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Abstract 
 

Poor sleep quality is a common disease for modern people. 

Snoring is one of the essential indicators to measure 

Obstructive Sleep Apnea (OSA). When sleeping, the number 

of episodes of snoring and coughing are related to the 

estimated sleep quality. This study proposes a method to 

detect snoring and coughing in patients when sleeping. The 

proposed method includes three stages. Firstly, the nightly 

sound data for a patient are segmented to each independent 

event. Secondly, the time domain signal is changed to a 

frequency domain signal by Fourier Transform, and then the 

features are extracted from the snoring and coughing episodes. 

Lastly, the Support Vector Machine (SVM) and the Hidden 

Markov Model (HMM) are used to recognize snoring and 

coughing. The result of our experiment demonstrates that this 

method has good detection performance. 

 

Keywords: Coughing detection, Snoring detection, Machine 

learning, Hidden Markov Model, Support Vector 

Machine 

 

1 Introduction 
 

Poor sleep quality and sleep apnea are common diseases 

for modern people. As the National Institute of Health reports, 

sleep is a vital part of people’s daily routine [1]. In addition to 

feeling tired quickly during the day, people with poor sleep 

quality are more likely to have lower immunity and suffer 

from physical and mental illnesses. Good sleep is strongly 

related to better physical, cognitive, and psychological health. 

In contrast, poor sleep can impair cognitive and psychological 

functioning and worsen general physical health [2]. For 

example, good sleep quality can reduce the risk of 

Alzheimer’s disease [3]. 

Obstructive sleep apnea (OSA) is a common and highly 

prevalent disease in the general population [4-7]. An airway 

blockage causes OSA during sleep with repetitive apneas and 

hypopneas. Most OSA patients are overweight; thus, the 

respiratory tract becomes narrowed. Some patients are born 

with a small chin or hypertrophy of the tonsils [8], which 

makes the upper respiratory tract collapse. This would obstruct 

the respiratory tract and produce a shallow breathing effect. 

Patients with severe OSA also have a high probability of 

choking. 

 

Many instruments are used to record information when a 

patient is sleeping. Polysomnography (PSG) test is frequently 

used because it contains bioelectric signals, for example, 

electromyography (EMG), electroencephalography (EEG), 

electrocardiography (ECG), and electrooculography (EOG) 

tests. PSGs require a large number of wired devices to be 

attached to the patient but it can produce accurate detection 

results. However, the patient’s discomfort may result in a 

change of sleep habits and decrease sleep quality. PSGs are 

expensive and non-portable, so patients must visit the hospital 

for the examination. A lack of hospital beds in sleep centers 

results in waiting lists for examinations, and patients with 

severe OSA must wait for therapy. 

Snoring is a prevalent condition caused by breathing 

through a narrow respiratory tract as the throat muscles relax 

during sleep. Almost half of men and 20%~30% of women 

experience snoring problems. Older people, whose throat 

muscles are not as elastic, can exhibit a collapsed respiratory 

tract during sleep. A study shows that more than 80% of men 

and 70% of women over 60 snore. Coughing is a natural 

reaction when the trachea or bronchial mucosa is stimulated 

due to foreign objects entering. The process of coughing 

includes muscle contraction. If coughing occurs during sleep, 

sleep is disturbed and may cause breathing abnormalities. 

However, patients who suffer from OSA often experience 

snoring and coughing when sleeping at night. When patients 

first visit the hospital for treatment, doctors do not have access 

to any snoring or coughing data, so if such data can be 

accurately detected, the diagnosis will be more accurate. This 

study proposes a quick screening method for patients to aid in 

diagnosis and reduces waiting lists. This study sees patients 

carrying a lightweight and non-contact audio recording 

mechanism to record noises when sleeping. The mechanism 

proposed in this paper to detect snoring and coughing during 

sleep, as shown in Figure 1, has a recording pen with a highly 

sensitive microphone. 

There are four stages of sound detection, as shown in 

Figure 2. An audio signal is segmented into independent 

events using endpoint detection, and different features are 

extracted from independent events. These features are then 

input into the classified model to compute the classification 

result. 
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Figure 1. The mechanism for sound recording and detection 

during sleep 

 

 

Figure 2. Sound detection process 

 

Most endpoint detection methods use energy and a zero-

crossing rate to calculate the threshold [9]. A result greater 

than the threshold is categorized as an audio event. Ali 

Azarbarzin et al. [10] proposed a Modified Vertical-Box 

Control Chart to replace a Vertical-Box Control Chart in 

statistics to segment valid audio events for subjects during 

sleep. 

For feature extraction and classifier for snoring, W. D. 

Duckitt et al. [11] used the Mel-a frequency Cepstral 

coefficient (MFCC) as a feature with a Hidden Markov Model 

(HMM) for sound classification such as snoring, breathing, 

duvet noise, silence, and other noise. Snoring is classified with 

an accuracy of 82% to 89%. M. Cavusoglu et al. [9] proposed 

a Short-Time Fourier Transform (STFT) to calculate ten-

dimensional feature vectors and used Principal Component 

Analysis to reduce the ten-dimensional feature vectors to two-

dimensional feature vectors. A Fuzzy C-means clustering 

method was then used to classify snoring, breathing, and other 

sounds with an accuracy of 88% to 98%. A. S. Karunajeewa 

et al. [12] proposed four features for classifying snoring, 

breathing, and silence. The four features are the number of 

zero crossings, the energy of the signal, the normalized 

autocorrelation coefficient, and the first predictor coefficient 

for linear predictive coding with an accuracy of about 90%. 

For feature extraction and a classifier for coughing, Sung-

Hwan Shin et al. [13] proposed an automatic cough detection 

system to monitor a person’s physical condition. An Energy 

Cepstral Coefficient (ECC) and filter envelope for features 

was proposed, and an Artificial Neural Network model and 

HMM was used for classification. For a Signal to Noise Ratio 

(SNR) of 15, the cough detection rate is about 91%. S. Matos 

[14] proposed an HMM-based classification method using 

MFCC to classify cough sounds with an accuracy of about 

82%. 

The remainder of this paper is structured as follows. 

Section 2 describes the segmentation method and the features 

of the snoring and coughing detection mechanism. 

Background noise is used to calculate a threshold to segment 

independent events, the gradient of the banded spectral 

magnitude sum is used to identify snore features, and MFCC 

[15] is used to identify cough features. In addition, Section 2 

describes the classification method, which uses a Support 

Vector Machine (SVM) for snore detection and HMM for 

cough detection. The number and frequency of coughs and 

snores is important for diagnosis and treatment of upper 

respiratory tract diseases. The experimental results and 

analysis are given in Section 3. Section 4 details conclusions 

and future proposals. 

 

2 Detection Method of Snoring and 

Coughing 
 

The section describes the audio recording instrument, 

sleep environment, data collection, and detection method for 

snoring and coughing.  

 

2.1 Audio Recording Instrument 
 

This study uses a recording pen with a highly sensitive 

microphone. The recording pen is a Sony ICD-UX513F, and 

the highly sensitive microphone is an Audio-Technica 

AT9942, as shown in Figure 3. The recording pen was less 

effective than expected, so a highly sensitive and directional 

microphone was used to record sounds. The sample rate is 

44100, and mono recordings are used. 

 

 
(a)               (b) 

Figure 3. Recording instrument 

(a) Sony ICD-UX513F recording pen; (b) Audio-Technica 

AT9942 highly sensitive and directional microphone 

 

2.2 Sleep Environment and Data Collection 
 

Taichung Veterans General Hospital was the location of 

this study. Subjects presented with OSA and coughing. The 

audio signals from the subjects were collected at night in 

Taichung Veterans General Hospital Sleep Center. The sleep 

environment is shown in Figure 4. Fifteen subjects 

participated in this study. All subjects signed a consent form. 

The age, sex, Body Mass Index (BMI), and Apnea-Hypopnea 

Index (AHI) details for the subjects are shown in Table 1. 
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Figure 4. Sleep environment 

 

Table 1. Subject information  

 Age BMI AHI 

Men (9) 54.4±12.7 29.3±4.5 44.8±21.8 

Women (6) 44.6±9.3 26.9±3.7 14.9±10 

All (15) 50.3±12.1 28.4±4.2 32.9±23.2 

 

2.3 Algorithm 
 

Figure 5 shows the flowchart for the proposed algorithm. 

At the beginning of the process, the sound data from subjects 

was segmented into independent events, features of snoring 

and coughing were recorded individually, and then snoring 

and coughing were detected. Independent events were then 

classified as snores, coughs, and other noises. A decision layer 

was used for a positive snore and cough detection result. 

 

 

Figure 5. Flowchart 

 

2.3.1 Event Segmentation 

 

The Sleep Center is quiet, so background noise is 

consistent, as shown in Figure 6.  

Figure 6. Audio recording data for a patient 

 

Energy is conventionally used to determine the boundaries 

for sound activity. Energy is defined as: 

 

𝑋𝑎 = ∑ 𝑆2(𝑛), 𝑎 = 1,2, … . , 𝑚𝑟·𝑎
𝑛=(𝑎−1)·𝑟+1 ,  (1) 

 

where S is amplitude, r is the frame size, and a is the frame 

index for all audio signals. Energy is calculated to increase the 

difference in amplitude and for smoothing. 

Background noise was consistent in the sleep environment, 

and the audio signal begins with background noise. Initially, 

the threshold for audio signal energy computation was defined 

as: 

  

         𝑇𝑠 = 𝜇 + 𝛼 · 𝜎 

 

          𝜇 =
1

ℎ
∑ 𝑋𝑘

ℎ

𝑘=1

 

 

  𝜎 = √
1

ℎ
∑ (𝑋𝑘 − 𝜇)2ℎ

𝑘=1 ,                (2) 

 

where μ is the average, σ is the standard deviation, and h is the 

frame number for the background noise. The control chart [16] 

indicates that the signal value is greater than a value which is 

the average plus the triple standard deviation, so α is set as 3 

in the proposed method. An event occurs when the energy is 

greater than Ts. The segmentation results are shown in Figure 

7, wherein the green lines represent the beginning of an event, 

and red lines mark the end of an event. 

 

 

(a) Sound amplitude 

 

 

(b) Sound energy 

Figure 7. Segmentation results 

 

2.3.2 Feature Extraction for Snores 

 

Figure 8 shows the flowchart for feature extraction from 

snores. First, each independent event in the time domain is 

transformed into the frequency domain signal using a 

differential and Fourier transform. Next, the banded spectral 

magnitude sum gradient is calculated and normalization is 

performed. The dimension is then reduced by principal 

component analysis. Finally, the feature vector is output. 
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Figure 8. The flowchart for feature extraction from snores 

 

2.3.2.1 Differential and Fourier Transform 
 

It is difficult to extract features from audio signals in the 

time domain. The audio signal is transformed from the time 

domain into the frequency domain. However, background 

noise can affect the spectrum so a differential [15] is used to 

reduce the effect as follows: 

 

�̂�(𝑛) = 𝑆(𝑛) − 𝑎 · 𝑆(𝑛 − 1),             (3) 

 

where a is between 0.9 and 1. 

The audio signal is then transformed from the time domain 

into the frequency domain using a Fourier transform, which is 

defined as: 

 

𝐹(𝑘) = ∑ �̂�(𝑛)𝑒
−2𝑗𝑘𝜋𝑛

𝑁 , 𝑘 = 0,1, … , 𝑁 − 1𝑁−1
𝑛=0 , (4) 

 

where N is the number of signal in a time window. Figure 9 

shows the spectrum for an audio signal subject to a Fourier 

transform. The x-axis is the frequency and the y-axis is the 

magnitude for each frequency. 

 

 

Figure 9. The spectrum for an audio signal 

 

2.3.2.2 Gradient of the Banded Spectral Magnitude Sum 

 

The spectrum determines the consistency of the snoring 

sound. The different sound spectrums from the database are 

shown in Figure 10. Snoring sounds from different patients are 

dissimilar, but there are similarities between some spectral 

bands. Some spectral bands are high and some are low. The 

banded spectral magnitude sum gradient shows the 

consistency of snoring sounds and the difference in non-

snoring sounds. 

The snoring sound spectrum is used to determine the 

difference between the peaks of each band. If the band size is 

too small, the computational complexity is high. Sound 

consistency and difference are not shown. The band size from 

smaller peaks is used, 100Hz, as shown in Figure 11. The band 

size is 100Hz. 

 

 
(a) Snoring sounds from individual patients 

 

 
(b) Snoring sounds from individual patients 

 

 
(c) Snoring sounds from individual patients 

 

 
(d) Noise 

 

 
(e) Breathing 

 

 
(f) Knocks 

Figure 10. Spectra 

 

 

Figure 11. (a) Sound spectrum (b) The smaller peak diagram 

 

The magnitude of the bands is then summed individually 

as: 

 

𝐵𝑆(𝑖) = ∑ |𝑆(𝑓)|, 𝑖 = 1,2, … , 𝐿𝑈·𝑖
𝑓=𝑈·(𝑖−1)         

 

𝐿 = [
22050

𝑈
],                       (5) 

 

(a)

(b)
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where S(f) is the magnitude of frequency f of the spectrum, L 

is the number of bands, and U is the band size. The gradient 

of each band is calculated as: 

 

𝐷(𝑖) =
∑ 𝐵𝑆(𝑖+𝜏)·𝜏𝑀

𝜏=−𝑀

∑ 𝜏2𝑀
𝜏=−𝑀

,                 (6) 

 

where M will affect the accuracy of detection result and the 

detail discussion is discussed in Section 3. If D is positive, and 

then BS increases.  

 

2.3.2.3 Normalization 

 

Snoring sounds are consistent, as shown in Figure 10, but 

the volume of snoring sounds is not constant so the magnitude 

of the snoring spectrum changes. The results are normalized 

to identify snoring characteristics. A Z-score is used to 

normalize the gradient of the banded spectral magnitude sum 

for each snore. The Z-score is defined as: 

 

𝑍𝑖 =
𝐷(𝑖)−𝜇

𝜎
,                          (7) 

 

where μ is the average of D and σ is the standard deviation of 

D, which is defined as: 

 

𝜇 =
1

𝐿
∑ 𝐷(𝑖)𝐿

𝑖=1                           

 

𝜎 = √
1

𝐿
∑ (𝐷(𝑖) − 𝜇)2𝐿

𝑖=1 .               (8) 

 

2.3.2.4 Principal Component Analysis 

 

Principal Component Analysis (PCA) [17-20] is used to 

reduce the dimensions of the feature vector, as shown in 

Figure 12. PCA uses linear projection for transformation, uses 

a few dimensions to represent all dimensions and then keeps 

the original characteristics of variation. 

 

 

Figure 12. Diagram of principal component analysis 

 

2.3.3 Feature Extraction for Coughs 

 

Features are extracted for coughs using the Mel-Frequency 

Cepstral Coefficient (MFCC) [15], which accounts for the 

sensitivity of the human ear to different frequencies, so this 

parameter is used for speech recognition and speaker 

recognition [21]. The procedure for the MFCC is shown in 

Figure 13. 

 

 

Figure 13. The procedure for the MFCC 

 

The first step for the MFCC is pre-emphasis, which is 

defined as: 

 

�̂�(𝑛) = 𝑆(𝑛) − 𝑎 · 𝑆(𝑛 − 1),            (9) 

 

where a has a value between 0.9 and 1. There is always noise 

in the air so there is more low-frequency than high-frequency 

energy. The accuracy of recognition is unaffected by this 

condition. Pre-emphasis reduces low-frequency energy 

relative to high-frequency energy. High- frequency formants 

are highlighted [22]. 

The next step is frame blocking. The shortest cough 

sounds in the sound database are between 0.25 and 0.3 seconds, 

and the frame number is at least 10. Thus, the frame size is 

about 25 ms. The sample rate is 44100 for this database, so the 

frame size is 1024 sample points, as shown in Figure 14. 

 

 

Figure 14. Diagram for frame blocking 

 

Each frame is then multiplied by the hamming window, as 

follows: 

 

𝑆′(𝑛) = �̂�(𝑛) · 𝑊(𝑛),                (10) 
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where W(n) is hamming window, which is defined as: 

 

   𝑊(𝑛, 𝜌) = (1 − 𝜌) − 𝜌 · cos (
2𝜋𝑛

𝑁−1
)  

0 ≤ 𝑛 ≤ 𝑁 − 1,                     (11) 

 

where ρ is a value that represents different hamming windows, 

as shown in Figure 15. The value of ρ is 0.46. 

 

 

Figure 15. Diagram of the hamming window 

 

 

Figure 16. Diagram of a triangular filter 

 

The next step is the Fourier transform, defined in Equation 

(4). It is difficult to extract features from the audio signal in 

the time domain so it is transformed to the frequency domain 

using a Fourier transform for signal processing. The same 

sounds are consistent in the spectrum. The result is multiplied 

by the hamming window to prevent an erroneous spectral 

magnitude, which leads to a calculation error due to 

discontinuity between frames. 

The spectral magnitude through a 40 triangular band-pass 

filter [23] is shown in Figure 16. The logarithm of each 

triangular band-pass filter output is calculated. The 40 

triangular band-pass filters are evenly distributed in the Mel-

frequency. The relationship between the Mel-frequency and 

the normal frequency is defined as: 

 

𝑚𝑒𝑙(𝑓) = 2595 · log10(1 +
𝑓

100
),        (12) 

 

where f is the normal frequency. The relationship between the 

Mel-frequency and the normal frequency diagram is shown in 

Figure 17. The human ear is more sensitive to low frequency 

energy than high frequency energy. The increase in sensitivity 

is logarithmic. 

 

 

Figure 17. Diagram of the mel-frequency 

 

A discrete cosine transform, which is a powerful transform 

to extract proper features, is then used [24]. The Mel-

frequency cepstral parameter is obtained using the 40 

logarithms through a discrete cosine transform. The discrete 

cosine transform is defined as: 

 

𝐶𝑚 = ∑ cos (
𝑚·(𝑘−0.5)·𝜋

𝑁

𝑁
𝑘=1 ) · 𝐸𝑘  

𝑚 = 1,2, … , 𝐿,                      (13) 

 

where N is the number of triangular band-pass filters, Ek is the 

logarithm of the triangular band-pass filter, m is the number of 

mel-scale cepstral coefficients, and L is 12. The discrete cosine 

transform transforms the frequency domain into time-domain 

signal. This is the cepstrum calculation. 

This parameter is called the Mel-frequency cepstral 

coefficient. A frame logarithmic energy is added as: 

 

𝐿𝑜𝑔𝐸𝑛𝑒𝑟𝑔𝑦 = 10 · log10 𝐹𝑟𝑎𝑚𝑒𝐸𝑛𝑒𝑟𝑔𝑦. (14) 

 

There are 13-dimensional parameter vectors but in practice, 

the delta cepstrum is added to show the Mel-frequency’s 

cepstrum dynamic variation in time. This is defined as: 

 

∆𝐶𝑚 =
∑ 𝐶𝑚(𝑡+𝜏)·𝜏𝑀

𝜏=−𝑀

∑ 𝜏2𝑀
𝜏=−𝑀

,                (15) 

 

where M is 2. The delta cepstrum is added, so the Mel-

frequency cepstral coefficient is a 39-dimensional parameter 

vector. 

 

2.4 Sound Detection 
 

This study uses two methods for classification: a Support 

Vector Machine (SVM) [25-26] and a HMM. 

 

2.4.1 Support Vector Machine 

 

A SVM separates the worst case for two groups and 

determines the optimal separating hyperplane. Two groups 

can be separated once the worst case is separated, as shown in 

Figure 18. 

 

 

Figure 18. Diagram of a SVM 

 

2.4.2 Hidden Markov Model 

 

A HMM is commonly used in speech recognition. A 

HMM is different from other classifiers because it cannot be 

applied to a time-varying signal, but a HMM can be applied. 
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Coughing is a time-varying signal so a HMM is used as a 

classifier. 

A diagram of a HMM is shown in Figure 19. There are 

three parameters. The first parameter is the initial probability, 

which is defined as: 

 

𝜋𝑖 = 𝑃(𝑞0 = 𝑆𝑖),                    (16) 

 

where πi is the initial probability in state i. The second 

parameter is the transition probability, which is defined as: 

 

𝑎𝑖𝑗 = 𝑃(𝑞𝑘+1 = 𝑆𝑗|𝑞𝑘 = 𝑆𝑖),           (17) 

 

where 𝑎𝑖𝑗  is the probability of state i transferring to state j. 

The last parameter is the observation probability, which is 

defined as: 

 

𝑏𝑗(𝑂𝑡) = 𝑃(𝑂𝑡|𝑞𝑘 = 𝑆𝑖),              (18) 

 

where 𝑏𝑗(𝑂𝑡) is the probability of observation in state j. 

A HMM only gives the observation sequence, not the state 

sequence. Therefore, the transition and observation 

probability is calculated using the Baum-Welch algorithm [27] 

and the state sequence is calculated using the Viterbi algorithm 

[28]. 

The Baum-Welch algorithm estimates the initial 

probability of the HMM. By using the observation sequence, 

the transition probability and observation probability are 

constantly updated until convergence, as follows: 

 

�̅�𝑖 = 𝛾1(𝑖)      

 

�̅�𝑖𝑗 =
∑ 𝜉𝑡(𝑖,𝑗)𝑇−1

𝑡=1

∑ 𝛾𝑡(𝑖)𝑇
𝑡=1

  

 

�̅�𝑗(𝑣𝑘) =
∑ 𝛾𝑡(𝑖,𝑗)𝑇−1

𝑡=1 𝑠.𝑡. 𝑂𝑡=𝑣𝑘

∑ 𝛾𝑡(𝑖)𝑇
𝑡=1

,            (19) 

 

where γt (i) is the all path probability sum through state i at 

time t, as shown in Figure 20. ξt (i, j) is the all path probability 

sum through state i to state j, as shown in Figure 21. 

The Viterbi algorithm is shown in Figure 22. It determines 

the most excellent probability path if there is an observation 

sequence but no state sequence. The initial probability is 

defined as: 

 

𝛿1(𝑗) = 𝜋𝑗 · 𝑏𝑗(𝑂1).                  (20) 

 

The greatest probability path at time t is then determined and 

the greatest path at time t+1 is calculated. The formula is: 

 

𝛿𝑡+1(𝑗) = [max
𝑖

(𝛿𝑡(𝑖) · 𝑎𝑖𝑗)] · 𝑏𝑗(𝑂𝑡+1).  (21) 

 

The excellent path for this HMM is then calculated. This study 

uses a HMM to train and test coughs. The following describes 

the training and testing process. 

 

 

Figure 19. Diagram of a HMM 

 

 

Figure 20. Diagram for γt (i) 

 

 

Figure 21. Diagram for ξt (i, j) 

 

 

Figure 22. Diagram of the Viterbi algorithm 

 

2.4.2.1 Hidden Markov Model – Training Phase 
 

When the sound feature vectors are identified, 

observations are sorted using vector quantization to allow 

similar feature vectors to converge in the same group, which 

reduces the amount of computation. A k-means clustering 

algorithm [29-30] is used to quantify vectors as follows: 

 

argmin
𝑠

∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝑆𝑖

𝑀
𝑖=1 ,          (22) 
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where S = {S1, S2, …, SM}, μi is the average of Si, xj is the 

feature vector, and M is the number of clusters. The k-means 

clustering algorithm is used to produce a codebook, which is 

{vk|k = 1, 2, …, M}. All feature vectors are then quantified 

using the codebook, as: 

 

𝑂𝑡  =  𝑘 , if 𝑑(𝑥𝑡 , 𝑣𝑘) <  𝑑(𝑥𝑡 , 𝑣𝑚 ),         

∀𝑚 ≠  𝑘 , then 𝑥𝑡 ∈  𝑆𝑘,             (23) 

 

where k is the index for the codebook and d(xt, vk) is the 

distance between xt and vk. 

When all observations are considered, the transition and 

observation probability is calculated using the Baum-Welch 

algorithm [27]. The state sequence is calculated using the 

Viterbi algorithm [28]. The HMM is then defined using an 

iterative process. 

 

2.4.2.2 Hidden Markov Model – Testing Phase 

 

To classify N types of sounds, N HMMs are created and 

the sound feature vectors are put into these N HMMs. The 

highest probability from these N HMMs is then determined. A 

cough HMM can be established in terms of cough detection, 

but a non-cough HMM cannot. A threshold is defined to 

differentiate between cough and non-cough events. A scoring 

mechanism is defined as: 

 

𝑠𝑐𝑜𝑟𝑒 =
𝑏𝑤1(𝑂𝑅1)+𝑏𝑤2(𝑂𝑅2)+⋯+𝑏𝑤𝑘(𝑂𝑅𝑘)

𝐾
,   (24) 

 

where K is the length of sound, OR is the observation sequence 

of the sound, and wk is the best state sequence that is 

calculated using the Viterbi algorithm. The threshold is 

defined as: 

 

𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 𝜇 − 𝛼 ∙ 𝜎,              (25) 

 

where μ is the average of the cough training set score and σ is 

the standard deviation of the cough training set score. If the 

score is greater than the threshold, a cough is identified. 

 

2.5 Decision 
 

The snore and cough detection process requires a decision 

mechanism to determine all possible detection conditions, as 

shown in Figure 23. If snore detection results are positive but 

cough detection is negative, a snore is identified. If the snore 

detection results are negative but cough detection is positive, 

a cough is identified. If the snore detection results are negative 

and cough detection is negative, another noise is identified. If 

the result for snore detection is positive and cough detection is 

positive, the ratio of snore and cough sounds for the subject 

during sleep is assessed to determine whether a snore or cough 

has occurred. 

 

 

Figure 23. Decision mechanism 

 

3 Experimental Results 
 

3.1 Decision 
 

The study uses Taichung Veterans General Hospital 

Department of Chest Medicine and Sleep Center. A database 

was collected for OSA and cough patients during a night’s 

sleep. The total number of subjects is 15. The database is 

shown in Table 2.  

 

Table 2. Sound database 

Sounds Number 

Snore 22629 

Cough 321 

Breath 12976 

Moan 532 

Knock 375 

Clear throat 111 

 

3.2 Experimental Environment 
 

This study uses Matlab and C++. The operating system is 

Microsoft Windows 7 (64-bit) and the development software 

is Matlab 2010a. 

 

3.3 Results and Analysis 
 

The experiment uses accuracy and sensitivity for detection 

validation. These are defined as: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦(%) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
· 100      

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(%) =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
· 100,    (26) 

 
where TP is a true positive, TN is a true negative, FP is a false 

positive, and FN is a false negative, as shown in Table 3 and 

Table 4. 
Parameter validation uses k-fold cross-validation. One 

subject is omitted to demonstrate the detection accuracy for 

snores and coughs. For snore detection, the dimensions are 

reduced using PCA. The dimensional parameter validation is 

shown in Figure 24. If the dimension is 170, accuracy is 

constant, so 170 dimensions are used. 
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Table 3. Illustrations of TP, TN, FP and FN for snore 

detection 

 Actual snore Actual non-snore 

Detected snore TP FP 

Detected non-snore FN TN 

 

Table 4. Illustration of TP, TN, FP and FN for cough detection 

 Actual 

cough 

Actual non-cough 

Detected cough TP FP 

Detected non-cough FN TN 

 

 

Figure 24. Dimensional parameter validation using PCA 
 

In Equation (6), the M value affects the detection result, so the 

M value is validated, as shown in Figure 25. The accuracy is 

most outstanding if M is 2. 

 

 

Figure 25. M value validation for Equation (6) 
 

Table 5 shows the detection result for the proposed method. 

2-fold, 3-fold, 5-fold, and 10-fold validation are used, and then 

the most excellent accuracy is 94.24%. One subject is omitted 

to determine the sensitivity of each patient using the proposed 

method, as shown in Table 6. The accuracy is 90% to 98%. 

For cough detection, the clustering number must be 

validated in the codebook, and the state number of HMM and 

α value in Equation (25) must be computed. In the paper, 3-

fold cross-validation is used, as shown in Figure 26, Figure 27, 

and Figure 28. The greatest accuracy is for 640 clusters, 5 

states, and a value for α of 1.55. 

One subject is omitted to determine the sensitivity of each 

patient using MFCC and HMM, as shown in Table 7. The 

accuracy is 88.9% to 94.4%. 
 

Table 5. Snore detection accuracy using k-fold cross 

validation 

 Accuracy (%) 

2-fold 93.62% 
3-fold 93.88% 
5-fold 94.05% 
10-fold 94.24% 

 
Table 6. The sensitivity of snore detection 

Patient No. Snore number Sensitivity (%) 

#01 4483 95.95% 

#03 2676 93.38% 

#04 1223 90.59% 

#05 2006 85.89% 

#06 371 64.15% 

#07 1991 75.34% 

#08 4114 83.37% 

#09 874 97.82% 

#10 30 90.00% 

#11 982 67.01% 

#12 1512 89.15% 

#14 1459 90.8% 

#15 419 85.2% 

#17 519 96.14% 

 

 

Figure 26. The accuracy of the number of clusters relative to 

α value for 3 states 

 

 

Figure 27. The accuracy of the number of clusters relative to 

α value for 4 states 
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Figure 28. The accuracy of the number of clusters relative to 

the α value for 5 states 
 

Table 7. The sensitivity of cough detection 

Patient No. Cough number Sensitivity (%) 

#01 19 89.4% 

#03 4 75% 

#06 12 83.3% 

#07 7 57.1% 

#08 2 100% 

#10 90 94.4% 

#11 1 100% 

#13 20 80% 

#14 144 91.7% 

#15 4 75% 

#17 18 88.9% 

 

3.4 Discussion 
 

Snoring is detected with an accuracy of 93% using k-fold 

cross validation but the accuracy has a wide range if one 

subject is omitted. The greatest value is 97.82% and the lowest 

is 64.15%. First possible reason is that the groups of subjects 

are different, so snoring sounds are also different. Second one 

is that the sound database is small. 

Coughing is detected with an accuracy of 94.6% using k-

fold cross-validation, but is not as accurate if one subject is 

omitted. The database is also small. 

 

4 Conclusions and Future Work 
 

4.1 Conclusions 
 

Snores are detected using the gradient of the banded 

spectral magnitude sum for feature vectors, which shows the 

consistency of each sound spectrum. The principal component 

analysis was used to reduce the dimension and a SVM was 

used to classify snores and non-snores. 

In terms of cough detection, coughs are time-variant so 

resemble speech. A MFCC was used to extract features and a 

HMM was used as a classifier, similar to speech recognition. 

The method produces good results. 

 

 

4.2 Future Work 
 

Each person’s snore is different so to increase accuracy, 

types of snoring sounds may be differentiated and the method 

and features improved. The sound database is also small in this 

study so the detection accuracy is not optimal. A more 

extensive sound database may increase accuracy. 

 

References 
 

[1] National Institutes of Health, Brain Basics: 

Understanding Sleep, NIH Publication, 

https://www.ninds.nih.gov/Disorders/Patient-

Caregiver-Education/Understanding-Sleep 

[2] S. Brand, R. Kirov, Sleep and its importance in 

adolescence and in common adolescent somatic and 

psychiatric conditions, International Journal of General 

Medicine, Vol. 4, pp. 425-442, June, 2011. 

[3] G. J. Landry, T. Liu-Ambrose, Buying time: A rationale 

for examining the use of circadian rhythm and sleep 

interventions to delay progression of Mild Cognitive 

Impairment to Alzheimer’s disease, Frontiers Aging 

Neuroscience, Vol. 6, Article No. 325, December, 2014. 

[4] J.-Z. Yan, B. Hu, H. Peng, H.-Y. Ma, W. Zhao, An 

Ubiquitous Sleep Quality Monitoring and Evaluation, 

Journal of Internet Technology, Vol. 12, No. 3, pp. 375-

381, May, 2011. 

[5] R. Heinzer, S. Vat, P. Marques-Vidal, H. Marti-Soler, D. 

Andries, N. Tobback, V. Mooser, M. Preisig, A. 

Malhotra, G. Waeber, P. Vollenweider, M. Tafti, J. Haba-

Rubio, Prevalence of sleep-disordered breathing in the 

general population: the HypnoLaus study, Lancet 

Respiratory Medicine, Vol. 3, No. 4, pp. 310-318, April, 

2015. 

[6] P. Lévy, M. Kohler, W. T. McNicholas, F. Barbé, R. D. 

McEvoy, V. K. Somers, L. Lavie, J.-L. Pépin, 

Obstructive sleep apnoea syndrome, Nature Reviews 

Disease Primers, Vol. 1, No. 1, Article No. 15015, 

December, 2015. 

[7] O. M. Bubu, A. G. Andrade, O. Q. Umasabor-Bubu, M. 

M. Hogan, A. D. Turner, M. J. de Leon, G. Ogedegbe, I. 

Ayappa, Jean-Louis G. Girardin, M. L. Jackson, A. W. 

Varga, R. S. Osorio, Obstructive sleep apnea, cognition 

and Alzheimer’s disease: a systematic review 

integrating three decades of multidisciplinary research, 

Sleep Medicine Reviews, Vol. 50, Article No. 101250, 

April, 2020. 

[8] A. Romero-Corral, S. M. Caples, F. Lopez-Jimenez, V. 

K. Somers, Interactions between obesity and obstructive 

sleep apnea: implications for treatment, Chest, Vol. 137, 

No. 3, pp. 711-719, March, 2010. 

[9] M. Cavusoglu, M. Kamasak, O. Eroğul, T. Çiloglu, Y. 

Serinagaoglu Dogrusoz, T. Akcam, An efficient method 

for snore/nonsnore classification of sleep sounds, 

Physiological Measurement, Vol. 28, No. 8, pp. 841-853, 

August, 2007. 

[10] A. Azarbarzin, Z. M. K. Moussavi, Automatic and 

Unsupervised Snore Sound Extraction From 

Respiratory Sound Signals, IEEE Transactions on 

Biomedical Engineering, Vol. 58, No. 5, pp. 1156-1162, 

May, 2011. 

https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Understanding-Sleep
https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Understanding-Sleep


A Machine-Learning-Based Detection Method for Snoring and Coughing 1243 
 

 

[11] W. Duckitt, S. Tuomi, T. Niesler, Automatic detection, 

segmentation and assessment of snoring from ambient 

acoustic data, Physiological Measurement, Vol. 27, No. 

10, pp. 1047-1056, October, 2006. 

[12] A. S. Karunajeewa, U. R. Abeyratne, C. Hukins, 

Silence-breathing-snore classification from snore-

related sounds, Physiological Measurement, Vol. 29, No. 

2, pp. 227-243, February, 2008. 

[13] S. Shin, T. Hashimoto, S. Hatano, Automatic Detection 

System for Cough Sounds as a Symptom of Abnormal 

Health Condition, IEEE Transactions on Information 

Technology in Biomedicine, Vol. 13, No. 4, pp. 486-493, 

July, 2009. 

[14] S. Matos, S. S. Birring, I. D. Pavord, H. Evans, 

Detection of cough signals in continuous audio 

recordings using hidden Markov models, IEEE 

Transactions on Biomedical Engineering, Vol. 53, No. 6, 

pp. 1078-1083, June, 2006. 

[15] Q. Mei, M. Gül, M. Boay, Indirect health monitoring of 

bridges using Mel-frequency cepstral coefficients and 

principal component analysis, Mechanical Systems and 

Signal Processing, Vol. 119, pp. 523-546, March, 2019. 

[16] G. Suman, D. R. Prajapati, Control chart applications in 

healthcare: A literature review, International Journal of 

Metrology and Quality Engineering, Vol. 9, Article No. 

5, May, 2018. 

[17] Z.-G. Chen, H.-S. Kang, S.-R. Kim, Design of a New 

Efficient Hybrid System for Intrusion Detection Based 

on HSM Fuzzy Decision Tree, Journal of Internet 

Technology, Vol. 16, No. 5, pp. 885-891, September, 

2015. 

[18] S.-S. Weng, K.-Y. Chen, C.-Y. Li, A Geometric Mean-

based DEMATEL Model for Evaluating the Critical 

Challenges of Spare Parts Planning, Journal of Internet 

Technology, Vol. 21, No. 1, pp. 121-133, January, 2020. 

[19] J. S.-W. Wan, S.-D. Wang, Concept Drift Detection 

Based on Pre-Clustering and Statistical Testing, Journal 

of Internet Technology, Vol. 22, No. 2, pp. 465-472, 

March, 2021. 

[20] G. T. Reddy, M. P. K. Reddy, K. Lakshmanna, R. Kaluri, 

D. S. Rajput, G. Srivastava, T. Baker, Analysis of 

Dimensionality Reduction Techniques on Big Data, 

IEEE Access, Vol. 8, pp. 54776-54788, March, 2020. 

[21] C. Ittichaichareon, S. Suksri, T. Yingthawornsuk, 

Speech recognition using MFCC, Proceeding 

International Conference on Computer Graphics, 

Simulation and Modeling, Pattaya, Thailand, 2012, pp. 

135-138.  

[22] L. E. Baum, T. Petrie, G. Soules, N. Weiss, A 

Maximization Technique Occurring in the Statistical 

Analysis of Probabilistic Functions of Markov Chains, 

The Annals of Mathematical Statistics, Vol. 41, No. 1, 

pp. 164-171, February, 1970. 

[23] S. C. Joshi, A. N. Cheeran, MATLAB Based Feature 

Extraction Using Mel Frequency Cepstrum Coefficients 

for Automatic Speech Recognition, International 

Journal of Science Engineering and Technology 

Research (IJSETR), Vol. 3, No. 6, pp. 1820-1823, June, 

2014. 

[24] S. Gupta, N. Dhanda, Audio Steganography Using 

Discrete Wavelet Transformation (DWT) & Discrete 

Cosine Transformation (DCT), IOSR Journal of 

Computer Engineering, Vol. 17, No. 2, pp. 32-44, 

March-April, 2015. 

[25] S. Wang, Z. Tang, S. Li, Design and Implementation of 

an Audio Classification System Based on SVM, 

Procedia Engineering, Vol. 15, pp. 4031-4035, 2011. 

[26] F. Rong, Audio Classification Method Based on 

Machine Learning, International Conference on 

Intelligent Transportation, Big Data & Smart City 

(ICITBS), Changsha, China, 2016, pp. 81-84. 

[27] P. M. Baggenstoss, A modified Baum-Welch algorithm 

for hidden Markov models with multiple observation 

spaces, IEEE Transactions on Speech and Audio 

Processing, Vol. 9, No. 4, pp. 411-416, May, 2001. 

[28] Q. Wang, L. Wei, R. A. Kennedy, Iterative Viterbi 

decoding, trellis shaping, and multilevel structure for 

high-rate parity-concatenated TCM, IEEE Transactions 

on Communications, Vol. 50, No. 1, pp. 48-55, January, 

2002. 

[29] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. D. 

Piatko, R. Silverman, A. Y. Wu, An efficient k-means 

clustering algorithm: analysis and implementation, 

IEEE Transactions on Pattern Analysis and Machine 

Intelligence, Vol. 24, No. 7, pp. 881-892, July, 2002. 

[30] P. He, S. Ma, W. Li, Efficient Barrage Video 

Recommendation Algorithm Based on Convolutional 

and Recursive Neural Network, Journal of Internet 

Technology, Vol. 22, No. 6, pp. 1241-1251, November, 

2021. 

 

Biographies 
 

Chun-Hung Yang is an Assistant 

Professor in the Department of Electronic 

Engineering, Southern Taiwan University 

of Science and Technology (STUST). His 

main research interests include artificial 

Intelligence (AI) in medicine and model-

based design (MBD) for digitally-

controlled power converters and motor drivers. 

 

Yung-Ming Kuo received the Ph.D. degree 

in electrical engineering from National 

Cheng Kung University, Taiwan, in 2010. 

He is now an Assistant Professor in the 

Dept. of Electronic Engineering, National 

Formosa University, Taiwan. His research 

interests include deep learning, medical 

image analysis, computer vision, pattern recognition and 

video-based behavior analysis. 

 

I-Chun Chen obtained her doctoral degree 

in literature at Kanazawa University in 

Japan in 2015. She is an Assistant Professor 

at National Formosa University, Yunlin, 

Taiwan. Her area and interest in research 

are in Chinese dialects and grammar, and 

Linguistics. 

 

 



1244 Journal of Internet Technology Vol. 23 No. 6, November 2022 

 

 

Fan-Min Lin received the Master of 

Science from the Institute of Computer and 

Communication Engineering, National 

Cheng Kung University, Tainan, Taiwan, 

R.O.C., in 2013. His main research interests 

include artificial Intelligence (AI), machine 

learning, digital signal processing, and 

audio recognition. 

 

Pau-Choo Chung received the Ph.D. 

degree in electrical engineering from Texas 

Tech University, USA, in 1991. She then 

joined the Department of Electrical 

Engineering, National Cheng Kung 

University, Taiwan, and has become a full 

professor in 1996. Her research interests 

include computational intelligence, image 

analysis, video analysis, and pattern recognition. 




