
A Multi-Trajectory Monte Carlo Sampler 1117 

 

 
*Corresponding Author: Hongji Yang; E-mail: Hongji.Yang@Leicester.ac.uk 

DOI: 10.53106/160792642022092305020 

A Multi-Trajectory Monte Carlo Sampler 
 

 

Xiaopeng Xu1, Chuancai Liu1, Hongji Yang2*, Xiaochun Zhang3 
 

1 School of Computer Science and Engineering, Nanjing University of Science and Technology, China 
2 School of Computing and Mathematical Sciences, University of Leicester, U.K. 

3 School of Management Science and Engineering, Anhui University of Finance and Economics, China 

xiaopeng.xu@aufe.edu.cn, chuancailiu@njust.edu.cn, Hongji.Yang@Leicester.ac.uk, xiaochun.zhang@aufe.edu.cn 

 

 

 

Abstract 
 

Markov Chain Monte Carlo techniques based on 

Hamiltonian dynamics can sample the first or last principal 

components of multivariate probability models using 

simulated trajectories. However, when components’ scales 

span orders of magnitude, these approaches may be unable of 

accessing all components adequately. While it is possible to 

reconcile the first and last components by alternating between 

two different types of trajectories, the sampling of 

intermediate components may be imprecise. In this paper, a 

function generalizing the kinetic energies of Hamiltonian 

Monte Carlo and Riemannian Manifold Hamiltonian Monte 

Carlo is proposed, and it is found that the methods based on a 

specific form of the function can more accurately sample 

normal distributions. Additionally, the multi-particle 

algorithm’s reasoning is given after a review of some 

statistical ideas. 

 

Keywords: Hamiltonian dynamics, Kinetic energy, Multi-
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1  Introduction 
 

It is well established that MCMC’s spatial random walk is 

inefficient for high-dimensional models of significant non-

normality and correlation [1-2]. Proposal distributions present 

another issue. Hamiltonian Monte Carlo (HMC) is a flexible 

solutions for multivariate probability models [3-4]. Its random 

walk is performed on simulation trajectories, overcoming the 

restrictions of Gibbs sampling’s component-wise operation. 

As a result, the approach is theoretically applicable to any 

multivariate probability models of continuous variables.  

For HMC, both accuracy and stability may be enhanced. 

One characteristic is inherent instability as a result of the 

violation of conservation of energy, which arises primarily 

from the irreconcilable conflict between the stability and 

exploration in the single-particle systems. The method is 

meant to prioritize exploration above stability. Its theoretical 

probability of acceptance is fixed at one, resulting in 

practically uncontrollable sampling operations. Currently, the 

majority of HMC algorithms are based on single-particle 

systems, which are unstable, and sophisticated approaches for 

tuning run-time parameters are used [5-6].  

If the total energy of a single-particle system is conserved, 

the mutual proposal (jump) probability between two terminals 

of a trajectory are equal [7]. Due to the fact that limiting the 

total energy of single-particle systems will limit exploration 

significantly, multi-particle systems with collision effect can 

be used to reconcile exploration and stability. As with single-

particle systems, the intuitive notion is that multi-particle 

systems with collision effects will retain equal mutual jump 

probabilities between two terminals of the trajectory, which is 

appropriate for the Metropolis algorithm.  

The multi-particle system with collisions is an ideal 

statistical mechanics model. On the assumption that momenta 

have equiprobable directions, it is possible to deduce that their 

magnitudes follow the Maxwell-Boltzmann distribution. 

Indeed, the assumption is true for a broader class of models, 

namely closed multi-particle systems with non-physical 

kinetic and potential energies. The model can serve as a 

foundation for developing effective and resilient MCMC 

samplers.  

One issue occurs when the correlation coefficients of 

multivariate normal approaches 1 or -1. Similarly, variables 

can be spread across the manifold (for example, the surface) 

of a high-dimensional space. The models have proven to be 

intractable for classical samplers. To address these issues, the 

Riemannian Manifold HMC (RMHMC) was suggested with 

non-physical kinetic energies based on the Hessian of 

potential energies [8].  

The Hessian matrices of potential energies are positive-

definite for multivariate normal distributions, and stable 

simulation trajectories can be formed using physical kinetic 

energy. In general, the Hessian of potential energies can vary 

continuously and can be positive, negative, or indefinite, 

depending on the current locations. This presents a difficulty 

for simulating algorithms. Because the Hessian of potential 

energies is not always positive definite, efforts have been 

made to convert the matrices to positive definite forms [9-10]. 

Additionally, the convoluted of potential surfaces may trap 

sampling on a local scale [11]. Contrary to popular belief, a 

non-positive definite Hessian of potential energies does not 

necessarily result in divergence. For negative quadratic 

functions, for example, simulation using physical kinetic 

energy cannot produce stable trajectories; however, stable 

simulation using non-physical kinetic energies is possible.  

Numerous existing difficulties are found to be related to 

kinetic energies, and the kinetic energies that are suitable for 

various conditions all belong to the same family, with the 

kinetic energy RMHMC (as well as HMC) being a specific 

case. The Hessian of potential energies can be used to define 

kinetic energies that can yield trajectories suited for a wide 
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variety of situations. As a result, parameter estimation for 

general probability density functions is possible. For 

approximately normal models with weak correlations, current 

samplers may be adequate. However, it is important to 

generalize these methods for other multivariate probability 

models. 

 

2  Multi-Particle Sampler 
 

The fact that the suggested sampler is based on a multi-

particle system will be discussed in detail.  

 

2.1 Maxwell-Boltzmann Distribution 
 

Assume a closed system containing N high-speed particles 

colliding to exchange energy, and disregard potential energies 

for the time being. In three-dimensional space, a 3×N vector is 

formed by the initial momenta of the N particles. Due to the 

fact that each particle’s travelling direction is equally likely 

after a collision, the 3×N vector is uniformly distributed over 

a hypersphere whose magnitude is determined solely by the 

total kinetic energy of the system. Due to these characteristics 

being unique to the normal distribution, each dimension of the 

3×N vector follows the same zero-mean normal distribution 

[12].  

The infinitesimal element in spherical and Euclidean 

coordinate systems has the following properties: 

 

ⅆ𝑝𝑥 ⅆ𝑝𝑦 ⅆ𝑝𝑧 = 𝑝2sin(𝜙) ⅆ𝑝 ⅆ𝜃 ⅆ𝜙.     (1) 
 

When a spherical coordinate is substituted for the 

Euclidean coordinate in (1), the infinitesimal probability under 

the Euclidean coordinate can be transformed to a spherical 

coordinate 

 


ⅇ
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Integrate φ and θ for the right of (2) in the ranges of [0, π] 

and [0, 2π], respectively, to obtain the Maxwell-Boltzmann 

distribution. 
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The Maxwell-Boltzmann distribution is motivated by the 

concept of equal-probable directions for momenta, which is 

applicable to systems with any type of potential energy in 

principle. Because the total energy of a closed system is 

conserved, if the initial positions of all particles are known, 

the system’s total potential energy is likewise known, and thus 

the system’s total kinetic energy is determined. Thus, the 

system’s 3×N vector of starting momenta is evenly distributed 

on a spherical surface with 3×N-1 dimensions, and its 

magnitude is governed by the system’s total kinetic energy. 

Each point on the spherical surface corresponds to a spatial 

state that defines all particles’ locations. The concept of equal 

a priori probabilities, stipulates that every point on the 

spherical surface is equally likely to be chosen. Due to the fact 

that the subsequent state is equally probable given the initial 

state, the probability of mutual proposal (jump) between any 

two states will be equal.  

 

2.2 Metropolis Algorithm 
 

Collisions between the particles in a multi-particle system 

can exchange energy, resulting in variable total energies for 

each particle. For the time being, momenta’s magnitudes can 

be ignored because they are governed by kinetic energies. 

Each dimension of momentum is distributed according to a 

standard normal distribution; thus, the momentum of a D-

dimensional particle is distributed according to a D-

dimensional standard normal distribution, while the momenta 

of N particles are distributed according to an N×D-

dimensional standard normal distribution. Thus, the initial 

momenta of all N particles can be randomly chosen from the 

surface of an N×D-1-dimensional hypersphere. Because initial 

momenta and final terminals of simulation trajectories are 

bijective, each final terminal (an N×D-dimensional vector) has 

an equal chance. Thus, given the initial positions, the final 

positions follow a uniform distribution. As a result, when N 

particles are treated as a single entity, the mutual jump 

probabilities between the beginning and final positions are 

equal 

𝑃(𝑞1,0, … , 𝑞𝑁,0 → 𝑞1,1, … , 𝑞𝑁,1) =

𝑃(𝑞1,1, … , 𝑞𝑁,1 → 𝑞1,0, … , 𝑞𝑁,0).             (4) 

 

Due to the fact that the particles are only related via the 

system’s energy, which is a scalar quantity, the probability can 

be assumed to be independent 

 

∏ 𝑃(𝑞𝑖,0 → 𝑞𝑖,1)
𝑁

𝑖=1
≈ ∏ 𝑃(𝑞𝑖,1 → 𝑞𝑖,0)

𝑁

𝑖=1
.    (5) 

 

The simplest condition satisfying the preceding statement 

is that the mutual jump probabilities between the initial and 

final positions of each particle are equal 

 

𝑃(𝑞𝑖,0 → 𝑞𝑖,1) ≈ 𝑃(𝑞𝑖,1 → 𝑞𝑖,0).           (6) 
 

In summary, any two N×D-dimensional positions in the 

entire system have identical mutual jump probability, which 

implies that the mutual jump probabilities between any two 

points of any particle are equal. This means that in a collision-

prone system, even if the total energies of a particle’s two 

terminal positions are different, their mutual jump 

probabilities are equal. As a result, each particle can be 

subjected to the Metropolis algorithm by conditionally 

accepting a new position based on the acceptance probability 

 

𝛼 = min(1, ⅇ𝑈(𝑞𝑖,0)−𝑈(𝑞𝑖,1)).             (7) 
 

The magnitude of a particle’s momenta can be determined 

using the Euclidean norm for kinetic energy K0 

 

‖𝑝‖ = √𝑝𝑇𝑝 = √2𝐾0.                    (8) 

 

Thus, on the surface of a hypersphere, momenta are 

uniformly distributed. When we consider the biject between 

the initial momenta and end terminals of simulation 

trajectories, we see that all final spatial candidates are 

equiprobable given an initial spatial position. As a result, 

under the assumption of total energy conservation, the (new) 
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spatial positions have identical a priori probabilities. The 

Mahalanobis norm can be used to define the magnitudes of 

momenta for general kinetic energies Kr 

 

‖𝑝‖ = √𝑝𝑇 (
ⅆ2𝑈

ⅆ𝑞2
)
−𝑟

𝑝 = √2𝐾𝑟.           (9) 

 

The momenta of the required kinetic energy are located on 

the surface of a hyper-ellipsoid, with equal (Mahalanobis) 

magnitudes in all directions. Thus, the momenta are 

effectively dispersed on the surface of a hyper-sphere, 

resulting in equiprobable end terminals for trajectories, akin to 

K0. As a result, introducing kinetic Kr does not alter the 

discussion of K0, as only the form of trajectories is altered.  

 

2.3 Principal Components of Probability 

Distributions 
 

Multivariate probability density functions or associated 

potential functions can be used to define general probability 

models. The eigenvalues and eigenvectors of the inverse of the 

Hessian matrix can be used to characterize the local span and 

direction of each spatial point. The inverse of Hessian matrices 

produces covariance matrices with eigenvalues for variances 

of principal components and eigenvectors for orientations in 

the case of multivariate normal distributions. These properties 

can be demonstrated using a bivariate normal distribution with 

a potential function specified by 

 

𝑈(𝑥1, 𝑥2) =
1

2
(𝑥1 𝑥2) (

1 .7

.7 1
)
−1

(
𝑥1
𝑥2
).     (10) 

 

Inverting the Hessian matrix (i.e., the potential function’s 

second order derivative function) yields the covariance matrix 

 

(
ⅆ2𝑈

ⅆ𝑥2
)
−1

= (
1 0.7

0.7 1
).                (11) 

 

The spans and orientations in Figure 1 are shown in two 

arbitrary positions. Standard deviations, which are the square 

roots of the eigenvalues, are used to illustrate the span of 

principal components. The first principal components, 

denoted by orange arrows, correspond to the largest standard 

deviation. For bivariate normal distributions, there are two 

principal components; for N-dimensional normal distributions, 

there are N components. Hessian matrices are constant 

matrices that generate the same span and orientation for all 

positions. Thus, principal components can be used to 

summarize the general characteristics of multivariate normal 

distributions.  

 

 

Figure 1. Principal components of a bivariate normal 

distribution 

The same term can also be used with other probability 

models, such as a ring-shaped distribution with the potential 

function 

 

𝑈(𝑥1, 𝑥2) =
(√𝑥1

2+𝑥2
2−𝑟)2

2𝜎2
.               (12) 

 

The Hessian of the potential functions is no longer 

constant but fluctuates point by point. Each position has a local 

coordinate associated with it. Normalized eigenvectors define 

the coordinate axes as functions of spatial position, while 

squared roots of eigenvalues define the unit scales.  

Figure 2 illustrates two local coordinates and the scales 

associated with their relative placements. The greater the 

largest eigenvalue, the closer the angular axis (black circle) is. 

One scale approaches infinity on the angular axis. Because the 

Hessian of probability distributions might be negative definite, 

absolute eigenvalue values are utilized here. While the concept 

of principal components may be not appropriate for all 

multivariate distributions, this has no bearing on the 

subsequent arguments. As a result, the concepts of 

multivariate normal distributions apply to all distributions. 

The axis of local coordinates with the largest scale, as seen by 

orange arrows in Figure 2, is analogous to the first principal 

component, and so on. Because the local coordinates of 

multivariate normal distributions correspond to the global 

coordinates, the notion of principal components can also be 

generalized. 

 

 

Figure 2. “Principal components” of a ring-shaped 

distribution 

 

2.4 A Family of Kinetic Energies 
 

The primary difference between HMC and RMHMC is in 

their kinetic energy, which can be generally defined as  

 

𝐾𝑟(𝑝, 𝑞) =
1

2
𝑝𝑇 (

ⅆ2𝑈

ⅆ𝑞2
)
−𝑟

𝑝.            (13) 

 

The parameter r is used to adjust the kinetic energy. 

Taking r = 0 gives the kinetic energy of HMC, which is solely 

a function of momentum p. We obtain a similar kinetic energy 

of RMHMC when r = 1, which is a function of both 

momentum p and position q. When r is in the unit interval, a 

family of functions can be created with the HMC and 

RMMHC kinetic energies as the special cases.  

For the most extreme case, physical energy K0 is 

determined solely by momenta. The other energies are non-

physical in essence. Because Hamiltonian dynamics does not 

specify the form of kinetic energy, any kinetic function is 

theoretically feasible. Equation (13) mimics the negative 

logarithm of a multivariate normal distribution, except for the 

normalizing factors. For kinetic energy, the normalization 
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derived from the multivariate normal distribution may be 

superfluous. It is because, by symmetry, the initial momentum 

of a particle is uniformly picked from a spherical surface, 

followed by changing the magnitude according to the kinetic 

energy. Different kinetic functions bring about different 

distributions of momenta. In other words, kinetic energy can 

only determine magnitudes, whereas the directions of 

momenta are equally probable. Thus, in principle, the kinetic 

function need not be the negative logarithm of multivariate 

normal probability density functions.  

Discretizing Hamiltonian equations via Euler integration 

generates simulation trajectories for q and p, although we are 

primarily concerned with the spatial variable q. By examining 

the trajectories in Figure 3, we can see that the form is 

determined by the parameter r, which takes on values of 0, 0.5, 

or 1. The blue trajectory formed by K0 proceeds preferentially 

along the polar coordinate’s radial directions. On the other 

hand, K1’s green trajectory revolves primarily around the 

angular coordinate. When r is between 0 and 1, the related 

trajectory takes on an intermediate form. A third type of 

trajectory appears unneeded in this case, as bivariate 

probability models have only two “principal components” that 

may be traversed using the K0 and K1 trajectories. However, 

for components with a range of scales, other types of 

trajectories may be necessary. 

 

 

Figure 3. Simulation trajectories for the ring-shaped potential 

energy 

 

To get the decimal power of the Hessian matrix, Eigen 

decomposition can be used:  

 
ⅆ2𝑈

ⅆ𝑞2
= 𝑉 · 𝛬 · 𝑉𝑇.                      (14) 

 

Thus, computing the Hessian to the power of r entails 

computing the eigenvalues to the power of r 

 

(
ⅆ2𝑈

ⅆ𝑞2
)
𝑟

= 𝑉 · 𝛬𝑟 · 𝑉𝑇.                (15) 

 

The Hessian matrix must be positive definite here since 

only positive eigenvalues are meaningful for decimal r. The 

Hessian can be non-positive definite for potential energies of 

general probability density functions because it can change 

according to positions. Thus, we must generalize the kinetic 

energies.  

Assume that the eigenvalues are nonzero. The kinetic 

family can be derived using quadratic potential energies, with 

the Hessian being positive, negative, or indefinite. Positive 

quadratic potential energies are idealized and simplified 

models with a positive definite Hessian, for example (10). 

Because the potential function is analogous to physical 

potential energy, it can be used in conjunction with physical 

kinetic energy 

 

𝐾0(𝑝, 𝑞) =
1

2
𝑝𝑇𝑝,                   (16) 

 

as well as the non-physical kinetic energy described below: 

 

𝐾1(𝑝, 𝑞) =
1

2
𝑝𝑇 (

ⅆ2𝑈

ⅆ𝑞2
)
−1

𝑝.               (17) 

 

The total energies are also positive since both the kinetic 

and potential energies are positive. During simulations, the 

energies are converted into one another while preserving 

constant total energy. As illustrated in Figure 4, the potential 

surface can be traversed using trajectories created by 

Hamiltonian simulations utilizing two kinetic energies, where 

x1 and x2 signify spatial variables and U is the potential energy. 

Due to the fact that the trajectories of K0 and K1 move 

preferentially in virtually orthogonal directions, respectively, 

alternating two trajectories and sampling can be used to 

approximate target distributions. Furthermore, because 

negative kinetic energies result in divergence, not all kinetic 

energies are valid. As a result, kinetic and potential energy 

need to be matched. 

 

 

Figure 4. Potential energy trajectory with positive definite 

Hessian; orange: K1, blue: K0 

 

We can also examine potential functions that have a 

negative definite Hessian, such as 

 

𝑈(𝑥1, 𝑥2) = −
1

2
(𝑥1 𝑥2) (

1 .7

.7 1
)
−1

(
𝑥1
𝑥2
).   (18) 

 

If we have negative potential energies, negative kinetic 

energies are required to maintain a stable simulation, as 

positive kinetic energies will result in divergence. Only K0 is 

modified, as K1 is negative due to the negative definite Hessian. 

Thus, to avoid divergence, a negative quadratic function is 

used 

 

𝐾0(𝑝, 𝑞) = −
1

2
𝑝T𝑝.                      (19) 

 

Because of the negative potential and kinetic energies, the 

total energy in simulations is both negative and conserved. 

The fact that both K0 and K1 have stable trajectories is 

illustrated in Figure 5. Each trajectory follows a unique path 

around the concave quadratic surface, which has an effect on 

subsequent sampling. As a result of the concave shape, 

sampling algorithms have a tendency to drop into nearby 

regions of low potential energy. As a result, borders can be 

drawn around the zone. 
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Figure 5. Potential energy trajectory with negative definite 

Hessian; orange: K1, blue: K0 

 

To be comprehensive, we also take into account potential 

energies with indefinite Hessian. For instance, 

 

𝑈(𝑥1, 𝑥2) =
1

2
(𝑥1 𝑥2) (

. 7 1
1 . 7

)
−1

(
𝑥1
𝑥2
).   (20) 

 

The eigenvalues are either positive or negative. K1 is 

identical to the preceding two instances. However, if the above 

(positive or negative) kinetic energies K0 are used, the 

simulations will diverge. Using the method described below, 

we find that the right form is 

 

𝐾0(𝑝, 𝑞) = 𝑝1𝑝2.                    (21) 
 

As illustrated in Figure 6, the potential energy surface is 

saddle-shaped and does not have a maximum or a minimum. 

As is customary, the trajectory of K0 and K1 traverses the 

surface in some way. It is difficult to access regions of high or 

low potential energy for K1 trajectories.  

 

 

Figure 6. Potential energy trajectory with indefinite Hessian; 

orange: K1, blue: K0 

 

In summary, we infer that the eigenvalues’ power is 

required to preserve the sign. As a result, Hessian to the power 

of r can be implemented by computing the absolute 

eigenvalues to the power of r and then multiplying element-

wisely by its sign, which is 1, -1, or 0, depending on whether 

the value is positive, negative, or zero 

 

(
ⅆ2𝑈

ⅆ𝑞2
)
𝑟

= 𝑉 · (|𝛬|𝑟⨀sign(𝛬)) · 𝑉𝑇.       (22) 

 

It allows for the application of the new kinetic energies to 

general multivariate probability models. Despite possible 

inaccuracies or divergences, physical kinetic energy K0 and 

non-physical kinetic energy K1 were initially utilized for this 

purpose. Now, in order to employ Kr for general multivariate 

models, the power of Hessian could be computed 

appropriately. The only criterion for models is that they have 

a non-singular Hessian, or, more precisely, that they have non-

zero eigenvalues for the Hessian. 

2.5 The “Optimal” Kinetic Energy 
 

According to the above quadratic examples, the 

trajectories of K1 does not favor any specific principal 

components and therefore the methods based on it should be 

accurate. However, it is known from the forthcoming 

experiments that these methods tend to underestimate the scale 

of latter principal components. Thus, we need to analyze and 

fix the problem. 

Considering the case of positive definite, the Hessian in 

the K1 kinetic energy can be substituted with its Eigen 

decomposition 

 

𝐾(𝑝, 𝑞) =
1

2
𝑝𝑇𝑉𝛬−1𝑉𝑇𝑝.            (23) 

 

According to Hamiltonian dynamics, the time derivative 

of the position equals the partial derivative of kinetic energy 

with respect to the momentum 

 
ⅆ𝑞

ⅆ𝑡
=

𝜕𝐻

𝜕𝑝
=

𝜕𝐾

𝜕𝑝
= 𝑉𝛬−1𝑉𝑇𝑝.           (24) 

 

Therefore, Λ-1 can be treated as the updating magnitudes of 

principal components. Since the squared root of the inverse of 

eigenvalue matrix (i.e. Λ-1/2) corresponds to the scales (i.e. 

standard deviations) of principal components, the updating 

magnitudes and scales are mismatched. To tackle the problem, 

we can rescale the updating magnitudes of principal 

components with the squared root of the eigenvalue matrix 

 
𝜕𝐾

𝜕𝑝
= 𝑉𝛬

1

2𝛬−1𝑉𝑇𝑝 = 𝑉𝛬−
1

2𝑉𝑇𝑝.          (25) 

 

Thus, the kinetic energy needs to have the following form 

 

𝐾(𝑝, 𝑞) =
1

2
𝑝𝑇𝑉𝛬−

1

2𝑉𝑇𝑝.             (26) 

 

Considering also the cases of non-positive-definite, the 

required kinetic energy is obtained 

 

𝐾0.5(𝑝, 𝑞) =
1

2
𝑝𝑇𝑉(|𝛬|−0.5 ⊙ sign(𝛬))𝑉𝑇𝑝. (27) 

 

The kinetic energy is a kind of Kr and is the only function 

that can impartially traverse all principal components of 

multivariate normal distributions. Therefore, K0.5 is arguably 

one of the feasible kinetic energy for sampling algorithms. 

 

2.6 The Derivative of Kinetic Energies with 

Respect to q 
 

To implement an accurate Hamiltonian simulation, the 

derivative of energies with respect to phase variables should 

be determined. Due to the fact that the potential energies are 

simply a function of q, only three derivatives are required: 

dU/dq, ∂K/∂p, and ∂K/∂q. Because the first two derivatives are 

trivial, we discuss only ∂K/∂q. Kinetic energy modifies 

eigenvalues, which are dependent on the second derivatives of 

potential energy in terms of q. As a result, in order to compute 

the derivative of kinetic energies with respect to q, we need 

first compute the derivatives of kinetic energies with regard to 

eigenvalues and eigenvectors, followed by the derivatives of 

eigenvalues and eigenvectors with respect to q. As a result, the 
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problem is recast as computing the derivatives of eigenvalues 

and eigenvectors in terms of a scalar variable t. The approach 

may be directly generalized to a D-dimensional vector q. The 

appendix discusses the derivatives of eigenvalues and 

eigenvectors with respect to a scalar variable, which is used to 

determine the ∂K/∂q. 

To begin, let us decompose the Hessian matrix into its 

eigenvectors and eigenvalues 

 
ⅆ2𝑈

ⅆ𝑞2
· 𝑣𝑖 = 𝜆𝑖𝑣𝑖.                     (28) 

 

The generated kinetic energy is calculated using eigenvalues 

and eigenvectors 

 

𝐾𝑟(𝑝, 𝑞) =
1

2
𝑝𝑇 · 𝑉 · (|𝛬|𝑟⨀sign(𝛬)) · 𝑉𝑇 · 𝑝 

=
1

2
𝑝𝑇 · 𝑉 · 𝑓(𝛬) · 𝑉𝑇 · 𝑝, (29) 

 

in which the eigenvalue transforming function is defined as 

 

𝑓(𝛬) = |𝛬|𝑟⨀sign(𝛬).                    (30) 

 

In computing ∂K/∂q, the momentum p can be considered 

as a constant. Kr transforms eigenvalues rather than 

eigenvectors. The derivative of the kinetic energy with respect 

to qj is made of two parts according to the step-by-step 

derivation 

 
ⅆ𝐾𝑟

ⅆ𝑞𝑗
= 𝑝𝑇 ·

ⅆ𝑉

ⅆ𝑞𝑗
· 𝑓(𝛬) · 𝑉𝑇 · 𝑝 +

1

2
𝑝𝑇 · 𝑉 ·

ⅆ𝑓(𝛬)

ⅆ𝑞𝑗
· 𝑉𝑇 · 𝑝 = 𝑝𝑇 ·

ⅆ𝑉

ⅆ𝑞𝑗
· 𝑓(𝛬) · 𝑉𝑇 · 𝑝 +

1

2
𝑝𝑇 · 𝑉 · (𝑓

.

(𝛬)⨀
ⅆ𝛬

ⅆ𝑞𝑗
) · 𝑉𝑇 · 𝑝. (31) 

 

in which the transforming function’s derivative is 

 

𝑓
.

(𝛬) = −𝑟|𝛬|𝑟−1.                        (32) 

 

Thus, the derivative of kinetic energy in terms of q is turned 

into the derivatives of eigenvalues and eigenvectors in terms 

of q, which is transformed into the derivative of the Hessian 

matrix in terms of q 

 
ⅆ𝜆𝑖

ⅆ𝑞𝑗
= 𝑣𝑖

𝑇 ⅆ3𝑈

ⅆ𝑞2ⅆ𝑞𝑗
𝑣𝑖.                    (33) 

 

Similarly, the eigenvector’s derivative with respect to q is 

 
ⅆ𝑣𝑖

ⅆ𝑞𝑗
= ∑

1

𝜆𝑖−𝜆𝑘
(𝑣𝑘

𝑇 ⅆ3𝑈

ⅆ𝑞2𝑞𝑗
𝑣𝑖)𝑣𝑘𝑘≠𝑖              (34) 

 

According to (33) and (34), the derivative of kinetic 

energies requires the third-order derivative of potential 

energies with respect to q, and the computation is an order of 

magnitude higher than the Hessian matrix. The approximate 

approach stated behind may be more appropriate for high-

dimensional models, i.e. ∂K/∂q can be implemented via 

numerical differences. 

The effect, on the other hand, appears to be connected to 

δ, implying that sampling errors may be caused by numerical 

differences. As illustrated in Figure 7, for the ring-shaped 

distribution with σ=0.0001 and r=10, a larger δ results in a 

larger error, which causes the radial samples to deviate to the 

right. Due to the floating-point limit, δ cannot be infinitely tiny, 

and as a result, certain errors will occur. The finite difference 

approach is similar to the accurate method in terms of 

computing and can be utilized in contexts that lack the facility 

of third-order derivatives. 

 

 

Figure 7. Influence of δ in numerical difference 

 

2.7 The Effect of Derivatives of Energy 
 

A particle’s total energy is the sum of its kinetic and 

potential energies. While potential energies are entirely 

dependent on location, kinetic energy can dependent on both 

position and momentum 

 

𝐻(𝑞, 𝑝) = 𝐾(𝑝, 𝑞) + 𝑈(𝑞).               (35) 

 

We obtain the rate of change for momentum and position 

variables by substituting kinetic and potential energy in 

Hamiltonian equations 

 
ⅆ𝑝

ⅆ𝑡
= −

𝜕𝐻

𝜕𝑞
= −

ⅆ𝑈

ⅆ𝑞
−

𝜕𝐾

𝜕𝑞
,               (36) 

 

ⅆ𝑞

ⅆ𝑡
=

𝜕𝐻

𝜕𝑝
=

𝜕𝐾

𝜕𝑝
.                      (37) 

 

A sometimes neglected point is that kinetic energy can 

also be functions of position in general. Thus, the final 

component on the right of (36) is required in theory. Due to 

the fact that kinetic energies are computed using the second 

order derivatives of potential energies with respect to q, 

determining ∂K/∂q requires the third order derivatives of 

potential energies with respect to q, necessitating additional 

computation. As a result, ∂K/∂q might be omitted or simplified 

in practice [13]. Ignoring the term, on the other hand, may 

result in systematic errors for single-trajectory algorithms that 

utilize non-physical kinetic energy [7]. 

As illustrated in Figure 8, disregarding ∂K/∂q violates the 

rule of conservation of energy, causing the trajectory formed 

by the K1 energy for the ring-shaped potential energy to be 

inclined outward. The trajectory’s outward inclination results 

in a sample bias toward the outer side. The physical kinetic 

energy K0 is purely dependent on p and is unaffected by the 

factor, as its ∂K/∂q is equal to zero. By alternating various 

trajectories, the systematic error can be reduced. Because the 

trajectories of K1 incline outward, there is a possibility that the 

trajectories of K0 incline inward, thus eliminating partial 

inaccuracy. 

 



A Multi-Trajectory Monte Carlo Sampler 1123 
 

 

 

 

Figure 8. The influence of ignoring ∂K/∂q for trajectories 

 

In Figure 9, the light grey curve depicts the simulation 

trajectory for the ring-shaped potential energy. The brown 

arrows represent the vectors of ∂K/∂p at their current locations, 

which represent the incremental changes in spatial positions 

along the ring’s tangent. The blue arrows indicate dU/dq, 

while the red arrows indicate ∂K/∂q. Thus, considering solely 

dU/dq will result in outer deviations of the trajectories. The 

black arrows indicate the total of dU/dq and ∂K/∂q, or the 

incremental changes in momenta. Due to the fact that dU/dq 

and ∂K/∂q have nearly opposite orientations, the two are 

largely cancelled, leaving only minor incremental changes for 

momenta, which in turn results in smaller incremental changes 

for spatial positions. Thus, we confront a contradiction 

between accuracy and exploration, as precise methods with 

∂K/∂q may be inferior in terms of exploration, but 

approximate approaches without ∂K/∂q may result in a 

superior sampling effect as a result of increased exploration. 

 

 

Figure 9. T Energy derivatives on the simulation trajectory; 

brown: ∂K/∂p, blue arrow: dU/dq, red arrow: ∂K/∂q, black 

arrow: dU/dq+∂K/∂q 

 

On the left side of Figure 10, the histogram of samples for 

the ring-shaped distribution on the radial coordinate using K1 

kinetic energy with σ=0.1 and ρ=10 is shown. The 

approximate method’s samples are typically larger than 10, 

indicating systematic error. The accurate method employing 

∂K/∂q distributes the samples more evenly about 10, thereby 

reducing the corresponding systematic error. For the precise 

method, the radial distribution may deviate from the normal 

distribution, which could be due to a variety of factors (such 

as the characteristics of K1). While the technique based on 

∂K/∂q is more precise in the radial component, it has a large 

error in the angle component, indicating inferior exploration. 

The right picture demonstrates that the samples generated by 

the approach that ignores ∂K/∂q are more uniformly 

distributed, exhibiting stronger exploration.  

 

 

 

 

 

 

  

Figure 10. Samples for the ring-shaped distribution (left: 

radial, right: angular) 

 

2.8 Algorithm Description 
 

The suggested single or multi-trajectory algorithm is 

analogous to the alternating two-trajectory algorithm [7]. By 

incorporating N distinct types of trajectories, both H and δ will 

be N-dimensional arrays, as each trajectory needs adjust its 

own total energy and step size. The N-dimensional array R is 

predefined with the kinetic energy parameter r as its elements. 

If R consists of only zero or one, we obtain the modified HMC 

or RMHMC algorithms. R will contain both 0 and 1 for the bi-

trajectory algorithm. More intermediate decimals between 0 

and 1 can be considered when sampling general probability 

models. Line 4 specifies the kinetic type that will be used to 

calculate the total kinetic energy of all particles in line 9. The 

expected total kinetic energy of the system is determined in 

line 12 using the potential energy and total energy of the 

system. Following that, the magnitudes of all particles’ 

momenta are rescaled to preserve energy throughout the 

system. Line 17 starts the simulation and sampling. The 

leapfrog algorithm is defined in line 18. Due to the fact that 

just variable q is sampled, the leapfrog final update can be 

ignored. Lines 20 to 21 make use of the step size associated 

with the present kinetic energy. Line 32 contains the 

adjustment for the total energy and step size. The following 

kinetic energy is selected sequentially and cyclically at line 33. 

 

Algorithm 1. The proposed method 

1 initialize H and δ 

2 ρ=1 

3 for i = 1 to N 

4 r=Rρ 

5 Utotal=0 

6 Ktotal=0 

 // M particles 

7 for j=1 to M 

 //equiprobable direction 

8 pj = NormalRandom(0,1) 

9 Ktotal=Ktotal + Kr(pj, qj) 

10 Utotal=Utotal+U(qj) 

11 end 

12 Kd= Hρ-Utotal 

 // total energy conservation for the system 

13 for j=1 to M 

14 𝑝𝑗 = 𝑝𝑗√|𝐾d/𝐾total|  

15 end 

16 for j=1 to M 

17 q0=qj 

 // leapfrog 

18 𝑝𝑗 = 𝑝𝑗 −
1

2
𝛿𝜌 (

ⅆ𝑈

ⅆ𝑞𝑗
+

𝜕𝐾r

𝜕𝑞𝑗
)  

10 5 5 10

10

5

5

10

15

K1 without K q

K1 with K q

- 15 - 10 - 5 5 10 15
1

- 15

- 10

- 5

5

10

15

2

K1 with K q K1 without K q
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19 for s = 1 to S 

20 𝑞𝑗 = 𝑞𝑗 + 𝛿𝜌
𝜕Kr

𝜕𝑝𝑗
  

21 𝑝𝑗 = 𝑝𝑗 − 𝛿𝜌 (
ⅆ𝑈

ⅆ𝑞𝑗
+

𝜕𝐾r

𝜕𝑞𝑗
)  

22 save U(qj) 

23 end 

 // Metropolis 

24 𝛼 = ⅇU(𝑞0)−U(𝑞)  

25 u=UniformRandom(0,1) 

26 if α < u 

27 qj= q0 

28 end 

29 save qj 

30 save α 

31 end 

32 tune Hρ and δρ 

33 if ρ== size of R 

34 ρ=1 

35 else 

36 ρ=ρ+1 

37 end 

38 end 

 

Algorithm 2 and Algorithm 3 establishes a definition for 

kinetic energy and its derivatives. To obtain the Hessian’s 

eigenvalues and eigenvectors, an Eigen decomposition is 

performed. Following the transformation of the eigenvalues 

matrix, we reconstruct the W matrix whose inverse can be 

accomplished by solving a linear equation. 

 

Algorithm 2. Kinetic energy 

1 function Kr(p,q) 

2 // eigenvalue decomposition 

3 
𝛬, 𝑉 = eigen (

ⅆ2U

ⅆ𝑞2
) 

4 𝑊 = 𝑉 · (|𝛬|𝑟⨀sign(𝛬)) · 𝑉𝑇 

5 return 1/2pTW-1p 

6 end 

 

Algorithm 3. The derivative with respect to p 

1 function ∂Kr/∂p(p, q) 

2 
𝛬, 𝑉 = eigen (

ⅆ2U

ⅆ𝑞2
) 

3 𝑊 = 𝑉 · (|𝛬|𝑟⨀sign(𝛬)) · 𝑉𝑇 

4 return W-1p 

5 end 

 

Algorithm 4 illustrates how to compute ∂K/∂q. From lines 

7 to 15, the derivative of eigenvectors with respect to q is 

determined, where the variable u in line 11 is a D×D×D-

dimensional tensor. In line 22, the derivative of the 

eigenvalues with respect to q is determined. Line 17 

accumulates the derivative due to eigenvectors, and line 22 

accumulates the derivative due to eigenvalues. 

 

Algorithm 4. The derivative with respect to q 

 function ∂Kr/∂q(p, q) 

1 D=dimension(p) 

2 𝛬, 𝑉 = eigen (
ⅆ2U

ⅆ𝑞2
)  

3 𝑉 =
𝑉

‖𝑉‖
  

4 𝑓
.

= −𝑟|𝛬|−𝑟−1  

5 𝑓 = |Λ|𝑟⨀sign(𝛬)  

6 𝑦 = 𝑉 · 𝑝  

7 for k=1 to D 

8 for i=1 to D 

9 for j=1 to D 

10 if i≠j 

11 𝑢𝑘,𝑖,𝑗 = 𝑢𝑘,𝑖,𝑗 +
𝑣𝑗

𝜆𝑖−𝜆𝑗
(𝑣𝑗

𝑇 ·
ⅆ3U

ⅆ𝑞2𝑞𝑘
· 𝑣𝑖)  

12 end 

13 end 

14 end 

15 end 

 // due to V 

16 for i=1 to D 

17  
ⅆK

ⅆ𝑞𝑖
= 𝑝𝑇 · 𝑢𝑖 · 𝑓 · 𝑦  

18 end 

19 𝑔 = 𝑓
.

⨀𝑦2  

 // due to Λ 

20 for j=1 to D 

21 for i=1 to D 

22 
ⅆK

ⅆ𝑞𝑗
=

ⅆK

ⅆ𝑞𝑗
+ (

1

2
𝑣𝑖
𝑇 ·

ⅆ3U

ⅆ𝑞2𝑞𝑗
· 𝑣𝑖) 𝑔𝑖  

23 end 

24 end 

25 return 
ⅆK

ⅆ𝑞
 

26 end 

 

3  Experiments 
 

3.1 Bivariate Potential Energies with Positive 

Definite, Negative Definite, or Indefinite 

Hessian 
 

The program uses 30 particles in the experiment to reveal 

differences between single-particle and multi-particle samples. 

Over the range of -3 to 3, the prior distribution follows a 

uniform distribution. All chains are initiated within the region. 

The acceptance probability is zero whenever a simulation ends 

outside.  

The parameter estimation of weakly correlated 

multivariate normal distributions is trivial for most methods. 

To investigate the effect of kinetic energies on sampling, a 

bivariate normal distribution with a correlation coefficient of 

0.99999999 is used. Figure 11 depicts scatter plots of all 

particle samples for the (positive definite) potential energy. 

The samples based on the K0 method are scattered on the 

diagonal line on the left. Because the trajectories move 

antidiagonally only from initial positions, the samples of K1 

are distributed on many diagonal lines, as shown in the middle. 

The samples generated by using K0 and K1 alternately 

resemble the target distribution on the right. The reason for the 

disparity in results is that the trajectories of K0 primarily 

progress along the last components, whereas the trajectories of 

K1 can align with the first principal components. Two 

components can be traversed at the same time by using two 

kinetic energies alternately.  
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Figure 11. Scatter plots of all particles for potential energy 

with a positive definite Hessian; left: K0, middle: K1, and right: 

K0, K1 

 

The scatter plots for a single particle are shown in Figure 

12. K0 samples are concentrated in a tiny area. On the other 

hand, the samples of K1 extend only anti-diagonally, with poor 

coverage along diagonals due to a lack of movement in that 

direction. The reason for this is that the sampling of the 

trajectories is heavily influenced by their form. On the right, 

alternating between two trajectories creates a more desirable 

result. 

 

 

Figure 12. Scatter plots of a single particle for potential 

energy with a positive definite Hessian; left: K0, middle: K1, 

and right: K0, K1 

 

Despite the fact that the Hessian of potential energy 

specified in (18) is negative definite, it can still be sampled, as 

shown in Figure 13. Because the minimum potential energy is 

at infinity, a square boundary is used to avoid divergence. The 

potential energy is related to a non-normal distribution with 

approximately complementary samples at diagonal corners. 

The proposed kinetic energies can be used to overcome 

problems with convergence and the acceptance probability for 

potential energies with non-positive definite Hessian. The 

simulation trajectories can be automatically stabilized, setting 

the basis for sampling. K0 samples are found at diagonal 

corners on the left side of the picture. K1 samples are likewise 

generally divided into two disconnected sections by the anti-

diagonal, as illustrated in the centre plots. The high energy 

region blocks all trajectories since no sample is situated on the 

anti-diagonal. The bi-trajectory approach, whose outcome is 

comparable to K0, is shown on the right side of the picture. The 

significant disparity between K0 and K1 demonstrates how 

important trajectories are. Various trajectories may be 

required for generic probability models to visit the target 

regions thoroughly.  

 

 

Figure 13. Scatter plots of all particles for potential energy 

with a negative definite Hessian; left: K0, middle: K1, and right: 

K0, K1 

 

Figure 14 depicts samples from a single Markov chain. On 

the left, the samples with K0 are concentrated in the lower right 

corner, indicating that the trajectories cannot cross over to the 

opposite corner. The samples of K1 scatter widely in the centre 

of the picture, owing to the large scale movement of 

trajectories. On the right, the bi-trajectory algorithm’s samples 

are dispersed in the upper left corner. It is evident from the 

centre and right of the diagram that even K1 trajectories cannot 

pass through regions of large potential energy. To overcome 

energy barriers, it may be prudent to increase absolute kinetic 

energies by lowering the lower threshold of acceptance 

probability. 

 

 

Figure 14. Scatter plots of one particle for the potential energy 

with a negative definite Hessian; left: K0, middle: K1, and right: 

K0, K1 

 

Figure 15 illustrates the sampling results for an indefinite 

Hessian. As the case of negative definite, we can rely on 

qualitative analysis to conclude that the method of K1 is less 

accurate than the approach of K0, if we use the bi-trajectory 

result as a benchmark. The conclusion may come as a surprise, 

given the widespread belief that methods based on K1 (e.g. 

RMHMC) are superior to methods based on K0 (HMC). We 

recall from Figure 6 that the approach of K1 yields more 

restrictive trajectories, where sampling on the trajectories 

deviates from the desired distribution. 

 

 

Figure 15. Scatter plots of all particles for potential energy 

with an indefinite Hessian; left: K0, middle: K1, and right: K0, 

K1 

 

By examining the samples from a single Markov chain, we 

can see in Figure 16 that K0 produces a result similar to 
alternating K0 and K1. Because the Hessian matrix’s absolute 

eigenvalues (1.7 and -0.3) are of the same order of magnitude, 

any kinetic energy within the family can be applied. If the 

absolute eigenvalues change by orders of magnitude, 

indicating a wide range of component scales, additional 

kinetic energies may be necessary to construct trajectories of 

diverse shapes.  

 

 

Figure 16. T Scatter plots of one particle for the potential 

energy with an indefinite Hessian; left: K0, middle: K1, and 

right: K0, K1 

 

3.2 Multivariate Normal Distributions 
 

To study the choice of kinetic energies, the methods are 

compared using a zero-mean and uncorrelated 10-dimensional 

normal distribution, whose standard deviation of the ith 

dimension (i.e. principal components) is set to base1-i, with 

base=1…12. When base equals 1, we get a 10-dimensional 

standard normal distribution. However, larger value for base 

will cause more difficulty for sampling. To assess sampling 

accuracies, the transformed samples will be a 10-dimensional 
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standard normal distribution, which means that their standard 

deviations will be approximately one 

 

𝛴−
1

2𝑥 ∼ 𝑁(0,1).                       (38) 

 

As shown in the upper left corner of Figure 17, the method 

based on K0 tends to overestimates sample variances (σ2), 

which indicates the method (e.g. HMC) is inaccurate. The 

upper right corner shows that the K1 method (e.g. RMHMC) 

tends to increasingly underestimate sample variance of latter 

principal components. The middle left of Figure 17 suggests 

that alternating K0 and K1 is moderately helpful, as the curves 

are more concentrated toward to 1. The middle right of the 

figure reveals that the method based on K0.5 can accurately 

sample all components, since all curves are close to 1. More 

trajectories, instead, may lead to underperformance, 

exemplified by the lower left corner of Figure 17 that 

alternating K0, K0.5, and K1. The problem can be lessened by 

adopting more trajectories, such as 11 trajectories shown in the 

lower right corner of the figure. In summary, the sampling can 

be improved by adopting K0.5. 

 

Figure 17. The standard deviations of transformed samples, 

the numbers on the right side indicate the order of principal 

components, the x-axis is base, and the y-axis is the standard 

deviations of transformed samples 

 

To verify convergence, we also show the potential scale 

reduction factor (PSRF) whose value should be close to 1 if 

the chains have converged to the target posterior distribution 

[14-15]. As shown in the upper left corner of Figure 18, the 

method of K0 does not satisfy the convergence criterion in 

most cases. On the other hand, the convergence of K1 seems 

markedly improved despite the inflated values. Compared 

with the single trajectory methods, the convergence of bi-

trajectory method of K0 and K1 is improved furthermore. The 

method of K0.5 converges for all components and cases, and 

other methods adopting K0.5 are also approximately converged. 

Or more exactly, the methods adopting K0.5 converge better. 

The downside of multiple trajectories is the increased 

burn-in iterations, which is necessary, for each trajectories 

adapts its own energy and step size. Given a 10% change in 

each adjustment, each type of trajectory may require hundreds 

of iterations (n) to span a suitably broad interval of [1.1-n, 1.1n]. 

In other words, the number of burn-in iterations need to be 

multiplied by the number of kinetic energies. Because it is 

vital to ensure that all samples are located in high-density 

zones, or equivalently, have low potential energies, prior to 

start formal sampling. 

 

3.3 Multimodal Probability 
 

 

Figure 18. Potential scale reduction factor 

 

Due to the presence of multiple modes, sampling 

multimodal probabilities may be more difficult, as illustrated 

by the potential energy of a two-dimensional cosine function 

 

𝑈(𝑥1, 𝑥2) = 4(cos(𝑥1)cos(𝑥2) + 1).     (39) 
 

As illustrated in Figure 19, the potential function has 

numerous extrema in the region, each with a distinct curvature, 

either positive or negative. Particles are attracted to locations 

with low potential energies and are thus more constrained to 

local regions when it comes to physical kinetic energy. By 

using the proposed kinetic energies, the particles can traverse 

between the extremes of high and low potential energies, 

continuously speeding toward the opposite extremum. The 

particles resemble rolling balls in bowls and inverted bowls 

and can continue their journey by passing across the 

boundaries of the two, allowing for more effective traversal of 

numerous extrema. On both sides of the boundary, the Hessian 

matrices of potential energy will be positive or negative 

definite, with similar trajectories to the quadratic positive or 

negative potential energies. As a result, once the trajectories 

pass through the boundaries, they accelerate ahead. 

 

 
Figure 19. Two-dimensional cosine function 
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Trajectories can cover several extrema under the condition 

of total energy conservation during simulations, as shown in 

Figure 20 for three types of kinetic energies. For 

unconstrained domains, the trajectories will reach infinity. 

Setting sampling boundaries, with zero acceptance probability 

for samples obtained outside of the bounds, can solve the 

problem.  

 

 

Figure 20. Simulation trajectories with the proposed kinetic 

energies 

 

The scatter plots of three particles with distinct colours for 

the proposed K0 kinetic energy are shown in the left side of 

Figure 21. The burn-in period is 5000 iterations long, and 5000 

samples are drawn for each particle in a square region. The 

colours of the particles are approximately mixed, indicating 

that they can freely traverse the region. The nearly uniform 

distribution of data across several modes indicates that the 

proposed technique is appropriate for multimodal probability. 

The right side of the figure reveals that when physical energy 

is used in the same settings, exploration is somewhat inhibited 

and samples concentrate in fewer modes, indicating a reduced 

capacity for border crossing. It is found that the proposed 

kinetic energies approach outperforms the physical kinetic 

energy method under various scenarios. Additionally, it is 

feasible to promote exploration and hence improve the 

sampling effect of multimodal probabilities by increasing 

kinetic energies, which can be accomplished by reducing the 

acceptance probability threshold. 

 

 

Figure 21. Samples; left: the proposed kinetic energy K0, right: 

the physical kinetic energy 

 

4  Conclusion 
 

Both HMC (K0) and RMHMC (K1) are subsets of a family 

of algorithms based on a general kinetic energy Kr. Although 

the trajectories generated from the kinetic energies are capable 

of traversing all components, the methods based on K0.5 are 

more accurate than others for multivariate normal 

distributions. 

The HMC method utilizes only the gradient of potential 

energy and thus can be applied to high-dimensional models in 

principle. The drawback, however, is the inherent inaccuracy. 

It is found that more accurate methods are possible by 

adopting the Hessian matrix of potential energy, whose 

computational complexity is O(N2) for N-dimensional models. 

As a result, the proposed methods are suitable only for low or 

medium-dimensional models. For high-dimensional models 

(e.g. deep learning), more research is still needed for accurate 

methods. 
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Appendix Derivative of Eigenvectors and 

Eigenvalues 
 

The next section discusses the derivatives of eigenvalues 

and eigenvectors with respect to a scalar variable, which is 

taken from an Internet forum dedicated to discussing the 

question [16]. 

If B depends on a single parameter t, then deriving with 

respect to t the equality 

𝐵𝑛𝑖 = 𝜆𝑖𝑛𝑖,                       (a.1) 

we deduce 

𝐵
.

𝑛𝑖 + 𝐵𝑛
.

𝑖 = 𝜆
.

𝑖𝑛𝑖 + 𝜆𝑖𝑛
.

𝑖.              (a.2) 

Here we assume that ‖𝑛𝑖‖ = 1 . Hence 𝑛
.

𝑖 ⊥ 𝑛𝑖 , ∀𝑖 . 

Taking the inner product of the above equality with ni and 

observing that 

(𝐵𝑛
.

𝑖 , 𝑛𝑖) = (𝑛
.

𝑖 , 𝐵𝑛𝑖) = 𝜆𝑖(𝑛
.

𝑖 , 𝑛𝑖) = 0,     (a.3) 

we deduce 

𝜆
.

𝑖 = (𝐵
.

𝑛𝑖 , 𝑛𝑖).                     (a.4) 

This determines 𝜆
.

𝑖 in terms of 𝐵
.

. 

Next, we take the inner product of (a.2) with nj, j≠i. Using 

the fact that B is symmetric we deduce 

(𝐵
.

𝑛𝑖 , 𝑛𝑗) + (𝑛
.

𝑖, 𝐵𝑛𝑗) = 𝜆𝑖(𝑛
.

𝑖, 𝑛𝑗).        (a.5) 

so that 

(𝐵
.

𝑛𝑖, 𝑛𝑗) + 𝜆𝑗(𝑛
.

𝑖 , 𝑛𝑗) = 𝜆𝑖(𝑛
.

𝑖, 𝑛𝑗).       (a.6) 

This shows that 

(𝑛
.

𝑖 , 𝑛𝑗) =
1

𝜆𝑖−𝜆𝑗
(𝐵
.

𝑛𝑖 , 𝑛𝑗),              (a.7) 

that is 

𝑛
.

𝑖 = ∑
1

𝜆𝑖−𝜆𝑗
(𝐵
.

𝑛𝑖, 𝑛𝑗)𝑛𝑗𝑗≠𝑖 .            (a.8) 
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