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Abstract 
 

The house price prediction problem is a typical regression 

problem, and most of the common house price prediction 

models are single prediction algorithms, which are not ideal in 

terms of accuracy and stability. For solving this problem, this 

paper proposes a house price forecasting method based on 

Stacking-Sorted-Weighted-Ensemble (SSWE) model. 

Considering the characteristics of different algorithms and 

giving full play to the advantages of each model, multiple 

individual forecasting models are fused with the Stacking 

model. The algorithm validation is performed using the data 

generated by the system of real estate management department 

in western Guangdong. The prediction results show that the 

Stacking model is superior to the single model. Compared 

with the Stacking regression model, the SSWE model has a 

13.6% increase in the root mean square error on the training 

set but a 0.3% decrease on the test set, indicating that the 

SSWE model prevents overfitting to a some extent and 

increases the accuracy and stability of the model. 

 

Keywords: Stacking, Combination forecast, Stacking-Sorted-

Weighted-Ensemble 

 

1  Introduction 
 

As a pillar industry of national economy, real estate is 

inseparable from people’s livelihood issues. With the 

intensification of urbanization, people’s demand for housing 

rental and home purchase is increasing, and the concern for 

housing prices continues to become higher. Housing prices are 

not only related to people’s living standards, but also to the 

smooth operation of a country’s economy. Therefore, accurate 

prediction of house prices not only provides constructive 

guidance to both parties of property transactions, but also has 

a positive effect on the government and leaders of related 

departments in regulating house prices. It is important to 

identify an algorithm that can accurately predict house prices 

from the available data, which can estimate house prices based 

on house characteristics and predict house prices for houses 

with different types of characteristics. 

With the rapid development of big data and machine 

learning, suitable algorithmic techniques, which will provide 

key technical support for house price prediction research, 

well-performance regressors such as Elastic Net (EN) [1], 

Random Forest (RF) [2] and Extreme Gradient Boosting [3], 

etc. have some applications in house price prediction studies. 

However, the performance improvement based on a single 

regressor falls into a bottleneck, such as the traditional BP 

neural network model has the problem of slow convergence 

and easy to fall into local optimum, researchers try to solve 

this problem by combining optimization algorithms. Magnier 

et al. [4] built a mixture model to predict house prices by 

optimizing BP neural network through genetic algorithm, the 

experimental results show that the convergence speed and 

prediction accuracy are improved, but the prediction effect is 

still not effectively guaranteed when the amount of data is not 

large enough. Therefore, some scholars have focused on the 

research of ensemble regressors. At present, the more mature 

ensemble techniques include Bagging [5-6], Boosting [7-8], 

and Stacking [9], which can significantly improve the 

performance of simple regressors such as decision trees, 

Random Forest is based on Bagging ensemble of decision 

trees [2], and XGBoost is also based on Boosting ensemble of 

trees [3]. The diversity and variability of the base models make 

the ensemble results will be more robust and accurate, which 

leads to a greater improvement in prediction [10]. However, 

the base learners of Boosting and Bagging ensemble learning 

are generally generated by the same learning algorithm, which 

cannot reflect the advantages of different algorithms. Stacking 

ensemble methods are applied in android malware detection 

[11] and emotion recognition [12], etc., which can effectively 

integrate different kinds of base learners, thus effectively 

improving the prediction accuracy. However, the selection of 

base learners has a large impact on the prediction results of 

Stacking ensemble models, and the performance of poor base 

learners can easily affect the combined results if the 

performance of base learners differs significantly. To address 

this problem, a mixture model is proposed and our work has 

three primary contributions. 

 

⚫ The innovation of data indicators. Most of researches 

about the real estate are based on the house price action 

of a district or the average price of a sub-district. In 

contrast, there are few studies of fine-grained house 

price forecasting that focusing on the house’s own 

properties, such as house type, orientation, layout, etc. It 

is obviously that the latter can provide more valuable 

reference information. 

⚫ A new combination forecasting model. To solve the 

problem of the low prediction accuracy of single 

prediction model and the possibility of overfitting of 

ensemble learning, The SSWE is proposed, which 
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considers the characteristics of different algorithms and 

makes full use of the advantages of each model.  

⚫ Real data estimation. The experiments conducted in real 

transaction data of western Guangdong, which is of 

great significance to the government’s macroeconomic 

control of real estate and residents’ home purchase 

decisions. 

 

2  Related Work 
 

2.1 Data Set 
 

The data were collected from Departments related to real 

estate management, and the original data had 1,698,276 

samples, each containing 70 features, and the number of 

screened samples was 200,356. The screening criteria are: 

online transfer of term houses, floor area of 44-144 square 

meters, house type is residential, and building structure is 

reinforced concrete.  

 

2.2 Data Preparing 
 

In the actual production environment, the data is often 

missing and abnormal, does not meet the needs of the model, 

and some of the data is invalid due to human subjective factors 

or objective environmental factors and other aspects, so the 

data must be pre-processed before modeling. 

The commonly used methods for dealing with missing 

values fall into two categories: data filling and sample deletion, 

and the specific treatment depends on the analysis of the 

missing data. Therefore, the missing data and their missing 

proportions were first counted, as shown in Figure 1, and 

according to the statistical results, the variables with a high 

proportion of missing values were deleted and the null data for 

house orientation and house type attributes were replaced with 

Nan. 

 

 

Figure 1. The statistics of missing features 

 

The dataset used in this paper has as many as 70 variables, 

but some factors have very little effect on house prices, and 

too many features can easily lead to overfitting of the 

prediction results. To further filter the features, the 

relationship between the independent and dependent variables 

is visualized, and its scatter plot is shown in Figure 2. 

 

Figure 2. The Scatter plot of the relationship between the X 

and Y 

 

From the above figure, it can be roughly judged that: the 

floor area and the Inner floor area are linearly related to the 

Sold price, and the common area is exponentially related to 

the Sold price. To further verify whether the dependent and 

independent variables are correlated, please see the heat map 

of the correlation matrix in Figure 3. 

 

 

Figure 3. The related matrix heat map 

 

The types of features in the dataset are continuous features 

and discrete features. One-hot coding is used for discrete 

features to vectorize the discrete features in the sample. n-bit 

state registers are used to encode N states, each corresponding 

to a separate register bit and only one bit is active at any given 

time. For continuous features, the Min-max normalization was 

first used for the independent variable to eliminate magnitude 

differences, and the Box-cox transform was used for the 

dependent variable to eliminate the effects of long-tailed 

distributions, because many models are based on the 

assumption that the data error terms conform to a normal 
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distribution, which would be violated for data with a long-

tailed distribution. The Min-max normalization formula is: 

 

X̅ =
Xi− min

1≤j≤n
Xj

max
1≤i≤n

Xi− min
1≤j≤n

Xj
                                       (1) 

 

Which Xi and  Xj belongs to the value of the sequence 

and X̅ is the transformed sequence. The Box-cox formula is: 

 

y(λ) = {
yλ − 1, λ ≠ 0

lny, λ = 0
                               (2) 

 

Which λ  is the parameter to be estimated, y  is the 

original dependent variable and y(λ)  is the transformed 

response variable. The Gaussian distribution before and after 

the transformation of the variable is shown in Figure 4. 

 

 

Figure 4. The Gaussian distribution before and after the 

transformation of Sold price (y) 

 

3  Method 
 

3.1 Individual Forecasting Model 
 

3.1.1 Linear Regression 

 

The linear regression model assumes that the regression 

function E(Y|X) is linear with respect to the input variables, 

i.e., models the relationship between one or more independent 

and dependent variables. The linear regression model can be 

defined as follows: 

 

f(X) = θ0 + ∑ θjXj                             
n
j=1  (3) 

 

Where θj  is an unknown parameter that needs to be 

optimized,  Xj  are characteristic variables. The parameters 

of X are solved by the least squares method. The loss function 

is: 

 

J(θ) =
1

2
∑ (yi − f(xi))2                      m

i=1  (4) 

 

Calculating the first-order derivative of x for Equation (4) 

and Substituting Equation (3) into the previous calculation to 

make the result equal to 0, the analytical solution of is obtained, 

i.e. θ = (XTX)−1XT y. This method is simple and easy to 

calculate, but there are many problems. When the number of 

characteristic variables is large, the model is prone to 

drawbacks such as large variance with small deviation and 

poor interpretability of some variables, i.e., it arises overfitting. 

To solve this problem, Ridge regression and Lasso regression 

are proposed. 

 

3.1.2 Ridge Regression 

 

Ridge Regression (RR) shrinks the magnitude of the 

coefficients of the characteristic variables by adding a penalty 

factor. The loss function is expressed as: 

 

J(θ) =
1

2
∑ (yi − f(xi))

2
 + λ ∑ θj

2    n
j=1  m

i=1   (5) 

 

Solve for θ  as (XTX + λΙ)−1XTy . Where λ ∑ θj
2n

j=1  is 

the L2 regularization term and λ is the penalty factor. When 

the penalty factor increases, the variance of the model will 

decrease and the bias of the model will increase. Finally, a 

reasonable penalty factor is found to balance the variance and 

bias of the model to avoid overfitting. 

 

3.1.3 Lasso Regression 

 

Like Ridge regression, Lasso regression also applies a 

penalty to the magnitude of the coefficients to solve the 

overfitting problem that occurs in linear regression, but the 

difference is that Lasso regression introduces the L1 regular 

term. Its loss function is as follows: 

 

J(θ) =
1

2
∑ (yi − f(xi))

2
 + λ ∑ |wj|   

k
j=1

m
i=1    (6) 

 

where λ ∑ |wj| 
k
j=1 is the L1 regularization term and λ is the 

penalty factor, which achieves the purpose of eliminating 

variables by making the coefficients of insignificant 

characteristic variables zero. 

 

3.1.4 Decision Tree 

 

Decision Tree is a tree-like structure that controls the 

generation of a tree by selecting split attributes and pruning, 

where each internal node represents a judgment on an attribute, 

each branch represents an output of a judgment result, and the 

leaf nodes correspond to a classification result. Common 

decision tree algorithms include ID3, C4.5, CART, etc. 

 

3.1.5 Random Forest 

 

Random Forest is a Bagging strategy for tree classification 

based on decision trees, in which a random selection of 

features is made at each node of each tree, and the most 

powerful feature is selected for node splitting. 

  

3.1.6 GBDT 

 

GBDT (Gradient Boosting Decision Tree) is an iterable 

algorithm consisting of multiple CART trees [13], which can 

be represented as follows: 

 

ft(x) = ∑ ht(x)                                         T
t=1    (7) 

 

where ft(x) is t-th round model, ht(x)   is the t-th decision 

tree. Each round of iterations produces a weak learner, each 

model trained on the basis of the residuals of the previous 

round of learners. The specific strategy is to use a forward 

distribution algorithm where the model at step t formed from 

the model at step t-1: 
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ft(x) = ft−1(x) + ht(x)                                        (8) 

The negative gradient of the loss function is used to fit the 

approximation of the loss in this round so that a CART 

regression tree can be fitted. The negative gradient of the loss 

function for the i-th sample of round t can be expressed as 

follows: 

 

rt,𝒾 = − [
δL(y,f(xi))

δf(xi)
] = yi − fm−1(xi)                  (9) 

 

where L(y, f(xi)) is the loss function of the true and predicted 

values. The t-th CART regression tree is fitted by 

(xi, rt,𝒾) (i = 1,2, . . . m) , whose corresponding leaf node 

region is Rt,j, j = 1,2, . . . , J . Where J is the number of leaf 

nodes. The best output of the fitted leaf node 𝐶𝑡,𝑗  can be 

defined as follows: 

 

𝐶𝑡,𝑗 = 𝑎𝑟𝑔𝑚𝑖𝑛 ∑ 𝐿(𝑦𝑖 , ft−1(xi) + c)     xiϵRt,j
 (10) 

 

At this point the decision tree fitting function for the t-th 

round can be obtained: 

 

ht(x) = ∑ 𝐶𝑡,𝑗 𝐼(𝑥 ϵ Rt,j)                             
J
j=1  (11) 

 

Substituting into Equation (8), the final GBDT model can 

be obtained as follows: 

 

ft(x) = ft−1(x) + ∑ 𝐶𝑡,𝑗 𝐼(𝑥 ϵ Rt,j)             
J
j=1 (12) 

 

3.1.7 XGBoost 

 

XGBoost is an efficient system implementation based on 

GDBT improvement. To speed up the determination of the 

best segmentation points, the data are pre-sorted before 

training and saved as a block structure so that space is traded 

for time to make parallelism possible. To prevent overfitting, 

a regularization term is introduced in the cost function, while 

column sampling is used by borrowing from random forests. 

Since XGBoost is an extension of GDBT, the objective 

function at step t is obtained in the same way according to 

Equations (7) and (8) in the previous subsection. The objective 

function can be defined as follows: 

 

objt = ∑ L(yi, ŷt−1 + ft(xi)) + Ω(ft)      n
i=1  (13) 

 

where L is the loss function, yi is the true value, ŷt−1 is the 

predicted value of the model at step t-1, ft(xi) is the predicted 

value to be added to the new model, and is the regularization 

term, which can be represented as: 

 

Ω(ft) = γT +
1

2
λ ∑ 𝓌j

2                             T
j=1  (14) 

 

which λ and γ are custom values, the larger the value, the 

simpler the tree structure, T is a leaf tree, and 𝓌j represents 

the weight of leaf node j. Expanding Equation (13) with 

Taylor’s formula and replacing the regularization term with 

Equation (14), Equation series (15) can be obtained: 

 

objt = ∑ [L(yi, ŷt−1) + gift(xi) +
1

2
hift

2(xi)]n
i=1 + γT +

1

2
λ ∑ 𝓌j

2      T
j=1  (15) 

where gi is the first-order derivative of the loss function and 

hi  is the second-order derivative of the loss function. 

Simplifying Equation (14) and noting that L(yi, ŷt−1)  is a 

constant, Equation series (16) can be obtained: 

 

objt = ∑ [(∑ giiϵIj
)𝓌j +

1

2
(∑ hiiϵIj

+ λ)𝓌j
2 ]n

i=1 + γT        

(16) 

 

Taking the derivative of Equation (15) with respect to W 

and making it zero, the analytical solution of 𝓌j  can be 

obtained as: 

 

𝓌j
∗ = −

∑ giiϵIj

∑ hiiϵIj
+λ

                                                             (17) 

 

Substituting Equation (17) into (16), the final objective 

function can be obtained as follows: 

 

objt = −
1

2
∑

(∑ giiϵIj
)2

∑ hiiϵIj
+λ

+ γT                                     n
i=1  (18) 

 

3.1.8 LightGBM 

 

LightGBM is another improved framework model based 

on GDBT, which mainly introduces two new techniques: 

Gradient-based One-Side Sampling (GOSS) and Exclusive 

Feature Bundling (EFB). GOSS can eliminate most of the 

samples with small gradients and use only the remaining data 

to calculate the information gain, because the samples with 

large gradients are more important for information gain, which 

can reduce the amount of data and ensure accurate accuracy. 

EFB can reduce the number of features, which can accelerate 

the construction of histograms. 

 

3.2 Combination Forecasting Model 
 

3.2.1 Stacking Model 

 

Stacking algorithm, also known as Stacked generalization, 

can be regarded as a special and specific combination strategy. 

In order to take advantage of different algorithms, Stacking is 

usually heterogeneously integrated, i.e., its base learners are 

usually trained by different algorithms to obtain. Figure 5 

shows the flowchart of the two-layer Stacking algorithm, 

where the first layer of learners is the primitive learner, also 

called the individual learner. The second layer of learners used 

for combining is called secondary learner or meta-learner. The 

basic idea is to use the initial dataset to learn a new learner by 

training several base learners through cross-validation and 

using the prediction results of these learners as input to the 

second layer while the original labels are still used as labels 

for the new dataset. 

 

 

Figure 5. The flow chart of Stacking algorithm 
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Given a set of training samples D = {(xn , yn), n =
1, ⋯ ⋯ , N} with the independent variable x and dependent 

variable y，Dtest = {xm, m = 1, ⋯ ⋯ , M}, T primary learning 

algorithms ς1, ⋯ , ςT and a secondary learning algorithm ς. 

Training phase: For the training set D = {(𝑥𝑛 , 𝑦𝑛), 𝑛 =
1, ⋯ ⋯ , 𝑁}, where 𝑥𝑛 is the feature vector of the nth sample 

and 𝑦𝑛 is the predicted value corresponding to the nth sample. 

Randomly divide the data into k sets of approximately equal 

size and mutually exclusive D1, D2, ⋯ , Dk，Di ∩ Dj = ∅ . 

𝐷�̅� = 𝐷\𝐷𝑗，𝐷𝑗  denote the j-th fold training set and test set of 

k-fold cross-validation respectively. The k-fold training set is 

trained using the first layer learning algorithm 𝜍𝑡(𝑡 =

1, ⋯ , 𝑇)  to obtain k base learners ht
(j), j = 1, ⋯ , k . The 

prediction of ht
(j)

 for each sample 𝑥jn(n = 1, ⋯ , N/k) in 

the j-th fold Dj of the k-fold cross-validation is denoted as 

ht
(j)(𝑥jn). 

Testing phase: k base learners make predictions on each 

sample xm(m = 1, ⋯ , M) in the test set, and the prediction 

value is denoted as ht
(j)(xm) (j = 1, ⋯ , k). These k results 

are averaged as the prediction value of algorithm ςt on the 

test sample as follow 

 

ht(𝑥𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ ht

(j)(𝑥𝑚)𝑘
𝑗=1

𝑘
                               (19) 

 

After the training is completed, the output data of T base 

learners are used as the new training set 𝐷′ =

{(𝑦𝑛  , h1
(j)(𝑥jn), ⋯ , hT

(j)(𝑥jn)) , 𝑗 = 1, ⋯ , 𝑘，𝑛 = 1, ⋯ , 𝑁/

𝑘}. The secondary learners 𝜍(𝐷′) are trained by using the 

second layer prediction algorithm 𝜍. The pseudo code of the 

training process part of Stacking ensemble learning can be 

represented as follows: 

Input: Data set D = {(𝑥𝑛 , 𝑦𝑛), 𝑛 = 1, ⋯ ⋯ , 𝑁}; 

First layer prediction algorithm 𝜍1, ⋯ , 𝜍𝑇; 

Second layer prediction algorithm 𝜍; 

Step 1: Divide the data set into k mutually exclusive subsets 

of equal size D1, D2, ⋯ , Dk 

Step 2: Generate base learners by training the first layer 

prediction algorithm with training data Dk 

：for  j = 1, ⋯ , k do 

： for  t = 1, ⋯ , T do 

：  ht
(j) = 𝜍𝑡(𝐷�̅�) 

： end for 

： for 𝑥jn ∈ 𝐷𝑗  do 

：  Calculate ht
(j)(𝑥jn) 

： end for 

：end for 

Step 3: Generate a new training set 𝐷′ =

{(𝑦𝑗𝑛  , h1
(j)(𝑥jn), ⋯ , hT

(j)(𝑥jn)) , 𝑗 = 1, ⋯ , 𝑘，𝑛 = 1, ⋯ , 𝑁/

𝑘} 

Step 4: Each model makes predictions for each test sample 

𝑥𝑚 on the test set, and the results are averaged as: ht(𝑥𝑚)̅̅ ̅̅ ̅̅ ̅̅ ̅ =
∑ ht

(j)(𝑥𝑚)𝑘
𝑗=1

𝑘
 

Step 5: Based on D the second layer prediction model is 

trained with the 𝜍 to obtain the meta-learner h′ = 𝜍(𝐷′) 

Output: 𝐇(𝐱𝐦) = 𝐡′(𝐡𝟏(𝐱𝐦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ，𝐡𝟐(𝐱𝐦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ，⋯，𝐡𝐓(𝐱𝐦)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ) 

 

3.2.2 Stacking-Sorted-Weighted-Ensemble Model 

 

If a single model is used for forecasting, it may face the 

risk of accuracy degradation or overfitting. Dietterich pointed 

out that model combination may bring benefits in three aspects: 

statistical, computational, and representational [14]. Therefore, 

in this paper, the differences in the capabilities of different 

algorithms are used to construct SSWE models to improve the 

accuracy and reduce the risk of overfitting. The construction 

process is shown in Figure 6. 

 

 

Figure 6. The flow chart of SSWE model construction 

 

The construction process for the SSWE model is roughly 

divided into the following steps: 

Step 1: Training base model. The training set with 

reconstructed samples and features is trained with Ridge 

Regression, Lasso Regression, Decision Tree, Random Forest, 

GBDT, XGBoost, and LightGBM models respectively, and 

the predicted values are compared with the actual values 

through evaluation metrics to measure the performance of 

each base model, The score of each model is presented in (19) 

below: 

 

Score = (valtest(𝑓1), valtest(𝑓2), ⋯ , valtest(𝑓𝑚)) (20) 

 

where 𝑓𝑚(i = 1,2, ⋯ ,7)  represents seven base prediction 

model respectively and valtest is the score of model on the 

test set. 

Step 2: Screening model. When the model predictions are not 

consistent, the base prediction model with better results is 

selected, as shown in Equation (20): 

 

      𝑓 = [𝑓𝑖 ||𝑚𝑖𝑛(𝑆𝑐𝑜𝑟𝑒) − valtest(𝑓𝑗)| < 𝜀  (𝑗 ≠

                             𝑎𝑟𝑔𝑚𝑖𝑛(𝑆𝑐𝑜𝑟𝑒))]                   (21) 

 

Step 3: Training the Stacking regressor. The Stacking 

framework ensemble diverse prediction algorithms that are 

able to take full advantage of the individual algorithms to 

observe data from different data spaces and structures. 

Therefore, the first layer of the base learner should incorporate 

as many different kinds of prediction algorithms as possible, 

in addition to selecting algorithms with excellent performance. 

Screening 𝑓  obtained on the basis of step 2 to make it as 

varied as possible and the better models Ridge regression, RF 



1144 Journal of Internet Technology Vol. 23 No. 5, September 2022 

 

 

regression, GDBT regression, XGBoost regression and 

LightGBM regression are selected as the first layer of base 

learners, and Ridge regression is used as the second layer of 

base learners for Stacking ensemble, as shown in Figure 7. 

 

 

Figure 7. The workflow diagram of Stacking fusion 

Framework 

 

Step 4: Combination weighting. Combining prediction 

models with better results according to the corresponding 

weights can improve the prediction accuracy of the models. 

The weights are used to characterize the importance of 

different models, considering that different models have 

different capabilities and contribute to the final results. The 

key of the combined models is the estimation of the weight 

coefficients, and the weights are generally set according to the 

minimum absolute error and variance of the objective function 

prediction. In this paper, we use a ranking of the performance 

of the base model to set the corresponding weights, it can be 

defined as follows： 

 

𝐹 = 𝑤𝑖𝑓𝑖                                                            (22) 

 

where 𝑓𝑖(i = 1,2, ⋯ , n)  represent the n well-performing 

underlying forecasting models, F is the combined prediction 

model, 𝑤𝑖  is the weight of the i-th model, and the weights are 

calculated as follows 

 

{

𝑤𝑖 =
n−Rank(𝑓𝑖)+1

∑ Rank(𝑓𝑖)n
i=1

,

∑ 𝑤𝑖 = 1,𝑛
𝑖=1

𝑤𝑖 ≥ 0.

                                        (23) 

 

where 𝑅𝑎𝑛𝑘(𝑓𝑖) is the ranking of each model’s result score 

from highest to lowest. 

 

3.3 Model Stability  
 

In machine learning or statistical learning models, we 

often need to consider the stability of the algorithm, i.e., the 

robustness of the algorithm to data perturbations [15]. The 

generalization error of ensemble learning models is 

determined by the error, variance and noise, and high variance 

is the culprit of instability. Trade-offs between bias and 

variance are key in machine learning processes [16]. 

 

Ε(𝑓; 𝐷) = var(x) + bias2(x) + ε2            (24) 

 

 

 

 

Where bias(x) is the difference between the true value 

and the predicted value of the model, and the smaller the bais, 
the more accurate the model is. Which the var(x) reflects the 

error between each output of the model and the average of the 

model’s predicted values; the smaller the variance, the more 

stable the model. Where E(f; D)is the generalization error of 

ensemble learning model f on the unknown data set D and ε 

is the noise, which is the part where machine learning cannot 

intervene. To facilitate the illustration of the effect of bias and 

variance of different models, Table 1 was produced as follow. 

 

Table 1. The effect of different bias and variance values on 

the model  

 High bias Small bias 

High var Not suitable for this  

data, need to change 

the model 

High complexity. 

Overfitting. 

Small var Low complexity. 

Underfitting. 

Stable predictive 

values. 

The generalization 

error is small, which 

is what we want to 

achieve. 

 

From Table 1, when the variance of the model is large and 

the bias  small, it will lead to overfitting (e.g., point J in 

Figure 8), which can be reflected in good performance in the 

training set but poor performance in the test set. In contrast, 

underfitting is inaccurate prediction for all data sets (e.g., point 

A in Figure 8). A good model should be accurate and stable in 

predicting most of the unknown data. That is, when the bias 

and variance are low, the generalization error of the model is 

low and the accuracy on unknown data is high. 

The SSWE model in this paper is to prevent overfitting by 

balancing the relationship between variance and bias. As 

shown in the Figure 8, When the model complexity is high, 

the variance is high and the bias is low. Due to the large 

complexity, the model learns as much detail as possible on the 

training set, so the prediction is accurate, and the bias is low. 

However, this may lead to overfitting, which makes the model 

perform unstably on different data, and the model generalizes 

poorly, so the variance is high. Relatively, low complexity 

results in low variance and high bias. Due to the low 

complexity, the model learns more simply on the training set 

and cannot reach high accuracy on a certain class or set of data, 

so the bias will be high. But the model will predict more 

consistently. Although variance and bias cannot be minimized 

at the same time, there can be a minimum point for the 

generalization error consisting of both (e.g., point O in Figure 

8), and we are looking for or approaching this minimum point. 

For models with large complexity, the variance should be 

reduced, and for relatively simple models, the bias should be 

reduced. In the SSWE screening process for the base models, 

all models that perform well on the test set, i.e., models with 

less bias (e.g., points B to I in Figure 8) are selected, based on 

which, models with similar performance, i.e., models with less 

variance (e.g., points B to G in Figure 8) are screened, and then 

the importance of each model is measured by ranking them, 

and finally they are summed, and the result can be close to the 

minimum point of the generalization error. 
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Figure 8. The plot of the relationship between model 

complexity and generalization error 

 

4  Experiment 
 

4.1 Forecasting Error Measurement 
 

It is essential to introduce the ‘forecasting error 

measurement’ (FEM) when measuring the performance of a 

forecasting model. To keeping the error and house prices in 

same order of magnitude to describe the effect of the model, 

root mean square error (RMSE) is used to evaluate the 

prediction results of the model. 

 

RMSE = √
1

m
∑(yi − ŷi)

m

i=1

2

 

 

where yi is the true value and ŷi is the predicted value. 

 

4.2 Experimental Results 
 

Generally speaking, the complexity of single model is 

low and the complexity of integrated model is high, so in this 

paper, experiments were done according to different model 

complexity to calculate the error of each model on the training 

and test sets, and the results are shown in Table 2. Lasso 

Regression (LR) , Decision Tree (DT) are all basic models 

with low model complexity, which obviously do not perform 

well on both the training set and test sets, and the bias is 

relatively large (e.g., point A in Figure 8), so it is not 

considered here as the base model for the SSWE model. ridge 

regression (RR), although it is also a basic model with low 

model complexity, performs relatively well (e.g., point B in 

Figure 8), and we can see that the Ridge regression model 

outperforms the Lasso regression model, and we can consider 

it as the base model for the SSWE model, and the result has 

the added benefit that it can be inferred from this that the 

characteristic variables chosen in this paper all have a larger 

role. And the reader can also test other single models to do an 

extended study. Among the underlying prediction models, the 

LightGBM regression model performs the best. Although the 

LightGBM regression prediction model does not achieve the 

lowest RMSE in the training set, it have the smallest RMSE = 

0.1490973 in the test set. RF have the smallest RMSE in the 

training set, but is less effective in the test set and overfitting 

occurred. The Ridge regression model outperforms the Lasso 

regression model, and suggesting that all the characteristic 

variables have a greater effect. Based on the performance of 

the basic models, the better models Ridge regression, RF 

regression, GDBT regression, XGBoost regression and 

LightGBM regression were selected as the first layer base 

learner and Ridge regression as the second layer base learner 

for Stacking integration, compared to the LightGBM 

regression model, there was a 72.9% reduction in the training 

set and a 1.3% reduction in the test set. It indicating that the 

Stacking model is superior to the single prediction model. The 

SSWE model was constructed by selecting Stacking ensemble 

regression model, RF regression model, GDBT regression 

model, XGBoost regression, and LightGBM regression, and 

the RMSE became larger in the training set but reduced by 

0.3% in the test set compared to the Stacking ensemble 

regression model. Therefore, the SSWE model is superior to 

the Stacking ensemble model and better than the single model 

such as Ridge regression in terms of various prediction 

evaluation metrics in the training and test sets. 

 

Table 2. RMSE of values of different models 

 RMSE 

Model Training set Test set 

Lasso Regression 0.4257673 0.4104566 

Ridge Regression 0.1385489 0.1765388 

Decision Tree 0.1205079 0.1801412 

RF 0.1006223 0.1562953 

GDBT 0.1070908 0.1500351 

XGBoost 0.1095310 0.1518729 

LightGBM 0.1013876 0.1490973 

Stacking 0.0274669 0.1470694 

SSWE 0.0312009 0.1465776 

 

5  Conclusion 
 

In AI house price prediction research, most scholars 

predict real estate transaction prices from the macro level, 

which can only predict the trend direction of average house 

price and has little significance to the government’s macro 

control and residents’ choices. This paper adopts data 

indicator innovation to predict house prices based on housing 

portrait indicators from the micro level to achieve accurate 

prediction of one house at one price, and the data set is 

collected from the actual production process, which is of 

strong practical significance and provides relevant 

departments with ideas for processing this type of data set. In 

addition, this study also proposes a SSWE model, which 

combines the Stacking ensemble model and the single base 

model in a weighted combination, the smaller the RMSE of 

the model on the test set, the higher the ranking and the greater 

the weight it takes, and the five models with better prediction 

effect is obtained: Ridge regression, LightGBM regression, 

RF regression, GBDT regression, XGB regression, and 

Stacking ensemble model. Combining these models using the 

method just mentioned, the final SSWE model is obtained. 

The advantage of the SSWE model is that it takes into account 

the diversity and variability of the underlying model to make 

the prediction results more robust and accurate, which not only 

improves the prediction ability of house prices to some extent, 

but also effectively avoids the occurrence of overfitting when 

the data has noise or more features, and greatly improves the 

stability of the model. 
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In future work, we can try to incorporate or explore some 

more advanced techniques or features to improve the 

prediction, but the model trained with state-of-the-art 

algorithms means that there may be a greater model 

complexity, and whether the model complexity corresponding 

to the algorithm seems too high can be judged by doing cross-

validation and then finding the variance, which of course 

means higher computational and time costs. The lowest point 

of generalization error is actually a theoretical value, and how 

to approach this point may be the direction of future SSWE 

model improvement. 
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