing offloading in maritime monitoring sensor

networks, Chinese Journal on Internet of Things, Vol. 5,

No. 1, pp. 36-52, March, 2021.

[19] M. Kamoun, W. Labidi, M. Sarkiss, Joint resource

allocation and offloading strategies in cloud enabled

cellular networks, 2015 IEEE International Conference

on Communications (ICC), London, UK, 2015, pp.

1402 Journal of Internet Technology Vol. 23 No. 6, November 2022

5529-5534.

[20] J. Wang, J. Peng, Y. Wei, D. Liu, J. Fu, Adaptive

application offloading decision and transmission

scheduling for mobile cloud computing, China

Communications, Vol. 14, No. 3, pp. 169-181, March,

2017.

[21] G. Zhang, F. Shen, N. Chen, P. Zhu, X. Dai, Y. Yang,

DOTS: Delay-Optimal Task Scheduling Among

Voluntary Nodes in Fog Networks, IEEE Internet of

Things Journal, Vol. 6, No. 2, pp. 3533-3544, April,

2019.

[22] S. Pan, Z. Zhang, Z. Zhang, D. Zeng, Dependency-

Aware Computation Offloading in Mobile Edge

Computing: A Reinforcement Learning Approach, IEEE

Access, Vol. 7, pp. 134742-134753, September, 2019.

[23] Z. Kuang, L. Li, J. Gao, L. Zhao, A. Liu, Partial

Offloading Scheduling and Power Allocation for Mobile

Edge Computing Systems, IEEE Internet of Things

Journal, Vol. 6, No. 4, pp. 6774-6785, August, 2019.

[24] J. Zhang, X. Hu, Z. Ning, E. C. H. Ngai, L. Zhou, J. Wei,

J. Cheng, B. Hu, V. C. M. Leung, Joint Resource

Allocation for Latency-Sensitive Services Over Mobile

Edge Computing Networks with Caching, IEEE Internet

of Things Journal, Vol. 6, No. 3, pp. 4283-4294, June,

2019.

[25] Y. Mao, J. Zhang, K. Letaief, Joint Task Offloading

Scheduling and Transmit Power Allocation for Mobile-

Edge Computing Systems, 2017 IEEE Wireless

Communications and Networking Conference (WCNC),

San Francisco, CA, USA, 2017, pp. 1-6.

[26] J. Ren, G. Yu, Y. Cai, Y. He, Latency Optimization for

Resource Allocation in Mobile-Edge Computation

Offloading, IEEE Transactions on Wireless

Communications, Vol. 17, No. 8, pp. 5506-5519, August,

2018.

[27] Q. Li, J. Zhao, Y. Gong, Q. Zhang, Energy-efficient

computation offloading and resource allocation in fog

computing for Internet of everything, China

Communications, Vol. 16, No. 3, pp. 32-41, March,

2019.

[28] J. Feng, F. Yu, Q. Pei, J. Du, L. Zhu, Joint Optimization

of Radio and Computational Resources Allocation in

Blockchain-Enabled Mobile Edge Computing Systems,

IEEE Transactions on Wireless Communications, Vol.

19, No. 6, pp. 4321-4334, June, 2020.

[29] Y. D. Lin, Y. Lai, J. X. Huang, H. T. Chien, Three-Tier

Capacity and Traffic Allocation for Core, Edges, and

Devices for Mobile Edge Computing, IEEE

Transactions on Network and Service Management, Vol.

15, No. 3, pp. 923-933, September, 2018.

[30] Y. Cui, Y. Liang, R. Wang, Resource Allocation

Algorithm with Multi-Platform Intelligent Offloading in

D2D-Enabled Vehicular Networks, IEEE Access, Vol. 7,

pp. 21246-21253, February, 2019.

[31] K. Wang, P. Huang, K. Yang, C. Pan, J. Wang, Unified

Offloading Decision Making and Resource Allocation

in ME-RAN, IEEE Transactions on Vehicular

Technology, Vol. 68, No. 8, pp. 8159-8172, August,

2019.

[32] W. Sun, H. Zhang, R. Wang, Y. Zhang, Reducing

Offloading Latency for Digital Twin Edge Networks in

6G, IEEE Transactions on Vehicular Technology, Vol.

69, No. 10, pp. 12240-12251, October, 2020.

[33] Y. Zhang, P. Du, J. Wang, T. Ba, R. Ding, N. Xin,

Resource Scheduling for Delay Minimization in Multi-

Server Cellular Edge Computing Systems, IEEE Access,

Vol. 7, pp. 86265-86273, June, 2019.

[34] G. Wang, F. Xu, C. Zhao, QoS-Enabled Resource

Allocation Algorithm in Internet of Vehicles with

Mobile Edge Computing, IET Communications, Vol. 14,

No. 14, pp. 2326-2333, August, 2020.

[35] X. Su, L. Meng, J. Huang, Intelligent maritime

networking with edge services and computing capability,

IEEE Transactions on Vehicular Technology, Vol. 69,

No. 11, pp. 13606-13620, November, 2020.

[36] H. Zheng, K. Xiong, P. Fan, Z. Zhong, Z. Ding, K. B.

Letaief, Achievable Computation Rate in NOMA-Based

Wireless-Powered Networks Assisted by Multiple Fog

Servers, IEEE Internet of Things Journal, Vol. 8, No. 6,

pp. 4802-4815, March, 2021.

[37] Q. Fan, H. Yin, L. Jiao, Y. Lyu, H. Huang, X. Zhang,

Towards Optimal Request Mapping and Response

Routing for Content Delivery Networks, IEEE

Transactions on Services Computing, Vol. 14, No. 2, pp.

606-613, March-April, 2021.

[38] L. Yang, H. Zhang, M. Li, J. Guo, H. Ji, Mobile Edge

Computing Empowered Energy Efficient Task

Offloading in 5G, IEEE Transactions on Vehicular

Technology, Vol. 67, No. 7, pp. 6398-6409, July, 2018.

[39] X. Diao, J. Zheng, Y. Wu, Y. Cai, Joint Computing

Resource, Power, and Channel Allocations for D2D-

Assisted and NOMA-Based Mobile Edge Computing,

IEEE Access, Vol. 7, pp. 9243-9257, January, 2019.

Biographies

Ziyang Gong is studying for a master’s

degree at Gachon University from 2022. Her

main research interests include intelligent

information processing and intelligent

system security.

Ziyi Wang graduated from Hohai

University with a master’s degree. Her

main research interests include Ocean

networks modeling, Edge/Fog Computing,

and Computing offloading.

Xin Su received his.D. degree in the Ph

Program in IT & Media Convergence

Studies, Inha University, in 2015. He is with

the College of IoT Engineering, Hohai

University. His research interests include

5G systems, Edge/Fog Computing, wireless

backhaul solutions, and mobile ad-hoc

networks.

Edge Computing Offloading at Middle-sea Scenario for Maritime Video Surveillances 1403

Chang Choi received his Ph.D. degree in

computer engineering from Chosun

University, South Korea, in 2012, and is

now working as an assistant professor at

Gachon University. His research interests

include intelligent information processing,

semantic web, smart IoT systems, and

intelligent system security.

