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Abstract 
 

Robustness of object detection against hard samples, 

especially small objects, has long been a critical and difficult 

problem that hinders development of convolutional object 

detectors. To address this issue, we propose Progressive 

Refinement Network to reduce classification ambiguity for 

scale robust object detection. In PRN, several orders of 

residuals for the class prediction are regressed from upper level 

contexts and the residuals are progressively added to the basic 

prediction stage by stage, yielding multiple refinements. 

Supervision signal is imposed at each stage and an integration 

of all stages is performed to obtain the final score. By 

supervision retaining through the context aggregation 

procedure, PRN avoids over dependency on higher-level 

information and enables sufficient learning on the current scale 

level. The progressive residuals added for refinements 

adaptively reduce the ambiguity of the class prediction and the 

final integration of all stages can further stabilize the predicted 

distribution. PRN achieves 81.3% mAP on the PASCAL VOC 

2007 dataset and 31.7% AP (15.6% APS) on MS COCO 

dataset, which demonstrates the effectiveness and efficiency of 

the proposed method and its promising capability on scale 

robustness. 
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1  Introduction 
 

The robustness of object detection for hard samples, 

especially small scale objects, has long been a challenging 

issue for the community in research of computer vision. 

Despite of the success in image classification driven by the 

remarkable representation power of deep convolutional neural 

networks (CNNs), the object detection task is far from being 

solved. One main reason is that modern convolutional detectors 

still have difficulties in dealing with the high ambiguity in 

classification of hard samples, especially small targets. To 

alleviate this problem, many approaches have been proposed, 

which generally include methods based on feature pyramid 

(multiscale feature fusion) and cascaded detectors. 

Among a huge body of research works, the feature pyramid 

fusion methods (e.g., FPN [1], TDM [2], FSSD [3] and Deep 

Feature Pyramid Reconfiguration [4]) address the ambiguity in 

small object detection via aggregating the more semantic 

deeper features onto shallower layers. Typically a set of feature 

maps taken from backbone are fused together across scales, 

yielding a pyramidal representation on which the consequent 

detection operation is conducted. Although the features for 

detecting small objects are enhanced by the more 

discriminative information of upper layers, the fusion 

procedure itself is less controlled by supervision, which may 

cause over dependency on higher-level features, leaving the 

current level insufficiently learned. Moreover, higher-level 

features are less helpful for locating objects of smaller scale, 

but they are still involved in localization. For the second 

solution routine, known as cascaded detectors (like [5] and [6]), 

predictions are conducted more than once to obtain finer results. 

However, existing methods only do explicit refinement in the 

localization procedure. For the classification task, multiple 

predictions are generated by rescoring at different cascade 

stages, which means that classification scores at earlier stages 

are not considered along cascading. Thus the ambiguity in 

small object classification can not be maximally reduced. 

 

Figure 1. General illustration for the classification mechanism 

of the proposed approach 

(Only the classification process for targets on a certain scale 

level is shown, whose corresponding feature map is drawn with 

an extra bolded border. The final score is an integration of 

different stages for stabilization.) 

 

To avoid over dependency on higher-level features and 

decrease ambiguity for small objects by explicit modeling on 

the classification process, in this paper, we propose a novel 

approach for scale robustness enhancement, denoted as the 

Progressive Refinement Network (PRN). As shown in Figure 

1, for the proposed PRN, classification score (i.e., the input of 

softmax classifier) is refined (rather than re-predicted) multiple 

times by progressively adding residuals regressed by upper 
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level contexts, and supervision signal for classification is 

directly retained at each stage of refinement with a particular 

weight. This group of weights is then reused at test time to 

integrate the inputs of softmax at all the stages of refinement, 

which is followed by another softmax to yield the final 

classification score. In our approach, localization is dedicated 

to the current feature level or is decoupled from higher-level 

features. 

By retaining supervision signals for classification through 

the process of context aggregation, PRN avoids over- 

dependency on higher-level information and enables sufficient 

optimization for features on lower levels, which we think is 

critical for detecting small objects. Since we do progressive 

score refinement rather than re-predict the score for many times, 

a classification distribution with less ambiguity can be obtained 

by adaptively adding residuals of the predictions stage by stage. 

Our integration manner for all the stages of refinement to get 

the final score is also helpful to stabilize the classification 

distribution and reduce the side effect of mis-refinement. 

Finally, decoupled from higher-level features, localization on 

smaller scales can be conducted on features with more spatial 

information. 

To demonstrate the effectiveness of our approach, we apply 

PRN to the SSD [7] detection framework, yielding a light 

weight single stage detector. Experiments are conducted on the 

PASCAL VOC 2007 dataset [8] and the MS COCO dataset [9]. 

With PRN, a significant performance gain is obtained in 

comparison with the baseline. We prove that the proposed 

method is more effective than feature pyramid fusion and the 

ambiguity for small object classification is significantly 

reduced by progressive refinement. Using only the moderate 

sized VGG-16 network [10] as backbone, PRN reaches 81.3% 

mAP on the PASCAL VOC 2007 dataset and 31.5 AP, 15.6 

APS on the MS COCO dataset. Being comparable with many 

state-of-the-arts with similar computational budget, the 

proposed PRN shows an extra promising capability for small 

object robustness. 

Our main contributions are summarized as follows: 

1) We propose PRN, which gains improved scale 

robustness for object detection, by progressively refining the 

classification score by adding multiple residuals adaptively 

along context aggregation and controlling the supervision 

along stages. 

2) We apply PRN to the SSD framework and prove that our 

method is more effective than feature pyramid fusion. 

3) We prove that the proposed method contributes to 

reducing ambiguity of small object classification, and 

experimental results demonstrate the scale robustness 

improved by PRN on the PASCAL VOC 2007 dataset and the 

MS COCO dataset. 

This paper is organized as follows. Section 2 reviews 

related work. Section 3 elaborates our proposed method of 

object detection with score refinement. Section 4 presents 

experimental procedures, results, and analysis. Finally, 

conclusions and discussion are given in Section 5. 

 

 

2  Related Work 
 

2.1 One-stage Detectors and Two-stage Detectors 
 

Modern convolutional detectors are divided by two main 

streams, known as the one-stage detectors and the two-stage 

detectors. 

One-stage detectors or single-stage detectors run in a fully 

convolutional way to regress classification scores and 

localization offsets for the predefined cell anchors. Then 

interpreted bounding box predictions are post processed by 

removing duplicate detection to generate the final results. 

Stemming from YOLO [11], many detectors of this kind have 

been developed, such as SSD [7], DSSD [12], YOLO v2 [13], 

RON [14], RetinaNet [15], RefineDet [16], RBFNN [17] and 

so on. Since only one forward pass is required to generate all 

the predictions, one-stage methods are usually fast but less 

accurate. 

Recently, based on one-stage detection paradigm, there has 

been a new surge of research trend that treats bounding boxes 

as points or point sets. This starts from Cornernet [18] where 

object bounding box is detected as a pair of keypoints using a 

single convolution neural network. Based on Cornernet, Duan 

et al. [19] proposed to detect each object as a triplet of 

keypoints. Similarly, Zhou et al. [20] proposed to model an 

object as a single point, i.e., the center point of its bounding 

box, which can also be used for 3D detection and pose 

estimation. Zhang et al. [21] proposed a learning to match 

approach to break IoU restriction in traditional object anchor 

IoU, allowing objects to match anchors in a flexible manner. 

Introduced by the RCNN [22] and Faster RCNN [23] family, 

two-stage detectors first extract a set of candidate boxes (i.e., 

region proposals), then classify and localize each proposal 

using a head subnet. Since the head network is applied many 

times to process the set of region proposals, two-stage detectors 

usually have lower detection efficiency but higher accuracy. 

Typical detectors are SPPNet [24], ION [25], R-FCN [26], 

Mask R-CNN [27], Light Head R-CNN [28], etc. 

 

2.2 Approaches to Enhance Scale Robustness 
 

Robust object detection for targets of various scales, 

especially small targets, has been an everlasting challenging 

problem. To remedy the issue, there have been many works 

proposed from different aspects. Besides methods based on 

image pyramid that has become less popular, feature pyramid 

fusion and cascading are two mainstream solution routines. 

 

2.2.1 Image Pyramid 

 

Enlarging the input scale is a straightforward way to 

enhance information for small scale targets. The most 

straightforward approach is known as the multiscale training 

and testing strategy, which is used in some relatively earlier 

works, like [3, 23, 29-31]. Recently, a scale normalization 

technique on image pyramid is proposed by SNIP [32], which 

improves scale robustness by filtering out extremely small and 

large samples on the pyramid. But the computational cost of 

SNIP is still large as an inevitable nature. And it is also because 

of this computation burden issue that approaches based on 

image pyramid are seldom adopted and studied recently. 
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2.2.2 Feature Pyramid Fusion 

 

It is widely perceived that the lack of discriminative 

information on shallow layers is the main cause of low 

performance on small targets. Methods based on feature 

pyramid fusion are widely studied in many recent works by the 

community. 

To start with, Lin et al. [1] proposed Feature Pyramid 

Network (FPN), which fuses the discriminative features from 

higher levels onto lower levels by iterative upsampling and 

element-wise addition. Then TDM [2] is proposed, which 

changes the fusion operation from element-wise addition to 

concatenation. Besides the two basic works, there are also 

some more complicated feature pyramid fusion methods 

proposed recently, like FSSD [3], Deep Feature Pyramid 

Reconfiguration [4], Parallel Feature Pyramid Network [33], 

etc. The common problem of methods based on feature 

pyramid fusion is that one must obtain a fused feature map first 

and then conduct object detection on it, without supervision 

directly retained on lower-level layers. Since higher-level 

features are easier to discriminate, it is easy to entail 

overdependence on higher-level information and make features 

on the exact level insufficiently learned. 

 

2.2.3 Cascade Methods 

 

Improving object detection by multiple predictions is 

another way to obtain finer results. Currently, most cascade 

methods are developed for two-stage detectors, like CRC [5], 

Cascade R-CNN [6] and so on. CRC introduces cascade 

rejection classifiers that reject easy negatives stage by stage to 

reduce the number of proposals. But once a sample is 

incorrectly by re-predicting along cascade stages without an 

explicit refinement mechanism. At test time, predictions at 

multiple stages are taken as an ensemble. Though Cascade R-

CNN obtains high accuracy, it is also inefficient since it makes 

the head network more complicated and has an ensemble 

operation to cover predictions at several stages. 

 

3  Method 
 

3.1 Progressive Refinement 
 

In this part, we introduce the progressive refinement 

approach, which acts as the key component of our work. In 

general, the main objective of PSR is to reduce the ambiguity 

of the predicted classification distributions for hard samples, 

mostly small targets. For this purpose, we add residuals onto 

the softmax input of the basic classification prediction stage 

by stage, yielding several classification predictions which are 

progressively refined along the procedure. The residuals used 

to refine the distribution at each stage are learned from some 

upper level contexts. In contrast to feature pyramid fusion in 

which the supervision signals are not directly retained for 

lower-level features (they impose the whole supervision onto 

an already fused representation), it imposes classification 

supervision signal for the refined output at each stage, using a 

weight factor.  

In formulation, suppose we have n feature maps 

 1 2, , , nx x x  extracted by the backbone network, on which 

objects of different scales are distributed. We now specifically 

describe how PSR functions work for the object detection and 

classification on a certain feature map level jx .  

At the first step, we apply 1 1  convolution to each of 

backbone feature maps 2 3, , nx x x yielding a new set of 

feature maps 2 3, , nh h h with their channel numbers reduced 

to half. The generated  
2

n

j j
h

=
are recognized as feature maps 

for refinement. Once obtained, they are commonly used for 

the classification refinement of any scale level and at any stage. 

Then for a certain scale level i , we apply a 3 3  

convolution to the backbone feature map ix . This yields the 

input of softmax for basic classification distributions of all the 

cell anchors on level i , denoted as 
0

iz . 
0

iz is a tensor of 

shape ( )1  +i i iH W K A , where i iH W is the spatial size 

of ix , 1+K  is the number of classes (including the 

background class) and iA denotes the number of anchors at 

each grid cell of ix .  

Suppose the progressive score refinement (PSR) is 

performed in k stages, then we pick up k feature maps from set 

 
2

n

j j
h

=
, which are 1 2, ,i i i kh h h+ + + For the first stage of 

refinement, upper level contextual feature 1ih +  is used to 

regress the first order residual of 
0

iz  (the input of softmax 

classifier for basic classification prediction without 

refinement). We denote the first order residual of 
0

iz as

( )1 iz , which is then added to the refined softmax input of 

the previous stage (here it is 
0

iz , i.e., stage 0 or no refinement), 

yielding a refined softmax input ( )1 0

1= +i i iz z z . This 

process is performed iteratively for k times. For the j-th stage 

of refinement ( )1 j k , the j -th order residual ( ) j iz is 

regressed from upper level context i jh + by bilinear 

upsampling i jh + to the size of ix and applying a 3 3

convolution with dilation rate j . Through the progressive 

aggregation procedure, it generates the refined softmax input 

of each stage:  

 

( ) ( )0

1

1
=

= +   
j

j

i i s i

s

z z z j k        (1) 

 

After obtaining 
0

iz
 and its k  refinements

1 2, , , k

i i iz z z , 

we apply softmax to each of them, yielding 
0

ip (the basic 

classification score) and 
1 2, , , k

i i ip p p  ( k  classification 

scores which are progressively refined by the k-stage PSR). 

For each score prediction 
j

ip ( )0  j k , a cross-entropy 

loss is computed with a weight factor  j  ( )0 1 j , which 

is the classification supervision signal imposed on stage j  

(denoted as ,

j

cls iL  
):  

 

( ) ( ), , 0=  j j

cls i j i iL CE p y j k
 

(2) 
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Summing up all the components across stage index j  

( )0  j k , the total classification loss for targets distributed 

onto ix is: 

( )
,,

0 0

,
= =

= = cls i

k k
j j

cls i j i i

j j

L L CE p y     (3) 

 

where  j ( )0  j k  controls the intensity of classification 

supervision signal at each stage and
0

1
=

=
k

jj
. Practically, 

we further simplify the loss form as follows: 

 

 

( )

( )( )

( )

( )

,

0

0

0

0

,

log

log

log









=

=

=

=

=

=

 
= −  

 

 
= −  

 









j

j

k
j

cls i j i i

j

k
j

j i i

j

k
j

i i

j

k
j

i i

j

L CE p y

sum y p

sum y p

sum y p

 (4) 

 

where sum(•)denotes the sum of all elements of a tensor. This 

is to avoid some numerical issues caused by multiple log(•)s. 

To get the final prediction of classification on scale level
i , we first weight-sum the inputs of softmax across all the 

stages (including stage 0 which corresponds to the basic 

prediction) using the same group of weight factors  
0


=

k

j j  as 

we control the intensities of supervision signals, then apply 

another softmax to obtain the final classification score at level
i . In formulation, the final prediction at level i is:  

 

 
0

max 
=

 
=  

 


k
j

i j i

j

p soft z  (5) 

 

By using PSR, an explicit modeling of classification is 

established, making the context aggregation procedure 

manually controlled by the retaining of supervision signals 

along stages. This helps the detector find a balance among 

optimization on different semantic levels and allows more 

sufficient optimization on lower-level features, thus avoids the 

model from over-depending on higher level information 

which is far more apt to make classifier forcibly fit labels. The 

iterative adding up of prediction residuals can adaptively 

adjust the classification distributions, which reduces the 

ambiguity for predictions on a certain scale level. Moreover, 

the weighted integration of multiple stages of refinement to 

obtain the ultimate classification score develops an effective 

and efficient way to stabilize the final prediction and alleviate 

the side-effect of mis-refinements. 

 

3.2 Decoupling Localization from Higher Level 

Features 
 

From lower-level features to higher level features in the 

backbone network, subsampling like pooling and large stride 

convolution is performed several times. This makes many 

spatial details dropped progressively. Thus, there is less 

potential for higher level features to boost localization of 

objects on smaller scale levels where more position sensitive 

information is needed. 
In our work, only the original backbone feature map at 

each scale level is used to localize objects. Therefore, higher 

level features are only used for classification refinements and 

are decoupled from localization. 

According to the PSR modeling, it is also easy to fora 

similar Progressive Localization Refinement (PLR) procedure 

using higher level features. We do this as part of our 

experiments, which proves the hypothesis. Please see Section 

4 for detail.  

 

3.3 Overall Architecture  
 

3.3.1 Network Architecture 

 

We adopt SSD as the baseline framework for PRN to 

validate the effectiveness of our approach. The backbone 

network is VGGNet which is exactly the same as the original 

SSD. 

 

 

 

Figure 2. Overall architecture for the proposed method (PRN) on SSD framework 
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For input size 300 300 , as shown in Figure 2, the SSD 

baseline extracts feature maps with 6 scale levels to detect 

objects of different scales. The feature maps extracted are 

conv4_3, conv7, conv8_2, conv9_2, conv10_2, and conv11_2. 

The corresponding spatial scales are 38, 19, 10, 5, 3, 1 and the 

channel numbers are 512, 1024, 512, 256, 256 and 256. We 

further denote the 6 extracted feature maps as 1 2 6, , ,x x x , 

correspondingly. Since small targets are commonly 

distributed onto lower levels, we conduct progressive score 

refinement for scale level 1, 2 and 3. The number of stages for 

refinement k  is set to 2 and the weight factors to control the 

intensity of classification supervision signal at each stage are 

set as 0 1 0.25 = =  and 2 0.5 = . Since the highest scale-

level we do PSR on is level 3 and we do 2-stage PSR, the 

highest level of ih  needed is 5h .Therefore, we perform 

1 1  convolutions from 2x to 5x with their output channels 

halved, yielding 2h to 5h as feature maps for refinement. The 6h

is thus ignored for levels 4, 5 and 6. The classification 

modeling is kept the same as the original SSD. Localization is 

only conducted on backbone feature maps 1 2 6, , ,x x x . 

For input size 512 512  where 7 levels are extracted by 

the baseline SSD, we apply 2-stage PSR for scale levels 1, 2, 

3 and 4. Other settings are the same as those for   input size. 

The obtained models of our method under the two input sizes 

are denoted as PRN300 and PRN512 respectively. 

 

3.3.2 Training objective 

 

For PRN, the total training objective has two components:  

 

= +cls locL L L  (6) 

 

For the classification loss clsL : 

 

, ,

1 1

1

= = ++

 
= + 

 
 

m n

cls cls i cls i

i i m

L L L
S

   (7) 

 

The first part corresponds to level 1 to m on which PSR is 

performed. For these levels, classification loss is defined as in 

Section 3.1. The second part corresponds to other levels where 

PSR is not performed. For these levels, classification loss is 

the same as baseline SSD. Under the settings of PRN300, 

3=m , 6=n . And for PRN512, 4=m , 7=n . 

The localization loss for bounding box regression Lloc is by 

the same definition as in the original SSD. Factor α is used to 

balance localization and classification, which is empirically 

set to 2.5 in our approach. 
 

4  Experiments 
 

For validation and further analysis, we conduct 

experiments on the PASCAL VOC 2007 dataset [8] and the 

MS COCO dataset [9], which have 20 and 80 categories 

respectively. 

 

 

4.1 Implementation Details 
 

We implement PRN using the deep learning framework 

PyTorch [34] on a single desktop computer with one Intel i5-

6500 CPU, four Nvidia GTX 1080Ti GPUs and 64GB memory. 

Backbone VGGNet pre-trained on ImageNet [35] is used to 

initialize the models. For all the newly added layers, the 

uniform version of the MSRA method [36] is adopted for the 

random initialization of their weights. We apply the linear 

warm-up strategy at the beginning of training. Specifically, we 

set the learning rate to 1/3 of the base value at the first step, 

linearly increase it to the base learning rate in the following 300 

steps and then retain it. Sampling strategy, hard example 

mining rules and data augmentation are kept the same as 

baseline SSD. 

For PRN300, we do progressive score refinement (PSR) on 

the first three scale levels. And for PRN512, PSR is applied on 

the first four scale levels. For both PRN300 and PRN512, the 

number of stages k is 2 and the weight factors to control the 

classification supervision signals are 0 1 0.25 = = , 2 0.5 = .
 

 

4.2 Results on PASCAL VOC 2007 
 

For the PASCAL VOC 2007 dataset, we train our models 

using the combination of VOC 2007 trainval set and VOC 2012 

trainval set and evaluate the models on VOC 2007 test set. A 

batch size of 32 is used for training and the optimization 

algorithm adopted is SGD, with momentum and weight decay 

set to 0.9 and 0.0001 respectively. The models are trained for 

250 epochs (173k iterations) in total. We use a learning rate of 

10−3 with the warm-up strategy described in Section 4.1 and 

then decay its value by 0.1 at iteration 100k and 140k. At test 

time, NMS (Non-Maximum Suppression) with 0.45 IoU 

threshold is applied to remove duplicate detection. The models 

are trained with 4 Nvidia GTX 1080Ti GPUs and tested on a 

single GPU. Both PRN300 and PRN512 are trained and tested. 

The overall results on PASCAL VOC 2007 are shown in 

Table 1. For input size 300 300 , PRN300 reaches 79.5% 

mAP (mean average precision), surpassing many other SSD 

like detectors, including DSSD321, STDN300 and FSSD300. 

It reaches comparable accuracy as Deep Feature Pyramid 

Reconfiguration (FP Reconfig.), which is based on feature 

pyramid fusion using a carefully handcrafted fusion 

transformation. Reaching high accuracy, PRN300 runs at a 

high speed (75.7 fps), which is only of a small speed drop 

compared to the baseline. For input size 512 512 , PRN512 

reaches 81.3% mAP, which also surpasses STDN513 and 

FSSD512. Despite the huge inferiority on backbone network, 

its accuracy is just slightly lower (by 0.2% mAP) than 

DSSD513 using the much powerful ResNet-101 as backbone, 

but it runs at a much higher speed. It is worth noticing that 

under the input size 512 512 , our approach is slightly higher 

than Deep Feature Pyramid Reconfiguration (81.3% mAP vs. 

81.1% mAP), which is exactly the opposite of input size

300 300 . 
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Table 1. Overall results on the PASCAL VOC 2007 dataset  

(All the entries listed use the combination of VOC 2007 trainval and VOC 2012 trainval as training data and use VOC 2007 test 

as test data.) 

Method Backbone Input size GPU Speed (fps) mAP (%) 

Faster R-CNN [23] ResNet-101 [38] 600 × 1000 K40 2.4 76.4 

R-FCN [26] ResNet-50 600 × 1000 - - 77.0 

SSD300 [7] VGGNet 300 × 300 1080Ti 83.3 77.2 

SSD512 [7] VGGNet 512 × 512 1080Ti 39.2 79.8 

YOLOv2 [13] DarkNet-19 544 × 544 Titan X 40 78.6 

DSSD321 [12] ResNet-101 300 × 300 Titan X 9.5 78.6 

DSSD513 [12] ResNet-101 513 × 513 Titan X 5.5 81.5 

STDN300 [37] DenseNet-169 [39] 300 × 300 Titan Xp 41.5 78.1 

STDN513 [37] DenseNet-169 513 × 513 Titan Xp 28.6 80.9 

FSSD300 [3] VGGNet 300 × 300 1080Ti 65.8 78.8 

FSSD512 [3] VGGNet 512 × 512 1080Ti 35.7 80.9 

FP Reconfig.300 [4] VGGNet 300 × 300 Titan X 39.5 79.6 

FP Reconfig.512 [4] VGGNet 512 × 512 Titan X - 81.1 

PRN300 VGGNet 300 × 300 1080Ti 75.7 79.5 

PRN512 VGGNet 512 × 512 1080Ti 38.3 81.3 

 

 

4.3 Ablation Study 

 

4.3.1 The Impact of Scale Levels 

 

To demonstrate the effectiveness of the key component 

(PSR) of the proposed method, we increase the number of scale 

levels to do PSR from the first level to the fourth level for 

PRN300. Results are evaluated on the PASCAL VOC 2007 

dataset. As shown in Table 2, after adding PSR on level 1, the 

mAP increases from 77.2% to 78.5%, which is the most 

significant. This is because objects of the smallest scales are 

distributed on this level and these objects suffer from high 

classification ambiguity most. After adding PSR on scale level 

3, it yields the highest accuracy (79.5% mAP). Adding PSR on 

level 4 makes the mAP fall back to 78.8%. The most possible 

reason is that extra high level feature maps have less volume of 

information to support refinements since their spatial sizes are 

too small. Through the series of experiments to this step, the 

effectiveness of the proposed PSR approach is demonstrated. 

Finally, we remove the weight-sum integration for obtaining 

the final class prediction of PSR and replace it with using the 

prediction of the last stage instead. This drops the mAP by 0.4% 

from 79.5% to 79.1%, which reveals that the proposed weight-

sum integration method for PSR to obtain the final class 

prediction can effectively reduce the side-effect of mis-

refinements. 

 

 

 

 

Table 2. Ablation study of PRN300 on the PASCAL VOC 

2007 dataset 

(All the models are trained with the combination of VOC 2007 

trainval and VOC 2012 trainval, using the VOC 2007 test set 

for evaluation.) 

Component PRN300 

PSR on 

level 1 

 √ √ √ √ √ 

PSR on 

level 2 

  √ √ √ √ 

PSR on 

level 3 

   √ √ √ 

PSR on 

level 4 

    √  

Weight-sum 

 integration 

 √ √ √ √  

mAP  

(%) 

77.2 78.5 78.8 79.5 78.8 79.1 
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4.3.2 The Contribution of Higher-level Features 

 

For Similar to PSR, it’s also easy to do progressive 

refinement for localization using higher-level features. To 

ensure our hypothesis that higher levels contribute less for 

localization, we implement progressive localization refinement 

(PLR) on scale level 1, 2 and 3. For PLR, the definition and 

hyper parameters are all the same as PSR in this paper, with 

only the subject of refinement changed from the softmax input 

of classifier to localization offsets. To verify whether the 

localization refinement works, we take the localization output 

at each stage for evaluation respectively.  

As shown in Table 3, adding PLR causes a significant 

performance drop (by 0.9% mAP). And as we take stage 0, 1 

and 2 for localization output respectively, the mAP has little 

change or even slightly decreases, which supports that higher-

level features contribute less for localization. 

 

Table 3. Experimental results of the effect of localization 

refinement 

(All the entries are trained on VOC 2007 trainval and VOC 

2012 trainval, using VOC 2007 test for evaluation. PLR #i 

denotes the i-th stage of localization refinement is taken for 

evaluation. And PLR denotes the localization output is 

obtained by weight-sum integration across stages, which is 

similar to PSR.) 

Method PRN300 w/PLR w/PLR#

0 

w/PLR#

1 

w/PLR#

2 

mAP 

(%) 

79.5 78.6 78.6 78.5 78.5 

 

4.4 Quantitative Analysis on Classification 

Ambiguity 
 

In this part, we show the classification ambiguity analysis 

quantitatively. To quantify the ambiguity of classification, we 

use the self-entropy or the self-information of the predicted 

probability distribution. Specifically, for a certain cell anchor, 

if the predicted classification probability distribution for this 

anchor is ( )1 2 1, , , +Kp p p , ( 1+K is the number of classes, 

including background), then the classification ambiguity of this 

anchor (or sample) is defined as follows: 

 

( ) ( )
1

1

log
+

=

= −
K

i i

i

I p p p  (8) 

 

The probable maximum value of ( )I p is ( )log 1+K

when
( )1 2 1

1

1
+

= = = =
+

K
p p p

K
. In practice, we use this 

value ( ( )log 1+K ) to normalize ( )I p  as the final 

quantitative indicator so that it falls in range [0, 1]. 

For the analysis, we gather statistics of the normalized self-

entropies for positive anchors on scale level 1, 2 and 3 

respectively. On each occasion, we plot the cumulative 

distribution function of the normalized self-entropy over these 

anchors for the baseline and PRN300. Since lower value of 

self-entropy indicates less ambiguity on classification, the 

curve at top-left is better under this quantitative index. Results 

are shown in Figure 3. It can be seen from the figure that 

classification ambiguity is significantly reduced using PSR, 

especially for small scale levels. 

 

 

Figure 3. Cumulative distribution functions of normalize self-

entropy 

(The curve at top-left corresponds to a better model. Statistics 

are over positive anchors on scale level 1, 2 and 3 respectively. 

And the scope of statistics covers all the test images in the VOC 

2007 test set.) 

 

4.5 Comparison with Feature Pyramid Fusion 
 

To further verify the effectiveness of PRN against feature 

pyramid fusion, we implement other two feature pyramid 

fusion methods FPN [1] and TDM [2] onto the baseline 

SSD300. For FPN, the fusion transformation defined in [1] is 

applied on the 6 backbone feature maps extracted by SSD300. 

The number of channels for lateral layers is set to 256 as is most 

commonly adopted. For TDM, modules as described in [2] are 

added onto the same 6 backbone maps with the channel 

numbers of lateral layers, top-down layers and out layers set to 

128, 128 andf 256, respectively. Experimental results are 

evaluated on the PASCAL VOC 2007 dataset, under 

300 300 input size. As shown in Table 4, our method 

(PRN300) surpasses the two feature pyramid fusion methods 

by large margins, which further demonstrates that the proposed 

method is more effective than feature pyramid fusion. 

 

Table 4. Experimental results of feature pyramid fusion vs. 

PRN 

(All the entries are trained on VOC 2007 trainval and VOC 

2012 trainval, using VOC 2007 test for evaluation.) 

method SSD300 SSD300w

/FPN 

SSD300 

w/TDM 

PRN300 

mAP 

(%) 

77.2 78.3 78.2 79.5 

 

4.6 Results on MS COCO 
 

For the MS COCO dataset, the model is trained on the 

COCO2017 train set and tested on the COCO test-dev set. We 

train our model for 110 epochs (around 403k iterations) in total 

with a batch size of 32. The SGD optimizer is adopted with the 

momentum and weight decay set to 0.9 and 0.0001. We use a 

learning rate of 10−3 with the warm-up strategy described in 

Section 4.1 and then decay its value by 0.1 at iteration 295k and 



1170 Journal of Internet Technology Vol. 23 No. 5, September 2022 

 

 

370k. An NMS with 0.5 IoU threshold is applied at test time.  

We evaluate PRN512 on the COCO test-dev set. Results 

are shown in Table 5. On COCO test-dev, PRN512 reaches 

31.7 AP, which is much higher than the SSD512 baseline. It 

also reaches comparable result as Deep Feature Pyramid 

Reconfiguration (FP Reconfig.) and surpasses the SSD513 

with a much more powerful backbone (ResNet-101). Despite 

that the AP of PRN512 is slightly lower than STDN513 and 

FSSD512, for the performance on small objects (APS), our 

result reaches the best (15.6) among the listed methods, 

suggesting a superiority for scale robustness on small objects, 

which is one of our main objectives. 

 

Table 5. Experimental results on the COCO test-dev set  

(All the entries are trained on the COCO2017 train 

(trainval35k) set.) 

Method Backbone AP AP50 AP75 APs APM APL 

YOLOv2 [13] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5 

SSD512 [7] VGGNet 28.8 48.5 30.3 10.9 31.8 43.5 

SSD513 [12] ResNet-101 31.2 50.4 33.3 10.2 34.5 49.8 

STDN513 [37] DenseNet-169 31.8 51.0 33.6 14.4 36.1 43.4 

FSSD512 [3] VGGNet 31.8 52.8 33.5 14.2 35.1 45.0 

FP  

Reconfig512 [4] 

VGGNet 31.5 50.9 33.2 - - - 

PRN512 VGGNet 31.7 51.0 33.9 15.6 33.5 44.0 

 

4.7 Discussion on the Limitation of This Work 
 

In this paper, we have proved that the progressive 

refinement strategy is effective for small object detection by 

collaboration with standard CNN object detection framework. 

However, there are several issues to explore considering the 

limitation of this work: 

1）Given a fixed CNN framework, it still requires additional 

computation budget for feature extraction on small objects. To 

better facilitate real applications by gaining more improved 

efficiency, a scale-adaptive convolution scheme may be well 

complementary to our PSN framework. 

2）Its general applicability in collaborating with new object 

detection pipeline, e.g., the transformer-based object detection 

framework, still needs to be investigated. 

3）Beyond the standard visual object detection datasets, 

some real-world tiny object detection scenarios are also worth 

taken into consideration, despite that it is beyond the scope of 

this paper. For example, one can consider object detection task 

on the video taken by drones, where the object sizes depend on 

the height of the drones. Under this setting, the object scales 

may be much smaller than natural photographs, which brings 

more challenges to existing achievements.  

 

5  Conclusion 
 

In this paper, we propose the Progressive Refinement 

Network (PRN), a novel paradigm to deal with the ever-lasting 

issue of scale robustness in object detection. The main idea of 

PRN is to reduce ambiguity for small object classification by 

progressively adding residuals to the basic prediction, yielding 

a sequence of gradually refined classification pre dictions. To 

decrease the side-effect of mis-refinement, we also develop an 

integration mechanism to synchronously control the intensity 

of supervision signal at each stage and integrate the refined 

predictions at all the stages, which helps to stabilize the final 

classification distribution. Experimental results show that with 

progressive refinement conducted on several scale levels 

corresponding to small objects, reliable performance gain as 

well as a superiority for detecting small targets can be obtained, 

which demonstrates the effectiveness of PRN for improving 

scale robustness. 
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