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Abstract 
 

To detect and mitigate security vulnerabilities early in the 

coding phase is an important strategy for secure software 

development. Existing solutions typically focus on finding 

certain vulnerabilities in certain computer systems without 

giving a systematic way of handling different types of 

vulnerabilities. In this paper, we present a framework for 

systematically modeling and detecting potential security 

vulnerabilities during the construction of programs using a 

particular programming paradigm known as Human-Machine 

Pair Programming. The framework provides designers with a 

general way of modeling a class of attacks in detail, and shows 

how programmers can discover and fix a vulnerability in a 

timely manner. Specifically, our framework advocates three 

primary steps: (1) generating an attack tree to model a given 

security threat, (2) constructing vulnerability-matching 

patterns based on the result of the attack tree analysis, and (3) 

detecting corresponding vulnerabilities based on the patterns 

during the program construction. We also present a case study 

to demonstrate how it works in practice. 

 

Keywords: Security vulnerabilities, Human-machine pair 

programming, Attack trees, Static analysis 

 

1  Introduction 
 

Security vulnerabilities can be found in different phases of 

a software life cycle and might be exploited by attackers who 

aim to launch attacks against computer systems. Although 

system administrators can install patches after being attacked, 

systems have been compromised and attackers probably have 

achieved their goals. For this reason, the traditional penetrate-

and-patch approach might not be considered as an effective 

strategy for many systems. For most software-based systems, 

especially security-critical systems, it is important to detect 

and tackle the security problems at an early stage since adverse 

impact can increase rapidly with time. Researchers have 

explored many approaches for mitigating security problems 

during different development phases, including requirement 

phase [1], coding phase [2] and testing phase [3]. Intuitively, 

identifying the security-related problems in the coding phase 

is generally efficient because it allows the programmer to 

review and fix the vulnerable code in a timely manner. Some 

solutions, such as static analysis techniques [4-5] and 

defensive programming techniques [6-7], are proposed to 

achieve this goal, but most of them only focus on certain 

systems and vulnerabilities instead of addressing the full scope 

of the problem. Furthermore, since most of the proposed 

techniques involve considerable manual work and humans’ 

collaboration, the efficiency of their application may not be 

desirable. This paper tries to mitigate these problems by 

proposing a framework suitable for computer to adopt to 

automatically uncover vulnerability problems during the 

construction of programs. 

Vulnerability discovery is a critical step in vulnerability 

analysis because it indicates what and where the problem is. 

However, it is a challenging issue for many developers 

because security expertise is required. Therefore, it is 

desirable to analyze attacks in a systematic and thorough way 

so that as many vulnerabilities as possible can more easily be 

learned by the developers. In this paper, we employ attack 

trees [8] to this end. Attack trees are considered as a popular 

method to describe the sequence of events that can result in a 

specific attack. In an attack tree, an attack goal will be 

decomposed into a set of relatively simple sub-goals and each 

sub-goal will be further decomposed into lower-level nodes if 

possible. Leaf nodes, i.e., the lowest level nodes, will be used 

to describe all potential ways that can cause the attack goal to 

occur. This paper makes use of attack trees to model any 

classes of attacks, each of which will be decomposed into 

multiple smaller attacks that are identified as potential 

vulnerabilities. Furthermore, the vulnerabilities will be 

classified, according to the attack tree analysis, into two 

categories: one can be fixed at code level, which is of interest 

to this work, and another is unlikely to be addressed at code 

level. 

Another challenge faced by many existing approaches is 

that developers need to do considerable manual work such as 

manually adding assertions to find certain vulnerabilities in 

programs. As a result, many developers only pay attention to 

some easy-to-find and easy-to-fix vulnerabilities and thus tend 

to neglect the important vulnerabilities that require some effort 

to discover and fix. This paper applies Human-Machine Pair 

Programming (HMPP) [9] to alleviate the problem. HMPP is 

characterized by the feature that humans (i.e., developers) 

create algorithms, data structures, and the architecture of the 

program whereas the machine (i.e., the computer) acts as an 

assistant: 1) to monitor the program under construction to 

identify potential software defects or violation of standards in 

the program, and 2) to predict useful program segments for 

enhancing the robustness and the completeness of the program. 

HMPP has various advantages; for example, no 
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communication between different developers is needed. 

Inspired by such a programming paradigm, the developer and 

the computer in our approach can work interactively and 

collaboratively, as opposed to the developer that finds and 

fixes code vulnerabilities manually. 

In this paper, we make three contributions. Firstly, we 

propose a framework for building a computerized technology 

to systematically and automatically detect vulnerabilities 

during the construction of programs. This technology can 

effectively support the new programming paradigm known as 

Human-Machine Pair Programming. Secondly, we put 

forward a systematic approach to model vulnerabilities and 

construct vulnerability-matching patterns in the framework 

that can be employed to detect corresponding vulnerabilities. 

Thirdly, we describe a way that the human programmer can 

effectively interact and collaborate with the computer in the 

framework. 

The rest of this paper is organized as follows. Section 2 

introduces the background knowledge necessary for our 

proposed framework, including attack trees and Human-

Machine Pair Programming. Section 3 proposes a framework 

to systematically deal with security vulnerabilities in the 

coding phase. Section 4 provides a case study on SQL 

injection attacks (SQLIAs). Section 5 reviews related work 

and section 6 presents the conclusion and future work. 

 

2  Background 
 

In this section, we briefly introduce the attack trees and 

HMPP both of which are related to our framework. 

 

2.1 Attack Trees 
 

An attack tree [8] is comprised of AND- and OR-

decompositions. An AND-decomposition can be decomposed 

as a set of attack sub-goals, all of which must be achieved for 

the attack to succeed while an OR-decompositions can be 

decomposed as a set of attack sub-goals, any one of which 

must be achieved for the attack to succeed [10]. 

Generally, both graphical representation and textual 

representation can be used to represent an attack tree. In this 

paper, we use graphical representation and borrow some 

useful symbols from fault trees [11-12], as shown in Table 1. 

Note that the meaning of each symbol used in this paper might 

be slightly changed. For example, while circles represent basic 

events in a fault tree, they represent atomic attacks in this 

paper. 

 

Table 1. Symbols used in this paper 

Symbol Fault trees [12] This paper 

 
Basic event Atomic attack 

 Intermediate event 
Attack goal/sub-

goal 

 AND AND 

 OR OR 

 

In this paper, the root node, intermediate nodes, and leaf 

nodes in an attack tree represent the attack goal, sub-goals, 

and atomic attacks, respectively (see Figure 1). Formally, an 

attack tree is defined as follows. 

Definition 1. An attack tree 𝐴𝑇 = (𝐺0, {𝐺𝑖}𝑖=1
𝑛 , 𝐴, 𝜆) is a 

tree structure for modeling an arbitrary attack, where 𝐺0 is 

the attack goal (root node), {𝐺𝑖}𝑖=1
𝑛  is a set of sub-goals 

(intermediate nodes), 𝐴 is a set of atomic attacks (leaf nodes), 

and 𝜆: 𝐺0⋃ {𝐺𝑖}𝑖=1
𝑛 ⋃ 𝐴 → 𝑆  is a function assigning 

properties to each node where 𝑆 is the set of property values. 

Throughout the paper we use the term attack scenario 

(also known as intrusion scenario [10]) to describe a smallest 

combination of atomic attacks that can cause the attack goal to 

occur, which is similar to a minimal cut set in fault trees [12]. 

Figure 1 provides a simple example to describe the 

decomposition of an attack goal. In this tree, for example, to 

achieve the attack goal 𝐺0, attackers must achieve one sub-

goal either 𝐺1 or 𝐺2; similarly, to achieve the sub-goal 𝐺1, 

attackers must successfully launch both atomic attack 𝐴1 and 

𝐴2. Therefore, there are three attack scenarios in this tree, i.e., 

three different ways to achieve 𝐺0: 〈𝐴1, 𝐴2〉, 〈𝐴3〉 and 〈𝐴4〉. 
To generate an attack tree, the analyst should think from 

the perspective of the attacker (instead of the defender) with 

infinite resources, knowledge, and skill [13]. This could take 

considerable effort and time because the analyst needs to take 

account of all possible atomic attacks against the attack goal. 

Fortunately, attack trees are reusable. For example, once the 

PGP attack tree has been completed, anyone can use it in any 

situation that uses PGP [8]. 

Once all the nodes of an attack tree have been generated, 

the analyst can assign property values to each of them. The 

property values contain some useful information, such as the 

severity of the attack and the probability of occurrence, thus 

allowing one to better evaluate the attack. We will elaborate 

on that in Section 3.1. 

 

Attack goal G0

Atomic 

attack A1

Atomic 

attack A2

Sub-goal G1 Sub-goal G2

Atomic 

attack A3

Atomic 

attack A4

 

Figure 1. Example of an attack tree 

 

2.2 Human-Machine Pair Programming 
 

HMPP [9], inspired by pair programming [14], is 

characterized by the feature that the human programmer 

creates algorithms and data structures for the program under 

construction while the computer provides a constant checking 

for detecting bugs and predicting future contents. The bugs 

can be classified into different categories, such as 

requirements-related bugs, implementation-related bugs, 

security-related bugs, and efficiency-related bugs. In this 

paper, we focus exclusively on security-related bugs. 

HMPP can be supported by Software Construction 

Monitoring (SCM) and Software Construction Predicting 
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(SCP) [9]. Figure 2 shows the basic framework for SCM. The 

Syntactical Analysis of the current version of software CV_S 

can help form a set of specific properties that need to be 

checked. The property-related knowledge base, equipped with 

essential software properties such as software development 

conventions or standards and common faults, can be updated 

over time. Checking properties can ensure that CV_S satisfies 

those specific properties. Once any of the properties are found 

that are not satisfied, faults will be reported. The fault report 

will provide some brief but useful information about the faults, 

such as the location of the faults. 

 

 

Figure 2. Basic framework for SCM [9] 

 

3  Proposed Approach 
 

In this section, we present the main idea of our approach. 

Figure 3 shows the general overview of the proposed 

framework, consisting of two phases: pattern preparation 

phase (orange shaded boxes) and pattern application phase 

(blue shaded boxes). In Figure 3, we use D, C and P to 

represent the designer, computer, and programmer, 

respectively. The designer models attack goals by creating 

attack trees and constructing vulnerability-matching patterns, 

all of which will be stored in a vulnerability knowledge base. 

The computer, armed with a tool and the vulnerability 

knowledge base, detects vulnerable code during the program 

construction. The programmer interacts with the computer by 

constructing the program and fixing the vulnerable code. 

Moreover, the programmer might give useful feedback on the 

attack trees and patterns to make improvements to the 

vulnerability knowledge base. In our approach, there is no 

need for the programmer to possess much security expertise 

and to manually perform security analysis while coding 

because the manual work, including creating attack trees and 

constructing patterns, has been done by the designer in the 

pattern preparation phase. On the other hand, despite the fact 

that the manual work may require considerable time and effort 

from the designer, it is fortunately reusable, which means once 

the work has been done it can be reused by any other designer 

such that different designers do not need to repeat the process 

of pattern preparation for the same vulnerability. 

Section 3.1 and 3.2 discuss the pattern preparation and 

pattern application, respectively. 

 

 

Figure 3. Overview of the proposed framework 

 

3.1 Pattern Preparation 
 

This stage includes three activities: identifying attack 

goals, generating attack trees, and constructing vulnerability-

matching patterns. 

 

3.1.1 Identifying Attack Goals 

 

In the activity of identifying an attack goal, the attack goal 

and the target system will be defined. Generally, the designer 

would select attack goals from common attacks occurred in 

the past or based on specific security 

requirements/specification. For example, the designer may 

refer to the common attacks listed in security-related databases, 

such as National Vulnerability Database (NVD) [15] and 

Common Weakness Enumeration (CWE) [16]. On the other 

hand, a designer from an enterprise may focus on identifying 

a set of attacks that can compromise the systems of the 

enterprise. 

 

3.1.2 Generating Attack Trees 

 

In the activity of generating an attack tree, the attack goal 

will be decomposed as a set of sub-goals and atomic attacks, 

as shown in Figure 4. 

 

 

Figure 4. Generation of an attack tree 

 

In order to reflect the characteristics of each attack 

scenario, we use two property values, security level and risk 

level, to show the severity of the scenario and the probability 

of occurrence. That is, 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 ∪ 𝑆𝑟𝑖𝑠𝑘 ⊆ 𝑆, where 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 

is the set of security-level values, 𝑆𝑟𝑖𝑠𝑘 the set of risk-level 

values and 𝑆 the set of property values (see Definition 1). 

Property-related 

knowledge base
Fault report

Syntactical Analysis
Form Specific 

Properties
Check Properties

Current version of 

software

Information of the 

current software
Specific properties

Vulnerability 

Knowledge Base

[D]: Identify the attack 

goal

[D]: Generate an attack 

tree

[D]: Construct 

vulnerability-matching 

patterns

[P/C]: Detect vulnerable 

code while coding
[C]: Report warnings[P]: Fix the code

Pattern Preparation

Pattern Application

Attack goal G0

Atomic 

attack A1

Hs Mr

Atomic 

attack A2

Ms Hr

Sub-goal G1

Ms Mr

Sub-goal G2

Atomic 

attack A3

Ls Ur

Atomic 

attack A4

Us Lr

Hs = High Security Level

Hr = High Risk Level

Ms = Medium Security Level

Mr = Medium Risk Level

Ls = Low Security Level

Lr = Low Risk Level

Us = Undefined Security Level

Ur = Undefined Risk Level
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Commonly, we would first assign the two property values 

to each atomic attack. To assign security level, we can use 

qualitative severity rankings of a set of values, such as {Low, 

Medium, High, Undefined}. As shown in Figure 4, 𝐿𝑠, 𝑀𝑠, 

𝐻𝑠  and 𝑈𝑠  are used to represent Low, Medium, High, and 

Undefined security level, respectively. That is, 𝑆𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦 =

{𝐿𝑠, 𝑀𝑠, 𝐻𝑠, 𝑈𝑠}. The assessment criterion is mainly based on 

the severity of the attack, which can be measured by security 

metrics such as confidentiality impact, integrity impact, and 

availability impact [17]. A successful attack against 

confidentiality, for example, may allow an unauthorized 

attacker to access the sensitive data of a system. 

Similarly, 𝐿𝑟 , 𝑀𝑟 , 𝐻𝑟  and 𝑈𝑟  are used to represent 

Low, Medium, High, and Undefined risk level, respectively 

(see Figure 4), such that 𝑆𝑟𝑖𝑠𝑘 = {𝐿𝑟 , 𝑀𝑟 , 𝐻𝑟 , 𝑈𝑟} . The 

assessment criterion is based on the probability of occurrence 

of each atomic attack. The following provides a basic risk 

assessing method for roughly calculating the risk level. 

a) Risk identification: An attack is normally launched by the 

attacker who exploits certain vulnerability, but in some 

extreme cases it may be caused by system failures or 

user’s unintentional manipulation [18-19]. Therefore, 

there are two types of risk: hostile risk and random risk. 

To identify the type of risk can help the analyst choose an 

appropriate assessing method. When considering a hostile 

risk, for example, we should think mainly from the 

perspective of the attacker (instead of the defender). 

b) Required resources calculation: Consider performing the 

analysis for a hostile risk. We should analyze what 

resources are required for an attacker to exploit the 

vulnerability. The resources may include money, time, 

raw materials, knowledge, and skill. It is obvious that the 

more resources are required for an attack, the lower 

likelihood that the attacker will launch the attack. 

c) Expected benefits calculation: In this step, we will 

analyze what expected benefits an attacker can gain from 

a successful attack, by which attacker’s motivation and 

expected returns can be learned. The more benefits are 

expected to gain from an attack, the greater likelihood that 

the attacker will launch the attack. 

To calculate the risk level of a given atomic attack, we 

perform a cost-benefit [20-21] analysis based on the resources 

and benefits stated above. For example, if an attack is expected 

to bring substantial benefits but to consume only a few 

resources, there would be high likelihood that the attack will 

occur, i.e., the risk level will be considered as 𝐻𝑟. 

Once property values have been assigned to atomic attacks, 

we can then calculate the values for attack scenarios. There are 

two types of scenarios: AND-decompositions and OR-

decompositions. For scenarios of OR-decompositions, we can 

directly use the property values of each atomic attack. In 

Figure 4, for example, since the attack scenario 〈𝐴3〉 is the 

atomic attack 𝐴3 itself, they share the same property values, 

i.e., 𝑆〈𝐴3〉 = 𝑆𝐴3
= {𝐿𝑠, 𝑈𝑟} . For scenarios of AND-

decompositions, on the other hand, we need to take account of 

the values of both 𝐴1 and 𝐴2when calculating the property 

values. A quick way to perform the calculations is to choose 

the minimal value between the two, for example, 

𝑀𝑖𝑛(𝐻𝑠, 𝑀𝑠) = 𝑀𝑠 . Accordingly, the property values of 

attack scenario 〈𝐴1, 𝐴2〉 in Figure 4 are 𝑀𝑠  and 𝑀𝑟  (i.e., 

𝑆〈𝐴1,𝐴2〉 = {𝑀𝑠, 𝑀𝑟}), as indicated in the higher-level node 𝐺1. 

Note that there is no need to show the values in 𝐺2 because 

its lower-level nodes are OR-decompositions and cannot 

merge together simplistically. 

However, the calculating method for scenarios of AND-

decompositions stated above is overly simplistic especially 

when the attack scenario contains multiple atomic attacks. In 

the case of independent atomic attacks, a more accurate way 

is to calculate the product of probabilities of them. 

 

3.1.3 Constructing Vulnerability-Matching Patterns 

 

In the activity of constructing vulnerability-matching 

patterns, patterns will be built for detecting vulnerable code 

during the process of vulnerability matching. Formally, a 

vulnerability matching is defined as follows. 

Definition 2. A vulnerability matching is a function 

𝑐𝑚: 𝑃 → 𝒫(𝐶) that maps patterns to vulnerable code, where 

𝑃 is a set of patterns, 𝒫 is the power set, and 𝐶 is the set of 

vulnerable code fragments. 

Note that a code fragment mentioned in this paper can 

simply be an expression, a statement, or a block of programs. 

The construction of the patterns relies on the analysis of 

atomic attacks, which can be launched based on the 

exploitation of certain vulnerabilities. Therefore, the major 

concern is how to relate an atomic attack in an attack tree to a 

vulnerability in a code fragment. 

Let 𝑉 denote a set of vulnerabilities that can lead to the 

same atomic attack 𝑎  𝐴  (i.e., the atomic attack 𝑎  is 

caused by any one vulnerability 𝑣 ∈ 𝑉). For example, if the 

atomic attack 𝑎 is caused by a method foo(int p) in Java, then 

any code fragments that call this method, such as x.foo(a1)and 

y.foo(a2), will be treated as potential vulnerabilities. 

A vulnerability-matching pattern, or simply pattern, is 

formally defined as follows. 

Definition 3. A vulnerability-matching pattern 𝑝 ∈ 𝑃 is 

a pattern that can be used to match a set of code fragments 

𝐸 ⊆ 𝐶, each of which contains a vulnerability 𝑣 ∈ 𝑉. 

Figure 5 shows the process of pattern construction. Given 

an atomic attack 𝑎  𝐴, we extract a set of features 𝐹 which 

indicate 𝑎 is caused by a specific type of vulnerability, from 

which we conclude the vulnerability set 𝑉 that relates to 𝑎. 

Based on the set 𝑉, we construct the pattern p using some 

certain techniques such as regular expressions [22-23] and 

taint analysis [24]. The technique chosen to construct the 

pattern depends on the type of vulnerability. For example, 

regular expressions are efficient for matching vulnerabilities 

that consist lexical structure of constructs such as identifiers, 

constants, keywords, and white space, but they are unlikely to 

deal with nested structures [23]. 

 

 

Figure 5. Process of pattern construction 

 

Once the pattern 𝑝  is obtained, the designer would 

typically pay attention to the fact that whether it can reduce 

false negatives and false positives. False negatives mean that 

the pattern fails to match the real vulnerability while false 

positives mean that the pattern reports false alarms. Our 

Atomic attack a Vulnerability V Pattern p

Attack tree Features F
Certain 

techniques
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approach is expected to achieve relatively low false negatives 

and positives because the original attack goal has been 

decomposed as a set of relatively simple and fine-grained 

atomic attacks that are easier to model. We formally define the 

false negative and positive as follows. 

Definition 4. Let 𝐸 be the set of code fragments that a 

pattern 𝑝 ∈ 𝑃 should match in theory and let 𝐸′ be the set of 

code fragments that the pattern 𝑝 does match in practice. If 

there exists a code fragment 𝑐 ∈  𝐸 –  𝐸′ that the pattern 𝑝 

fails to match, then a false negative occurs. If there exists a 

code fragment 𝑐 ∈  𝐸′ –  𝐸  that the pattern 𝑝 does match, 

then a false positive occurs. 

As an example, Example 1 and 2 use regular expressions 

to illustrate false negatives and false positives, respectively. 

Example 1. Consider the code snippet in Figure 6(a). Let 

us use a regular-expression pattern to match any method 

following fw.. If a pattern fw[\w.]+\(.+\) is used, then 

a false negative occurs due to the fact that it fails to match the 

method fw.close() in this code, as shown in Figure 6(b). 

Example 2. Consider the code snippet in Figure 6(a). Let 

us use a regular-expression pattern to match any method 

following fw.. If a pattern fw[\w.]+.+ is used, then a false 

positive occurs due to the fact that it mismatches the filename 

fw.txt, which is not a method, as shown in Figure 6(c). 

 

 

(a) Code sample 

 

 

(b) False negatives 

 

 

(c) False positives 

Figure 6. Examples of false negatives and false positives 

 

After constructing the patterns, the designer should also 

work out a countermeasure against each corresponding 

vulnerability at this stage, so that the programmer can take it 

as a code fix suggestion. Ideally, the countermeasure is also 

expected to provide a secure code example, thus allowing the 

programmer to adopt it directly. 

 

3.2 Pattern Application 
 

This stage includes three activities: detecting vulnerable 

code, reporting warnings, and fixing the code. 

 

3.2.1 Detecting Vulnerable Code 

 

In the activity of detecting vulnerable code, particular code 

that contains the vulnerabilities will be automatically detected 

while the program is under construction. The detection will be 

performed by the computer based on the patterns constructed 

in the pattern preparation phase. In practice, the patterns will 

be stored in a vulnerability knowledge base, which can be read 

by a tool. We assume such a knowledge base and tool already 

exist when discussing pattern application. The vulnerable code 

will be captured in real time once it triggers the corresponding 

pattern, which is similar to searching specific strings using 

Unix grep. 

 

3.2.2 Reporting Warnings 

 

In the activity of reporting warnings, the programmer will 

be informed of what and where the vulnerability is, and how 

to fix it. The warning report should include the location of the 

vulnerability, security and risk level information, and 

countermeasures. The security and risk level have been 

discussed in the pattern preparation phase. The 

countermeasures should also be prepared in the pattern 

preparation phase, and they will serve as suggestions for the 

programmer. Figure 7 shows an example of warning report. 

Also, the computer will give the programmer access to the 

attack trees and patterns for more details about the warnings. 

 

Warning(s): The code contains sensitive information

Location: Line 20-30

Possible attack(s): SQL injection

Security level: High

Risk level: High

Countermeasure(s): Do not contain any sensitive information

 
Figure 7. Example of warning report 

 

3.2.3 Fixing the Code 

 

In the activity of fixing the code, the programmer can 

promptly examine and fix the vulnerable code according to the 

warnings provided by the computer. The programmer can also 

decide to dismiss the warnings if a false positive is found. 

Moreover, if the programmer is interested in viewing the 

attack trees and patterns, he/she can check them in the 

vulnerability knowledge base and give feedback. For example, 

if there is a false positive caused by an inaccurate pattern, the 

programmer can dismiss the warning and report the problem 

to the computer such that the computer may update the 

vulnerability knowledge base by revising the pattern. 

Figure 8 shows the interaction between the programmer 

and computer during pattern application phase. 
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Programmer Computer

Report warnings      Accept the warnings and

              fix the code

or  dismiss the warnings

or  get access to attack trees

             or patterns

Display attack trees or 

patterns

Report errors in attack trees

or patterns
Update vulnerability 

knowledge base

Detect codeWrite code

 

Figure 8. Interaction between programmer and computer 

during pattern application phase 

 

4  Case Study 
 

In this section, we will illustrate the proposed framework 

in a case study. To demonstrate the main idea more clearly, we 

use a fictitious web-based stock exchange trading system as 

the target system. Figure 9 depicts the architecture of the stock 

exchange trading system. The system allows customers and 

companies to register, buy or sell stocks. In this system, most 

data, such as stock information and trading records, are stored 

in a database, where data can be accessed and managed with 

Structured Query Language (SQL). 

 

DatabaseServerUser
Stock Issued 

Company

Figure 9. Architecture of stock exchange trading system 

 

We focus on a common security issue called SQL injection 

attacks (SQLIAs), which is mainly caused by insecure code or 

lack of input validation. As one of the Most Dangerous 

Software Weaknesses listed in the 2020 Common Weakness 

Enumeration (CWE) [16], SQLIAs can pose a serious threat 

to many web applications. 

 

4.1 Modeling SQLIAs with Proposed Framework 
 

Based on the proposed framework, this subsection 

describes the entire process for modeling SQLIAs from 

pattern preparation to pattern application. Each of the 6 steps 

below corresponds to the steps described in Section 3, 

respectively. 

 

4.1.1 Identifying Attack Goals 

 

We select the SQLIAs as the attack goal and the web-

based stock exchange trading system as the target system. 

 

4.1.2 Generating Attack Trees 

 

We generate the attack tree against SQLIAs, as shown in 

Figure 10. Note that a complete attack tree of SQLIAs could 

be much more complicated as it involves many different types 

of attacks and countless variations [25-26]. For the sake of 

illustration, we omit some details and generate a simplified, 

incomplete version. 

Once the nodes of the attack tree have been generated, we 

calculate the property values of security level and risk level 

for each atomic attack and attack scenario in the tree. As an 

example, the following uses the assessing methods described 

in Section 3.1 to illustrate how to calculate the security and 

risk level for the atomic attack Construct Malicious Values, 

i.e., node 1.1.1 of Figure 10, which is also an attack scenario 
〈1.1.1〉. 

 

 

 

 

SQLIAs

1.1.1 Construct 

Malicious Values

Hs Hr

...

1. Tautology Query 

Attack

2. Logically Incorrect 

Query Attack

2.1.1 Exploit Error 

Messages

Hs Mr

3. Union Query Attack

...

4. Piggy-Backed Query 

Attack

...

...

...
2.1 Exploit Improper 

SQL Exception

1.1 Exploit Vulnerable 

SQL Commands

Hs = High Security Level

Hr = High Risk Level

Mr = Medium Risk Level

 

Figure 10. Attack tree against SQL injection 
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For security level of node 1.1.1, we assess it based on the 

security metrics. Since this attack is able to bypass the 

authentication (see next step for detailed discussion), the 

confidentiality cannot be guaranteed. Moreover, integrity and 

availability can also be violated because the attacker might 

modify or delete customers’ data via launching this type of 

attack. Therefore, we would assign the value 𝐻𝑠 to indicate 

the security level of this threat. 

For risk level of node 1.1.1, we first identify that this type 

of risk is a hostile risk. Second, we analyze what resources are 

required to perform this atomic attack. Since this type of SQL 

injection is common and easy to perform (see next step), it 

does not involve many resources such as considerable time or 

money, but only a computer and some basic security 

knowledge. Finally, the expected benefits outweigh the 

potential risks because this type of attack allows the attacker 

to gain much information from the database. For example, the 

attack can reveal most, if not all, customers’ stock trading 

information stored in the system. Based on this cost-benefit 

analysis, we would consider the risk level of this atomic attack 

as 𝐻𝑟. 

As discussed, the atomic attack 1.1.1  and the attack 

scenario 〈1.1.1〉 share the same property values 𝐻𝑠 and 𝐻𝑟, 

i.e., 𝑆〈1.1.1〉 = 𝑆1.1.1 = {𝐻𝑠, 𝐻𝑟}. 

 

4.1.3 Constructing Vulnerability-Matching Patterns 

 

In this step, we use an example to show how to construct 

a pattern based on certain techniques, including regular 

expressions and taint analysis. 

Consider that we want to construct a pattern for capturing 

vulnerabilities related to the attack scenario 〈1.1.1〉 in Figure 

10. To clarify, we take an example of the following code 

fragment (Figure 11):  

 

 

Figure 11. Illustrative code fragment 

 

This code is susceptible to 〈1.1.1〉 because it creates SQL 

statements by using string concatenation [27] and the attacker 

can thus dynamically construct and execute a malicious SQL 

query. For example, the attacker can enter the string abc' OR 

1 = 1 -- for the name input field and the query becomes: 

 
SELECT * FROM customer WHERE name = 

'abc' OR 1 = 1 --' AND pwd = ' '; 

 

The comment operator -- makes the pwd input field 

irrelevant. Since 1 = 1 is always true, the WHERE clause will 

always evaluate to true. In other words, the WHERE clause will 

be transformed into a tautology and the attacker can finally 

bypass the authentication even if he/she does not know what 

the name or password is. 

a) Regular-expression-based pattern: Based on the 

analysis above, we extract a set of key features 𝐹 from the 

query: keywords such as SELECT, concatenation (using 

single quotes), and semicolon. Accordingly, a regular-

expression-based pattern for this type of vulnerability might 

be created as follows: 

 
(\w+\s*=\s*)+"SELECT\s\S+\sFROM\s\S+\s

WHERE\s\S+\s*=\s*'[^;]* 

 

The following is a more readable way to describe it: 

 

(\w+\s*=\s*)+   /* variable name and equal sign */ 

"SELECT     /* matches ”, followed by SELECT */ 

\s\S+\s   /* whitespace, anything not whitespace, and 

whitespace */ 

FROM        /* keyword FROM */ 

\s\S+\s   /* whitespace, anything not whitespace, and 

whitespace */ 

WHERE         /* keyword WHERE */ 

\s\S+\s*   /* whitespace, anything not whitespace, 

and 0 or more whitespace */ 

=\s*  /* matches =, followed by 0 or more whitespace 

*/ 

'[^;]*    /* matches ’, followed by anything not ; */ 

 

b) Taint-analysis-based pattern: In this example, the input 

variables name and password are considered tainted [24] 

because they are returned from a method getParameter 

(called the source) that gets unchecked input. The tainted 

variables name and password are passed to the variable 

query on line 6 and finally con.execute on line 8. Since 

the original source data are untrusted, the call to the method 

execute (called the sink) on line 8 is potentially unsafe. In 

this case, the key features 𝐹 that we extract for constructing 

a pattern should contain the source method 

(getParameter), the sink method (execute) and the 

data-propagation information. Accordingly, the taint-analysis-

based pattern can be formulated as {getParameter, data 

propagation, execute}, where data propagation gives 

information about whether the tainted data from 

getParameter can be passed to execute. 

Compared with regular expressions, taint analysis is more 

effective and precise to detect SQL injection because the data-

propagation analysis generally involves pointer analysis (also 

known as points-to analysis), which clearly shows what a 

variable may refer to [28]. For illustration, the rest of the case 

study will only show the case of using a regular-expression 

pattern. 

Finally, after constructing a pattern, we should work out a 

countermeasure against the attack scenario at this stage so that 

the programmer can take it as a code fix suggestion. For 

example, using parameterized queries [27] instead of string 

concatenation to build queries is one possible solution to avoid 

this type of SQL injection. 

 

4.1.4 Detecting Vulnerable Code 

 

As shown in Figure 12, line 6-7 is the corresponding 

vulnerable code captured by the regular-expression pattern 

indicated at the bottom of the figure. 
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Figure 12. Detection for vulnerable code 

 

4.1.5 Reporting Warnings 

 

The warnings include the location of vulnerable code, the 

type of possible attack, security and risk level information, and 

countermeasures, as shown in Figure 13. The location is 

revealed in step 4 while the security and risk level have been 

discussed in step 2 respectively. The countermeasure, as 

mentioned in step 3, is also given. 

 

Warning(s): The SQL query uses string concatenation

Location: Line 6-7

Possible attack(s): SQL injection

Security level: High

Risk level: High

Countermeasure(s): Consider using parameterized queries

 

Figure 13. Warning report for the illustrative code 

 

4.1.6 Fixing the Code 

 

Finally, the programmer can examine and fix the code 

according to the warning report. For example, the programmer 

might accept the suggestion and use a parameterized query as 

follows: 

 
query = "SELECT * FROM customer WHERE 

name = ? AND pwd = ?"; 

 

This query uses question marks as placeholders, which can 

help avoid SQL injection. For example, if the attacker tries to 

enter abc' OR 1 = 1 -- for the name input field, the 

entire input will be inserted into the name field as a name and 

no SQL injection will occur [27]. 

 

5  Related Work 
 

There are many attempts to prevent or uncover security 

vulnerabilities during coding phase. Defensive programming 

is one possible technique to this end; it is proposed to check 

whether the code is executing correctly by adding assertions 

[7]. The idea is based on the fact that an assertion must be 

evaluated true when the program is executing; otherwise, the 

execution will be terminated. Teto et al [6] apply defensive 

programming to mitigate I/O cybersecurity attacks by using 

input validation and escaping (i.e., encoding) techniques. 

Though defensive programming is promising, there remain 

critical issues. One of the major challenges is that 

programmers are required to possess sufficient security 

knowledge such as adding appropriate assertions. 

Static analysis is a more popular and powerful method for 

uncovering security-related bugs during software 

development [29]. Static analysis techniques can be employed 

to statically examine the source code of a program without 

executing it [2]. Basic lexical analysis is adopted by practical 

tools such as ITS4 [4] for identifying security vulnerabilities 

in C and C++ code. The tool ITS4 breaks the source code into 

a set of lexical tokens and then matches vulnerable functions 

from a database. Yamaguchi et al. [30] introduce code 

property graphs, which merge abstract syntax tree, control 

flow graphs and program dependence graphs, to facilitate code 

vulnerabilities auditing. Larochelle and Evans [31, 5] use 

annotations to syntactically perform static analysis for 

detecting buffer overflow vulnerabilities. The annotations can 

be exploited to check whether the code is consistent with 

certain properties. Such static analysis tools or methods 

encapsulate security knowledge so that the programmer (i.e., 

the tool operator) is generally not required to possess as much 

security expertise as the designer (i.e., the tool developer). 

Another branch of static analysis in security area is using 

pointer analysis or taint analysis to find code vulnerabilities. 

Livshits and Lam [24] present a taint-analysis approach based 

on pointer analysis to finding security vulnerabilities such as 

SQL injections and cross-site scripting in Java applications. 

Arzt et al. [32] present a taint-analysis tool called FlowDroid 

for Android applications. It claims to be fully context, flow, 

field and object-sensitive, thereby reducing missed leaks and 

false positives. However, most existing pointer/taint analysis 

approaches require whole-program availability [33], namely a 

complete program to be analyzed, which is at odds with the 

goal of our approach to some extent since our approach 

performs analysis on the code that is still under construction, 

namely an incomplete program. 

 

6  Conclusion and Future Work 
 

Detecting security vulnerabilities during software 

development can be challenging. This paper presents a 

framework for systematically and automatically identifying 

and correcting the vulnerability-related bugs during the 

construction of programs. The framework is expected to serve 

as the foundation for building an intelligent tool support for 

Human-Machine Pair Programming. We discuss the whole 

process of the idea, such as modeling attacks based on attack 

trees, conducting risk analysis, and constructing patterns. 

Finally, we conduct a case study on SQL injection attacks to 

illustrate the proposed framework. 

In spite of the important progress we have made in our 

framework, there are some issues that remain unsolved. For 

example: 

• It is necessary to provide a further discussion on how 

to choose the most appropriate techniques when 

constructing vulnerability-matching patterns for 

given vulnerabilities. 

• To better assess security and risk level in practice, we 

should take account of more factors, such as the 

independence of atomic attacks. 

• It is critical to create a classification of security 

vulnerabilities in terms of the software life cycle (for 

example, some vulnerabilities are easier to be fixed 

in coding phase than in testing phase.), so that 

resources for addressing a specific security 

vulnerability can be well allocated. 
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In future work, we plan to conduct further research on 

these topics. In addition, to develop a tool that can be applied 

to practical development is also part of our future work. 
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