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Abstract 
 

Bearing is one of the most concerned parts in the field of 

fault diagnosis. At present, there are numerous excellent 

algorithms applied to bearing fault detection. This paper 

proposes a new fault bearings diagnosis model named LSTM-

Cascade CatBoost, which can directly classify bearing 

vibration signals in the case of multiple granularity and high 

dimensions without signal processing. The model is based on 

gcForest, whose complexity can be adjusted automatically to 

the size of data set and it uses LSTM to extract features of time 

series signals instead of multi-grained scanning for improving 

the model’s feature extraction ability. CatBoost is used as the 

base classifier of cascade forest to improve the classification 

accuracy of the model. Experimental results show the fact that 

this model is highly accurate in CWRU and XJTU-SY datasets. 

Besides, it not only proves that the feature extraction ability of 

LSTM is significantly better than that of multi-grained 

scanning, but CatBoost as a base classifier can further improve 

the accuracy of cascade forest. 

 

Keywords: Fault diagnosis, Bearing, Long Short-Term 

Memory, gcForest, CatBoost 

 

1  Introduction 
 

Bearing is one of the significant parts of rotating 

machinery, which is prone to failure in the case of high speed 

or heavy load due to its structure. And bearing failure will 

definitely affect the proper functioning of rotating machinery, 

then it will cause economic losses even endangering worker’s 

personal safety. Therefore, it is very important to monitor the 

state of bearings. At present, acoustic emission signals [1-2] 

and vibration signals [3-5] of bearings are used regularly in 

fault diagnosis field. Acoustic emission detection technology 

is superior to vibration detection at low speed, but the cost of 

vibration detection system is lower. Therefore, the methods 

based on vibration signals are more popular [6]. To improve 

the accuracy of the detection device, in addition to designing 

a stable hardware measurement system, it is also important to 

design an excellent fault diagnosis algorithm to distinguish 

signal types. 

For bearing vibration signals, the general processing 

method is to use fast Fourier transform, wavelet transform, 

Hilbert transform or other signal processing methods to extract 

fault features, and then complete classification [7-9]. With the 

rapid development of deep learning, deep neural network is 

gradually applied to bearing fault diagnosis. Some researchers 

used wavelet transform to input time-frequency diagram of 

bearing time-domain signal transformation into convolutional 

neural network for classification [10-13]. Gan eta. used deep 

confidence network to build a hierarchical diagnosis model then 

they classified the wavelet packet energy characteristics of bearing 

vibration signals [14]. Hao eta. used the combined model 

containing 1D-CNN and LSTM for vibration signals’ fault 

diagnosis of bearing [15]. 

GcForest is an integrated learning method based on 

decision tree proposed by Zhou, and its test accuracy in data 

sets such as MINIST and ORL Dataset is close to CNN [16]. 

However, the complexity of the model can be adjusted 

automatically according to the size of the data set and can 

adapt to different sizes of the data set. These days, there are 

also some cases of applying gcForest in the field of bearing 

fault diagnosis. Qin eta. modified the cascade layer of gcForest 

for classifying the original vibration data of bearings [17]. Xu 

eta. used wavelet transform to change the bearing vibration 

signal into a time-frequency diagram, and combined CNN 

with gcForest to classify the time-frequency diagram [18]. 

However, gcForest also has some shortcomings The multi-

grained scanning structure of this model is weaker than CNN 

and RNN in feature extraction of image or sequence data, 

which will affect the accuracy of cascade forest classification 

to a certain extent. Therefore, Classifiers in cascading forests 

still have enhanced space. 

In the view of the above deficiencies, we use the LSTM 

[19] layer to replace the multi-grained scanning structure for 

feature extraction, and change the base classifier in the 

cascade forest in to CatBoost [20] classifier.  The advantage 

of this model is that the original signal is processed directly 

without signal processing steps, which simplifies the process 

of fault diagnosis. LSTM layer features the sequence data and 

then directly transmits it to cascade CatBoost for classification. 

Experimental results show that LSTM has better feature 

extraction capability than multi-granularity scan, and cascade 

CatBoost can further improve the accuracy of classification. 

The contribution of this study is to use LSTM layer instead of 

multi-grained scanning structure to complete classification. 

The contribution of this study is to propose the LSTM-

Cascade Catboost model based on gcForest, which has better 

ability to classify bearing timing signals. 

The main structural flow of this paper is as follows: The 

second part introduces LSTM, gcForest and the methods 

proposed in this paper; The third part is the experimental 
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results; The fourth part is the conclusion and prospect of our 

research. 

 

2  Basic Theory and Proposed Method 
 

2.1 LSTM 
 

RNN (Recurrent Neural Network) has been widely used 

when dealing with events related to timing information. 

However, when the length of the input signal is different and 

the information header is difficult to determine, RNN will 

have gradient disappearance and will not be able to catch long-

term dependencies. As an improvement of RNN, LSTM (Long 

Short-Term Memory) overcomes this problem. LSTM is 

widely used in fault diagnosis and prognosis [21-22]. 

The structure of RNN is shown in Figure 1. Unroll the loop 

of RNN, it can be thought of as multiple identical basic units 

connected to each other. xt is the input at time t. A is the 

basic unit. ht is the output at time t. The information at time 

t − 1 can be transmitted through the basic unit to time t. Thus, 

RNN can capture the association between the data. LSTM has 

the same chain structure as RNN, the difference lies in the 

calculation rules of each basic unit. 

 

 

Figure 1. Unrolled of RNN 

 

The basic units of the LSTM are shown in Figure 2. The 

line at the top of the diagram represents the cell state. At the 

bottom of the diagram is a forget gate, an input gate, and an 

output gate. 

The forget gate ft  can selectively retain information 

about the ht−1. σ is the sigmoid activation function and its 

output value is between 0 and 1. This value determines 

whether the information from the previous moment is retained. 

 

𝑓𝑡 = 𝜎(𝑤𝑓 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)                (1) 

 

The input gate it controls the input and determines how 

much information enters the cell state. Tanh will produce a 

candidate value C̃t.  

 

𝑖𝑡 =  𝜎(𝑤𝑖 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)                (2) 

 

𝐶�̃� = tanh(𝑤𝑐 ⋅ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐)             (3) 

 

The cell state Ct consists of the information of the forget 

gate and the input gate. 

 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃�                   (4) 

 

The output gate Ot determines the information in the cell 

state to be output at the current time.Ot and Ct constitute the 

output ht of the basic unit. 

 

𝑂𝑡 = 𝜎(𝑤𝑜[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜)                (5) 

where wf, wi, wC, wo are the weights of each gate. bf, bi, 

bC, bo are the biases of each gate respectively. 

 

 

Figure 2. The structure of LSTM 

 

2.2 GCForest 
 

GCForest can be divided into two structures: one is Multi-

Grained Scanning, which is responsible for extracting the 

features of the sample. The other is Cascade Forest Structure, 

which is responsible for classifying the high-dimensional 

features obtained from Multi-Grained Scanning. 

 

2.2.1 Multi-Grained Scanning 

 

The raw feature is segmented by the sliding window to get 

the feature vectors, in the Multi-Grained Scanning, then the 

feature vectors are input into the random forest [23] and the 

completely-random forest [24] to generate the class vectors, 

and finally all the class vectors are concatenated as the output 

of the Multi-Grained Scanning. As shown in Figure 3, a J-
dimensional sample is fed into a Multi-Grained Scanning. 

Using a K-dimensional sliding window with a sliding step of 

λ  to obtain L  feature vectors, where L = (J − K) ∕ λ + 1 . 

Set the number of categories as x, the random forest and the 

completely-random tree forest generate Lx-dimensional class 

vectors respectively, and all class vectors are concatenated to 

get a 2 ∙ L ∙ x-dimensional vector. 

 

 

Figure 3. The structure of Multi-Grained Scanning 

 

In the random forest, each decision tree will estimate the 

category distribution, and the class vector of input features can 

be obtained by averaging the category distribution generated 

by all decision trees in the forest. The random forest randomly 

selects √K  features from K -dimensional input vectors, 

calculates gini  coefficient [25], evaluates the selected 

features, and selects the optimal nodes for splitting. The 

completely-random tree forest randomly selects features from 

input vectors for splitting until there is only one category of 

nodes. 
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2.2.2 Cascade Forest 

 

The Cascade Forest consists of multiple random forests 

and completely-random tree forest. The feature vectors are 

processed layer-by-layer in cascade layer to get the final 

category prediction. As shown in Figure 4, if a cascade layer 

has two random forests and two completely-random tree forest, 

then the feature vector can generate four x-dimensional class 

vectors after the first cascade layer. Concatenate the four x-

dimensional class vectors with the raw feature vectors and 

input them to the next cascade layer. If the cascade forest 

expands to the N th layer and stops, then the class vectors are 

averaged and the maximum value is taken as the final category 

prediction result. During the training, K-fold cross validation 

is used to weaken the overfit in the cascade forest. The number 

of layers in the cascade forest can be automatically expanded. 

If the accuracy rate does not improve within a certain number 

of layers, the expansion will stop and the training will be 

terminated. 

 

 

Figure 4. The structure of Cascade Forest 

 

2.3 CatBoost 
 

CatBoost is a machine learning algorithm based on GBDT 

[26] algorithm, and compared with other GBDT algorithms 

such as XGBoost [27] and LightGBM [28], it trains faster and 

more accurately than XGBoost, and CatBoost is not as fast as 

LightGBM, but it’s more accurate [29]. 

 

2.4 Proposed Method 
 

To directly classify bearing vibration signals in the case of 

multiple granularity and high dimensions, we combine the 

advantages of LSTM and CatBoost algorithms. The main 

structure of the model proposed in this paper is based on 

gcForest and improved by LSTM and CatBoost. The model 

structure is shown in Figure 5. Firstly, the bearing vibration 

signals are input into the model, and a LSTM layer is used to 

extract the features of those. Secondly, the extracted feature 

vectors are input into the cascade CatBoost. Each CatBoost 

layer will generate class vectors and then splice class vectors 

with feature vectors as the input of the next layer until the 

cascade layer is no longer extended.  Next, the class vectors 

of the last layer are averaged and the maximum value is taken 

as the final category prediction result. 

 

 

 

 

 

 

 

 

 

 

Figure 5. The structure of proposed method 

 

3  Case Study 
  

CWRU bearing dataset [30] and XJTU-SY bearing dataset 

[31] were used to verify the feasibility of applying the 

proposed method of bearing fault detection. The computer 

performance parameters are as follows: Intel Core I5-9400F 

CPU, NVIDIA GTX 1080Ti GPU, 32GB of RAM. The 

software framework used are TensorFlow 1.12, Keras 2.2.4 

and Scikit-learn 0.24. 

 

3.1 Case Study 1 
 

The CWRU data set used in this experiment is published 

by the Bearing Data Center of Case Western Reserve 

University (CWRU) which is a well-known data set in the 

field of bearing fault diagnosis. The bearing data acquisition 

platform, as shown in Figure 6, consists of a 1.5kW motor, a 

torque sensor and a power tester. Two bearings support the 

operation of the motor spindle. The fan end bearing model is 

SKF6203, and the drive end bearing model is SKF6205. 

Electrical discharge machining (EDM) is used to destroy the 

inner ring, ball and outer ring of bearings with different fault 

diameters. The accelerating sensor is fixed on both the fan end 

and the driver end. Vibration signals of the bearing are 

collected in the sampling rate of 12000, and those of the driver 

end are also collected in the sampling rate of 48000 in the data 

set. We use the bearing signals collected at the driving end at 

12000 sampling rate to make a data set. The data at 1730rpm, 

1772rpm and 1797rpm is used for training, then the data at 

1750rpm is used for testing. The ratio of training set to test set 

is 3:1. The length of each sample is 400, and the sliding 

sampling is carried out on the original data. The sliding step is 

200 and 500 samples are extracted from each original data. 

The details of the dataset are shown in Table 1. There are four 

statuses of normal, ball fault (Ball), inner ring fault (IR) and 

outer ring fault (OR), and the fault diameter is 0.007mm, 

0.014mm and 0.021mm, contains 20000 samples in 10 

categories.  

 

 

Figure 6. CWRU bearing test platform 
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Table 1. The details of the datasets from case study 1 

Fault type Label  Speed/rpm Number 

(Train/Test) 

Normal 0 

Train: 

1730 

1772 

1797 

 

Test: 

1750 

1500 / 500 

0.007-Ball 1 1500 / 500 

0.007-IR 2 1500 / 500 

0.007-OR 3 1500 / 500 

0.014-Ball 4 1500 / 500 

0.014-IR 5 1500 / 500 

0.014-OR 6 1500 / 500 

0.021-Ball 7 1500 / 500 

0.021-IR 8 1500 / 500 

0.021-OR 9 1500 / 500 

 

The proposed model training process is shown as follows: 

first, the samples are standardized [32], then they are input into 

LSTM for feature extraction, finally the cascade CatBoost is 

used to complete the prediction of sample categories. The 

parameters of LSTM are shown in Table 2. Single-layer 

LSTM is used, the batch size is 128, the epoch is 200. The 

256-dimensional eigenvector output from the LSTM layer is 

used as the input of the cascade CatBoost. The cascade layer 

adopts four CatBoost classifiers with the same parameters as 

shown in Table 3. Each classifier uses 10-fold cross-validation 

training. 

 

Table 2. The parameters of LSTM 

Layer Value Other parameters 

Input layer 400×1 Learning rate: 0.001 

LSTM 256 Loss: categorical_  

crossentropy Dropout 0.3 

Output layer 10 Optimizer: rmsprop 

 

Table 3. The parameters of CatBoost 

Parameters Value 

Iterations 80 

Learning rate 0.3 

Loss MultiClass 

depth 3 

 

During the experiment LSTM-Cascade Forest was added 

as the control. The multi-grained scanning part of gcForest 

was replaced while the other structures remained unchanged. 

The test results of the experiment are shown in Table 4. The 

essential reason why the accuracy of gcForest is inferior to that 

of LSTM is that the feature extraction ability of multi-grained 

scanning is weaker than that of LSTM layer. It can be proved 

by the fact that LSTM-Cascade Forest has higher accuracy 

than gcForest. In order to intuitively illustrate that LSTM is 

superior to multi-grained scanning in feature extraction, T-

SNE [33] is used to visualize the feature vectors generated by 

multi-grained scanning of LSTM layer and 25-dimensional 

sliding window respectively. The boundary of each cluster can 

be clearly seen in the T-SNE distribution diagram of LSTM 

shown in Figure 7. However, in the T-SNE distribution map 

of multi-grained scanning, the cluster boundary is fuzzy and 

some categories cannot be distinguished. The accuracy of 

LSTM-Cascade CatBoost is the highest in this experiment, 

indicating that replacing the random forest classifier in the 

Cascade layer with a more advanced CatBoost classifier can 

further improve the classification performance of the model. 

The test set confusion matrix of LSTM-Cascade CatBoost is 

shown in Figure 8. 

 

Table 4. The test accuracy of case study 1 

Method Accuracy (%) 

LSTM-Cascade CatBoost 99.72 

LSTM-Cascade Forest 99.54 

LSTM 99.23 

gcForest 98.12 

CatBoost 96.73 

 

 

(a) t-SNE of LSTM layer 

 

 

(b) t-SNE of Multi-Grained Scanning 

Figure 7. The visualization of t-SNE distributions 

 

 

Figure 8. The confusion matrix of study 1 

 

3.2 Case Study 2 
 

Since the bearing failure of the CWRU dataset was 

artificially caused, the XJTU-SY dataset was used to test the 

robustness of the model under actual working conditions. The 

test platform is shown in Figure 9. The bearing model used in 

this experiment is LDK UER204, and two acceleration sensors 
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are used to collect the horizontal and vertical signals of the 

bearing respectively. The test was carried out under three 

working conditions with 5 bearings of each type, and a total of 

15 bearings’ whole-life cycle vibration signals were obtained. 

The sampling rate was 25.6k, the single sampling time was 

1.28s, and each sampling interval was 1min. The signals of 

normal bearing, outer ring failure, inner ring failure and cage 

failure are extracted from the data of three working conditions 

to make data sets. The length of each sample is 400 and the 

sliding step is 100. The total number of samples is 2400, the 

detailed information is shown in Table 5. 

 

 

Figure 9. XJTU-SY bearing test platform 

 

Table 5. The details of the datasets from case study 2 

Fault type Label Number (Train/Test) 

Normal 0 450 / 150 

Cage 1 450 / 150 

InnerRace 2 450 / 150 

OuterRace 3 450 / 150 

 

The method in Case Study 1 was used for training, the 

batch size and the epoch were adjusted to 64 and 180 

respectively. Other parameters remain unchanged. The 

classification accuracy of the proposed model is shown in 

Table 6. From the experimental results, the accuracy is 

generally decreased, which is mainly caused by the change of 

data set size, but the decrease is not very large, and the 

accuracy of the proposed method is still the highest among the 

methods in the table. 

 

Table 6. The test accuracy of case study 2 

Method Accuracy (%) 

LSTM-Cascade CatBoost 99.33 

LSTM 99.00 

gcForest 97.86 

CatBoost 96.16 

 

4  Conclusion and Prospect 
 

In this paper, we propose a bearing vibration signal fault 

diagnosis method based on LSTM-Cascade CatBoost. The 

CWRU bearing dataset and XJTU-SY bearing dataset were 

used to verify the method. By comparing the T-SNE 

distribution of LSTM and multi-grained scanning, it has been 

proved that LSTM has a better feature extraction ability, and 

the proposed method also achieves the highest accuracy in 

comparison with other methods, therefore, it proves the 

effectiveness of our proposed method. Two data sets of 

different sizes also illustrate the robustness of this method. 

Although this method has achieved satisfactory results, 

this is not the end of the study. LSTM in deed has high 

accuracy, but its training speed is slow. GRU, as an improved 

method of LSTM, is not only faster, but also has similar 

accuracy. Next, we will study the algorithm of feature 

extraction to further improve the performance of this method. 
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