
A Framework for Modeling and Detecting Security Vulnerabilities in Human-Machine Pair Programming 1129

*Corresponding Author: Shaoying Liu; E-mail: sliu@hiroshima-u.ac.jp

DOI: 10.53106/160792642022092305021

A Framework for Modeling and Detecting Security Vulnerabilities

in Human-Machine Pair Programming

Pingyan Wang1, Shaoying Liu1*, Ai Liu1, Fatiha Zaidi2

1 Graduate School of Advanced Science and Engineering, Hiroshima University, Japan

2 Laboratoire Méthodes Formelles, {Université Paris-Saclay, CNRS, ENS Paris-Saclay}, France

{pingyanwang, sliu, liuai}@hiroshima-u.ac.jp, zaidi@lri.fr

Abstract

To detect and mitigate security vulnerabilities early in the

coding phase is an important strategy for secure software

development. Existing solutions typically focus on finding

certain vulnerabilities in certain computer systems without

giving a systematic way of handling different types of

vulnerabilities. In this paper, we present a framework for

systematically modeling and detecting potential security

vulnerabilities during the construction of programs using a

particular programming paradigm known as Human-Machine

Pair Programming. The framework provides designers with a

general way of modeling a class of attacks in detail, and shows

how programmers can discover and fix a vulnerability in a

timely manner. Specifically, our framework advocates three

primary steps: (1) generating an attack tree to model a given

security threat, (2) constructing vulnerability-matching

patterns based on the result of the attack tree analysis, and (3)

detecting corresponding vulnerabilities based on the patterns

during the program construction. We also present a case study

to demonstrate how it works in practice.

Keywords: Security vulnerabilities, Human-machine pair

programming, Attack trees, Static analysis

1 Introduction

Security vulnerabilities can be found in different phases of

a software life cycle and might be exploited by attackers who

aim to launch attacks against computer systems. Although

system administrators can install patches after being attacked,

systems have been compromised and attackers probably have

achieved their goals. For this reason, the traditional penetrate-

and-patch approach might not be considered as an effective

strategy for many systems. For most software-based systems,

especially security-critical systems, it is important to detect

and tackle the security problems at an early stage since adverse

impact can increase rapidly with time. Researchers have

explored many approaches for mitigating security problems

during different development phases, including requirement

phase [1], coding phase [2] and testing phase [3]. Intuitively,

identifying the security-related problems in the coding phase

is generally efficient because it allows the programmer to

review and fix the vulnerable code in a timely manner. Some

solutions, such as static analysis techniques [4-5] and

defensive programming techniques [6-7], are proposed to

achieve this goal, but most of them only focus on certain

systems and vulnerabilities instead of addressing the full scope

of the problem. Furthermore, since most of the proposed

techniques involve considerable manual work and humans’

collaboration, the efficiency of their application may not be

desirable. This paper tries to mitigate these problems by

proposing a framework suitable for computer to adopt to

automatically uncover vulnerability problems during the

construction of programs.

Vulnerability discovery is a critical step in vulnerability

analysis because it indicates what and where the problem is.

However, it is a challenging issue for many developers

because security expertise is required. Therefore, it is

desirable to analyze attacks in a systematic and thorough way

so that as many vulnerabilities as possible can more easily be

learned by the developers. In this paper, we employ attack

trees [8] to this end. Attack trees are considered as a popular

method to describe the sequence of events that can result in a

specific attack. In an attack tree, an attack goal will be

decomposed into a set of relatively simple sub-goals and each

sub-goal will be further decomposed into lower-level nodes if

possible. Leaf nodes, i.e., the lowest level nodes, will be used

to describe all potential ways that can cause the attack goal to

occur. This paper makes use of attack trees to model any

classes of attacks, each of which will be decomposed into

multiple smaller attacks that are identified as potential

vulnerabilities. Furthermore, the vulnerabilities will be

classified, according to the attack tree analysis, into two

categories: one can be fixed at code level, which is of interest

to this work, and another is unlikely to be addressed at code

level.

Another challenge faced by many existing approaches is

that developers need to do considerable manual work such as

manually adding assertions to find certain vulnerabilities in

programs. As a result, many developers only pay attention to

some easy-to-find and easy-to-fix vulnerabilities and thus tend

to neglect the important vulnerabilities that require some effort

to discover and fix. This paper applies Human-Machine Pair

Programming (HMPP) [9] to alleviate the problem. HMPP is

characterized by the feature that humans (i.e., developers)

create algorithms, data structures, and the architecture of the

program whereas the machine (i.e., the computer) acts as an

assistant: 1) to monitor the program under construction to

identify potential software defects or violation of standards in

the program, and 2) to predict useful program segments for

enhancing the robustness and the completeness of the program.

HMPP has various advantages; for example, no

1130 Journal of Internet Technology Vol. 23 No. 5, September 2022

communication between different developers is needed.

Inspired by such a programming paradigm, the developer and

the computer in our approach can work interactively and

collaboratively, as opposed to the developer that finds and

fixes code vulnerabilities manually.

In this paper, we make three contributions. Firstly, we

propose a framework for building a computerized technology

to systematically and automatically detect vulnerabilities

during the construction of programs. This technology can

effectively support the new programming paradigm known as

Human-Machine Pair Programming. Secondly, we put

forward a systematic approach to model vulnerabilities and

construct vulnerability-matching patterns in the framework

that can be employed to detect corresponding vulnerabilities.

Thirdly, we describe a way that the human programmer can

effectively interact and collaborate with the computer in the

framework.

The rest of this paper is organized as follows. Section 2

introduces the background knowledge necessary for our

proposed framework, including attack trees and Human-

Machine Pair Programming. Section 3 proposes a framework

to systematically deal with security vulnerabilities in the

coding phase. Section 4 provides a case study on SQL

injection attacks (SQLIAs). Section 5 reviews related work

and section 6 presents the conclusion and future work.

2 Background

In this section, we briefly introduce the attack trees and

HMPP both of which are related to our framework.

2.1 Attack Trees

An attack tree [8] is comprised of AND- and OR-

decompositions. An AND-decomposition can be decomposed

as a set of attack sub-goals, all of which must be achieved for

the attack to succeed while an OR-decompositions can be

decomposed as a set of attack sub-goals, any one of which

must be achieved for the attack to succeed [10].

Generally, both graphical representation and textual

representation can be used to represent an attack tree. In this

paper, we use graphical representation and borrow some

useful symbols from fault trees [11-12], as shown in Table 1.

Note that the meaning of each symbol used in this paper might

be slightly changed. For example, while circles represent basic

events in a fault tree, they represent atomic attacks in this

paper.

Table 1. Symbols used in this paper

Symbol Fault trees [12] This paper

Basic event Atomic attack

 Intermediate event
Attack goal/sub-

goal

 AND AND

 OR OR

In this paper, the root node, intermediate nodes, and leaf

nodes in an attack tree represent the attack goal, sub-goals,

and atomic attacks, respectively (see Figure 1). Formally, an

attack tree is defined as follows.

Definition 1. An attack tree 𝐴𝑇 = (𝐺0, {𝐺𝑖}𝑖=1
𝑛 , 𝐴, 𝜆) is a

tree structure for modeling an arbitrary attack, where 𝐺0 is

the attack goal (root node), {𝐺𝑖}𝑖=1
𝑛 is a set of sub-goals

(intermediate nodes), 𝐴 is a set of atomic attacks (leaf nodes),

and 𝜆: 𝐺0⋃ {𝐺𝑖}𝑖=1
𝑛 ⋃ 𝐴 → 𝑆 is a function assigning

properties to each node where 𝑆 is the set of property values.

Throughout the paper we use the term attack scenario

(also known as intrusion scenario [10]) to describe a smallest

combination of atomic attacks that can cause the attack goal to

occur, which is similar to a minimal cut set in fault trees [12].

Figure 1 provides a simple example to describe the

decomposition of an attack goal. In this tree, for example, to

achieve the attack goal 𝐺0, attackers must achieve one sub-

goal either 𝐺1 or 𝐺2; similarly, to achieve the sub-goal 𝐺1,

attackers must successfully launch both atomic attack 𝐴1 and

𝐴2. Therefore, there are three attack scenarios in this tree, i.e.,

three different ways to achieve 𝐺0: 〈𝐴1, 𝐴2〉, 〈𝐴3〉 and 〈𝐴4〉.
To generate an attack tree, the analyst should think from

the perspective of the attacker (instead of the defender) with

infinite resources, knowledge, and skill [13]. This could take

considerable effort and time because the analyst needs to take

account of all possible atomic attacks against the attack goal.

Fortunately, attack trees are reusable. For example, once the

PGP attack tree has been completed, anyone can use it in any

situation that uses PGP [8].

Once all the nodes of an attack tree have been generated,

the analyst can assign property values to each of them. The

property values contain some useful information, such as the

severity of the attack and the probability of occurrence, thus

allowing one to better evaluate the attack. We will elaborate

on that in Section 3.1.

Attack goal G0

Atomic

attack A1

Atomic

attack A2

Sub-goal G1 Sub-goal G2

Atomic

attack A3

Atomic

attack A4

Figure 1. Example of an attack tree

2.2 Human-Machine Pair Programming

HMPP [9], inspired by pair programming [14], is

characterized by the feature that the human programmer

creates algorithms and data structures for the program under

construction while the computer provides a constant checking

for detecting bugs and predicting future contents. The bugs

can be classified into different categories, such as

requirements-related bugs, implementation-related bugs,

security-related bugs, and efficiency-related bugs. In this

paper, we focus exclusively on security-related bugs.

HMPP can be supported by Software Construction

Monitoring (SCM) and Software Construction Predicting

A Framework for Modeling and Detecting Security Vulnerabilities in Human-Machine Pair Programming 1131

(SCP) [9]. Figure 2 shows the basic framework for SCM. The

Syntactical Analysis of the current version of software CV_S

can help form a set of specific properties that need to be

checked. The property-related knowledge base, equipped with

essential software properties such as software development

conventions or standards and common faults, can be updated

over time. Checking properties can ensure that CV_S satisfies

those specific properties. Once any of the properties are found

that are not satisfied, faults will be reported. The fault report

will provide some brief but useful information about the faults,

such as the location of the faults.

Figure 2. Basic framework for SCM [9]

3 Proposed Approach

In this section, we present the main idea of our approach.

Figure 3 shows the general overview of the proposed

framework, consisting of two phases: pattern preparation

phase (orange shaded boxes) and pattern application phase

(blue shaded boxes). In Figure 3, we use D, C and P to

represent the designer, computer, and programmer,

respectively. The designer models attack goals by creating

attack trees and constructing vulnerability-matching patterns,

all of which will be stored in a vulnerability knowledge base.

The computer, armed with a tool and the vulnerability

knowledge base, detects vulnerable code during the program

construction. The programmer interacts with the computer by

constructing the program and fixing the vulnerable code.

Moreover, the programmer might give useful feedback on the

attack trees and patterns to make improvements to the

vulnerability knowledge base. In our approach, there is no

need for the programmer to possess much security expertise

and to manually perform security analysis while coding

because the manual work, including creating attack trees and

constructing patterns, has been done by the designer in the

pattern preparation phase. On the other hand, despite the fact

that the manual work may require considerable time and effort

from the designer, it is fortunately reusable, which means once

the work has been done it can be reused by any other designer

such that different designers do not need to repeat the process

of pattern preparation for the same vulnerability.

Section 3.1 and 3.2 discuss the pattern preparation and

pattern application, respectively.

Figure 3. Overview of the proposed framework

3.1 Pattern Preparation

This stage includes three activities: identifying attack

goals, generating attack trees, and constructing vulnerability-

matching patterns.

3.1.1 Identifying Attack Goals

In the activity of identifying an attack goal, the attack goal

and the target system will be defined. Generally, the designer

would select attack goals from common attacks occurred in

the past or based on specific security

requirements/specification. For example, the designer may

refer to the common attacks listed in security-related databases,

such as National Vulnerability Database (NVD) [15] and

Common Weakness Enumeration (CWE) [16]. On the other

hand, a designer from an enterprise may focus on identifying

a set of attacks that can compromise the systems of the

enterprise.

3.1.2 Generating Attack Trees

In the activity of generating an attack tree, the attack goal

will be decomposed as a set of sub-goals and atomic attacks,

as shown in Figure 4.

Figure 4. Generation of an attack tree

In order to reflect the characteristics of each attack

scenario, we use two property values, security level and risk

level, to show the severity of the scenario and the probability

of occurrence. That is, 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ∪ 𝑆𝑟𝑖𝑠𝑘 ⊆ 𝑆, where 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦

is the set of security-level values, 𝑆𝑟𝑖𝑠𝑘 the set of risk-level

values and 𝑆 the set of property values (see Definition 1).

Property-related

knowledge base
Fault report

Syntactical Analysis
Form Specific

Properties
Check Properties

Current version of

software

Information of the

current software
Specific properties

Vulnerability

Knowledge Base

[D]: Identify the attack

goal

[D]: Generate an attack

tree

[D]: Construct

vulnerability-matching

patterns

[P/C]: Detect vulnerable

code while coding
[C]: Report warnings[P]: Fix the code

Pattern Preparation

Pattern Application

Attack goal G0

Atomic

attack A1

Hs Mr

Atomic

attack A2

Ms Hr

Sub-goal G1

Ms Mr

Sub-goal G2

Atomic

attack A3

Ls Ur

Atomic

attack A4

Us Lr

Hs = High Security Level

Hr = High Risk Level

Ms = Medium Security Level

Mr = Medium Risk Level

Ls = Low Security Level

Lr = Low Risk Level

Us = Undefined Security Level

Ur = Undefined Risk Level

1132 Journal of Internet Technology Vol. 23 No. 5, September 2022

Commonly, we would first assign the two property values

to each atomic attack. To assign security level, we can use

qualitative severity rankings of a set of values, such as {Low,

Medium, High, Undefined}. As shown in Figure 4, 𝐿𝑠, 𝑀𝑠,

𝐻𝑠 and 𝑈𝑠 are used to represent Low, Medium, High, and

Undefined security level, respectively. That is, 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =

{𝐿𝑠, 𝑀𝑠, 𝐻𝑠, 𝑈𝑠}. The assessment criterion is mainly based on

the severity of the attack, which can be measured by security

metrics such as confidentiality impact, integrity impact, and

availability impact [17]. A successful attack against

confidentiality, for example, may allow an unauthorized

attacker to access the sensitive data of a system.

Similarly, 𝐿𝑟 , 𝑀𝑟 , 𝐻𝑟 and 𝑈𝑟 are used to represent

Low, Medium, High, and Undefined risk level, respectively

(see Figure 4), such that 𝑆𝑟𝑖𝑠𝑘 = {𝐿𝑟 , 𝑀𝑟 , 𝐻𝑟 , 𝑈𝑟} . The

assessment criterion is based on the probability of occurrence

of each atomic attack. The following provides a basic risk

assessing method for roughly calculating the risk level.

a) Risk identification: An attack is normally launched by the

attacker who exploits certain vulnerability, but in some

extreme cases it may be caused by system failures or

user’s unintentional manipulation [18-19]. Therefore,

there are two types of risk: hostile risk and random risk.

To identify the type of risk can help the analyst choose an

appropriate assessing method. When considering a hostile

risk, for example, we should think mainly from the

perspective of the attacker (instead of the defender).

b) Required resources calculation: Consider performing the

analysis for a hostile risk. We should analyze what

resources are required for an attacker to exploit the

vulnerability. The resources may include money, time,

raw materials, knowledge, and skill. It is obvious that the

more resources are required for an attack, the lower

likelihood that the attacker will launch the attack.

c) Expected benefits calculation: In this step, we will

analyze what expected benefits an attacker can gain from

a successful attack, by which attacker’s motivation and

expected returns can be learned. The more benefits are

expected to gain from an attack, the greater likelihood that

the attacker will launch the attack.

To calculate the risk level of a given atomic attack, we

perform a cost-benefit [20-21] analysis based on the resources

and benefits stated above. For example, if an attack is expected

to bring substantial benefits but to consume only a few

resources, there would be high likelihood that the attack will

occur, i.e., the risk level will be considered as 𝐻𝑟.

Once property values have been assigned to atomic attacks,

we can then calculate the values for attack scenarios. There are

two types of scenarios: AND-decompositions and OR-

decompositions. For scenarios of OR-decompositions, we can

directly use the property values of each atomic attack. In

Figure 4, for example, since the attack scenario 〈𝐴3〉 is the

atomic attack 𝐴3 itself, they share the same property values,

i.e., 𝑆〈𝐴3〉 = 𝑆𝐴3
= {𝐿𝑠, 𝑈𝑟} . For scenarios of AND-

decompositions, on the other hand, we need to take account of

the values of both 𝐴1 and 𝐴2when calculating the property

values. A quick way to perform the calculations is to choose

the minimal value between the two, for example,

𝑀𝑖𝑛(𝐻𝑠, 𝑀𝑠) = 𝑀𝑠 . Accordingly, the property values of

attack scenario 〈𝐴1, 𝐴2〉 in Figure 4 are 𝑀𝑠 and 𝑀𝑟 (i.e.,

𝑆〈𝐴1,𝐴2〉 = {𝑀𝑠, 𝑀𝑟}), as indicated in the higher-level node 𝐺1.

Note that there is no need to show the values in 𝐺2 because

its lower-level nodes are OR-decompositions and cannot

merge together simplistically.

However, the calculating method for scenarios of AND-

decompositions stated above is overly simplistic especially

when the attack scenario contains multiple atomic attacks. In

the case of independent atomic attacks, a more accurate way

is to calculate the product of probabilities of them.

3.1.3 Constructing Vulnerability-Matching Patterns

In the activity of constructing vulnerability-matching

patterns, patterns will be built for detecting vulnerable code

during the process of vulnerability matching. Formally, a

vulnerability matching is defined as follows.

Definition 2. A vulnerability matching is a function

𝑐𝑚: 𝑃 → 𝒫(𝐶) that maps patterns to vulnerable code, where

𝑃 is a set of patterns, 𝒫 is the power set, and 𝐶 is the set of

vulnerable code fragments.

Note that a code fragment mentioned in this paper can

simply be an expression, a statement, or a block of programs.

The construction of the patterns relies on the analysis of

atomic attacks, which can be launched based on the

exploitation of certain vulnerabilities. Therefore, the major

concern is how to relate an atomic attack in an attack tree to a

vulnerability in a code fragment.

Let 𝑉 denote a set of vulnerabilities that can lead to the

same atomic attack 𝑎  𝐴 (i.e., the atomic attack 𝑎 is

caused by any one vulnerability 𝑣 ∈ 𝑉). For example, if the

atomic attack 𝑎 is caused by a method foo(int p) in Java, then

any code fragments that call this method, such as x.foo(a1)and

y.foo(a2), will be treated as potential vulnerabilities.

A vulnerability-matching pattern, or simply pattern, is

formally defined as follows.

Definition 3. A vulnerability-matching pattern 𝑝 ∈ 𝑃 is

a pattern that can be used to match a set of code fragments

𝐸 ⊆ 𝐶, each of which contains a vulnerability 𝑣 ∈ 𝑉.

Figure 5 shows the process of pattern construction. Given

an atomic attack 𝑎  𝐴, we extract a set of features 𝐹 which

indicate 𝑎 is caused by a specific type of vulnerability, from

which we conclude the vulnerability set 𝑉 that relates to 𝑎.

Based on the set 𝑉, we construct the pattern p using some

certain techniques such as regular expressions [22-23] and

taint analysis [24]. The technique chosen to construct the

pattern depends on the type of vulnerability. For example,

regular expressions are efficient for matching vulnerabilities

that consist lexical structure of constructs such as identifiers,

constants, keywords, and white space, but they are unlikely to

deal with nested structures [23].

Figure 5. Process of pattern construction

Once the pattern 𝑝 is obtained, the designer would

typically pay attention to the fact that whether it can reduce

false negatives and false positives. False negatives mean that

the pattern fails to match the real vulnerability while false

positives mean that the pattern reports false alarms. Our

Atomic attack a Vulnerability V Pattern p

Attack tree Features F
Certain

techniques

A Framework for Modeling and Detecting Security Vulnerabilities in Human-Machine Pair Programming 1133

approach is expected to achieve relatively low false negatives

and positives because the original attack goal has been

decomposed as a set of relatively simple and fine-grained

atomic attacks that are easier to model. We formally define the

false negative and positive as follows.

Definition 4. Let 𝐸 be the set of code fragments that a

pattern 𝑝 ∈ 𝑃 should match in theory and let 𝐸′ be the set of

code fragments that the pattern 𝑝 does match in practice. If

there exists a code fragment 𝑐 ∈ 𝐸 – 𝐸′ that the pattern 𝑝

fails to match, then a false negative occurs. If there exists a

code fragment 𝑐 ∈ 𝐸′ – 𝐸 that the pattern 𝑝 does match,

then a false positive occurs.

As an example, Example 1 and 2 use regular expressions

to illustrate false negatives and false positives, respectively.

Example 1. Consider the code snippet in Figure 6(a). Let

us use a regular-expression pattern to match any method

following fw.. If a pattern fw[\w.]+\(.+\) is used, then

a false negative occurs due to the fact that it fails to match the

method fw.close() in this code, as shown in Figure 6(b).

Example 2. Consider the code snippet in Figure 6(a). Let

us use a regular-expression pattern to match any method

following fw.. If a pattern fw[\w.]+.+ is used, then a false

positive occurs due to the fact that it mismatches the filename

fw.txt, which is not a method, as shown in Figure 6(c).

(a) Code sample

(b) False negatives

(c) False positives

Figure 6. Examples of false negatives and false positives

After constructing the patterns, the designer should also

work out a countermeasure against each corresponding

vulnerability at this stage, so that the programmer can take it

as a code fix suggestion. Ideally, the countermeasure is also

expected to provide a secure code example, thus allowing the

programmer to adopt it directly.

3.2 Pattern Application

This stage includes three activities: detecting vulnerable

code, reporting warnings, and fixing the code.

3.2.1 Detecting Vulnerable Code

In the activity of detecting vulnerable code, particular code

that contains the vulnerabilities will be automatically detected

while the program is under construction. The detection will be

performed by the computer based on the patterns constructed

in the pattern preparation phase. In practice, the patterns will

be stored in a vulnerability knowledge base, which can be read

by a tool. We assume such a knowledge base and tool already

exist when discussing pattern application. The vulnerable code

will be captured in real time once it triggers the corresponding

pattern, which is similar to searching specific strings using

Unix grep.

3.2.2 Reporting Warnings

In the activity of reporting warnings, the programmer will

be informed of what and where the vulnerability is, and how

to fix it. The warning report should include the location of the

vulnerability, security and risk level information, and

countermeasures. The security and risk level have been

discussed in the pattern preparation phase. The

countermeasures should also be prepared in the pattern

preparation phase, and they will serve as suggestions for the

programmer. Figure 7 shows an example of warning report.

Also, the computer will give the programmer access to the

attack trees and patterns for more details about the warnings.

Warning(s): The code contains sensitive information

Location: Line 20-30

Possible attack(s): SQL injection

Security level: High

Risk level: High

Countermeasure(s): Do not contain any sensitive information

Figure 7. Example of warning report

3.2.3 Fixing the Code

In the activity of fixing the code, the programmer can

promptly examine and fix the vulnerable code according to the

warnings provided by the computer. The programmer can also

decide to dismiss the warnings if a false positive is found.

Moreover, if the programmer is interested in viewing the

attack trees and patterns, he/she can check them in the

vulnerability knowledge base and give feedback. For example,

if there is a false positive caused by an inaccurate pattern, the

programmer can dismiss the warning and report the problem

to the computer such that the computer may update the

vulnerability knowledge base by revising the pattern.

Figure 8 shows the interaction between the programmer

and computer during pattern application phase.

1134 Journal of Internet Technology Vol. 23 No. 5, September 2022

Programmer Computer

Report warnings Accept the warnings and

 fix the code

or dismiss the warnings

or get access to attack trees

 or patterns

Display attack trees or

patterns

Report errors in attack trees

or patterns
Update vulnerability

knowledge base

Detect codeWrite code

Figure 8. Interaction between programmer and computer

during pattern application phase

4 Case Study

In this section, we will illustrate the proposed framework

in a case study. To demonstrate the main idea more clearly, we

use a fictitious web-based stock exchange trading system as

the target system. Figure 9 depicts the architecture of the stock

exchange trading system. The system allows customers and

companies to register, buy or sell stocks. In this system, most

data, such as stock information and trading records, are stored

in a database, where data can be accessed and managed with

Structured Query Language (SQL).

DatabaseServerUser
Stock Issued

Company

Figure 9. Architecture of stock exchange trading system

We focus on a common security issue called SQL injection

attacks (SQLIAs), which is mainly caused by insecure code or

lack of input validation. As one of the Most Dangerous

Software Weaknesses listed in the 2020 Common Weakness

Enumeration (CWE) [16], SQLIAs can pose a serious threat

to many web applications.

4.1 Modeling SQLIAs with Proposed Framework

Based on the proposed framework, this subsection

describes the entire process for modeling SQLIAs from

pattern preparation to pattern application. Each of the 6 steps

below corresponds to the steps described in Section 3,

respectively.

4.1.1 Identifying Attack Goals

We select the SQLIAs as the attack goal and the web-

based stock exchange trading system as the target system.

4.1.2 Generating Attack Trees

We generate the attack tree against SQLIAs, as shown in

Figure 10. Note that a complete attack tree of SQLIAs could

be much more complicated as it involves many different types

of attacks and countless variations [25-26]. For the sake of

illustration, we omit some details and generate a simplified,

incomplete version.

Once the nodes of the attack tree have been generated, we

calculate the property values of security level and risk level

for each atomic attack and attack scenario in the tree. As an

example, the following uses the assessing methods described

in Section 3.1 to illustrate how to calculate the security and

risk level for the atomic attack Construct Malicious Values,

i.e., node 1.1.1 of Figure 10, which is also an attack scenario
〈1.1.1〉.

SQLIAs

1.1.1 Construct

Malicious Values

Hs Hr

...

1. Tautology Query

Attack

2. Logically Incorrect

Query Attack

2.1.1 Exploit Error

Messages

Hs Mr

3. Union Query Attack

...

4. Piggy-Backed Query

Attack

...

...

...
2.1 Exploit Improper

SQL Exception

1.1 Exploit Vulnerable

SQL Commands

Hs = High Security Level

Hr = High Risk Level

Mr = Medium Risk Level

Figure 10. Attack tree against SQL injection

A Framework for Modeling and Detecting Security Vulnerabilities in Human-Machine Pair Programming 1135

For security level of node 1.1.1, we assess it based on the

security metrics. Since this attack is able to bypass the

authentication (see next step for detailed discussion), the

confidentiality cannot be guaranteed. Moreover, integrity and

availability can also be violated because the attacker might

modify or delete customers’ data via launching this type of

attack. Therefore, we would assign the value 𝐻𝑠 to indicate

the security level of this threat.

For risk level of node 1.1.1, we first identify that this type

of risk is a hostile risk. Second, we analyze what resources are

required to perform this atomic attack. Since this type of SQL

injection is common and easy to perform (see next step), it

does not involve many resources such as considerable time or

money, but only a computer and some basic security

knowledge. Finally, the expected benefits outweigh the

potential risks because this type of attack allows the attacker

to gain much information from the database. For example, the

attack can reveal most, if not all, customers’ stock trading

information stored in the system. Based on this cost-benefit

analysis, we would consider the risk level of this atomic attack

as 𝐻𝑟.

As discussed, the atomic attack 1.1.1 and the attack

scenario 〈1.1.1〉 share the same property values 𝐻𝑠 and 𝐻𝑟,

i.e., 𝑆〈1.1.1〉 = 𝑆1.1.1 = {𝐻𝑠, 𝐻𝑟}.

4.1.3 Constructing Vulnerability-Matching Patterns

In this step, we use an example to show how to construct

a pattern based on certain techniques, including regular

expressions and taint analysis.

Consider that we want to construct a pattern for capturing

vulnerabilities related to the attack scenario 〈1.1.1〉 in Figure

10. To clarify, we take an example of the following code

fragment (Figure 11):

Figure 11. Illustrative code fragment

This code is susceptible to 〈1.1.1〉 because it creates SQL

statements by using string concatenation [27] and the attacker

can thus dynamically construct and execute a malicious SQL

query. For example, the attacker can enter the string abc' OR

1 = 1 -- for the name input field and the query becomes:

SELECT * FROM customer WHERE name =

'abc' OR 1 = 1 --' AND pwd = ' ';

The comment operator -- makes the pwd input field

irrelevant. Since 1 = 1 is always true, the WHERE clause will

always evaluate to true. In other words, the WHERE clause will

be transformed into a tautology and the attacker can finally

bypass the authentication even if he/she does not know what

the name or password is.

a) Regular-expression-based pattern: Based on the

analysis above, we extract a set of key features 𝐹 from the

query: keywords such as SELECT, concatenation (using

single quotes), and semicolon. Accordingly, a regular-

expression-based pattern for this type of vulnerability might

be created as follows:

(\w+\s*=\s*)+"SELECT\s\S+\sFROM\s\S+\s

WHERE\s\S+\s*=\s*'[^;]*

The following is a more readable way to describe it:

(\w+\s*=\s*)+ /* variable name and equal sign */

"SELECT /* matches ”, followed by SELECT */

\s\S+\s /* whitespace, anything not whitespace, and

whitespace */

FROM /* keyword FROM */

\s\S+\s /* whitespace, anything not whitespace, and

whitespace */

WHERE /* keyword WHERE */

\s\S+\s* /* whitespace, anything not whitespace,

and 0 or more whitespace */

=\s* /* matches =, followed by 0 or more whitespace

*/

'[^;]* /* matches ’, followed by anything not ; */

b) Taint-analysis-based pattern: In this example, the input

variables name and password are considered tainted [24]

because they are returned from a method getParameter

(called the source) that gets unchecked input. The tainted

variables name and password are passed to the variable

query on line 6 and finally con.execute on line 8. Since

the original source data are untrusted, the call to the method

execute (called the sink) on line 8 is potentially unsafe. In

this case, the key features 𝐹 that we extract for constructing

a pattern should contain the source method

(getParameter), the sink method (execute) and the

data-propagation information. Accordingly, the taint-analysis-

based pattern can be formulated as {getParameter, data

propagation, execute}, where data propagation gives

information about whether the tainted data from

getParameter can be passed to execute.

Compared with regular expressions, taint analysis is more

effective and precise to detect SQL injection because the data-

propagation analysis generally involves pointer analysis (also

known as points-to analysis), which clearly shows what a

variable may refer to [28]. For illustration, the rest of the case

study will only show the case of using a regular-expression

pattern.

Finally, after constructing a pattern, we should work out a

countermeasure against the attack scenario at this stage so that

the programmer can take it as a code fix suggestion. For

example, using parameterized queries [27] instead of string

concatenation to build queries is one possible solution to avoid

this type of SQL injection.

4.1.4 Detecting Vulnerable Code

As shown in Figure 12, line 6-7 is the corresponding

vulnerable code captured by the regular-expression pattern

indicated at the bottom of the figure.

1136 Journal of Internet Technology Vol. 23 No. 5, September 2022

Figure 12. Detection for vulnerable code

4.1.5 Reporting Warnings

The warnings include the location of vulnerable code, the

type of possible attack, security and risk level information, and

countermeasures, as shown in Figure 13. The location is

revealed in step 4 while the security and risk level have been

discussed in step 2 respectively. The countermeasure, as

mentioned in step 3, is also given.

Warning(s): The SQL query uses string concatenation

Location: Line 6-7

Possible attack(s): SQL injection

Security level: High

Risk level: High

Countermeasure(s): Consider using parameterized queries

Figure 13. Warning report for the illustrative code

4.1.6 Fixing the Code

Finally, the programmer can examine and fix the code

according to the warning report. For example, the programmer

might accept the suggestion and use a parameterized query as

follows:

query = "SELECT * FROM customer WHERE

name = ? AND pwd = ?";

This query uses question marks as placeholders, which can

help avoid SQL injection. For example, if the attacker tries to

enter abc' OR 1 = 1 -- for the name input field, the

entire input will be inserted into the name field as a name and

no SQL injection will occur [27].

5 Related Work

There are many attempts to prevent or uncover security

vulnerabilities during coding phase. Defensive programming

is one possible technique to this end; it is proposed to check

whether the code is executing correctly by adding assertions

[7]. The idea is based on the fact that an assertion must be

evaluated true when the program is executing; otherwise, the

execution will be terminated. Teto et al [6] apply defensive

programming to mitigate I/O cybersecurity attacks by using

input validation and escaping (i.e., encoding) techniques.

Though defensive programming is promising, there remain

critical issues. One of the major challenges is that

programmers are required to possess sufficient security

knowledge such as adding appropriate assertions.

Static analysis is a more popular and powerful method for

uncovering security-related bugs during software

development [29]. Static analysis techniques can be employed

to statically examine the source code of a program without

executing it [2]. Basic lexical analysis is adopted by practical

tools such as ITS4 [4] for identifying security vulnerabilities

in C and C++ code. The tool ITS4 breaks the source code into

a set of lexical tokens and then matches vulnerable functions

from a database. Yamaguchi et al. [30] introduce code

property graphs, which merge abstract syntax tree, control

flow graphs and program dependence graphs, to facilitate code

vulnerabilities auditing. Larochelle and Evans [31, 5] use

annotations to syntactically perform static analysis for

detecting buffer overflow vulnerabilities. The annotations can

be exploited to check whether the code is consistent with

certain properties. Such static analysis tools or methods

encapsulate security knowledge so that the programmer (i.e.,

the tool operator) is generally not required to possess as much

security expertise as the designer (i.e., the tool developer).

Another branch of static analysis in security area is using

pointer analysis or taint analysis to find code vulnerabilities.

Livshits and Lam [24] present a taint-analysis approach based

on pointer analysis to finding security vulnerabilities such as

SQL injections and cross-site scripting in Java applications.

Arzt et al. [32] present a taint-analysis tool called FlowDroid

for Android applications. It claims to be fully context, flow,

field and object-sensitive, thereby reducing missed leaks and

false positives. However, most existing pointer/taint analysis

approaches require whole-program availability [33], namely a

complete program to be analyzed, which is at odds with the

goal of our approach to some extent since our approach

performs analysis on the code that is still under construction,

namely an incomplete program.

6 Conclusion and Future Work

Detecting security vulnerabilities during software

development can be challenging. This paper presents a

framework for systematically and automatically identifying

and correcting the vulnerability-related bugs during the

construction of programs. The framework is expected to serve

as the foundation for building an intelligent tool support for

Human-Machine Pair Programming. We discuss the whole

process of the idea, such as modeling attacks based on attack

trees, conducting risk analysis, and constructing patterns.

Finally, we conduct a case study on SQL injection attacks to

illustrate the proposed framework.

In spite of the important progress we have made in our

framework, there are some issues that remain unsolved. For

example:

• It is necessary to provide a further discussion on how

to choose the most appropriate techniques when

constructing vulnerability-matching patterns for

given vulnerabilities.

• To better assess security and risk level in practice, we

should take account of more factors, such as the

independence of atomic attacks.

• It is critical to create a classification of security

vulnerabilities in terms of the software life cycle (for

example, some vulnerabilities are easier to be fixed

in coding phase than in testing phase.), so that

resources for addressing a specific security

vulnerability can be well allocated.

A Framework for Modeling and Detecting Security Vulnerabilities in Human-Machine Pair Programming 1137

In future work, we plan to conduct further research on

these topics. In addition, to develop a tool that can be applied

to practical development is also part of our future work.

Acknowledgment

The research was supported by ROIS NII Open

Collaborative Research 2021-(21FS02).

References

[1] G. Sindre, A. L. Opdahl, Eliciting Security Requirements

with Misuse Cases, Requirements Engineering, Vol. 10,

No. 1, pp. 34-44, January, 2005.

[2] B. Chess, G. McGraw, Static Analysis for

Security, IEEE Security & Privacy, Vol. 2, No. 6, pp. 76-

79, November-December, 2004.

[3] P. Vilela, M. Machado, W. E. Wong, Testing for

Security Vulnerabilities in Software, Proceedings of the

Sixth IASTED International Conference on Software

Engineering and Applications, Cambridge,

Massachusetts, USA, 2002, pp. 460-465.

[4] J. Viega, J. T. Bloch, Y. Kohno, G. McGraw, ITS4: A

Static Vulnerability Scanner for C and C++ Code,

Proceedings 16th Annual Computer Security

Applications Conference (ACSAC'00), New Orleans,

Louisiana, USA, 2000, pp. 257-267.

[5] D. Evans, D. Larochelle, Improving Security Using

Extensible Lightweight Static Analysis, IEEE

Software, Vol. 19, No. 1, pp. 42-51, January-February,

2002.

[6] J. K. Teto, R. Bearden, D. C. T. Lo, The Impact of

Defensive Programming on I/O Cybersecurity Attacks,

Proceedings of the 2017 ACM Southeast Regional

Conference, Kennesaw, GA, USA, 2017, pp. 102-111.

[7] F. Schindler, Coping with Security in

Programming, Acta Polytechnica Hungarica, Vol. 3, No.

2, pp. 65-72, 2006.

[8] B. Schneier, Attack Trees, Dr. Dobb’s Journal, Vol. 24,

No. 12, pp. 21-29, December, 1999.

[9] S. Liu, Software Construction Monitoring and Predicting

for Human-Machine Pair Programming, International

Workshop on Structured Object-Oriented Formal

Language and Method, Gold Coast, QLD, Australia,

2018, pp. 3-20.

[10] A. P. Moore, R. J. Ellison, R. C. Linger, Attack Modeling

for Information Security and Survivability, Technical

Note CMU/SEI-2001-TN-001, March, 2001.

[11] H. S. Lallie, K. Debattista, J. Bal, A Review of Attack

Graph and Attack Tree Visual Syntax in Cyber

Security, Computer Science Review, Vol. 35, Article No.

100219, February, 2020.

[12] W. E. Vesely, F. F. Goldberg, N. H. Roberts, D. F.

Haasl, Fault Tree Handbook, Nuclear Regulatory

Commission Washington DC, 1981.

[13] P. A. Khand, System Level Security Modeling Using

Attack Trees, 2nd International Conference on

Computer, Control and Communication, Karachi,

Pakistan, 2009, pp. 1-6.

[14] K. Beck, Embracing Change with Extreme

Programming, Computer, Vol. 32, No. 10, pp. 70-77,

October, 1999.

[15] National Vulnerability Database (NVD), 2021,

https://nvd.nist.gov/.

[16] Common Weakness Enumeration, 2021,

https://cwe.mitre.org/data/.

[17] Common Vulnerability Scoring System (CVSS), 2021,

https://www.first.org/cvss/.

[18] W. E. Wong, X. Li, P. A. Laplante, Be more Familiar

with Our Enemies and Pave the Way Forward: A Review

of the Roles Bugs Played in Software Failures, Journal

of Systems and Software, Vol. 133, pp. 68-94, November,

2017.

[19] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, M. F.

Siok, Recent Catastrophic Accidents: Investigating How

Software Was Responsible, 2010 Fourth International

Conference on Secure Software Integration and

Reliability Improvement, Singapore, 2010, pp. 14-22.

[20] T. R. Ingoldsby, Attack Tree-Based Threat Risk

Analysis, Amenaza Technologies Limited, 2010.

[21] D. Vose, Risk Analysis: A Quantitative Guide, John

Wiley & Sons, 2008.

[22] J. E. F. Friedl, Mastering Regular Expressions, O'Reilly

Media, Inc., 2006.

[23] A. V. Aho, R. Sethi, J. D. Ullman, Compilers: Principles,

Techniques, and Tools, Addison-Wesley Pub. Co., 1986.

[24] V. B. Livshits, M. S. Lam, Finding Security

Vulnerabilities in Java Applications with Static Analysis,

14th USENIX Security Symposium, Baltimore, MD,

USA, 2005, pp. 271-286.

[25] J. Clarke, SQL Injection Attacks and Defense, Elsevier,

2009.

[26] J. Wang, R. C. W. Phan, J. N. Whitley, D. J. Parish,

Augmented Attack Tree Modeling of Sql Injection

Attacks, 2nd IEEE International Conference on

Information Management and Engineering, Chengdu,

China, 2010, pp. 182-186.

[27] M. Howard, D. LeBlanc, Writing Secure Code, Pearson

Education, 2003.

[28] N. Grech, Y. Smaragdakis, P/Taint: Unified Points-to

and Taint Analysis, Proceedings of the ACM on

Programming Languages, Vol. 1, No. OOPSLA, pp. 1-

28, October, 2017.

[29] J. Wilander, M. Kamkar, A Comparison of Publicly

Available Tools for Static Intrusion Prevention, 7th

Nordic Workshop on Secure IT Systems, Karlstad,

Sweden, 2002, pp. 68-84.

[30] F. Yamaguchi, N. Golde, D. Arp, K. Rieck, Modeling

and Discovering Vulnerabilities with Code Property

Graphs, 2014 IEEE Symposium on Security and Privacy,

Berkeley, CA, USA, 2014, pp. 590-604.

[31] D. Larochelle, D. Evans, Statically Detecting Likely

Buffer Overflow Vulnerabilities, 10th USENIX Security

Symposium, Washington, D.C., USA, 2001, pp. 177-190.

[32] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J.

Klein, Y. L. Traon, D. Octeau, P. McDaniel, Flowdroid:

Precise Context, Flow, Field, Object-sensitive and

Lifecycle-Aware Taint Analysis for Android

Apps, ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI '14),

Edinburgh, UK, 2014, pp. 259-269.

[33] Y. Smaragdakis, G. Balatsouras, Pointer

Analysis, Foundations and Trends in Programming

Languages, Vol. 2, No. 1, pp. 1-69, April, 2015.

1138 Journal of Internet Technology Vol. 23 No. 5, September 2022

Biographies

Pingyan Wang received the M.E. degree in

computer science from Guangdong

University of Technology. He is currently a

Ph.D. candidate in data science and

informatics at Hiroshima University. His

research interests are in Software

Engineering, particularly Software Security,

Program Analysis and Human-Machine

Pair Programming.

Shaoying Liu is a Professor of Software

Engineering at Hiroshima University, Japan,

IEEE Fellow, and BCS Fellow. His

research interests include Formal

Engineering Methods, Specification-based

Program Inspection and Testing, and

Human-Machine Pair Programming. He

has published a book, 12 edited conference

proceedings, and over 250 papers.

Ai Liu is an Assistant Professor of Software

Engineering at Hiroshima University, Japan.

He received the Ph.D. in Applied

Mathematics from Peking University,

China in 2020. His research interests

include Testing-Based Formal Verification,

Quantum Computing and Coalgebra

Theory.

Fatiha Zaidi received the PhD degree in

computer science from the University of

Evry, France, in 2001. Since 2003, she is an

associate professor at Paris Sud University

(newly renamed Paris Saclay University).

Her research interests include model-based

testing, runtime verification, attack

tolerance, and parameterized model

checking.

	01
	02
	03
	04
	05
	空白頁面
	空白頁面
	空白頁面
	組合
	06
	07
	08
	09
	10
	空白頁面
	空白頁面

	組合
	11
	12
	13
	14
	15
	空白頁面
	空白頁面

	組合
	16
	17
	18
	19
	20
	空白頁面
	空白頁面

	組合
	21
	22
	23
	24
	25
	空白頁面

	JIT2305 Cover.pdf
	Cover-1
	Cover-2

