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Abstract 
 

Video surveillance has broad application prospects in 

maritime rescue, ship transportation and other fields. Mobile 

edge computing can effectively guarantee low-latency and 

highly reliable data transmission in maritime video 

surveillance. This paper comprehensively formulates the edge 

computing offloading schemes in the middle-sea scenario. The 

middle-sea scenario has sufficient edge computing nodes as in 

the offshore scenario and delay constraints due to limited 

network connectivity as in the far-sea scenario. Taking into 

account these characteristics, a single-user single-hop unicast 

offloading model is established and extends to a multi-user 

model. In addition, for the sufficient and limited edge 

computing nodes, the multi-user model is further divided into 

the multi-user single-hop unicast situation 1 and 2 models. We 

split the mixed-integer nonlinear programming problem and 

approximate the optimal transmission power by the binary 

search method. We use the offloading decision allocation 

algorithm based on alternating selection, offloading decision 

allocation algorithm based on multi-objective alternating 

selection, and offloading decision allocation algorithm based 

on node redistribution to optimize the offloading decisions of 

the above models. Subsequently, we analyze the simulation 

results from algorithm comparisons, changes in the number of 

subtasks, data, and oceanic user equipments. We verify the 

effectiveness of the proposed schemes and algorithms in 

saving delay. 
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1 Introduction 
 

Advances in maritime information intelligent networks 

have been able to provide a variety of surveillance applications 

[1-3]. They can carry out all-weather, fully automatic 

maritime observation, target situational awareness, integrated 

maritime services, among other services. However, low-

latency and high-reliability performance metrics are critical 

requirements for these services [4-5]. Mobile edge computing 

(MEC) technology can effectively fulfil these requirements 

[6-8]. Furthermore, it can offload the cloud data center to the 

edge of the networks and enable edge nodes to provide 

computing, storage, and communication capabilities closer to 

users [9-11]. 

Complex maritime surveillance applications can cause 

network data overload and sharp increases in network 

overhead. Thus, realizing flexible adaptation is a primary 

problem in maritime network (MN) resources. Compared with 

traditional terrestrial cellular and vehicle-mounted networks, 

MN has complex environmental factors and distinct node 

differences. In particular, the geographic location of the 

middle-sea scenario is between the offshore scenario and 

the far-sea scenario. The high density of offshore edge 

nodes, uneven distribution of edge computing capabilities, 

and complex resource scheduling need to be considered. In 

addition, it needs to be considered that the connectivity of 

the far-sea network is easily affected by factors such as 

weather and severe sea conditions. Therefore, it is difficult 

to guarantee the stability of maritime application services. 

How to propose the edge data offloading models and 

algorithms that adapt to the middle-sea scenario is also a 

problem that needs to be solved. In our study, we combine the 

previous works on MEC offloading technology [12-14] and 

the networking challenges of MN to meet the requirements of 

low-latency and high-reliability of maritime applications. This 

paper focuses on the research of MEC offloading technology 

in MN. This paper is organized as below:  

In this study, we combined the characteristics of offshore 

and far-sea scenarios into MN. Furthermore, we considered 

the number of users and the adequacy of edge computing 

nodes. We introduce data splitting technology to establish the 

single-user single-hop unicast (SSU) and multi-user single-

hop unicast models (MSUS1 and MSUS2) separately in the 

middle-sea scenario. The mixed-integer nonlinear 

programming (MINLP) problem proposed in this paper is split 

into two sub-problems. Furthermore, we used binary search to 

allocate transmission power effectively. However, the 

offloading decision optimization algorithm varies among the 

models. In the SSU model, we propose an offloading 

algorithm based on alternating selection (OAAS) to replace 

the subtask sets with strategies and compare in detail 

according to the corresponding priority. In the MSUS1 model, 

the OAAS is extended to include multi-objective alternating 

selection (OAMOAS) to the multi-user model. OAMOAS sets 

a priority function for multiple users to ensure objective 

selection. 

The MSUS2 model considers the scenario where the 

subtask sets require nodes redistribution when the number of 
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edge computing nodes is limited. In addition, edge nodes with 

limited number of computing resources will cause 

considerable queuing delays if they are reused. Therefore, we 

propose a node redistribution offloading algorithm (OANR) 

that allocates edge nodes based on the proportion of user’s 

data volume. The OANR makes the offloading decisions 

based on actual factors. 

 

2 Related Works 
 

MEC is the core technology of future mobile 

communications [15-18]. Combining the advantages of MEC 

and the edge computing features of MN, we propose a set of 

optimized offloading schemes for middle-sea scenario. 

However, the results of applying MEC to MNs to improve 

network performances are relatively scarce. Therefore, this 

paper focuses on analyzing the research results of the MEC 

offloading schemes based on the terrestrial scene. 

 

2.1 Single-user Mobile Edge Computing 
 

The single-user edge computing model can adapt well to 

the limitations of mobile terminals, bringing a better user 

experience by improving the utilization of computing and 

storage resources. [19] offloaded all the terminal data to an 

edge server and proposed offline strategies based on pre-

calculations to optimize the scheduling and offloading of radio 

computing resources. The application of MEC technology can 

not only save energy but also has a considerable effect in 

reducing latency. [20] proposed an adaptive algorithm based 

on Lyapunov theory to optimize the weighted sum of delay 

and energy consumption. Their results showed that offloading 

schemes have improved latency and energy consumption 

compared to local processing. However, the above schemes 

treat the terminal data as a whole and can achieve either local 

processing or complete offloading. The overall efficiency of 

the system is still limited. 

One data splitting and offloading scheme is dividing the 

data into multiple subtasks. Each subtask determines whether 

to offload. To meet the future 5G demands for low-latency 

processing, [21] studied the offloading decisions of each 

subtask and their computing resources. They proposed delay-

optimal task scheduling (DOTS) algorithm for optimization. 

[22] further introduced reinforcement learning (RL) to 

optimize the execution time and energy consumption. 

However, the optimization goal should also include 

scheduling offloading, resource allocation, and other 

computational metrics along with the weighted delay and 

energy consumption. [23] studied the problem of minimizing 

the weighted sum of delay and energy consumption in a multi-

subtasks MEC system. They proposed partial offloading 

decision and scheduling based on Johnson (POJ) to optimize 

offloading scheduling and resource allocation. However, for 

diversified maritime application requirements, the single-user 

model is not suitable for the envisioned smart oceans of the 

future. In the increasingly complex data migration 

environment, the rational allocation of resources needs to be 

further studied to improve user experience of the multi-user 

model. 

 

 

 

2.2 Multi-user Mobile Edge Computing  
 

[24] studied the joint optimization for the MEC networks. 

To solve the MINLP, they adopted the modified branch and 

bound (MBB) method to obtain accurate solutions, thereby 

reducing the delay. Regarding energy savings, [25] studied the 

offloading model of a multi-user single-server. They proposed 

select maximum saved energy first (SMSEF) and greedy 

selection algorithms to optimize channel and resource 

allocation. [26] applied time-division multiple access 

technology to a mobile edge computing multi-user offloading 

model. They proposed an optimization algorithm for 

communication and resource allocation to reduce delay. [27] 

introduced orthogonal frequency division multiple access 

(OFDMA) technology to optimize system overhead. However, 

with the surge in maritime applications, the multi-user single-

server offloading models cannot meet the needs of users. [28] 

studied the offloading model between multiple users and 

servers. They proposed the Lagrange dual decomposition 

algorithm to optimize offload decision-making and computing 

resources. However, scaling offloading decisions lacks 

practical significance. [29] adopted the multiple-input 

multiple-output (MIMO) multi-cell system to minimize the 

overall energy consumption of the user while meeting the 

delay constraint. They proposed an iterative algorithm based 

on a continuous convex approximation to obtain sub-optimal 

solutions for offloading decision-making and resource 

allocation. [30] studied the offloading model between multiple 

users and servers. They introduced a new big data 

reinforcement learning method to optimize resource allocation 

and offloading strategies jointly; thus, improving the quality 

of experience for delay-sensitive users. [31] analyzed the 

problem of minimizing the weighted sum of delay and energy 

consumption, giving priority to user groups who could not 

complete tasks locally. Furthermore, they proposed the user 

equipment (UE) with largest saved energy consumption 

accepted first (CAR-E) and smallest required data rate 

accepted first (CAR-D) algorithms. However, user data in 

these models are inseparable, and the flexibility of offloading 

is poor. Subsequently, [32] divided the tasks and calculated 

the waiting delay of each subtask on the server. They proposed 

the Lyapunov algorithm to optimize dynamic multi-objectives, 

thereby reducing the overall delay of users. The offloading 

model and research content of [33] were the same as those of 

[32]. [33] proposed a resource scheduling algorithm that 

minimized the weighted sum of communication and 

calculation delays. [34] studied the problem of resource 

allocation based on quality of service (QoS). After reordering 

the tasks according to the delay tolerance, the reinforcement 

learning algorithm was used to allocate resources intelligently. 

However, the existing multi-user edge computing 

offloading model constraints and specifications considerations 

are not comprehensive. An algorithm that relaxes the binary 

offloading decision variables to continuous variables is 

difficult to apply in practice. In addition, a heuristic algorithm 

ignores the calculation delay and energy consumption 

constraints of the servers are ignored. Furthermore, the multi-

user, multi-server models can overlook the limited number of 

servers and their waiting delay. They cannot meet the needs of 

various applications of maritime observation monitoring 

sensory networks. Thus, this study applied the data division 

method of a single-user model to a multi-user model for the 

middle-sea scenario. Our results show that it is possible to 
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develop a flexible partial offloading program. Furthermore, 

the designed models are suitable for MN with limited 

communication, computing resources, and network 

connection delays [35]. 

 

3 System Model 
 

Figure 1 shows the edge computing-based offloading 

model on the maritime observation monitoring sensory 

networks in the middle-sea scenario. It is composed of oceanic 

user equipments (OUEs) and oceanic edge computing nodes 

(OECNs).  

 

 

Figure 1. System model diagram of the middle-sea scenario 

 

The OUEs have limited local computing power and signal 

coverage and are sensitive to energy consumption. They can 

perform maritime observation monitoring services in any 

weather and are fully automatic. OUEs include light 

unmanned submarines, offshore buoys, small ships, and 

unmanned ships. Light unmanned submarines can be used for 

port reconnaissance and surveillance, minefield detection, and 

seabed surveys of specific destinations. Offshore buoys can 

collect data for scientific research, offshore oil (gas) 

development, and port construction. Small ships have sensing 

and communication capabilities. They can perform 

hydrographic surveys and maritime environment monitoring 

and resource development. Unmanned ships help in shipwreck 

salvaging, deep-water exploration, and underwater cable 

laying operations. OUEs equipped with video surveillance 

cameras can execute the application in Figure 1. Ship target 

detection using video surveillance has attracted much 

attention in underwater cultural heritage protection and 

maritime aquaculture and transportation. Video surveillance 

of navigation marks ensures their safety. The safe and stable 

operation of navigation aids is the primary prerequisite for 

navigation aids to fully play the role of navigation aid, 

navigation, and warning. Maritime intrusion detection can be 

safely guaranteed for incidents such as small ships 

approaching oil platforms or illegally logging on to unguarded 

platforms. Oil spill monitoring is extremely important for 

preventing accidents in offshore oil and gas field exploitation. 

OECNs have sufficient internal energy, strong local 

computing capabilities, and extended signal coverage to 

perform maritime observation monitoring services effectively. 

OECNs include medium to large ships and seacoast base 

stations (SBS). Medium and large ships can be used as edge 

computing nodes to process real-time OUE node outsourcing 

tasks. They can also access the self-organized water surface 

networks to expand the coverage of the SBS networks. As an 

air interface, SBS can realize the link between the maritime 

stereoscopic monitoring equipment terminal and terrestrial 

cloud server. It can also be used as an edge server to support 

high-reliability and low-latency services effectively. The 

middle-sea scenario is far from the offshore scenarios. 

Therefore, OECNs include only medium and large ships. 

Figure 1 describes the real-time parallel execution of multi-

task sets in the middle-sea scenario. A large amount of real-

time data is generated in a local area of the maritime networks. 

These data can be processed locally or by fusion clustering and 

separately offloaded to nearby medium and large ships for 

simultaneous processing. Based on the above factors, such as 

the number of OUEs and the adequacy of OECNs, we 

establish SSU, MSUS1, and MSUS2 models. Compared to the 

far-sea scenario, the middle-sea scenario has a richer number 

of OECNs, considering the limited network connection delay. 

Therefore, the SSU model formulates a single-hop offloading 

mechanism between a single OUE and M OECNs, as shown 

in the yellow circle in Figure 1. We divide the to-be-processed 

data of a single OUE into S subtasks of varied sizes. The set 

of subtasks is denoted as  1 2, ,...,i STask Task Task Task . 

Each subtask can be processed locally or offloaded to a nearby 

OECN for processing. To meet the network connection delay 

constraints and avoid resource competition, this paper 

stipulates that the subtasks have a one-to-one correspondence 

with OECNs. The demand of iTask can be represented by

( )max,a , ,
i i i iTask Task Task Task iJ D E Task=  , where, 

iTaskD is the 

data volume of iTask , a is the average calculation density of 

iTask , and maxiTaskE is the maximum energy consumption 

allowed by iTask . We define variable  = ,
iTask ix TaskX

as the pairing decision between the subtasks and OECNs. The 

MSUS1 model is based on the SSU model and considers the 

single-hop offloading mechanism between 
KS and M  

OECNs among K OUEs. As shown in the green circle in 

Figure 1, any OUE offloading model can be regarded as an 

SSU model. In the communication range, multiple SSU 

models form a MSUS1 model. The above two offloading 

models assume that the number of OECNs is sufficient 

compared to the total number of subtasks to be processed. 

Multiple OECNs can complete the offloading of all subtasks 

in a single or multiple OUEs. Previous research on sub-task 

offloading decision assignment satisfies the condition that the 

number of edge computing nodes for selection is sufficient 

[36]. However, with the increasing OUE demands, this 
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premise is difficult to achieve. Therefore, we establish an 

MSUS2 model suitable for the scenario where the number of 

OECN M is limited compared with the number of K OUE, 

where  1,2,...,k K and neutron tasks 

 1 2, ,...,
Kk

S S S S , as shown in the red circle in Figure 1. 

We note that the number of OECNs composed of medium and 

large ships is significantly less than the total number of tasks 

divided by the two OUEs. The MSUS2 model stipulates that a 

sub-task can select only one OECN to offload at most. After 

the initial OECN assignment of the sub-task sets, all OECNs 

are assigned sub-tasks. There is no free OECN left. However, 

there could be unallocated subtasks that should be 

redistributed by OECNs. The optimal offloading decisions are 

determined by comparing the local processing and total 

offloading delays. 

Based on the offloading decisions, we can obtain the local 

computing and computing offloading models for each subtask: 

1) Local Computing Model: Taking the SSU model as 

an example, all other models are satisfied. iTask , 

0
iTaskx = . In this step, energy consumption is given by 

2a
i i

l

Task k TaskE l fl D= and delay is denoted as 
a

i

i

Taskl

Task

k

D
t

fl
= . 

Here, kfl  is the local calculation frequency of OUE k  and 

l depends on the coefficient of the processor chip structures. 

2) Computing Offloading Model: Taking the SSU 

model as an example, if iTask chooses to offload, the value 

of iTask is the corresponding OECN label, which is 

,
iTaskx m m=  . The uplink transmission rate of iTask on 

OECN m is: 
,

, 2 2
log 1 i

i

Task m m

Task m

p g
r B



 
= + 

 
, where B

and ,iTask mp respectively represent the bandwidth and 

transmission power of iTask on OECN m , 
2 represents 

Gaussian white noise on OECN m ,  and mg represents the 

channel gain on OECN m . Therefore, the data transmission 

delay 
i

r

Taskt and energy consumption ,i

o

Task mE of iTask on 

OECN m can be expressed as: 

 

,

, ,i

i

i

Taskr

Task i

Task m

D
t Task m

r
=  ,                     (1) 

 

, , ,
i i i

o r

Task Task m Task iE p t Task m=  .                 (2) 

 

OECN m processing delay can be expressed as: 

 

a
, ,i i

i

Task Taskm

Task i

m

D
t Task m

f
=  ,                  (3) 

 

where, mf  represents the calculation frequency of OECN 

m . 

At time T , a subtask can only select at most one OECN 

offload. The offloading decision constraint condition is: 

( )
1

, 1,
i

M

Task i

m

I x m Task
=

  .                    (4) 

 

At time T , an OECN can only be selected by one sub-

task. The offloading decision constraint condition is: 

 

( )
1

, 1,
S

i

i

Task

Task

Task

I x m m
=

  .                      (5) 

 

Here I represents the XNOR function. In other words, 

the values of the two variables in the function are the same. 

The value of the function is either 1 or 0. 

 

4 Problem Formulation and Analysis  
 

For the SSU model, according to Formulas (1) and (3), the 

total delay of iTask offloading is calculated as 

, ,
i i i

o r m

Task Task Task it t t Task m= +  . The total delay of the subtask 

is the smaller of the local processing and total offloading 

delays. In addition, there are M OECNs within the 

communication range that simultaneously process S subtasks 

in a single OUE. The overall OUE delay is the maximum of 

the total delays of all subtasks, that is, 

( )( )max max min , ,
i i

o l

Task Task it t t Task m=  . 

Thus, this study aimed to reduce the overall OUE delay as 

part of the optimization goal, that is, ( )maxmin t . The 

optimization problem can be expressed as: 

 

( )

( )

( )

( ) ( )

max
{ }

1

2

1

3

1

4 ,

                       min

 s.t.    C :   {0,1,..., },

         C : , 1,

         C :  , 1,

         C :  ,0 ,

   

i

i

S

i

i

i i i i

Task i

M

Task i

m

Task

Task

Task

l o

Task Task Task Task m

t

x M Task

I x m Task

I x m m

I x E I x m E

=

=

 

 

 

+





X,P

max

5 , max

                                                           , ,

         C :  0 , ,

i

i i

Task i

Task m Task i

E Task m

p p Task m

 

  

, (6) 

 

Where  ,= ,
i Taski

Task x ip TaskP is the transmission power 

allocated by iTask , maxiTaskE is the maximum energy 

consumption allowed by iTask , maxiTaskp is the rated 

transmission power allowed by iTask , and constraint 1C is 

the value range of the offloading decisions. Constraints 2C

and 3C ensure a one-to-one correspondence between subtasks 

and OECNs. Constraint 4C ensures that the actual energy 

consumption of each subtask does not exceed its maximum 

energy consumption. Constraint 5C ensures that the 

transmission power of each subtask does not exceed its rated 

power. 
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Similarly, from Formula (6), we can directly obtain the 

optimization problem of the MSUS1 model: 

 

( )

( )

( )

,max
{ }

6 ,

7 ,
=1 1

8 ,
=1 1

                min , ,

 s.t. C :   {0,1,..., }, ,

       C : , 1, ,

       C :  , 1, ,

   

i

i

Sk

i

i

k i

ik Task

K M

ik Task
k m

TaskK

k Task
k Task

t k Task

x M k Task

I x m k Task

I x m k m

=

=



 

 

 



 

X,P

( ) ( )9 , , , , ,

, max

10 , , ,

    C :  ,0 ,

                                                                     , , ,

       C :  0

i i i i

i

i

l o

k Task k Task k Task k Task m

ik Task

k Task m k Tas

I x E I x m E

E k Task m

p p

+

 

 
max

, , ,
i

ik
k Task m

 

. (7) 

 

The definition of the related parameters is similar to 

Formula (6), and the only difference is the number of OUEs. 

The above-mentioned SSU and MSUS1 models satisfy the 

condition that the number of OECNs is sufficient for 

processing the total number of subtasks. However, current 

research on subtask offloading does not consider the limited 

number of edge computing nodes [37]. The MSUS2 model 

established in this paper aims to solve the above problems. 

After the subtask sets are matched with the available OECNs 

for the first time, some subtasks might not get a match. These 

subtasks are redistributed to OECNs after further processing. 

They compare their local processing delay with the total 

redistribution delay, and make optimal offloading decisions. 

Due to the limited number of computing resources of OECNs, 

the total delay of redistribution of these subtasks have to 

consider the waiting delay 
, i

w

k Task
t on the corresponding 

OECNs.  

 

( )
1 1

1

,

1, , ,

0,                                                    
= , ,

max 0,i

i i i

i
w

ik Task m r r

ik Task k Task k Task

Task Task
t k Task

t t t Task Task
− −

 =



+ − 

,

. (8) 

 

Formula (8) shows that 
, i

w

k Task
t of the 

i
Task includes two 

parts. One part is the total offloading delay 
1 1, ,i i

m r

k Task k Task
t t

− −

+

for the selected OECN to complete the previous subtask. The 

other part is the offloading transmission delay 
, i

r

k Task
t of 

i
Task . If 

i
Task has been offloaded through OECN during the 

initial allocation, then 
,

=0
i

w

k Task
t . If 

1 1, , ,i i i

m r r

k Task k Task k Task
t t t

− −

+  , then  
i

Task does not need to wait 

in a queue on the OECN, the same 
,

=0
i

w

k Task
t . Otherwise, 

i
Task exists in 

, i

w

k Task
t . 

From this analysis, we conclude that the total offloading 

delay of each subtask is 
, , ,

= , ,
i i i

o w m

ik Task k Task k Task
t t t k Task+  , 

and the corresponding optimization problem is as follows: 

 

 

 

. (9) 

 

Constraint C11 is the value range of the offloading 

decisions. Constraint C12ensures that each subtask in an OUE 

can select only one OECN to complete the offloading. 

Constraint C13ensures that an OECN can serve multiple 

subtasks. Constraint C14 ensures that the actual energy 

consumption of each subtask does not exceed its maximum 

energy consumption. Constraint C15 ensures that the 

transmission power of each subtask does not exceed its rated 

power. 

 

5 Heuristic Algorithm 
 

5.1 Problem Analysis 
 

Problems (6), (7), and (9), including the discrete 

offloading decision and continuous transmission power 

variables, are MINLP problems. In this paper, we divide these 

complex problems into two sub-problems: transmission power 

allocation and offloading decision optimizations, then solve 

them separately. 

Optimizing transmission power allocation depends the 

offloading. Taking the SSU model as an example, we assume 

that all subtasks are offloaded, that is, ,
iTask ix m Task=  . 

The optimal transmission power is only related to the 

transmission delay. Therefore, the simplified Formula (6) is: 

 

{ }

16 , max 5

                       min ,

 s.t.  C :  , ,  and C

i

i i

r

Task i

o

Task m Task i

t Task

E E Task m



 

P
.  (10) 

 

Let
1

,
i

i

Task ir

Task

Task
t

 =  , then we get: 

 

( )17

18 max

            max ,

 s.t.  C : 0,

       C : ,

i

i i

i i

Task i

Task Task i

Task Task i

Task

H Task

Task





 



 

 

,            (11) 

 

where ( )
2

max 2 1
Taski

Taski

i i i i

D

B
Task Task Task Task

m

H E
g


 

 
= − − 

 
 

,

max

max 2 2
log 1 , ,i

i

i

Task m

Task i

Task

p gB
Task m

D




 
= +  

 
. 

( )

( )

( )

,max{ }

11 ,

12 ,
1=1

13 ,
=1

             min , ,

 s.t.  C :  {0,1,..., }, ,

        C : , 1, , ,

        C : , ,

i

i

i

k

ik

ik Task

K M

ik Task
mk

K

k Task k
Sk

t k Task

x M k Task

I x m k Task m

I x m S k

=



 

 

 





X,P

( ) ( )14 , , , , ,

, max

15

, ,

        C :  ,0 ,

                                                                     , , ,
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Taking the derivative of ( )
i iTask TaskH  , we have: 

 

( )
2

'

max

2 ln 2
, ,

Taski
Taski

i

i i i

D

B

Task

Task Task Task i

m

D
H E Task m

g B




 = −  . (12) 

 

Formula (12) shows that ( )
i iTask TaskH  is a unimodal 

function with a maximum value. Then the optimal solution of 

the objective function of Formula (12) is the smaller value 

between the non-zero zero point of ( )
i iTask TaskH   and 

maxiTask . ( )=0
i iTask TaskH   is difficult to solve directly, and 

[11] used the extreme points of the equation to replace the 

above-mentioned non-zero zero, the optimization effect is not 

obvious. Therefore, this study used binary search to 

approximate the optimal value *

iTask of ( )=0
i iTask TaskH  . 

Thus, the optimized transmission power 
,

*

Task mi

p is obtained, 

and the expression is shown as: 

 

*

,

2
* 2 1 , ,

Taski
Taski

Task mi

D

B
i

m

p Task m
g

  
= −  

 
 

.         (13) 

 

The pseudocode of the transmission power allocation 

algorithm is shown in Algorithm 1. 

 

Algorithm 1. Transmission power allocation algorithm  

based on binary search 

Input: S, M, D, pmax, Emax, f, 
g

σ2
, B, λlower = 0.001, 

𝑒 = 0.05 

Output: 𝑝𝑇𝑎𝑠𝑘𝑖

∗  

 

1: for i = 1: S for j = 1: M 

2: 𝝀𝑢𝑝𝑝𝑒𝑟(𝑖, 𝑗) =  
𝐵𝑙𝑜𝑔2(1+

𝑝𝑚𝑎𝑥𝒈(𝑗)

𝜎2 )

𝑫(𝑖)
              

3: 𝝀𝑏𝑒𝑠𝑡(𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜(𝜆𝑙𝑜𝑤𝑒𝑟 , 𝜆𝑢𝑝𝑝𝑒𝑟  (𝑖, 𝑗), 𝑒) 

4: end end  

5: p* = 
𝜎2(2

𝐷𝜆𝑏𝑒𝑠𝑡
𝐵 −1)

𝒈
 Step 3 function specific operation  

process: 

6: 𝝀(i, j) = 
𝜆𝑙𝑜𝑤𝑒𝑟+𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖,𝑗)

2
, 

 𝝑(𝑖, 𝑗) =  𝐸𝑚𝑎𝑥𝝀(𝑖, 𝑗) −
𝜎2(2

𝐷(𝑖)𝜆(𝑖,𝑗)
𝐵 −1)

𝒈(𝑗)
 

7: 𝝑1(𝑖, 𝑗) =  𝐸𝑚𝑎𝑥𝝀(𝑖, 𝑗) −
𝜎2(2

𝑫(𝑖)𝜆𝑙𝑜𝑤𝑒𝑟
𝐵 −1)

𝒈(𝑗)
 

8: if (𝝑(𝑖, 𝑗) = 𝝑1(𝑖, 𝑗) < 0) q = 𝝀(𝑖, 𝑗) − 𝜆𝑙𝑜𝑤𝑒𝑟  

9:  if (q > 𝑒) 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗) =  𝝀(𝑖, 𝑗) 

10: 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜 (𝜆𝑙𝑜𝑤𝑒𝑟 , 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗), 𝑒) 

11: else 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝝀(𝑖, 𝑗) end 

12: else 𝑞 =  𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗) −  𝝀(𝑖, 𝑗) 

13: if (𝑞 >  �̂�)𝜆𝑙𝑜𝑤𝑒𝑟 =  𝝀(𝑖, 𝑗) 

14: 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝑒𝑟𝑓𝑒𝑛𝑠𝑜𝑢𝑠𝑢𝑜 (𝜆𝑙𝑜𝑤𝑒𝑟 , 𝝀𝑢𝑝𝑝𝑒𝑟 (𝑖, 𝑗), 𝑒) 

15: else 𝝀𝑏𝑒𝑠𝑡 (𝑖, 𝑗) = 𝝀(𝑖, 𝑗) end end 

 

 

5.2 Offloading Decision Allocation 
 

5.2.1 Offloading Decision Allocation Algorithm Based on 

Alternating Selection (OAAS) 

 

This section proposes OAAS to allocate OECNs to the 

SSU model effectively. The initial idea is to allocate the 

OECN offloading having the best communication and 

computing resources to the subtask with the highest priority in 

each iteration. This selection process is two-way. Subtask 

priority judgment rule: the greater the local processing delay 

of the subtask, the easier it is to reduce the delay through 

offloading, and the higher the offloading priority. OECN 

priority judgment rule: by comparing the total offloading 

delay of a fixed subtask on each OECN, the smaller the total 

offloading delay, the greater the OECN priority. First, we sort 

the subtask sets and set the OECNs based on the 

corresponding priority rules, specifically taking 

 , 1,5
iTaskx i i=  as an example. 1Task with the highest 

priority is offloaded to OECN1 with the highest priority. This 

strategy saves delay for some high-priority subtasks. However, 

this does not guarantee reduction of the delay of the entire 

OUE. Therefore, we must analyze different scenarios, 

ignoring the local processing ability. 

S1: ( ) ( ) ( ) ( ) ( )
1 2 3 4 5

1 2 3 4 5o o o o o

Task Task Task Task Taskt t t t t     

The subscript of Task represents the priority of the subtask 

after sorting. ( ) is the priority of OECN after sorting. 

( )
1

1o

Taskt represents the total offloading delay of 1Task

processed by OECN1. This scenario is ideal. Each iteration 

can successfully match the current subtask based on its priority 

to the corresponding OECN having the best communication 

and computing resources. Compared with other allocation 

methods, the total offloading delay of OUE is small and only 

depends on ( )
1

1o

Taskt . 

S2: ( ) ( ) ( ) ( ) ( )
1 2 3 4 5

1 2 3 4 5o o o o o

Task Task Task Task Taskt t t t t    . As 

the size relationship between ( )
1

1o

Taskt and  ( )
5

5o

Taskt cannot 

be determined, it is not conducive to optimizing the overall 

OUE delay. 

The main idea of OAAS is to transform S2 into an ideal 

S1. We carry out strategy replacement and step-by-step 

comparison of 5Task  to solve the problem of not 

determining the relationship between ( )
1

1o

Taskt , ( )
2

2o

Taskt , 

( )
3

3o

Taskt , and ( )
5

5o

Taskt in S2. Specific improvement 

measures taken are as follows: first, we compare the size 

relationship between ( ) ( )( )
4 5

max 5 , 4o o

Task Taskt t , and 

( )
5

5o

Taskt after the strategy change and judge whether the 

( )
5

5o

Taskt partial offloading delay can be reduced. 

( ) ( )( ) ( )
4 5 5

max 5 , 4 5o o o

Task Task Taskt t t  implies that the strategy 

transformation saves more local delay at current ( )
5

5o

Taskt . 

( ) ( )( )
4 5

max 5 , 4o o

Task Taskt t  continues to compare with 

( )
3

3o

Taskt , ( )
2

2o

Taskt , and ( )
1

1o

Taskt stepwise to determine 

whether a new round of strategy replacement can be 
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performed. Consequently, we get the optimal offloading 

decision of ( )
5

5o

Taskt . In addition, 

( ) ( )( ) ( )
4 5 5

max 5 , 4 5o o o

Task Task Taskt t t implies that the current 

5Task cannot be replaced by strategy with OECN4. 5Task

continues to conduct strategy replacement and step-by-step 

comparison of the subtasks that have made the offloading 

decision. Algorithm 2 shows the pseudo-code of OAAS. 

 

Algorithm 2. Offloading decision allocation algorithm 

based on alternating selection (OAAS) 

Input: 𝑆, 𝑀, 𝑫, 𝒑max, Emax, 𝒇,
𝒈

𝝈𝟐 , 𝐵, 𝒕𝒐, 𝒕𝒍 

Output: 𝑿 

 

1: [𝒕𝒍, 𝒙𝒖𝒉𝒂𝒐]=sort(𝒕𝒍, 'descend') 

2: The p* obtained by Algorithm 1 is prioritized 

p*= 𝒑∗(𝒙𝒖𝒉𝒂𝒐, :) 

3: 𝒕𝒐 =
𝑫(𝒙𝒖𝒉𝒂𝒐)

𝐵log2(1+𝒑∗ 𝑔

𝜎2)
+

𝑫(𝒙𝒖𝒉𝒂𝒐)𝒂(𝒙𝒖𝒉𝒂𝒐)

𝒇
 

4: Sort OECN  [𝒂𝒂, 𝐢𝐚𝐚]=sort(𝒕𝒐(1, :)) 

5: if 𝐚𝐚(1) > 𝒕𝒍(1)    𝒙(1)=0  else  𝒙(1) = 𝒊𝒂𝒂(1) end 

6: for 𝑖=2:𝑆   𝑦=sum(𝒙~=0)+1  𝐱(𝑖) = 𝒊𝒂𝒂(𝑦) 

   Ideal situation: 

7: if 𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))<=𝒕𝒍(𝑖) &&𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))< 

𝒕𝒐(𝑖-1, 𝒙(𝑖-1)) 

8: 𝒙(𝑖) = 𝒊𝒂𝒂(𝑦) Non ideal situation: 

9: else if 𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦))<=𝒕𝒍(𝑖)&&𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦)) ≥

 𝒕𝒐(𝑖-1, 𝒙(𝑖-1)) 

Strategy transformation: 𝑗 = 𝑖  𝒙(𝑗) = 𝒊𝒂𝒂(𝑦) 𝑖𝑖 = 𝑖 

10: while (𝑖𝑖~=1) if  𝒕𝒐(𝑖𝑖-1, 𝒊𝒂𝒂(𝑦))<=  𝒕𝒐(𝑖, 𝒊𝒂𝒂(𝑦)) 

11: while (𝑗~ = 1) if  𝒕𝒐(𝑗-1, 𝒙(𝑗))<  𝒕𝒐(𝑗, 𝒙(𝑗)) 

   xx=𝒙(𝑗) 𝒙(𝑗) = 𝒙(𝑗 − 1) 𝒙(𝑗 − 1)=xx 𝑗 = 𝑗 − 1 
12: else 𝑗 = 𝑗 − 1 end  end break 

13: else 𝑖𝑖 = 𝑖𝑖 − 1 Try to find other tasks for policy 

change.  end end 

14: else 𝒙(𝑖)=0  end end  

 

5.2.2 Offloading Decision Allocation Algorithm Based on 

Multi-objective Alternative Selection (OAMOAS) 

 

The SSU and MSUS1 models satisfy the condition that the 

total number of subtasks to be processed is less than the total 

number of assignable OECNs. Therefore, OAMOAS for the 

MSUS1 model is an extension of OAAS for the multi-user 

scenarios. The optimization goal of the MSUS1 is to reduce 

the overall delay of multiple OUEs. Due to the significant 

differences between OUEs, OUEs must be prioritized during 

OECN matching to meet optimization requirements. In this 

section, we determine the priority order of OUEs by 

comparing the total local processing delay of each OUE. If the 

OUE with high local processing delay selects the OECNs that 

have excellent computing and communication resources, the 

offloading effect of saving delay will be clearer. Consequently, 

once the priority is assigned, the real-time update of the 

relevant parameters is completed. Then, OAAS is performed 

on each OUE to obtain the optimal offloading decision of each 

subtask. The selected OECN must be removed to ensure the 

one-to-one correspondence between subtasks and OECNs. 

The pseudo-code of OAMOAS is shown in Algorithm 3. 

 

Algorithm 3. Offloading decision allocation algorithm  

based on multi-objective alternative selection (OAMOAS) 

Input: 𝐾, �̑�,  �̑�𝒐, �̑�𝒍 

Output: �̑� 

 

Determine the offloading priority of each OUE 

1: [~, 𝒑𝒐𝒓]= sort(�̑�𝒍, 'descend') 

2: Update relevant parameters 

3: for 𝑘=1:𝐾 

4:  The p* obtained by Algorithm 1 

5: end 

6:  Then we can get  �̑�𝒐 

7:  for 𝑘=1:𝐾 

8:  Complete the offloading decision allocation according 

to Algorithm 2 

9:  Update OECN �̑� = �̑� − �̑�{𝑘} 

10: end  

 

5.2.3 Offloading Decision Allocation Algorithm Based on 

Node Redistribution (OANR) 

 

Due to the limited number of edge computing nodes for 

selection, the MSUS2 model cannot process all tasks in OUEs 

simultaneously. Therefore, it is necessary to redistribute the 

OECNs, for which we propose OANR. The specific operation 

process is as follows: 

First, we determine the offloading priority of each OUE by 

comparing the total local processing delay of each OUE. 

Simultaneously, we determine the OECN priority by 

comparing the total delay of the OUE offloaded by each 

OECN. Subsequently, based on the limited number of OECNs, 

OECN resources are divided so that a single OUE can obtain 

a certain number of OECNs to complete the offloading. The 

number of allocated OECNs is determined according to the 

proportion of the total amount of data to be processed in a 

single OUE in the total amount of all OUE data. This ensures 

that the OUEs do not interfere with each other and that fairness 

is maintained Let 
Number

k
m denote the number of OECNs that 

OUE k can use for offloading (Formula (14)). Subsequently, 

we can obtain the value range of the OUE’s offloading 

decisions. Furthermore, there is a non-negligible queuing 

delay from the current subtask to the corresponding OECN, 

except for the first assignment of the OECN. Therefore, it is 

also necessary to obtain the number of times the OUEs need 

to perform nodes reallocation according to Formula (15). The 

OUE neutron subtask sets are prioritized according to the local 

processing delay. Subtasks with high priority should be 

offloaded by OECNs first. It minimizes the queuing delay of 

the subtasks that are strongly required to be offloaded on 

OECNs. Finally, the subtask and OECN sets selected by OUE 

in each iteration are offloaded and distributed through OAAS. 

The pseudo-code of OANR is shown in Algorithm 4. 
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Algorithm 4. Offloading decision allocation algorithm  

based on node redistribution (OANR) 

Input: �̃�, �̃�, �̃�, �̃�𝒐, �̃�𝒍 

Output: �̃� 
 

1: Sort OUE[~, 𝒑𝒐𝒓]= sort(�̃�𝒍, 'descend') 

2: Sort OECN. Update relevant parameters. 

3: Develop OECN allocation scheme according to priority 

4: 𝑚�̃�
𝑁𝑢𝑚𝑏𝑒𝑟  is determined according to Formula (14) 

5: Update OECN value range:  

6: for �̃� − 1: 𝐾 if �̃�~ = 1 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 = 𝑂𝐸𝐶𝑁�̃�−1𝑚𝑖𝑛  

  + 𝑚�̃�−1
𝑁𝑢𝑚𝑏𝑒𝑟   𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 is the lower limit of 𝑂𝐸𝐶𝑁 

obtain by OUE �̃� 

7: else 𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 = 1 end 

8: 𝑂𝐸𝐶𝑁�̃�𝑚𝑎𝑥 =  𝑂𝐸𝐶𝑁�̃�𝑚𝑖𝑛 +  𝑚�̃�
𝑁𝑢𝑚𝑏𝑒𝑟 − 1 end 

9: for �̃� = 1: 𝐾 

10: Sort each subtask in OUE �̃� and update data 

11: According to Formula (15), 𝑶(�̃�) is obtained. end 

12: for �̃� = 1: 𝐾 for 𝑗̃ = 1: 𝑶(�̃�) Execute Algorithm 2 

end end  

 

1

1

,

,
1

= * ,

Sk

i

i

Sk

i

i

Task

k Task
Task TaskNumber

k Task
K

k Task
Task Taskk

D

m k

D

=

==





 

M .          (14) 

 

( )
( )

= ,
Number

k

k
k k

m


S
O .                        (15) 

 

6 Simulation Results 
 

This section focuses on the experimental simulations of 

the algorithms proposed to verify the effectiveness of the 

design schemes and algorithms in reducing delay. 

 

6.1 Setting SSU Model Simulation Parameters 

and Analyzing Results 
 

Setting S = 6, M = [10, 15, 20, 25, 30, 35, 40]. In other 

words, there are six simultaneous subtasks sending offloading 

requests to various MEC servers in OECNs. SSU model 

parameter values are shown in Table 1. 

We compare the performance of OAAS with the following 

proposed algorithms. Algorithm 1 assigns the OECN with the 

best channel condition and computing resources to the subtask 

with the highest priority in the current iteration for processing 

[18]. Algorithm 2 ignores the priorities of subtasks and 

executes Algorithm 1 according to the initial order of each 

subtask. In addition, we compare our results with artificial fish 

swarm algorithm (AFSA) [38], particle swarm optimization 

algorithm (PSO) [39], and ISS-AFSA [18]. Figure 2 describes 

the delay comparison of a single OUE on different OECNs. 

The delay of a single OUE decreases with the increase of the 

number of OECNs. Results show that the greater the number 

of OECNs, the greater is the chance that the subtask selects 

OECN with excellent channel conditions and computing 

resources for offloading. Thus, it is easier to save delays. In 

addition, Figure 2 compares the delay of a single OUE using 

different algorithms. Algorithm 1 can effectively reduce the 

offloading delay of subtasks in poor conditions. However, the 

overall delay of OUE is not considered. Compared with 

Algorithm 1, OAAS considers the delay of each subtask and 

the overall delay of OUE. Executing strategy replacement 

between the current and the high priority subtasks can further 

reduce the overall delay of OUE. Algorithm 2 ignores the 

priorities between subtasks. Therefore, subtasks with high 

priorities are offloaded to OECNs with low priorities. The 

overall delay of OUE is the highest compared with other 

algorithms. 

 

Table 1. SSU model simulation parameters 

Parameter Value 

Average calculated density a  [500, 1000] cycles/bit 

Mobile nodes computing frequency 

f  

[10, 20] GHZ 

Maximum energy consumption of  

subtasks 
maxE  

4 J  

Rated power of subtasks 
maxp  0.4 W 

Local computing frequency fl  0.01 GHZ 

Channel bandwidth B  1 MHZ 

Channel gain to noise ratio 
2

g
σ

 [0.01, 0.2] W-1 

Task data volume D  [2, 8] KB 

 

 

Figure 2. Comparison of OUE latency for the selected OECNs 

and algorithms 

 

We take M =30, subtask data volume D (KB) = [2,8], [9, 

15], [16, 22], [23, 29], [30, 36], S = 6 as an example. Figure 3 

describes the OUE delay comparison for different subtask data 

volumes. When the number of OECNs is sufficient, the OUE 

delay increases with the increase in the volume of subtask data. 

Figure 3 compares OAAS with ISS-AFSA, AFSA, and PSO 

algorithms. OAAS can find the optimal offloading decision 

allocation by comparing each subtask in stages and replacing 

strategies. We note that to improve the performance of other 

algorithms, they have to randomize the offloading strategies 

through continuous iterations. As there is no optimal 

resolution for the iterative convergence of parameter settings, 

the optimal solution is difficult to achieve. Among the 

discussed algorithms, AFSA and PSO have relatively constant 

parameter settings, limiting their abilities to optimize locally. 

However, we note that using step-size randomization process, 

ISS-AFSA has marginally improved its local optimization. In 
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addition, because OAAS does not need to perform iterative 

convergence, it can reduce the program execution delay. 

 

 

Figure 3. Comparison of OUE latency for different OECN 

data volumes and algorithms 

 

We take M = 30, S = [6, 8, 10, 12] as an example. Figure 

4 depicts the comparison of OUE delay for different numbers 

of subtasks. Results show that the OUE delay increases as the 

number of subtasks increases because, with every iteration, the 

unassigned subtasks can be offloaded to an OECN with a 

relatively low priority. Thus, the offloading delay of each of 

these subtasks contributes to the total OUE delay. Therefore, 

the overall OUE delay continues to increase. Figure 4 

compares the OUE delays for different algorithms. Results 

show that OAAS saves more time when dealing with large 

number of subtasks than other algorithms. We note that other 

algorithms may require many iterations to converge. Thus, the 

more the subtasks, the easier to fall into an optimal local 

situation. Therefore, saving delay can be difficult. 

 

 

Figure 4. Comparison of OUE delays for different number of 

subtasks and algorithms 

 

6.2 MSUS1 Model Experiment Parameter 

Setting and Result Analysis 
 

Setting  = 1,2,3,4,5 , 30K M = . In other words, the 

subtasks in K OUEs simultaneously send offloading requests 

to the MEC servers in thirty OECNs. The parameter values of 

the MSUS1 model are shown in Table 2. 

 

Table 2. MSUS1 model simulation parameters 

Parameter Value 

Average calculated density a  [500, 1000] cycles/bit 

Mobile nodes computing frequency 

f  

[10, 20] GHZ 

Maximum energy consumption of 

subtasks 
maxE  

4 J 

Rated power of subtasks 
maxp  [0.4, 0.6] W 

Number of subtasks S  [2, 5] 

Local computing frequency fl  [0.01, 0.1] GHZ 

Channel bandwidth B  1 MHZ 

Channel gain to noise ratio 
2

g
σ

 [0.01, 0.2] W-1 

Task data volume D  [1, 10] KB 

 

Figure 5 compares the average delay of different numbers 

of OUEs. Figure 5 shows that the average delay of multiple 

OUEs increases as the number of OUEs increases. When the 

number of OECNs is sufficient, the more the OUEs to be 

offloaded, the greater the demand for OECNs. Thus, it is easier 

for subtasks to choose OECNs with relatively poor 

communication and computing resources for offloading. 

Therefore, the average delay of multiple OUEs continues to 

rise. In addition, Figure 5 compares the average delay of 

multiple OUEs using different algorithms. Experimental 

results show that OAMOAS saves more node allocation delay 

as compared to the AFSA and PSO algorithms that require 

considerable iterative convergence. When K = 1, K = 2, K = 3 

with sufficient number of OECNs, the difference in OUE 

offloading delay with and without priorities is marginal. As 

the number of OUEs increases, the number and quality of the 

selected OECNs continue to decrease. The OUE priority 

assignment is particularly important in cases where K = 4, K = 

5. We conclude that OAMOAS can cope well with a large 

number of OUEs. 

 

 

Figure 5. Comparison of OUE delays for different numbers 

and algorithms 

 

6.3 Setting MSUS2 Model Simulation 

Parameters and Analyzing Results 
 

Setting K̃ = [4, 5, 6, 7], M ̃= 10. In other words, different 

numbers of subtasks in the K OUEs simultaneously send 

offloading requests to the MEC servers in ten OECNs. The 
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parameter values of the MSUS2 model are shown in Table 3. 

To verify the effectiveness of OANR in the MSUS2 model, 

we compare its performance with the following proposed 

algorithms. A limited number of OECNs are allocated to the 

subtask sets in each OUE based on Formulas (14) and (15). 

Subsequently, Algorithm 1 is executed in each node allocation 

iteration of Algorithm 3. Algorithm 4 ignores the priorities 

between multiple OUEs when executing OANR. Algorithm 3 

randomizes the number of OECNs obtained by each OUE and 

implements OANR on this basis. In Algorithm 4, when all 

OECNs are assigned, the remaining subtasks are processed 

locally, that is, the OECNs are not reused. 

 

Table 3. MSUS2 model simulation parameters 

Parameter  Value 

Average calculated density a   [500, 1000] cycles/bit 

Mobile nodes computing frequency 

f   

[5, 10] GHZ 

Maximum energy consumption of 

subtasks 
maxE  

4 J 

Rated power of subtasks maxp  [0.4, 1] W 

Number of subtasks S   [2, 5] 

Local computing frequency fl  [0.05, 0.1] GHZ 

Channel bandwidth B  1 MHZ 

Channel gain to noise ratio g
 2  

[0.1, 2] W-1 

Task data volume D  [1, 10] KB 

 

Figure 6 compares the average delay of each OUE for a 

limited number of OECNs. It shows that the average delay of 

OUEs increases as the number of OUEs increases. The more 

the OUEs to be offloaded, the greater the demand for OECNs. 

Thus, it is easier for subtasks to choose OECNs with relatively 

poor communication and computing resources for offloading. 

Due to the limited number of OECNs, subtasks have to 

compare their local processing delay with the total offloading 

delay when OECNs are redistributed. Therefore, the average 

OUE delay is larger than the sufficient-OECN scenario. 

Figure 6 also compares the average OUE delay for different 

algorithms. Compared with Algorithm 3, OANR considers the 

overall OUE delay and introduces strategy replacement. Thus, 

the effect of saving OUE delay is more obvious. We note that 

when =7K is due to 10M = , there are fewer OECNs 

compared to the number of OUEs to be processed. Each OUE 

can only be assigned a maximum of two OECNs. The 

selection of OECNs for OUE neutron tasks are also very 

limited. Only the best and worst cases are included. Therefore, 

OANR and Algorithm 3 have approximately the same delay-

saving effect owing to insufficient local computing power. In 

addition, in Algorithm 4, poor OUEs will select OECNs with 

relatively poor communication and computing resources for 

offloading. In contrast, a good OUE allocates OECNs with 

excellent communication and computing resources for 

offloading, resulting in the wastage of OECNs. Both are not 

conducive to saving delay. Algorithm 3 randomly allocates 

OECNs to each OUE, resulting in the assignment of OUEs 

with a small number of subtasks to considerable OECNs. 

However, OUEs with a large number of subtasks should use a 

limited number of OECNs for offloading. It wastes OECN’s 

communication and computing resources. The effect of saving 

delay is not good. 

 

 

Figure 6. Comparison of OUE delays for different numbers 

and algorithms 

 

 

Figure 7. Comparison of OUE delays for different local 

calculation frequencies and algorithms 

 

Figure 7 compares the average OUE delay for different 

numbers of OUEs and local computing frequencies. It also 

shows that the average OUE delay increases as the number of 

OUEs increases. However, it decreases with the increase in 

OUE’s local calculation frequency. The greater the frequency 

of OUE’s local calculation, the easier it is for subtasks to 

choose local processing. Thus, the unselected OECNs can 

process other subtasks, saving considerable delay. In addition, 

Figure 7 compares various algorithms. Unlike in the OANR, 

Algorithm 3 does not consider the delay of a single OUE. 

Algorithm 4 ignores the differences in offloading 

requirements between multiple OUEs. Algorithm 4 only 

performs OECN allocation once. Owing to the limited 

frequency of OUE’s local calculation, the effect of saving 

delay is not ideal. In particular, when 

 ( )=6,  0.05,0.1 GHZK fl = , OUEs are overburdened and 

the number of OECNs is limited. When each OUE undergoes 

an OECN allocation, the remaining subtasks are processed 

locally. In addition, the limited local calculation frequency of 

OUEs leads to a significant average OUE using Algorithm 3. 

However, the aim of Algorithm 3 is to save delay when the 

local calculation frequency of OUEs is sufficient. When 

 ( )=6,  1,5 GHZK fl = , because the OUE’s local 
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calculation frequency is sufficient, OANR chooses local 

processing when comparing offloading strategies. The effect 

is consistent with Algorithm 4. 

 

7 Conclusions 
 

Faced with massive maritime video surveillance 

information, we combine MEC with abundant node resources, 

and the network connectivity delay characteristics. We then 

establish SSU, MSUS1, and MSUS2 models based on the 

middle-sea scenario. The MSUS1 model is an extension of the 

SSU model in the multi-user scenario. Compared with the 

MSUS1 model, the MSUS2 model considers a limited number 

of OECNs. We divide the optimization problems into two sub-

problems. A binary search method is proposed to optimize the 

transmission power allocation. We propose OAAS, 

OAMOAS, and OANR to optimize the offloading decision 

allocation. We analyze the simulation results from algorithm 

comparisons and changes in the number of subtasks, data, and 

OUEs. Therefore, we can verify the effectiveness of the design 

schemes and algorithms in saving delay. We believe that 

further research is needed to establish the trust between 

OECNs in specific maritime video surveillance applications 

and reduce the dependency between subtasks.  
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