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Abstract 
 

In recent years, with the continuous development of 

Android applications, part of e-commerce business gradually 

promoted to the Android platform. Android malicious 

applications have become an important factor threatening E-

Commerce security. The Android malware application 

detection methods based on machine learning play an 

important role in malware detection, and most of them 

construct self-defined structured features with static analysis 

technique. The accuracy and comprehensiveness of features 

are disturbed by shell and code obfuscation techniques. In the 

case of applications using shell and code obfuscation 

techniques, these techniques would lead to instability of 

detection result. In addition, the way of these methods, which 

mainly use disassembly technology to extract source data, 

would deteriorate the efficiency of detection. In view of such 

problems, we propose an android malware application 

detection method based on RGB image features. Our method 

uses RGB image visualization technology to directly 

transform binary files into unstructured RGB images. In the 

process of model training, we acquire advanced features 

autonomously by training the VGG16 model with RGB 

images. We perform a comprehensive analysis of our 

approach and other methods on the Android malware dataset. 

The results show good efficiency and the adaptability of our 

method. 

 

Keywords: Android, Software security, E-Commerce, RGB 

image feature, VGG16 

 

1 Introduction 
 

Android is a free and open-source operating system based 

on Linux, widely used in E-Commerce. The Android 

operating system has three features: open-source code, strong 

hardware compatibility, and a large application market. 

Because of Android’s openness, it becomes the main target of 

malicious applications. According to Android malware special 

report, in 2019, 360 Security Brain intercepted 1,809,000 

Android malware samples, with an average daily increase of 

5,000. The types of new Android malicious applications are 

cost consumption, privacy theft, remote control, rogue 

behavior, malicious deduction of fees, fraud and so on.  

The Android malware applications is a constant threat to 

mobile E-Commerce. The security of Android applications 

has great significance for the sound development of the E-

Commerce. In recent years, Android Malicious Application 

Detection Method (AMADM) is a hot issue in the field of 

software security. Considering the advantages of detecting 

unknown malicious applications, a variety of AMADMs based 

on machine learning have been proposed. These methods used 

machine learning algorithms to train models, build classifiers 

and predict unknown samples. 

AMADMs based on machine learning have four parts: 

source data extraction, feature representation, model training 

and sample prediction. Source data extraction is to extract raw 

data from Android Application Package (APK) such as 

resource files, code files and configuration files. It would take 

a lot of time, when using disassembly techniques in this 

process. Feature representation is to construct self-defined 

structured features from raw data, which can reflect the 

information of applications. In this stage, the accuracy of 

structural features and the integrity of feature representation 

information depend on the prior knowledge used in dynamic 

analysis techniques or static analysis techniques. Many 

applications are protected with shell and obfuscation 

technologies. We couldn’t extract a Java program completely, 

when the applications use shell technologies. The purpose of 

these technologies is to prevent external programs or software 

from analyzing the applications. Obfuscation technologies 

make code reading analysis more difficult in three ways: 

encode classes and methods with meaningless strings, add 

useless permissions and APIs to the application, and store the 

APIs call in ASCCLL codes. The first obfuscation method 

does not disturb the extraction and detection of API features. 

The second obfuscation disturbs the final detection effect. The 

third form of obfuscation prevents us from effectively 

extracting API features. When facing those applications which 

use shell and obfuscation techniques, it is difficult to get high-

quality features. Model training is using representations to 

train some traditional machine learning models, such as 

support vector machines, decision tree, random forests and so 

on. All of these algorithms need structured input which has 

some rules and practical meaning. Recently, some researchers 

have been trying to train the model with deep learning 

algorithms. In comparison to traditional machine learning 

algorithms, deep learning algorithms can autonomously learn 

advanced features from image features. Furthermore, the input 

data of deep learning algorithms is more comprehensive than 

that of traditional machine learning algorithms. Sample 

prediction is to predict unknown applications with the model. 
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We propose a new AMADM based on RGB image 

features. It has four parts: selection feature files, RGB 

visualization, model training and sample prediction. Selection 

feature files are to extract three types of binary files: the dex 

file, Android manifest files, and the certificates files in the 

META-INF folder. RGB visualization is to convert these files 

into a RGB image. Model training is to train VGG16 model 

with RGB images. Sample prediction is to predict unknown 

applications. The contributions of this paper are as follows: 

(1) To improve the detection efficiency. When using 

binary data, we don’t need to disassemble the 

application. It improves detection efficiency. 

(2) Convert binary code into RGB image. The method 

of RGB visualization directly converts binary files 

into a RGB image. This method dost not rely on 

prior knowledge. By training the VGG16 model 

with RGB images, we could obtain advanced 

features more intelligently. 

(3) To improve the adaptability of detection system. The 

experiment results show that our method has better 

detection results against malicious applications than 

other methods. Our method has a high TPR for both 

benign and malicious applications. 

 

2 Related Work 
 

The type of feature in AMADMs mainly includes 

permissions, APIs, opcodes and graphs.  

Permissions and APIs ware the security mechanisms 

which restricted the use of some restrictive functions in 

applications. [1-9] Peiravian et al. [1] used the call 

relationships between function packages and classes in the 

applications as a feature which could present APIs. They also 

got the permission application list from configuration files. 

The list was another feature which could present the 

permissions. Then they fused the two classes of features into 

a set of features which was used to train the traditional 

machine learning classifiers. The classifiers could detect 

identify malicious behavior in Android applications. Arp et al. 

[6] proposed a lightweight detection method, which was 

named Drebin, based on permissions and APIs. This method 

significantly enhanced the detection ability and efficiency. In 

addition, they collected a data set of Android malicious 

applications, which also was named Drebin. This data set was 

applied to the studying of Android malicious applications. 

Suarez-Tangil et al. [7] proposed the DroidSieve method in 

which several static features were extracted. These features 

included permissions, APIs and application components. The 

method first detected whether the application had malicious 

behaviors. If so, they would classifiers it as belonging to a 

family of related malware. The detection rate of DroidSieve 

on 100,000 benign and malicious achieved 99.44%. Qiao et al. 

[8] proposed an AMADM which took permissions and APIs 

as features. Based on static analysis of the Android 

applications’ code files and resource files, they extracted 

permissions and API features in binary form. Then feature 

selection technology was used to reduce the dimension of the 

feature matrix and to improve efficiency. Finally, they trained 

different traditional machine learning classifiers to detect 

malicious Android applications. The result showed that the 

detection effect of permissions combined with API was better 

than that of permissions alone. Sun et al. [3] developed an 

AMADM method which was named SIGPID. It identified an 

essential subset of permissions with three types of data 

analysis: permission ranking with negative rate, support based 

permission ranking and permission mining with association 

rules. By utilizing this method, the number of permissions 

which needed to be analyzed was reduced by 84%. Their 

detection method improved efficiency. Wu et al. [9] used static 

analysis mechanism to extract resting state information from 

applications, such as permissions, subassemblies, the 

information of Intent and APIs. This information could 

effectively detect different intentions in Android malicious 

applications.  

The AMADMs based on permissions and APIs methods 

had a high detection rate for specific Android malwares. 

However, with the development of malicious applications, 

malware developers keep trying to bypass such detection 

methods by building structures similar to those of benign 

applications. There is a class of malicious applications in the 

production environment, which are based on benign 

applications and insert malicious code into benign 

applications. There are subtle differences, which couldn’t be 

reflect through permissions and APIs, between malicious 

applications and benign ones. In addition, in order to improve 

detection efficiency, the detection methods represented by 

Qiao et al. [8] need to select feature. It relies on the prior 

knowledge. The richness of researchers’ knowledge reserves 

directly affects the validity of features. Therefore, permissions 

and API characteristics greatly reduce the ability to detect 

malware in complex scenarios.  

The object of feature extraction for the AMADMs based 

on opcodes and graphs [10-19] was the davlik code. So, these 

features could give a accurate expression than permissions and 

APIs. Opcode features [10, 16-19] employed the idea of 

natural language processing. In order to accurately and 

effectively detect the payment cracked type of Android 

malicious applications, Tang et al. [16] statically analyzed 300 

Android payment cracked applications. The analysis results 

show that Android payment cracked applications mainly 

include logic cracked and content cracked. For these two 

cracked methods, they constructed opcode N-gram features 

based on function call control flow and Repeating code sub-

block features. Then two groups of features were used to train 

XGBoost classifier and random forest classifier respectively. 

Finally, they used the decision algorithm to fuse the detection 

results of the two groups of classifiers. Experimental results 

showed that their detection method could effectively detect 

malicious behavior of payment cracked type in Android 

applications. Canfora et al. [17] characterized the frequencies 

of opcode N-grams, and tested the accuracy of detection at 

different values of N. The average detection rate was 97%. 

Experimental results showed that this method could 

effectively solve the detection problem of payment cracked 

applications. Chen et al. [18] proposed a clone detector which 

was named Nicad to identify consistent malwares. They 

extracted Java code from the binary code and found the classes 

of clones by Nicad method. Then to detect malware with these 

classes as signature. Their detection method could detect 95% 

of previously known malware. Zhang et al. [19] calculated the 

n-gram value of the opcode. Then the value of the opcode was 

divided into SA-CNN slices to train CNN. The shape of every 

SA-CNN is (M, N). The result showed that the experimental 

index is optimal when (M, N) is (400, 10). Graph features [11-

15] adopted the call relationship of functions. Fan et al. [11] 

proposed a detection method named DAPASA. This method 
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assumed two types of malicious application models: malicious 

behavior payloads of the piggybacked application and host 

malicious applications. Based on these two malicious 

application models, they generated a sensitive subgraph (SSG) 

to describe the potential malicious behavior in applications. 

Then they constructed five features from SSG to feed the 

machine learning algorithms. Hou et al. [12] used the 

HinDroid method to build API heterogeneous information 

network. The API heterogeneous information network 

represented four kinds of the relationship between APIs and 

applications: API call, API calls in the same code block, API 

calls with the same package name, and API calls with the same 

invoke type. They constructed characteristics based on these 

four relationships. Fan et al. [13] used the frequent subgraphs 

as the features which could present the malicious activity in 

the Android malware applications. On this basis, they 

developed an automated Android malicious applications 

classification system, which was named FalDroidAndroid.  

Compared to permissions and APIs, the feature structure 

of opcodes and graphs is more complex. Opcodes and graphics 

feature extraction objects are assembly opcodes that could 

reflect the subtle differences between applications. Such 

features are based on the discipline of probability and statistics 

and do not depend on prior knowledge. In complex scenarios, 

they could detect mutated malware effectively. However, 

these studies did not consider the problem of disassembly 

applications using shell and obfuscation techniques. Shell 

technology and obfuscation technology increase the difficulty 

of obtaining core code in applications. It is difficult to 

disassemble accurate and complete Java code from 

applications that use shell and obfuscation techniques. The 

detection ability of the method based on opcode and graph will 

be limited and the detection accuracy couldn’t be further 

improved. In addition, disassembly technology also restricts 

the improvement of detection efficiency.  

In recent years, some new types of AMADMs [10, 19-26] 

based on deep learning algorithms have been proposed by 

researchers. The application of deep learning algorithm 

provided a new direction to detect malwares. Li et al. [10] 

proposed an Android malware detection method based on 

deep learning algorithm. They first used disassembly 

technology to extract opcode sequences from applications and 

calculated the frequency of each opcode according to the 

official opcode sequences. Then the frequency vector of the 

opcode list was mapped to a binary matrix. Finally, the CNN 

neural network was trained by this binary matrix. The 

experiment result showed that the detection system achieved 

an accuracy of 99%. Zhang et al. [20] used binary values to 

represent opcodes, permissions, and API usage frequency 

values in the application. The binary was converted into a 

color image as a feature. The deep learning algorithm can 

obtain the rules hidden in the data, by learning the sample data. 

Compared to the AMADMs based on traditional machine 

learning algorithms, the detection models of these methods 

were more flexible. They showed good robustness in complex 

scenarios.  

However, all of these methods still needed to disassembly 

applications. The disassembly problem of shell application 

was still unresolved. 

 

 

 

 

3 Our Approach 
 

In this section, we will detail three parts of our method: 

selection feature files, RGB visualization and model training. 

 

3.1 Selection Feature Files 
 

The process of selection feature files is to extract three 

types of binary files from the APK files: dex files, Android 

manifest files and certificates files in the META-INF folder. 

All of these files will be utilized in the process of RGB 

visualization. 

The APK files is a type of application package which is 

used in Android option systems. The package mainly includes 

five types of files which have been compiled: the dex file, 

resources files, assets files, certificates files and Android 

manifest files. The dex file is a binary file which contains all 

of the compiled Java code. The androidmanifest.xll file is a 

manifest file of applications. It is usually stored in the root 

directory. The file mainly declares three types of information 

which is necessary for application: the name of application 

package, application components and permissions. The 

certificates files, which mainly contain MF, SF and RSA files, 

can be regarded as the containers of APK. They record the 

digest information of all files in the APK. The resources files 

and assets files are used to store the application’s scene 

resource files such as images, audio, and interface code. 

The AMADMs based on machine learning usually 

extracted androidmanifest.xml file and dex file to construct 

features. In the process of source data extraction, they needed 

to decompile these files. The accuracy of decompile results 

would affect the quality of feature. 

It was difficult to get complete davlik code from shell 

applications by decompiling. Besides, decompiling shell 

applications would take a lot of time. So, the features quality 

of opcodes and graphs would be greatly reduced, when 

detecting shell applications. 

Unlike other methods, we don’t disassemble the dex file, 

the androidmanifest.xml file and the certificates files in the 

META-INF folder. Our method is divided into two parts: (1) 

Unpack the APKs. In this part, we just extract all the files from 

the APKs and don’t decompile these files. (2) Select feature 

files. In this part, we screen out the dex file, 

androidmainfest.xml file and the certificates files in the 

META-INF folder from all the files which have been extracted 

from the APKs. 

 

3.2 RGB Visualization 
 

Figure 1 is the detailed process of RGB visualization. The 

process mainly includes binarization and RGB visualization 

parts. 

We get dex files, androidmanifest.xml files, and the 

certificate files in the META-INF folder by unpacking the 

APK. Binarization is to generate B by splicing the binary of 

these files. B is a string containing 0 and 1. Algorithm 1 is the 

way to splice the binary data of these files. Fd, Fa, Fc is dex 

files, androidmanifest.xml files, and the certificate files in the 

META-INF. 
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Figure 1. The process of Android RGB visualization 

 

 

Algorithm 1. Reading the data of files 

Input: Fd, Fa, Fc 

Output: B 

Arrayd, Arraya, Arrayc 

Read.binary(Fd, Fa, Fc).to_array() 

For arrayi in (Arrayd, Arraya, Arrayc): 

  For i in length(arrayi): 

    B.append(arrati[i]) 

 

The RGB visualization method is to convert B into a “red-

green-blue” three-channel image. Each pixel is composed of 

three channels. The value range of each channel is [0, 255]. 

RGB visualization requires the following three basic steps. 

We divide B into three equal segments of characteristic 

binary code of the same length br, bg, bb by algorithm 2. br is 

the binary code snippet for the red channel. bg is the binary 

code snippet for the green channel. bb is the binary code 

snippet for the blue channel. 

 

Algorithm 2. Divide B into br, bg, bb 

Input: B 

Output: br, bg, bb 

While (length(B)%3! = 0): B.append(0) 

br = B[0: 1/3 length(B)] 

bg = B[1/3 length(B): 2/3 length(B)] 

bb = B[2/3 length(B): length(B)] 

 

Divide each code segment into sub-code segments of 8-bit 

length. Each sub-code segment represents the value of each 

channel, Pi, at the pixel point. So, br = {Pr1, Pr2, …, Pri}, bg = 

{Pg1, Pg2, Pgi}, bb = {Pb1, Pb2, Pbi}. The range of Pi is [0, 255]. 

Suppose a binary code segment is 0101000101110100. This 

process is 0101000101110100→ 01010001, 01110100→ 81, 

116. 

Transform br, bg, bb into three matrices whose dimensions 

are [J, K]. Algorithm 3 is the way to get the column J and row 

K. Then padding the data of bi into the matrix Mi whose 

dimension is [J, K]. Finally, use the Image.fromarray function 

to convert [Mr, Mg, Mb] into a RGB image. 

 

3.3 Model Training 
 

3.3.1 Preprocessing 

 

Before training the model, we need to do some preparatory 

work which is named preprocessing. Preprocessing mainly 

includes three parts: image standardization, setting labels and 

data set segmentation. (1) Image standardization is to 

transform the images in a data set into images with the same 

dimension. We use the transforms.Compose function to 

transform the image into a standard 224╳224╳3 image. (2) 

Setting labels is to set the image of the malware to value 1 and 

the image of the benign to value 2. (3) Data set segmentation 

is to take 90% of the data set as the training set and 10% of the 

data set as the test set. 

 

Algorithm 3. Getting the column J and row K 

Input: bi 

Output: J & K 

l = length(bi) 

J = sqrt(l) 

If l%J==0: K = l//J 

Else: 

  low = pow(J, 2) 

  high = pow(J + 1, 2) 

 If (l−low) > = (high−l): J = J + 1 

  J = J−1 

  While (J > 0): 

        If (l%J): break 

        J- = 1 

  K = l//J 

 

3.3.2 VGG16 Model 

 

We choose VGG16 neural network algorithm as the model 

training algorithm. VGG16 network is a deep network model 

developed in 2014. It has 16 training parameter networks. As 

shown in Figure 2, VGG16 consists of 13 convolutional layers, 

5 maximum pooling layers and 3 full connection layers. The 

parameters of convolutional layers and full connection layers 

are obtained by training. In addition, we use transfer learning 

in our work. The parameters of convolutional layers in our 

model are pre-trained. We only train the parameters of full 

connection layers. There are three advantages to adopting 

transfer learning: (1) The model has excellent initial 

performance.(2) In the training process, the model is improved 

at fast rate.(3) After training, the model has excellent 

convergence results. 
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Figure 2. VGG16 model 

 

Convolution layer: The convolution layer consists of several 

convolution kernels. Formula (1) is the calculation formula of 

the convolution layer. N is the size of output matrix M. W is 

the input size. F is the convolution kernel size. P is the filling 

value size. S is the step size. Formula (2) is the operation 

formula of the convolution kernel. Wj ∈ R3╳3, Wj is the 

parameter matrix of the convolution kernel.  is the 

convolution kernel set with dimension R3╳3. M is the input 

matrix. bj is the bias parameter matrix for each convolution 

kernel. f1 is the ReLU activation function. 

 

N = (W – F + 2P)/ S +1.              (1) 

 

cj = f1(Conv(M, wj) + bj).             (2) 

 

Max-pooling layer: As shown in Figure 3, the purpose of the 

Max-pooling layer is to extract the maximum value of the 

target region. The filter size is 2╳2. Stride is 2. 

 

1 3 2 1

1192

1 3 2 3

2165

9 2

36

 
Figure 3. Max-pooling 

 

Full connection layer: Before the full connection layer, the 

last pooled output matrix needs to be stretched into a one-

dimensional vector z by using the flatten function. Then the 

output of the previous full connection layer is the input of the 

next fully connection layer. As shown in Figure 4, each node 

in the full connection layer is connected to all nodes in the 

preceding layer. Formula (3) is the calculation formula of the 

fully connection layer. Wf is the weight matrix of the full 

connection layer. b’ is the offset term matrix. y is the output 

matrix of the full connection layer. 

 

y = f
2
(Wfz)+b

'.                   (3) 

 

Z1

Z2

Z3

y1

y2

y3

input output
 

Figure 4. Full connection layers 

 

4 Experiments 
 

In order to verify the effectiveness of our method in 

Android malicious application detection, we mainly answer 

the following three questions (Qs) through experiments: 

(1) Q1: Whether our method has good detection ability? 

(2) Q2: Whether our method has better adaptability 

compared with other methods? 

(3) Q3: Whether our method is more efficient? 

 

4.1 Environment and Datasets 
 

The equipment used in our experiment is a machine with 

192G RAM, 2T HDD and Intel(R) Xeon(R) Silver 4214 CPU 

operating at 2.20 GHz. 

Table 1 shows the three data sets which were utilized in 

our experiment. 

 

Table 1. Data sets used in the experiment 

 AndMal CICMalDroid DREBIN 

Benign application 1500 3000 3000 

Malicious applications 500 1000 1000 

 

4.2 Evaluation Parameters 
 

The evaluation parameters used in the experiment include 

precision, accuracy, TPR, f1-score, receiver operating 

characteristic (ROC) curve and Area Under Curve (AUC). TP 

is the number of malicious applications which are correctly 

classified as malicious applications. FP is the number of 

benign applications which are misclassified as malicious 

applications. TN is the number of benign applications which 

are correctly classified as benign applications. FN is the 

number of malicious applications which are misclassified as 

benign applications. 

Precision is the percentage of the benign/malicious 

applications, which are correctly predicted, of all identified 

benign/malicious applications. 

 

Precision =
TP

FP+TP
/

TN

FN+TN
 .           (4) 

 

Accuracy is the percentage of the applications, which are 

correctly predicted, of all applications. 
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Accuracy =
TP+TN

TP+FN+TN+FP
 .           (5) 

 

TPR is the percentage of benign/malicious applications, 

which are correctly predicted, of all benign/malicious 

applications. 

 

TPR =
TP

TP+FN
/

TN

TN+FP
 .               (6) 

 

F1-score is defined as  

 

F1-score =
2*Precision*Recall

Precision+Recall
 .          (7) 

 

The ROC curve is also called sensitivity curve. All points 

on the curve reflect the same sensitivity, which is the result of 

the response to the same signal stimulus under several 

different criteria. The horizontal axis of the ROC curve is false 

positive rate (FPR), which is the probability of incorrectly 

predicting a positive example. The vertical axis of the ROC 

curve is true positive rate (TPR). 

FPR =
FP

FP+TN
 .                     (8) 

 

AUC is the area surrounded by roc curve and coordinate 

axes. The value range of AUC is [0, 1]. When AUC is [0, 0.5), 

the constructed detection model can’t detect unknown samples. 

When AUC is 0.5, the detection model is a random prediction 

model. When AUC is (0.5, 1], the detection model can 

effectively detect the unknown samples. The higher the value 

of AUC, the stronger the model detection capability. 

 

4.3 Answering Q1: The Detection Effect of Our 

Method Used in Different Datasets 
 

Before training the model, we extract the RGB image 

features applied to AndMal, CICMalDroid and DREBIN. As 

shown in Figure 5, there are significant differences between 

malicious and benign applications in three data sets. Moreover, 

the feature images of benign applications between different 

data sets have high similarity. 

 

Malicious

Benign

AndMal CICMalDroid DREBIN

 
Figure 5. RGB images features of three datasets 

 

AndMal CICMalDroid DREBIN
 

Figure 6. The experiment result of three datasets 

 

The VGG16 neural network model in our method is 

trained by using three data sets respectively. As shown in 

Figure 6. After 100 rounds of training, the AndMal, 

CICMalDroid and DREBIN training sets are nearly 99 percent 

accurate. The test set is around 95% accurate. Because we use 

transfer learning, the accuracy of the training-test set is about 

80% at the beginning of model training. 

Table 2 lists the detection results of our method utilized in 

AndMal, CICMalDroid and DREBIN data sets. The TPR 

values of the benign application in the three data sets are 98%, 

99% and 98%. The TPR for malicious applications are 91%, 

81% and 84%. The f1-score values of benign applications are 

97%, 95% and 95%. The f1-Scores of malicious applications 

are 93%, 87%, and 90%. The precision values of benign 

applications are 96%, 91% and 91%. The precision values of 

malicious applications are 95%, 98%, and 97%. Accuracy 

values of RGB image features in the three data sets are 96%, 

93% and 94%.  
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Table 2. The detection effect of three datasets      % 

Datasets AndMal CICMalDroid DREBIN 

TPR 
Benign 98 99 98 

Malicious 91 81 84 

f1-score 
Benign 97 95 95 

Malicious 93 87 90 

precision 
Benign 96 91 91 

Malicious 95 98 97 

accuracy 96 93 94 

 

Figure 7 shows the ROC curve and AUC values for the 

three data sets. The AUC values are 0.94, 0.89 and 0.91. These 

values indicate that the VGG16 detection model trained by our 

method is a strong detection model. 

 

 
Figure 7. The ROC curve of three datasets 

 

4.4 Answering Q2: Compare the Detection 

Ability Our Method with Other Methods 
 

Table 3 lists the detection results of RGB image features 

and other three methods on the AndMal2017 dataset. The TPR, 

f1-score and precision of malicious applications are higher 

than the other three methods. The TPR values of malicious 

applications in our method and the other three methods are 

91%, 87%, 63% and 73%. The f1-score values of malicious 

applications in our method and the other three methods are 

93%, 83%, 69% and 72%. The precision values of malicious 

applications in our method and the other three methods are 

95%, 79%, 77% and 71%. The accuracy values of our method 

and other three methods are 96%, 92%, 88% and 89%. 

 

Table 3. The detection effect of different features      % 

Methods 
RGB  

image 

n-gram  
[19] 

API  
[2] 

Binary  
[10] 

TPR 
Benign 98 94(-4) 95(-3) 92(-6) 

Malicious 91 87(-4) 63(-28) 73(-18) 

f1-score 
Benign 97 95(-2) 93(-4) 93(-4) 

Malicious 93 83(-10) 69(-24) 72(-21) 

precision 
Benign 96 97(+1) 91(-5) 93(-3) 

Malicious 95 79(-16) 77(-18) 71(-24) 

accuracy 96 92(-4) 88(-8) 89(-7) 

 

Effective detection of malicious applications is of great 

significance to protect mobile e-commerce. In order to 

visualize the advancement of our approach, in Table 3, we 

indicate the absolute difference of the detection data between 

their method and ours in parentheses. It is worth noting that 

the detection data of our method for malicious applications is 

significantly higher than the other three methods. For example, 

for the detection data of malicious applications, our method 

has 28% higher TPR than API [2], 21% higher f1-score than 

Binary [10] and 16% higher precision than n-gram [19]. 

Figure 8 shows the ROC curve and AUC values on the 

AndMal data set. The AUC values of our method and other 

three methods are 0.94, 0.91, 0.79 and 0.83. The above 

schemes can effectively detect unknown malicious 

applications. However, the detection ability of the model 

trained by our method is better than the other three methods. 

 

 
Figure 8. The ROC curve of different features 

 

4.5 Answering Q3: Compare the Time and Space 

Used by Our Method and Other Methods 
 

We compared the time and space, which is spent on our 

method and the other three methods, with 50 applications as 

examples.  

Figure 9 is the line box diagram of time distribution. The 

time which is spent on our method was about 5s. The 

extraction time of the other three methods is about 15s. The 

three methods took three times as long as ours. 

 

 
Figure 9. Running time distribution diagram 

 

Figure 10 shows the line-box diagram of the distribution 

of the file size generated. The size of files generated by our 

method is much smaller than the methods based on opcode N-

gram, API and Opcode binary. 
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Figure 10. Excessive files size distribution diagram 

 

4.6 Discussion 
 

Table 4 lists the performance comparison between our 

method and the other three methods. The detection accuracy 

of our method and the method used in reference 19 is much 

higher than that of reference 2 and 10. The proposed method 

is superior to the above three methods in the time and space 

required for detection. To sum up, the Android malware 

detection method based on RGB image features has good 

detection performance and efficiency. 

 

Table 4. Performance comparison 

Indicator Accuracy Time Space 

RGB image high low small 

n-gram [19] high high big 

API [2] moderate high big 

Binary [10] moderate high big 

 

Discuss Q1: As shown in Figure 5, the RGB images of 

benign applications are well-organized granular images. The 

structures of these images have a clear sense of layered. 

However, the structures of malicious’ RGB images are chaotic. 

The malicious behaviors of malicious applications mainly 

include cost consumption, privacy theft, remote control, 

permission abuse and so on. In order to avoid detection, the 

malicious behavior mentioned above usually does not appear 

in the application alone. Malicious application developers 

would inject malicious behavior code and configuration 

information into the code and configuration information of 

benign behavior. It does not interfere with the normal 

operation of the applications. But this operation disrupts the 

overall structure of the code and configuration information. 

The RGB visualization observes application configuration 

information, code information, and certificate information 

from a macroscopic perspective. On the image got by the RGB 

visualization, the malicious applications present a 

phenomenon of chaotic structure. Because there is no 

malicious behavior in the benign applications, the overall 

structure of configuration information, code information, and 

certificate information is not disturbed. The RGB images of 

benign applications is an ordered layered structure image. We 

use RGB images of three data sets to train the VGG16 

algorithm. According to the changes in detection accuracy of 

training set and test set shown in Figure 6, our method has high 

detection accuracy in the three data sets. So, our method has 

good detection ability. 

Discuss Q2: In Table 3, the detection result of our method 

for malicious applications is better than the other three 

detection methods. There are two main factors influencing 

these methods based on opcode n-gram and opcode binary: 

obfuscation technology and shell technology. Obfuscation 

techniques make code analysis more difficult. The methods 

based on opcode n-gram and opcode binary need to locate the 

key code information in the code. The accurate information of 

code processed by obfuscation techniques is difficult to obtain 

through static analysis. It increases the difficulty of obtaining 

accurate features. Shell technology which could increase the 

difficulty of obtaining critical code is a code protection 

technology. So, it’s difficult to obtain detailed and rich opcode 

information. Although it’s hard to use disassembly technique 

to extract accurate opcode information from the applications 

which are protected by the obfuscation and shell technology, 

all of the applications’ information is still stored intactly in the 

dex file as binary data. The RGB visualization technology is 

to convert all binary data of the object files into images. This 

process eliminates disassembly techniques. Shell technology 

and obfuscation technology do not interfere with extracting 

the information of application. Our approach ensures 

maximum information integrity. In addition, the API features 

are simple in structure. Malicious applications can circumvent 

the detection systems by using the same APIs of benign 

applications. Compared with API features, the advanced 

features obtained by training VGG16 with RGB images are 

more complex. Malicious applications can’t bypass detection 

by such methods. 

Discuss Q3: As shown in Figure 9, the methods based on 

opcode n-gram, opcode binary and APIs take three times as 

long as our method. These three methods need disassembly 

application when constructing feature. Disassembly 

applications, especially which using shell technology, require 

a lot of time. Our approach uses RGB visualization techniques 

to transform application-critical information into images. 

Finally, training VGG16 is used to generate neural network 

detection model. This process does not utilize disassembly 

technology, saving the disassembly application time. The 

results of Figure 10 show that the space used by the other three 

methods is much larger than ours. The reason is that the other 

three methods inevitably generate many excessive files when 

constructing features. Instead, our method uses binary files 

directly to construct features and does not produce excessive 

files. 

 

5 Conclusion 
 

In order to protect the security of E-Commerce 

applications on Android platforms, we propose an Android 

malware application detection method based on RGB image 

features. In this paper, we designed three groups of 

experiments to evaluate our approach from the perspectives of 

stability, performance and efficiency. The results show good 

results in feature processing efficiency and the adaptability of 

our method. The RGB visualization technology in our method 

converts binary files into RGB pictures. Such technology not 

only improves the speed of data processing, but also avoids 

information loss caused by disassembly. Compared with the 

self-defined structural features of traditional machine learning, 

the form of images has visual form which almost retains all 

the information about the applications. When detecting special 

applications which utilize shell and obfuscation techniques, 
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the deep learning technology which was adopted by our 

method in the process of model training has better detection 

performance. Although deep learning takes a long time to train 

when processing a large number of samples, the mobile E-

Commerce would improve the detection efficiency of the 

model by using server-side training and client-side detection. 
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