
Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction 1099

*Corresponding Author: Xiaolin Ju; E-mail: ju.xl@ntu.edu.cn

DOI: 10.53106/160792642022092305018

Hybrid Multiple Deep Learning Models to

Boost Blocking Bug Prediction

Zhihua Chen, Xiaolin Ju*, Haochen Wang, Xiang Chen

School of Information Science and Technology, Nantong University, China

zhihuachen19@gmail.com, ju.xl@ntu.edu.cn, haochenwang@ntu.edu.cn, xchencs@ntu.edu.cn

Abstract

A blocking bug (BB) is a severe bug that could prevent

other bugs from being fixed in time and cost more effort to

repair itself in software maintenance. Hence, early detection

of BBs is essential to save time and labor costs. However, BBs

only occupy a small proportion of all bugs during software life

cycle, making it difficult for developers to identify these

blocking relationships. This study proposes a novel blocking

bug prediction approach based on the hybrid deep learning

model, a combination of Bi-directional Long Short-Term

Memory (Bi-LSTM) and Convolutional Neural Network

(CNN). Our approach first extracts summaries and

descriptions from bug reports to construct two classifiers,

respectively. Second, our approach combines two classifiers

into a hybrid model to predict the blocking relationship of each

blocking bug pair. Finally, our approach produces a report of

identified blocking bugs for developers. To investigate the

effectiveness of proposed approach, we conducted an

empirical study on bug reports of seven large-scale projects.

The final experimental results illustrate that our approach can

perform better than the recent state-of-the-art baselines.

Precisely, the hybrid model can predict BB better with an

average accuracy of 57.20%, and an improvement of 73.53%

in terms of the F1-measure when compared to ELBlocker.

Moreover, according to the bug report’s description, BB can

be predicted well with an average accuracy of 49.16%.

Keywords: Blocking bug, Deep learning, Bug report analysis

1 Introduction

Software today plays a significant role in controlling the

behavior of many systems. A failure caused by the software

operation can have catastrophic consequences, including

property damage, financial loss, and serious injury or death [1-

2]. Bug tracking systems such as Bugzilla report numerous

software bugs. Among these bugs, there is a particular

association named blocking bug pairs (BBP), which means

one unfixed bug blocks another bug from being fixed [3].

Blocking bugs have higher complexity than non-blocking

bugs. Although the blocking bugs that make up the BBP

occupy a small proportion of all bugs, the unfixed bug of BBP

in upstream projects will prevent fixing the bug in downstream

projects [4]. Blocking bug require more time and effort in

software maintenance. A previous study showed that fixing

blocking bugs usually takes 2 to 3 times longer and more lines

of code than fixing non-blocking bugs [5-6].

Many approaches may effectively predict software fault

proneness [7-8], but they cannot separate blocking bugs from

other bugs. As a result, efforts have been devoted to

automatically identify blocking bugs in order to alleviate the

impact of blocking bugs. In previous studies, Garcia et al.

applied various machine learning techniques to build

classifiers for identifying blocking bugs from all reported bugs

[5]. Later, Xia et al. proposed ELBlocker which divided the

training data into multiple disjoint sets, built a separate

classifier for each group, combined these classifiers, and

automatically determined an appropriate imbalanced decision

boundary (or threshold) to distinguish blocking bugs (BBs)

from non-blocking bugs [9].

In recent years, deep learning has succeeded in many

natural language processing tasks, especially in bug report

analysis during software development. For instance, Huo et al.

proposed NP-CNN which used lexical information and

program structure information to learn unified features from

the natural language and source code and then automatically

located potential bug source code based on bug reports [10].

We aim to investigate the effectiveness of identifying blocking

bugs by applying hybrid deep learning techniques.

Specifically, we apply two deep learning techniques (i.e., Bi-

LSTM and CNN) to construct a hybrid prediction model. We

propose Bi-LSTM to perform bugs classification by bug

reports. Bi-LSTM is inherently suitable for such analysis

because they can capture both forward and backward

correlated information within blocking-bug pairs. we extract

the bug’s summary and description from the bug report to

build the training data set. We do this by assuming that the

summary and description can represent the characteristics of

the examined bugs. We suppose that these features can be

applied to train our hybrid model and are conducive to more

accurate blocking bugs identification.

To evaluate the effectiveness of our approach, we

conducted an empirical study on seven large open-source

projects. At the same time, four evaluation indicators are used

to measure the performance of our approach.

The main contributions of our study can be summarized as

follow:

⚫ A novel blocking bug prediction model based on
hybrid deep learning techniques (i.e., Bi-LSTM and

CNN).

1100 Journal of Internet Technology Vol. 23 No. 5, September 2022

⚫ A strategy to couple the classifiers based on Bi-LSTM

and CNN.

⚫ An empirical study that compared our proposed

approach with the two baselines (i.e., ELBlocker and

Garcia’s approach) on five open-source projects,

which indicate that our approach can achieve

significant performance improvements over compared

baselines.

2 Background

This section introduces the characteristics of blocking

bugs and techniques applying deep learning to classify bug

reports. More specifically, we first described the components

of the bug report and the characteristics of the blocking bug.

Then, we analyze related work employing deep learning

techniques to manipulate bug reports and classify bugs.

2.1 Blocking Bugs

A bug report summarizes the necessary information

needed to document, report, and fix bugs in software. Usually,

the bug report consists of free text and non-textual information

(i.e., code segments, screenshots or device logs, stack traces

of program execution, error messages, etc.) that outline

information about causes or seen failures [11]. Semantically

speaking, a bug report usually contains several descriptive

characteristics of the detected bug to point out precisely what

is considered faulty. Generally, the free text includes a

summary, a description, and some comments. The summary

and description present the detailed preliminary information

of the reported bug. These comments are usually posted by

developers who have an interest in resolving the assigned bug

[12].

Among all types of bugs, blocking bugs are a particular

type of bug attracting the attention of more and more

researchers. Specifically, the blocking bug is a bug that

prevents other bugs from being fixed before it has been fixed

and consequently needs more effort to fix it. Compared with

non-blocking bugs, blocking bugs usually take two to three

times longer to be fixed [4]. Studying the characteristics of

blocking bugs is conducive to early detection of blocking bugs

and giving more maintenance resources in time. Therefore,

research on blocking bugs is essential for improving the

efficiency of software maintenance and ensuring software

quality.

Figure 1. An example of a blocking bug pair in Eclipse’s bug

report with BugID=175264, BugID=161096.

An example of two blocking bug reports in Eclipse is

shown in Figure 1. From these bug reports, we can obtain the

following observations: Blocking bugs usually take a long

time to fix. For example, Bug 175264 was opened on February

23, 2007, and was fixed on May 05, 2016. It took nine years

to repair the bug (BugID=175264). At the same time, this bug

(BugID=175264) also blocked Bug 161096. Bug 161096 was

created on October 16, 2006 and was repaired on May 05,

2016. That is to say. It took more than 10 years to repair this

bug (BugID=161096).

2.2 Bug Report Analysis applying Deep Learning

In recent years, deep learning models have become

popular and have achieved great success in many natural

language processing tasks. For example, Johnson et al.

employed Convolutional Neural Networks (CNN) to provide

an alternative mechanism to effectively use the word order of

text classification by directly embedding short text regions

[13]. To alleviate the difficulty of learning the long-term

dynamics of the Recurrent Neural Network (RNN) for text

processing, Long-Short-Term Memory (LSTM) integrates

memory units to know when to forget the past. The status of

and when to update the current situation to get new

information was proposed [14-17]. We use Bi-directional

Long Short-Term Memory (Bi-LSTM) and Convolutional

Neural Network (CNN) in our approach. Next, we will

introduce these two methods.

Bi-LSTM, a variant of Recurrent Neural Network (RNN),

is a two-way Long Short-Term Memory network (LSTM). As

we all know, the basic idea behind Recurrent Neural Network

(RNN) is to use the information present in a given sequence

and calculate the output. However, the text information with a

long distance cannot be used by RNN. LSTM solves the

memory problem with a directional unidirectional propagation

structure to alleviate this issue. When processing text

sequences, the model can use only the previous text to predict

the subsequent text, and the prediction of the previous part

cannot be given by analyzing the content after the prediction.

However, this unidirectional communication structure has

some shortcomings in predicting text content. Therefore, we

utilize Bi-LSTM to solve this issue. It considers both forward

and reverses semantics, which largely compensates for the

weaknesses of LSTM and improves text analysis and

prediction powers.

Researchers initially proposed CNN (Convolutional

Neural Network) in the context of image classification.

However, it has also been widely used in text classification

tasks and has shown promising results recently. It first

performs a multi-layer convolution operation and then

converts the convolution output of each layer with a nonlinear

activation function. Each local input area is connected to a

neuron output in the convolution process. Different

convolution kernels are applied to each layer, and each type of

convolution kernel can be considered as a feature extracted,

and then multiple features are added. CNN is a network with

incomplete connection and weight sharing, which reduces the

complexity of the model to a certain extent. The existence of

the convolutional layer enables CNN to capture the local

spatial correlation better, and the pooling layer in the neural

network can significantly reduce the amount of calculation of

the model [18]. Word2Vec turns natural language text into a

vector pattern that can be processed by neural networks,

Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction 1101

enabling CNN to obtain local information in the text and

effectively improve the performance of automatic bug

classification [19].

3 Our Approach

The overall goal of our work is to provide an effective

solution for distinguishing blocking bugs from non-blocking

bugs. We instantiate the learning task by proposing a hybrid

deep learning model — a combination of Bi-directional Long

Short-Term Memory (Bi-LSTM) and Convolutional Neural

Network (CNN). We constructed two weak classifiers and

combined them through a fully connected network using the

bug report’s summary and description as training data. In this

way, the model achieves better performance. As shown in

Figure 2, our approach mainly consisted of three phases: Pre-

Processing, Model Construction and Prediction Report.

Figure 2. The framework of our approach

Next, we will introduce the framework of our approach in

the following subsections.

3.1 Pre-Processing

We extract the summaries and descriptions from the bug

reports. Summary and description are an important part of bug

reports and contain rich textual information. In Garcia’s

empirical research, it is shown that textual information in bug

reports is an important factor in understanding bug

characteristics, representing a rich source of unstructured

information [5]. Accordingly, we use these two parts of data

(i.e., summaries and descriptions) as the primary input of our

hybrid model.

To employ the text content as the input of the neural

network, they must be processed earlier to be a more

acceptable form. There are two steps for data pre-processing

as follow:

First, we conduct a stemming morphological restoration of

the text. The words in the bug summary and description

usually have multiple morphological variants, and different

morphological variants of the same word have similar

characteristic interpretations in most cases. In addition, these

morphological variants are considered equivalent in the

feature learning of neural networks. Therefore, we use

stemming analysis to merge word forms in feature learning. In

this way, to a certain extent, the ambiguity generated by the

neural network for feature learning of different word forms

with the same semantics is eliminated.

Second, we convert the text into a sequence as an input for

neural networks. When applying a machine learning model to

natural language processing, the first task is to find the correct

representation of the word. The vector representation of words

is beneficial to capture the semantics of words in different

natural language processing tasks. Word vector representation

methods are LSA, Word2Vec, and GloVe. Naili et al. applied

LSA, Word2Vec, and GloVe to their work [20]. Their

comparative experiment found that the three methods depend

on the language used, but Word2Vec provides the best word

vector representation. Another commonly used word vector

representation is One-Hot Encoding. One-Hot Encoding

applies a random algorithm, which can easily lead to the loss

of information between words. Moreover, it will create an

extensive and sparse word vector matrix when it encodes a

large amount of text.

Accordingly, we applied the Word2Vec to convert text data

into word vectors in our work by considering that Word2Vec

solves matrix dimension disaster well by mapping each word

to a shorter word vector.

3.2 Model Construction

In the work of Wen et al., the investigation of how the

sequence length affects RCNN with Highway Networks

indicates that the deep learning model can learn an acceptable

representation for long texts [21]. A comparative analysis of

CNN and RNN in the work of Adel et al. revealed that CNN

is significantly better than RNN when dealing with longer

sentences [22]. An empirical study by Akhter et al. shows that

CNN is better than LSTM, Bi-LSTM, and CLST in

completing long text classification tasks [23]. Illuminated by

the above studies, we employ Bi-LSTM to process short-

length summary texts and CNN to process long-length

descriptions and build a combined model of Bi-LSTM and

CNN.

We instantiate the learning task by combining Bi-LSTM

with CNN. Considering that the prediction result given by Bi-

LSTM for the bug pair is RLSTM, and the prediction result given

by CNN for the bug pair is RCNN, we obtain two weaker

classifiers through training. After that, we add the weighted

sum of the values given by the two classifiers, as shown in

Equation (1), and combine the two classifiers through the

training of the fully connected network to obtain a more

comprehensive and robust model.

𝑅 = 𝑤1 ∗ 𝑅𝐿𝑆𝑇𝑀 + 𝑤2 ∗ 𝑅𝐶𝑁𝑁 + 𝑏 (1)

where RLSTM and RCNN are the prediction result of the new bug

pair obtained by the two classifiers, weight w1 and w2 are the

importance of the two classifiers in the new prediction result,

and b is the bias term.

Our hybrid model can be more stable and robust to predict

the blocking pairs after training all its hyper-parameters.

Taking a new bug bi for an example, we pair it with all the

existing bugs and then use the trained classification model to

predict whether there is a blocking relationship between bi and

all other bugs.

1102 Journal of Internet Technology Vol. 23 No. 5, September 2022

3.3 Prediction Report

Our approach employs the trained model to classify the

bug pairs, give the prediction results of the relationship

between the bugs, and identify whether they are blocking bug

pairs with a blocking relationship. In previous work

(ELBlocker and Gar.), Precision, Recall, and F1-measure

were used to evaluate the model’s performance. We refer to

their approach and use these three performance indicators and

Accuracy indicators to analyze the prediction results of the

model to evaluate the performance of our model.

4 Empirical Setup

The primary goal of our work is to predict whether there

is a blocking relationship between bugs by applying a hybrid

model of Bi-LSTM and CNN. To evaluate the effectiveness

and efficiency of the proposed model, we applied it to the bug

pairs corresponding to seven open-source projects. In our

empirical study, we want to investigate the following research

questions:

RQ1: How much improvement can our approach achieve

over state-of-the-art approaches?

RQ2: Which deep learning model (Bi-LSTM, CNN or

hybrid model) performs better in identifying blocking bugs?

RQ3: What is the computational cost of the building model

and predicting block bugs of our approach?

4.1 Experimental Subjects

We obtain a total of 129178 bug reports from seven open-

source projects (such as Eclipse 1 , Mozilla 2 , NetBeans 3 ,

Chromium4, OpenOffice5, RedHat6, Gentoo7). These projects

are mature, long-standing open-source projects with a large

number of bug reports. Six projects (i.e., Eclipse, Mozilla,

NetBeans, OpenOffice, RedHat, and Gentoo) use Bugzilla as

an issue tracking system. In Bugzilla, there is a “Blocks” field

in the bug report. This field is used to display the bug blocked

by this bug. Therefore, we use “Blocks” in bug reports to

determine whether there is a blocking relationship between

bug pairs. Chromium is Google’s issue tracking system, and

there is a “Blocking” field in its bug reports. This field has the

same function as “Blocks” in Bugzilla. We use this field to

determine the blocking relationship between bug pairs.

We extracted the summary and description of each bug

report as the factors that we used to distinguish between

blocking bugs and non-blocking bugs. Table 1 summarizes the

characteristics of the seven open-source projects used in our

empirical study. To some extent, there are enough bug reports

in these open-source projects, which also contain many

blocking bugs. The percentage of bugs with blocking

relationships ranges from 5.54% to 25.58%, and the total

percentage is 7.84%.

1 http://bugs.eclipse.org/bugs
2 https://bugzilla.mozilla.org
3 https://netbeans.apache.org
4 https://bugs.chromium.org

Table 1. Statistics of the collected bug reports

Projects Bugs Blocking bugs Non-blocking

bugs

Eclipse 56652 4315 (7.62%) 52337 (92.38%)

Mozilla 5832 1492 (25.58%) 4340 (74.42%)

NetBeans 8047 531 (6.60%) 7516 (93.40%)

Chromium 8757 534 (6.10%) 8223 (93.90%)

OpenOffice 9998 554 (5.54%) 9444 (94.46%)

RedHat 29,892 2148 (7.19%) 27744 (92.81%)

Gentoo 10000 555 (5.55%) 9445 (94.45%)

Total 129178 10129 (7.84%) 119049 (92.16%)

4.2 Performance Measures

Our approach will classify the bug pair with the trained

model and give the prediction result of the relationship

between bugs and identify whether they are the blocking-bug

pair with the blocking relationship. We use a confusion matrix

to evaluate the effectiveness of our trained model [5]. The

confusion matrix stores the correct and incorrect decisions

made by the classifier as shown in Table 2.

Table 2. Confusion matrix

We use an example to explain the semantics of each field

(i.e., TP, FP, FN, and TN) in Table 2. If a pair of blocking bugs

is correctly classified as having a blocking relationship, it is

classified as True Positive (TP). If a pair of non-blocking bugs

are classified as having a blocking relationship, they are

classified as False Positives (FP). If a pair of blocking bugs is

classified as a non-blocking relationship, it is classified as a

False Negative (FN). Finally, if it is a pair of non-blocking

bugs and is correctly classified as a non-blocking relationship,

it is a True Negative (TN).

We propose ways to infer distributions of any performance

measures computed from the confusion matrix in Table 2. In

this paper, we calculate the Accuracy, Precision, Recall, and

F1-measure measures for predicting blocking bug pairs to

evaluate the performance of the prediction model:

Accuracy refers to the ratio of the number of blocking bugs

correctly predicted to the total number of experimental

classification bugs. It can be calculated as follows.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (2)

Precision is the ratio of correctly classified blocking bugs

over all the bugs classified as blocking. It can be calculated as

follows.

5 https://bz.apache.org/ooo
6 https://bugzilla.redhat.com
7 https://bugs.gentoo.org/

 True class

 Blocking
Non-

blocking

Classified

as

Blocking TP FP

Non-

blocking
FN TN

Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction 1103

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (3)

Recall is ratio of correctly classified blocking bugs over all

of the actually blocking bugs. It can be calculated as follows.

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (4)

F1-measure measures the weighted harmonic mean of the

Precision and Recall. It can be calculated as follows.

𝐹1𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 (5)

The higher the Accuracy, the more accurately our model

can distinguish between blocking bug pairs and non-blocking

bug pairs. Similarly, the higher the value of Precision and

Recall, the better the performance of our model, but the two

indicators cannot achieve the best at the same time.

Combining the above two indicators, a higher F1-measure

means that the model is more effective in identifying blocking

bugs.

4.3 Implementation Details

We extract the summaries and descriptions from the bug

reports and perform the pre-processing of the text through

stemming and word vectorization. During the training process,

pairs of summaries and descriptions and their associated

labelsare fed to the neural networks. The model is iteratively

trained to optimize the training loss. For the testing process,

new bug pairs are input into the model, and the model gives

the prediction results of their relationship. Through these

results, various performance measures related to the model are

calculated to evaluate its performance.

Experiments were carried out on each project using the

proposed model and compared with previous studies (i.e.,

ELBlocker and Gar.) on several measures (i.e., Precision,

Recall, and F1-measure). We run our proposed approach on a

machine with Windows 10, 64-bit, Intel(R) Core (TM) i5-

9300H CPU @ 2.40GHz and NVIDIA GeForce GTX 1650.

5 Result Analysis

5.1 Result Analysis for RQ1

During the maintenance of software systems, developers

usually spend plenty of time and effort on fixing blocking bugs.

An automated technique of predicting blocking bugs can

detect blocking bugs as early as possible and reduce their

threats. For this reason, we hope to construct a new

classification prediction model to help developers distinguish

between blocking bugs and non-blocking bugs. Recently,

Garcia and Shihab used random forests to predict blocking

bugs [5]. Xia et al. proposed the ELBlocker, which divides the

data set into multiple disjoint sets, trains different classifiers,

and combines them to distinguish blocking and non-blocking

bugs [9]. Motivated by their work, we use Bi-LSTM and CNN

to build weak classifiers and combine them to build a

predictive model. Furthermore, we compare our approach

with these two baselines.

To train a reliable and stable model, we perform 10-fold

cross-validation with 10 repetitions for seven open-source

projects, and then calculate the average of the Precision,

Recall, and F1-measure of the compared models (i.e., Bi-

LSTM+CNN, ELBlocker, and Gar.).

Figure 3 to Figure 5 illustrate the experimental results of

our approach compared with the ELBlocker, Garcia and

Shihab’s approach (denoted as Gar.) on seven open-source

projects. Note that: the baseline approaches in the original

papers only conducts empirical research on the former five

open-source projects. So we only utilized the experimental

data of the baseline on five projects from the original papers.

The scores of Precisions, Recall and F1-measure are 0.376 to

0.542, 0.376 to 0.680, and 0.375 to 0.589. On average, Bi-

LSTM+CNN can achieve Precision, Recall, and F1-measure

scores of 0.483, 0.480, and 0.477 on seven projects,

respectively. Although in Figure 4, the Recall rate of our

approach in OpenOffice is slightly lower than that of the two

baselines. But in other cases, it has improved performance

compared to other approaches.

Figure 3. Precision comparison on seven subjects

Figure 4. Recall comparison on seven subjects

Figure 5. F1-measure comparison on seven subjects

Besides, our approach can achieve 0.512 to 0.612 of

Precision, 0.423 to 0.587 of Recall, and 0.482 to 0.564 of F1-

measure on the last two projects (i.e., RedHat and Gentoo). In

summary, our approach can achieve performance

improvement compared with the two baselines (i.e.,

ELBlocker and Gar.) on Precision and F1-measure.

Furthermore, we applied the paired Wilcoxon signed-rank

tests to evaluate the significance of the difference between Bi-

LSTM+CNN and compared ones (i.e., ELBlocker and Gar.).

Table 3 show the Wilcoxon signed-rank test results of F1-

measure between Bi-LSTM+CNN and ELBlocker, Bi-

1104 Journal of Internet Technology Vol. 23 No. 5, September 2022

LSTM+CNN and Gar., respectively. We noticed that our

approach outperforms the two baseline approaches. Among

them, each p-value is 0.043. The results indicate that our

approach has a significant improvement compared with the

other two baselines.

Table 3. Wilcoxon test of F1-measure between Bi-

LSTM+CNN and ELBlocker, Bi-LSTM+CNN and Gar

Null

Hypothesis
Test Sig. Decision

1

The

Median

of differences

between Bi-

LSTM+CNN

and ELBlocker

equals 0-.

Related-

Samples

Wilcoxon

Signed

Rank Test

0.043

Reject

the null

hypothesis

2

The

median

of differences

between Bi-

LSTM+CNN

and Gar.

equals 0.

Related-

Samples

Wilcoxon

Signed

Rank Test

0.043

Reject

the null

hypothesis

Summary for RQ1: Our approach performs better than

the two compared baselines. On average, our approach

achieves 73.53% and 101.44% performance improvements

over the ELBlocker and Gar’s approach of the F1-measure on

the seven open-source projects, respectively. Furthermore, our

approach improves performance significantly.

5.2 Result Analysis for RQ2

We built two classifiers and applied two deep learning

models (i.e., Bi-LSTM and CNN) to identify the blocking

relationship between bug pairs. Since both Bi-LSTM and

CNN can predict the blocking relationship to a certain extent,

although their performance is different. Now, we use a fully

connected neural network (as shown in Equation (1)) to assign

two weights to the two classifiers, and then combine them into

a hybrid model. Then we use model evaluation measures to

compare the effectiveness of a single classifier and a combined

classifier. Therefore, we propose a new research question,

which is to compare the performance of the Bi-LSTM model,

the CNN model, and the proposed hybrid model (Bi-

LSTM+CNN). Our goal is to explore which classifier can

achieve better prediction performance. We perform 10-fold

cross-validation with ten repetitions for each of the seven

projects, and then calculate the average of the Accuracy,

Precision, Recall, and F1-measure of the three classification

models in the two pieces of information. Then we compared

the performance of each classifier based on four measures.

Table 4 shows the comparison of Bi-LSTM and CNN on

summary. It is not difficult to find from it, although there are

situations where CNN is better. But overall, the effect of Bi-

LSTM is better than that of CNN.

Table 5 shows the experimental results of Bi-LSTM, CNN

and the hybrid model (Bi-LSTM+CNN) in different open-

source projects, which uses the summary and description of

the bug report to predict the blocking relationship of the bug

pair. Although F1-measure can be calculated by Precision and

Recall, as shown in Equation (5), we present F1-measure in

Table 5 to get a more intuitive and direct explanation.

Table 4. Comparison of Bi-LSTM and CNN on summary

Project Method Acc Pre Recall F1

Eclipse Bi-LSTM 0.486 0.360 0.038 0.070

 CNN 0.287 0.315 0.462 0.375

Mozilla Bi-LSTM 0.513 0.556 0.127 0.207

 CNN 0.315 0.412 0.118 0.183

NetBeans Bi-LSTM 0.352 0.231 0.125 0.162

 CNN 0.276 0.125 0.151 0.137

Chromium Bi-LSTM 0.368 0.397 0.152 0.220

 CNN 0.246 0.159 0.177 0.168

OpenOffice Bi-LSTM 0.495 0.484 0.144 0.222

 CNN 0.527 0.339 0.192 0.245

RedHat Bi-LSTM 0.353 0.268 0.429 0.330

 CNN 0.169 0.182 0.177 0.179

Gentoo Bi-LSTM 0.485 0.357 0.364 0.360

 CNN 0.343 0.251 0.389 0.305

Table 5. Performances comparison between Bi-LSTM, CNN

and Bi-LSTM+CNN
Project Method Acc Pre Recall F1

Eclipse Bi-LSTM 0.486 0.360 0.038 0.070

 CNN 0.539 0.514 0.462 0.487

 Bi-LSTM+CNN 0.567 0.542 0.500 0.520

Mozilla Bi-LSTM 0.513 0.556 0.127 0.207

 CNN 0.524 0.501 0.618 0.553

 Bi-LSTM+CNN 0.601 0.520 0.680 0.589

NetBeans Bi-LSTM 0.352 0.231 0.125 0.162

 CNN 0.451 0.344 0.367 0.355

 Bi-LSTM+CNN 0.534 0.376 0.421 0.397

Chromium Bi-LSTM 0.368 0.397 0.152 0.220

 CNN 0.462 0.418 0.351 0.382

 Bi-LSTM+CNN 0.529 0.442 0.376 0.406

OpenOffice Bi-LSTM 0.495 0.484 0.144 0.222

 CNN 0.527 0.498 0.394 0.440

 Bi-LSTM+CNN 0.643 0.535 0.421 0.471

RedHat Bi-LSTM 0.353 0.268 0.429 0.330

 CNN 0.412 0.451 0.481 0.466

 Bi-LSTM+CNN 0.536 0.620 0.365 0.546

Gentoo Bi-LSTM 0.485 0.357 0.364 0.360

 CNN 0.526 0.418 0.429 0.423

 Bi-LSTM+CNN 0.594 0.487 0.527 0.431

It can be found from Table 5 that in the Mozilla project,

the Accuracy of CNN is slightly lower than that of Bi-LSTM.

In other cases, the four measures of CNN are better than Bi-

LSTM in all projects. On average, the Accuracy and F1-

measure of Bi-LSTM are 0.436 and 0.224, respectively.

CNN’s Accuracy and F1-measure are 0.492 and 0.444,

respectively. The hybrid model (i.e. Bi-LSTM+CNN) can

outperform CNN and Bi-LSTM in all four measures of the

project. The average Accuracy and F1-measure of Bi-

LSTM+CNN are 0.572 and 0.480, respectively.

To evaluate the significance of the difference between Bi-

LSTM, CNN and Bi-LSTM+CNN, we applied the paired

Wilcoxon test between their F1-measure. To show that CNN

is more effective than Bi-LSTM and that the hybrid model is

improved compared to a single model, we made a one-tailed

alternative hypothesis to verify that the F1-measure of CNN is

significantly higher than that of Bi-LSTM, and the F1-

measure of Bi-LSTM+CNN significantly higher than CNN.

As shown in Table 6, all the p-values are less than 0.05.

We can conclude that CNN’s performance is significantly

better than Bi-LSTM’s on seven subjects. Similarly, Bi-

LSTM+CNN significantly improves performance than CNN.

Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction 1105

Table 6. Wilcoxon test of F1-measure between Bi-

LSTM+CNN and CNN, CNN and Bi-LSTM

Null

Hypothesis
Test p-value. Decision

1

The

Median

of differences

between Bi-

LSTM+CNN

and CNN

equals 0-.

Related-

Samples

Wilcoxon

Signed

Rank Test

0.018

Reject

the null

hypothesis

2

The

median

of differences

between Bi-

LSTM

and CNN

equals 0.

Related-

Samples

Wilcoxon

Signed

Rank Test

0.018

Reject

the null

hypothesis

Summary for RQ2: The results show that, among all the

projects, Bi-LSTM+CNN has the best performance, followed

by CNN, and then Bi-LSTM. At the same time, the

significance test shows that the performance improvement of

Bi-LSTM+CNN is significant.

5.3 Result Analysis for RQ3

The efficiency of the prediction model will affect its actual

application in real-world software maintenance. Therefore, we

investigated the time cost of our approach. This research

question reports the size of the input data fed into the neural

network, model building time, and prediction time.

Specifically, the model building time refers to the time

required to pre-process the training data, feed it into the neural

network and complete the training to convert it into a model

classifier. The prediction time refers to the time for the model

classifier that has completed the construction to predict the

labels of the new bug reports.

Considering that the experimental platform and

application technology are different, we did not compare the

building time of our model with these methods. In the future,

we aim to reproduce these two baselines and compare them

with our proposed approach.

Table 7. Model building time and Prediction time (in seconds)

Project
Sum

(MB)

Des

(MB)

Model

building

time

Prediction

time

Eclipse 6.11 21.13 2056.64 128.53

Mozilla 1.02 19.76 1945.53 134.25

NetBeans 0.86 10.05 1927.12 123.68

Chromium 1.06 12.48 1933.51 126.53

OpenOffice 0.93 10.94 1966.75 127.59

RedHat 1.01 11.56 1994.79 116.64

Gentoo 2.56 16.82 2165.23 129.31

Average 1.94 14.68 1998.51 126.65

Table 7 shows the size of the training data contained in

each of the seven projects, model building time, and prediction

time. On average, the summary size for model training is

1.94MB, the description size for model training is 14.68MB,

the model building time is 1998.51 seconds, and the prediction

time of the model is 126.65 seconds. In general, our model

takes about half an hour to complete the pre-processing of the

training data and the model’s training. It takes about two

minutes to predict the blocking relationship.

Summary for RQ3: Although our hybrid model (Bi-

LSTM+CNN) takes about half an hour for training, it takes

less than two minutes to predict the blocking relationship for

new bug pairs using the trained model. This means that our

prediction model is satisfactory to a certain extent and can

indicate whether multiple bug pairs have a blocking

relationship within a few minutes.

6 Related Work

6.1 Bug Report Analysis via Deep Learning

Recently, deep learning models have succeeded in many

natural language processing tasks, especially in analyzing

software bug reports. These bug reports analyzing work focus

on detecting duplicate or similar bugs. For example, an

information retrieval and classification-based model using

Convolutional Neural Network (CNN) and Long Short-Term

Memory (LSTM), proposed by Deshmukh et al., can achieve

high accuracy of 90% to detect and retrieve duplicate or

similar bugs [24]. Considering that the similarity of bug

reports is reflected by some similar characteristics. Kukkar et

al. proposed an automatic bug report classifying model based

on Convolutional Neural Network (CNN) to extract relevant

features [25]. This model identifies duplicate or similar bug

reports from the text content available in the bug repository.

They conducted experiments on six publicly available large-

scale data sets and gave detailed experimental results. Their

experimental results show that the accuracy of the proposed

system reaches 85% to 99%.

Inspired by these above works, we can use deep learning

techniques (such as Bi-LSTM, CNN) to process the text

content in bug reports and achieve satisfactory results in bug

classification. Taking it a step further, we combine Bi-LSTM

with CNN to obtain the characteristics of the bug report and

then apply it to predict whether the examining bug is a

blocking bug in the dataset.

6.2 Study on Blocking Bugs

A blocking bug is a special software bug that blocks other

bugs from being fixed. The study on blocking bugs originated

from the earlier work by Garcia and Shihab [5]. They are the

ones who first discovered the issues of maintenance aroused

by blocking bugs. An empirical study of blocking bugs on six

open-source projects found that blocking bugs take

approximately two to three times longer to be fixed than non-

blocked bugs. From then on, researchers conducted a set of

empirical studies to discover the characteristic of blocking

bugs, such as the amounts, distributions, and efforts of fixing,

etc. [4, 6, 26-27]. For example, Ohira et al. introduced their

dataset of high impact bugs which was created by manually

reviewing four thousand issue reports in four open-source

projects (Ambari, Camel, Derby and Wicket) [28]. The dataset

is the first dataset of impact bugs, including security,

performance, blocking, and so forth. The latest work by Garcia

1106 Journal of Internet Technology Vol. 23 No. 5, September 2022

and Shihab indicates that blocking bugs require more than 1.2

to 4.7 times of lines of code to be fixed than that of non-

blocking bugs [6].

At the same time, researchers focus on identifying

blocking bugs from bug reports. Garcia and Shihab also build

prediction models based on decision trees to determine

whether a bug will be a blocking bug or not. Furthermore, their

Top Node analysis indicates that the comments, including the

contents of the comment, comment size, the number of

developers in the CC list, and the reporter’s experience, are

the most critical factors to determine blocking bugs [5-6].

They further analyzed that source code files affected by

blocking bugs are more negatively impacted in cohesion,

coupling complexity, and size than those affected by non-

blocking bugs. In more detail, Ren et al. focus on a particular

type of blocking bugs which they call Critical Blocking Bugs

(CBBs), that block at least two bugs [27]. They study CBBs

from five aspects: the importance, the repair time, the scale of

repair, the experience of developers who repair CBBs, and the

circumstance why CBBs block multiple bugs. They compared

CBBs with normal blocking bugs and other bugs on various

data sets. The experimental results show that CBBs are more

important with longer repair time and larger repair scale, and

CBBs are concentrated on parts of components of the project.

Xia et al. extend Garcia and Shihab’s work by proposing a

novel ensemble learning-based approach named ELBlocker,

which combines multiple classifiers built on different subsets

of the training set [9]. To examine the benefits of ELBlocker,

they perform experiments on six large open-source projects.

The ELBlocker can help deal with the class imbalance

phenomenon and improve the prediction of blocking bugs.

ELBlocker achieves a substantial and statistically significant

improvement over the state-of-the-art methods. More

specifically, our work is illuminated by ELBlocker. Cheng et

al. proposed a new approach based on ensemble learning to

distinguish blocking bugs and non-blocking bugs after Xia,

called XGBlocker, which includes two stages: feature

extraction and model construction [28]. They extracted

enhanced features from bug reports and introduced XGBoost

advanced algorithms to determine whether the bug was

blocked. To test the performance of XGBlocker, they

conducted experiments using three evaluation indicators on

four open-source projects. The results indicate that

XGBlocker has improved further than ELBlocker and other

approaches.

6.3 Novelty of Our Study

Unlike the previous works, we only extracted the summary

and description from the bug report as the training data for our

hybrid model. In addition, we are also the first to apply

combined deep learning techniques (Bi-LSTM and CNN) to

the prediction of the blocking relationship between reported

bugs.

7 Conclusion

This paper proposes a novel blocking bug prediction

method, which uses a combination of different deep learning

models, such as Bi-LSTM and CNN. The empirical study on

seven large open-source projects with 129178 bug reports

indicate that the hybrid model can achieve a substantial and

statistically significant improvement over the baseline

methods (i.e., ELBlocker, Gar.).

In the future, we will obtain more bug reports from more

open-source projects and commercial projects as research

subjects to improve the generalization ability of the trained

model. In addition, we believe that more features in the bug

report can help improve model performance. We will select

more features into the training set for evaluation in the bug

reports to improve model performance because our hybrid

model has learned more features. Besides, we will consider

using integrated learning methods because constructing

predictive models with different features and combining them

using integrated learning methods can effectively improve the

performance of our model.

Acknowledgements

This work was supported in part by the National Natural

Science Foundation of China under Grant 61502497, and

Grant 61673384.

References

[1] W. E. Wong, X. Li, P. A. Laplante, Be more familiar with

our enemies and pave the way forward: A review of the

roles bugs played in software failures, Journal of Systems

and Software, Vol. 133, pp. 68-94, November, 2017.

[2] W. E. Wong, V. Debroy, A. Surampudi, H. Kim, M. F.

Siok, Recent catastrophic accidents: investigating how

software was responsible, In 2010 Fourth International

Conference on Secure Software Integration and

Reliability Improvement, Singapore, 2010, pp. 14-22.

[3] V. Debroy, W. E. Wong, Insights on fault interference for

programs with multiple bugs, 2009 20th International

Symposium on Software Reliability Engineering, Mysuru,

Karnataka, India, 2009, pp. 165-174.

[4] H. Ding, W. Ma, L. Chen, Y. Zhou, B. Xu, Predicting the

breakability of blocking bug pairs, Proceedings of 2018

IEEE 42nd Annual Computer Software and Applications

Conference, Tokyo, Japan, 2018, pp. 219-288.

[5] H. Valdivia Garcia, E. Shihab, Characterizing and

predicting blocking bugs in open source projects,

Proceedings of the 11th working conference on mining

software repositories, Hyderabad, India, 2014, pp. 72-81.

[6] H. Valdivia-Garcia, E. Shihab, M. Nagappan,

Characterizing and predicting blocking bugs in open

source projects, Journal of Systems and Software, Vol.

143, pp. 44-58, September, 2018.

[7] Y. Li, W. E. Wong, S. Y. Lee, F. Wotawa, Using tri-

relation networks for effective software fault-proneness

prediction, IEEE Access, Vol. 7, pp. 63066-63080, May,

2019.

[8] W. E. Wong, J. R. Horgan, M. Syring, W. Zage, D. Zage,

Applying design metrics to predict fault-proneness: a

case study on a large-scale software system, Software:

Practice and Experience, Vol. 30, No. 14, pp. 1587-1608,
November, 2000.

[9] X. Xia, D. Lo, E. Shihab, X. Wang, X. Yang, Elblocker:

Predicting blocking bugs with ensemble imbalance

learning, Information and Software Technology, Vol. 61,

pp. 93-106, May, 2015.

Hybrid Multiple Deep Learning Models to Boost Blocking Bug Prediction 1107

[10] X. Huo, M. Li, Z.-H. Zhou, Learning unified features

from natural and programming languages for locating

buggy source code, International Joint Conferences on

Artificial Intelligence Organization, New York, NY,

USA, 2016, pp. 1606-1612.

[11] T. Zhang, J. Chen, H. Jiang, X. Luo, X. Xia, Bug report

enrichment with application of automated fixer

recommendation, Proceedings of the 25th International

Conference on Program Comprehension, Buenos Aires,

Argentina, 2017, pp. 230-240.

[12] T. Zhang, H. Jiang, X. Luo, A. T. Chan, A literature

review of research in bug resolution: Tasks, challenges

and future directions, The Computer Journal, Vol. 59, No.

5, pp. 741-773, May, 2016.

[13] R. Johnson, T. Zhang, Effective use of word order for text

categorization with convolutional neural networks,

Proceedings of the 2015 Conference of the North

American Chapter of the Association for Computational

Linguistics: Human Language Technologies, Denver,

Colorado, USA, 2015, pp. 103-112.

[14] T. Mikolov, M. Karafiát, L. Burget, J. Černockỳ, S. Khu-

danpur, Recurrent neural network based language model,

Proceedings of the 11th Annual conference of the

international speech communica-tion association,

Makuhari, Chiba, Japan, 2010, pp. 1045-1048.

[15] A. Graves, Supervised Sequence Labelling with

Recurrent Neural Networks, Ph. D. Thesis, Technische

Universität München, Germany, 2008.

[16] J. Donahue, L. A. Hendricks, S. Guadarrama, M.

Rohrbach, S. Venugopalan, T. Darrell, K. Saenko, Long-

term recurrent convolutional networks for visual

recognition and description, Proceedings of 2015 IEEE

Conference on Computer Vision and Pattern Recognition,

Boston, MA, USA, 2015, pp. 2625-2634.

[17] S. Hochreiter, J. Schmidhuber, Long short-term memory,

Neural computation, Vol. 9, No. 8, pp. 1735-1780,

November, 1997.

[18] Y. Chen, Convolutional neural network for sentence

classification, M.S. Thesis, University of Waterloo,

Waterloo, Ontario, Canada, 2015.

[19] S. Guo, X. Zhang, X. Yang, R. Chen, C. Guo, H. Li, T.

Li, Developer activity motivated bug triaging: via

convolutional neural network, Neural Processing Letter,

Vol. 51, No. 3, pp. 2589-2606, June, 2020.

[20] M. Naili, A. H. Chaibi, H. H. Ben Ghezala, Comparative

study of word embedding methods in topic segmentation,

Procedia Computer Science, Vol. 112, pp. 340-349, 2017.

[21] Y. Wen, W. Zhang, R. Luo, J. Wang, Learning text

representation using recurrent convolutional neural

network with highway layers, Neu-IR’16 SIGIR

Workshop on Neural Information Retrieval, Pisa, Italy,

pp. 1-5, 2016.

[22] H. Adel, H. Schütze, Exploring different dimensions of

attention for uncertainty detection, Proceedings of the

15th conference of the European chapter of the

association for computational linguistics, Valencia,

Spain, 2017, pp. 22-34.

[23] M. P. Akhter, J.-B. Zheng, I. R. Naqvi, M. Abdelmajeed,

M. Fayyaz, Exploring deep learning approaches for Urdu

text classification in product manufacturing, Enterprise

Information Systems, Vol 16, No. 2, pp. 223-248, 2022.

[24] J. Deshmukh, K. M. Annervaz, S. Podder, S. Sengupta,

N. Dubash, Towards accurate duplicate bug retrieval

using deep learning techniques, Proceedings of 2017

IEEE International Conference on Software

Maintenance and Evolution, Shanghai, China, 2017, pp.

115-124.

[25] A. Kukkar, R. Mohana, Y. Kumar, A. Nayyar, M. Bilal,

K.-S. Kwak, Duplicate bug report detection and

classification system based on deep learning technique,

IEEE Access, Vol. 8, pp. 200749-200763, October, 2020.

[26] H. Ren, Y. Li, L. Chen, An empirical study on critical

blocking bugs, Proceedings of the 28th International

Conference on Program Comprehension, Seoul,

Republic of Korea, 2020, pp. 72-82.

[27] X. Cheng, N. Liu, L. Guo, Z. Xu, T. Zhang, Blocking Bug

Prediction Based on XGBoost with Enhanced Features,

Proceedings of the 44th Annual Computers, Software,

and Applications Conference, Madrid, Spain, 2020, pp.

902-911.

[28] M. Ohira, Y. Kashiwa, Y. Yamatani, H. Yoshiyuki, Y.

Maeda, N. Limsettho, K. Fujino, H. Hata, A. Ihara, K.

Matsumoto, A dataset of high impact bugs: Manually-

classified issue reports, Proceedings of IEEE/ACM 12th

working conference on mining software repositories,

Florence, Italy, 2015, pp. 518-521.

Biographies

Zhihua Chen is studying for his master’s

degree in computer science at Nantong

University. He received his B.S. degree in

computer science from Nantong University.

His current research interests include

software testing and analysis, software

measurement, defects prediction.

Xiaolin Ju received Ph.D. degree in

computer science from the Chinese

University of Mining Technology in 2014.

He is now an associate professor with the

School of Information Science and

Technology, Nantong University. His

current research interests are mainly in collective intelligence

and software defects analysis.

Haochen Wang received the Ph.D. Degree

in Electronics, Informatics and Electric

Engineering from University of Pavia in 2018.

He is now a lecturer in the School of

Information Science and Technology,

Nantong University. His current research

mainly focuses on Computer Vision, Model

Recognition, etc.

Xiang Chen received the M.Sc. and Ph.D.

degrees in computer science from Nanjing

University, China in 2011. Now he joined

the School of Information Science and

Technology of Nantong University as an

assistant professor. His research interests

are mainly in software testing.

	01
	02
	03
	04
	05
	空白頁面
	空白頁面
	空白頁面
	組合
	06
	07
	08
	09
	10
	空白頁面
	空白頁面

	組合
	11
	12
	13
	14
	15
	空白頁面
	空白頁面

	組合
	16
	17
	18
	19
	20
	空白頁面
	空白頁面

	組合
	21
	22
	23
	24
	25
	空白頁面

	JIT2305 Cover.pdf
	Cover-1
	Cover-2

