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Abstract 
 

A blocking bug (BB) is a severe bug that could prevent 

other bugs from being fixed in time and cost more effort to 

repair itself in software maintenance. Hence, early detection 

of BBs is essential to save time and labor costs. However, BBs 

only occupy a small proportion of all bugs during software life 

cycle, making it difficult for developers to identify these 

blocking relationships. This study proposes a novel blocking 

bug prediction approach based on the hybrid deep learning 

model, a combination of Bi-directional Long Short-Term 

Memory (Bi-LSTM) and Convolutional Neural Network 

(CNN). Our approach first extracts summaries and 

descriptions from bug reports to construct two classifiers, 

respectively. Second, our approach combines two classifiers 

into a hybrid model to predict the blocking relationship of each 

blocking bug pair. Finally, our approach produces a report of 

identified blocking bugs for developers. To investigate the 

effectiveness of proposed approach, we conducted an 

empirical study on bug reports of seven large-scale projects. 

The final experimental results illustrate that our approach can 

perform better than the recent state-of-the-art baselines. 

Precisely, the hybrid model can predict BB better with an 

average accuracy of 57.20%, and an improvement of 73.53% 

in terms of the F1-measure when compared to ELBlocker. 

Moreover, according to the bug report’s description, BB can 

be predicted well with an average accuracy of 49.16%. 
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1  Introduction 
 

Software today plays a significant role in controlling the 

behavior of many systems. A failure caused by the software 

operation can have catastrophic consequences, including 

property damage, financial loss, and serious injury or death [1-

2]. Bug tracking systems such as Bugzilla report numerous 

software bugs. Among these bugs, there is a particular 

association named blocking bug pairs (BBP), which means 

one unfixed bug blocks another bug from being fixed [3]. 

Blocking bugs have higher complexity than non-blocking 

bugs. Although the blocking bugs that make up the BBP 

occupy a small proportion of all bugs, the unfixed bug of BBP 

in upstream projects will prevent fixing the bug in downstream 

projects [4]. Blocking bug require more time and effort in 

software maintenance. A previous study showed that fixing 

blocking bugs usually takes 2 to 3 times longer and more lines 

of code than fixing non-blocking bugs [5-6].  

Many approaches may effectively predict software fault 

proneness [7-8], but they cannot separate blocking bugs from 

other bugs. As a result, efforts have been devoted to 

automatically identify blocking bugs in order to alleviate the 

impact of blocking bugs. In previous studies, Garcia et al. 

applied various machine learning techniques to build 

classifiers for identifying blocking bugs from all reported bugs 

[5]. Later, Xia et al. proposed ELBlocker which divided the 

training data into multiple disjoint sets, built a separate 

classifier for each group, combined these classifiers, and 

automatically determined an appropriate imbalanced decision 

boundary (or threshold) to distinguish blocking bugs (BBs) 

from non-blocking bugs [9]. 

In recent years, deep learning has succeeded in many 

natural language processing tasks, especially in bug report 

analysis during software development. For instance, Huo et al. 

proposed NP-CNN which used lexical information and 

program structure information to learn unified features from 

the natural language and source code and then automatically 

located potential bug source code based on bug reports [10]. 

We aim to investigate the effectiveness of identifying blocking 

bugs by applying hybrid deep learning techniques. 

Specifically, we apply two deep learning techniques (i.e., Bi-

LSTM and CNN) to construct a hybrid prediction model. We 

propose Bi-LSTM to perform bugs classification by bug 

reports. Bi-LSTM is inherently suitable for such analysis 

because they can capture both forward and backward 

correlated information within blocking-bug pairs. we extract 

the bug’s summary and description from the bug report to 

build the training data set. We do this by assuming that the 

summary and description can represent the characteristics of 

the examined bugs. We suppose that these features can be 

applied to train our hybrid model and are conducive to more 

accurate blocking bugs identification. 

To evaluate the effectiveness of our approach, we 

conducted an empirical study on seven large open-source 

projects. At the same time, four evaluation indicators are used 

to measure the performance of our approach. 

The main contributions of our study can be summarized as 

follow: 

 

⚫ A novel blocking bug prediction model based on 
hybrid deep learning techniques (i.e., Bi-LSTM and 

CNN). 
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⚫ A strategy to couple the classifiers based on Bi-LSTM 

and CNN. 

⚫ An empirical study that compared our proposed 

approach with the two baselines (i.e., ELBlocker and 

Garcia’s approach) on five open-source projects, 

which indicate that our approach can achieve 

significant performance improvements over compared 

baselines. 
 

2  Background 
 

This section introduces the characteristics of blocking 

bugs and techniques applying deep learning to classify bug 

reports. More specifically, we first described the components 

of the bug report and the characteristics of the blocking bug. 

Then, we analyze related work employing deep learning 

techniques to manipulate bug reports and classify bugs. 

 

2.1 Blocking Bugs 
 

A bug report summarizes the necessary information 

needed to document, report, and fix bugs in software. Usually, 

the bug report consists of free text and non-textual information 

(i.e., code segments, screenshots or device logs, stack traces 

of program execution, error messages, etc.) that outline 

information about causes or seen failures [11].  Semantically 

speaking, a bug report usually contains several descriptive 

characteristics of the detected bug to point out precisely what 

is considered faulty. Generally, the free text includes a 

summary, a description, and some comments. The summary 

and description present the detailed preliminary information 

of the reported bug. These comments are usually posted by 

developers who have an interest in resolving the assigned bug 

[12].  

Among all types of bugs, blocking bugs are a particular 

type of bug attracting the attention of more and more 

researchers. Specifically, the blocking bug is a bug that 

prevents other bugs from being fixed before it has been fixed 

and consequently needs more effort to fix it. Compared with 

non-blocking bugs, blocking bugs usually take two to three 

times longer to be fixed [4]. Studying the characteristics of 

blocking bugs is conducive to early detection of blocking bugs 

and giving more maintenance resources in time. Therefore, 

research on blocking bugs is essential for improving the 

efficiency of software maintenance and ensuring software 

quality.  

 

 
 

Figure 1. An example of a blocking bug pair in Eclipse’s bug 

report with BugID=175264, BugID=161096. 

 

An example of two blocking bug reports in Eclipse is 

shown in Figure 1. From these bug reports, we can obtain the 

following observations: Blocking bugs usually take a long 

time to fix. For example, Bug 175264 was opened on February 

23, 2007, and was fixed on May 05, 2016. It took nine years 

to repair the bug (BugID=175264). At the same time, this bug 

(BugID=175264) also blocked Bug 161096. Bug 161096 was 

created on October 16, 2006 and was repaired on May 05, 

2016. That is to say. It took more than 10 years to repair this 

bug (BugID=161096). 

 

2.2 Bug Report Analysis applying Deep Learning  
 

In recent years, deep learning models have become 

popular and have achieved great success in many natural 

language processing tasks. For example, Johnson et al. 

employed Convolutional Neural Networks (CNN) to provide 

an alternative mechanism to effectively use the word order of 

text classification by directly embedding short text regions 

[13]. To alleviate the difficulty of learning the long-term 

dynamics of the Recurrent Neural Network (RNN) for text 

processing, Long-Short-Term Memory (LSTM) integrates 

memory units to know when to forget the past. The status of 

and when to update the current situation to get new 

information was proposed [14-17]. We use Bi-directional 

Long Short-Term Memory (Bi-LSTM) and Convolutional 

Neural Network (CNN) in our approach. Next, we will 

introduce these two methods. 

Bi-LSTM, a variant of Recurrent Neural Network (RNN), 

is a two-way Long Short-Term Memory network (LSTM). As 

we all know, the basic idea behind Recurrent Neural Network 

(RNN) is to use the information present in a given sequence 

and calculate the output. However, the text information with a 

long distance cannot be used by RNN. LSTM solves the 

memory problem with a directional unidirectional propagation 

structure to alleviate this issue. When processing text 

sequences, the model can use only the previous text to predict 

the subsequent text, and the prediction of the previous part 

cannot be given by analyzing the content after the prediction. 

However, this unidirectional communication structure has 

some shortcomings in predicting text content. Therefore, we 

utilize Bi-LSTM to solve this issue. It considers both forward 

and reverses semantics, which largely compensates for the 

weaknesses of LSTM and improves text analysis and 

prediction powers. 

Researchers initially proposed CNN (Convolutional 

Neural Network) in the context of image classification. 

However, it has also been widely used in text classification 

tasks and has shown promising results recently. It first 

performs a multi-layer convolution operation and then 

converts the convolution output of each layer with a nonlinear 

activation function. Each local input area is connected to a 

neuron output in the convolution process. Different 

convolution kernels are applied to each layer, and each type of 

convolution kernel can be considered as a feature extracted, 

and then multiple features are added. CNN is a network with 

incomplete connection and weight sharing, which reduces the 

complexity of the model to a certain extent. The existence of 

the convolutional layer enables CNN to capture the local 

spatial correlation better, and the pooling layer in the neural 

network can significantly reduce the amount of calculation of 

the model [18]. Word2Vec turns natural language text into a 

vector pattern that can be processed by neural networks, 
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enabling CNN to obtain local information in the text and 

effectively improve the performance of automatic bug 

classification [19]. 

 

3  Our Approach 
 

The overall goal of our work is to provide an effective 

solution for distinguishing blocking bugs from non-blocking 

bugs. We instantiate the learning task by proposing a hybrid 

deep learning model — a combination of Bi-directional Long 

Short-Term Memory (Bi-LSTM) and Convolutional Neural 

Network (CNN). We constructed two weak classifiers and 

combined them through a fully connected network using the 

bug report’s summary and description as training data. In this 

way, the model achieves better performance. As shown in 

Figure 2, our approach mainly consisted of three phases: Pre-

Processing, Model Construction and Prediction Report. 

 

 

Figure 2. The framework of our approach 

 

Next, we will introduce the framework of our approach in 

the following subsections. 

 

3.1 Pre-Processing  
 

We extract the summaries and descriptions from the bug 

reports. Summary and description are an important part of bug 

reports and contain rich textual information. In Garcia’s 

empirical research, it is shown that textual information in bug 

reports is an important factor in understanding bug 

characteristics, representing a rich source of unstructured 

information [5]. Accordingly, we use these two parts of data 

(i.e., summaries and descriptions) as the primary input of our 

hybrid model. 

To employ the text content as the input of the neural 

network, they must be processed earlier to be a more 

acceptable form. There are two steps for data pre-processing 

as follow: 

First, we conduct a stemming morphological restoration of 

the text. The words in the bug summary and description 

usually have multiple morphological variants, and different 

morphological variants of the same word have similar 

characteristic interpretations in most cases. In addition, these 

morphological variants are considered equivalent in the 

feature learning of neural networks. Therefore, we use 

stemming analysis to merge word forms in feature learning. In 

this way, to a certain extent, the ambiguity generated by the 

neural network for feature learning of different word forms 

with the same semantics is eliminated. 

Second, we convert the text into a sequence as an input for 

neural networks. When applying a machine learning model to 

natural language processing, the first task is to find the correct 

representation of the word. The vector representation of words 

is beneficial to capture the semantics of words in different 

natural language processing tasks. Word vector representation 

methods are LSA, Word2Vec, and GloVe. Naili et al. applied 

LSA, Word2Vec, and GloVe to their work [20]. Their 

comparative experiment found that the three methods depend 

on the language used, but Word2Vec provides the best word 

vector representation. Another commonly used word vector 

representation is One-Hot Encoding. One-Hot Encoding 

applies a random algorithm, which can easily lead to the loss 

of information between words. Moreover, it will create an 

extensive and sparse word vector matrix when it encodes a 

large amount of text. 

Accordingly, we applied the Word2Vec to convert text data 

into word vectors in our work by considering that Word2Vec 

solves matrix dimension disaster well by mapping each word 

to a shorter word vector. 

 

3.2 Model Construction 
 

In the work of Wen et al., the investigation of how the 

sequence length affects RCNN with Highway Networks 

indicates that the deep learning model can learn an acceptable 

representation for long texts [21]. A comparative analysis of 

CNN and RNN in the work of Adel et al. revealed that CNN 

is significantly better than RNN when dealing with longer 

sentences [22]. An empirical study by Akhter et al. shows that 

CNN is better than LSTM, Bi-LSTM, and CLST in 

completing long text classification tasks [23]. Illuminated by 

the above studies, we employ Bi-LSTM to process short-

length summary texts and CNN to process long-length 

descriptions and build a combined model of Bi-LSTM and 

CNN. 

We instantiate the learning task by combining Bi-LSTM 

with CNN. Considering that the prediction result given by Bi-

LSTM for the bug pair is RLSTM, and the prediction result given 

by CNN for the bug pair is RCNN, we obtain two weaker 

classifiers through training. After that, we add the weighted 

sum of the values given by the two classifiers, as shown in 

Equation (1), and combine the two classifiers through the 

training of the fully connected network to obtain a more 

comprehensive and robust model. 

 
𝑅 = 𝑤1 ∗ 𝑅𝐿𝑆𝑇𝑀 + 𝑤2 ∗ 𝑅𝐶𝑁𝑁 + 𝑏                    (1) 

 

where RLSTM and RCNN are the prediction result of the new bug 

pair obtained by the two classifiers, weight w1 and w2 are the 

importance of the two classifiers in the new prediction result, 

and b is the bias term. 

Our hybrid model can be more stable and robust to predict 

the blocking pairs after training all its hyper-parameters. 

Taking a new bug bi for an example, we pair it with all the 

existing bugs and then use the trained classification model to 

predict whether there is a blocking relationship between bi and 

all other bugs. 
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3.3 Prediction Report 
 

Our approach employs the trained model to classify the 

bug pairs, give the prediction results of the relationship 

between the bugs, and identify whether they are blocking bug 

pairs with a blocking relationship. In previous work 

(ELBlocker and Gar.), Precision, Recall, and F1-measure 

were used to evaluate the model’s performance. We refer to 

their approach and use these three performance indicators and 

Accuracy indicators to analyze the prediction results of the 

model to evaluate the performance of our model. 

 

4  Empirical Setup 
 

The primary goal of our work is to predict whether there 

is a blocking relationship between bugs by applying a hybrid 

model of Bi-LSTM and CNN. To evaluate the effectiveness 

and efficiency of the proposed model, we applied it to the bug 

pairs corresponding to seven open-source projects. In our 

empirical study, we want to investigate the following research 

questions: 

RQ1: How much improvement can our approach achieve 

over state-of-the-art approaches? 

RQ2: Which deep learning model (Bi-LSTM, CNN or 

hybrid model) performs better in identifying blocking bugs? 

RQ3: What is the computational cost of the building model 

and predicting block bugs of our approach? 

 

4.1 Experimental Subjects 
 

We obtain a total of 129178 bug reports from seven open-

source projects (such as Eclipse 1 , Mozilla 2 , NetBeans 3 , 

Chromium4, OpenOffice5, RedHat6, Gentoo7). These projects 

are mature, long-standing open-source projects with a large 

number of bug reports. Six projects (i.e., Eclipse, Mozilla, 

NetBeans, OpenOffice, RedHat, and Gentoo) use Bugzilla as 

an issue tracking system. In Bugzilla, there is a “Blocks” field 

in the bug report. This field is used to display the bug blocked 

by this bug. Therefore, we use “Blocks” in bug reports to 

determine whether there is a blocking relationship between 

bug pairs. Chromium is Google’s issue tracking system, and 

there is a “Blocking” field in its bug reports. This field has the 

same function as “Blocks” in Bugzilla. We use this field to 

determine the blocking relationship between bug pairs. 

We extracted the summary and description of each bug 

report as the factors that we used to distinguish between 

blocking bugs and non-blocking bugs. Table 1 summarizes the 

characteristics of the seven open-source projects used in our 

empirical study. To some extent, there are enough bug reports 

in these open-source projects, which also contain many 

blocking bugs. The percentage of bugs with blocking 

relationships ranges from 5.54% to 25.58%, and the total 

percentage is 7.84%. 

 

 

 

 

 

 
1 http://bugs.eclipse.org/bugs 
2 https://bugzilla.mozilla.org 
3 https://netbeans.apache.org 
4 https://bugs.chromium.org 

Table 1. Statistics of the collected bug reports 

Projects Bugs Blocking bugs Non-blocking  

bugs 

Eclipse 56652 4315 (7.62%) 52337 (92.38%) 

Mozilla 5832 1492 (25.58%) 4340 (74.42%) 

NetBeans 8047 531 (6.60%) 7516 (93.40%) 

Chromium 8757 534 (6.10%)   8223 (93.90%) 

OpenOffice 9998 554 (5.54%) 9444 (94.46%) 

RedHat 29,892 2148 (7.19%) 27744 (92.81%) 

Gentoo 10000 555 (5.55%) 9445 (94.45%) 

Total 129178   10129 (7.84%) 119049 (92.16%) 

 

4.2 Performance Measures 
 

Our approach will classify the bug pair with the trained 

model and give the prediction result of the relationship 

between bugs and identify whether they are the blocking-bug 

pair with the blocking relationship. We use a confusion matrix 

to evaluate the effectiveness of our trained model [5]. The 

confusion matrix stores the correct and incorrect decisions 

made by the classifier as shown in Table 2. 

 

Table 2. Confusion matrix 

 

We use an example to explain the semantics of each field 

(i.e., TP, FP, FN, and TN) in Table 2. If a pair of blocking bugs 

is correctly classified as having a blocking relationship, it is 

classified as True Positive (TP). If a pair of non-blocking bugs 

are classified as having a blocking relationship, they are 

classified as False Positives (FP). If a pair of blocking bugs is 

classified as a non-blocking relationship, it is classified as a 

False Negative (FN). Finally, if it is a pair of non-blocking 

bugs and is correctly classified as a non-blocking relationship, 

it is a True Negative (TN). 

We propose ways to infer distributions of any performance 

measures computed from the confusion matrix in Table 2. In 

this paper, we calculate the Accuracy, Precision, Recall, and 

F1-measure measures for predicting blocking bug pairs to 

evaluate the performance of the prediction model: 

Accuracy refers to the ratio of the number of blocking bugs 

correctly predicted to the total number of experimental 

classification bugs. It can be calculated as follows. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                          (2) 

 

Precision is the ratio of correctly classified blocking bugs 

over all the bugs classified as blocking. It can be calculated as 

follows. 

5 https://bz.apache.org/ooo 
6 https://bugzilla.redhat.com 
7 https://bugs.gentoo.org/ 

  True class 

  Blocking 
Non- 

blocking 

Classified 

as 

Blocking TP FP 

Non- 

blocking 
FN TN 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                      (3) 

 

Recall is ratio of correctly classified blocking bugs over all 

of the actually blocking bugs. It can be calculated as follows. 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                              (4) 

 

F1-measure measures the weighted harmonic mean of the 

Precision and Recall. It can be calculated as follows. 

 

𝐹1𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (5) 

 

The higher the Accuracy, the more accurately our model 

can distinguish between blocking bug pairs and non-blocking 

bug pairs. Similarly, the higher the value of Precision and 

Recall, the better the performance of our model, but the two 

indicators cannot achieve the best at the same time. 

Combining the above two indicators, a higher F1-measure 

means that the model is more effective in identifying blocking 

bugs. 

 

4.3 Implementation Details 
 

We extract the summaries and descriptions from the bug 

reports and perform the pre-processing of the text through 

stemming and word vectorization. During the training process, 

pairs of summaries and descriptions and their associated 

labelsare fed to the neural networks. The model is iteratively 

trained to optimize the training loss. For the testing process, 

new bug pairs are input into the model, and the model gives 

the prediction results of their relationship. Through these 

results, various performance measures related to the model are 

calculated to evaluate its performance. 

Experiments were carried out on each project using the 

proposed model and compared with previous studies (i.e., 

ELBlocker and Gar.) on several measures (i.e., Precision, 

Recall, and F1-measure). We run our proposed approach on a 

machine with Windows 10, 64-bit, Intel(R) Core (TM) i5-

9300H CPU @ 2.40GHz and NVIDIA GeForce GTX 1650. 

 

5  Result Analysis 
 

5.1 Result Analysis for RQ1 
 

During the maintenance of software systems, developers 

usually spend plenty of time and effort on fixing blocking bugs. 

An automated technique of predicting blocking bugs can 

detect blocking bugs as early as possible and reduce their 

threats. For this reason, we hope to construct a new 

classification prediction model to help developers distinguish 

between blocking bugs and non-blocking bugs. Recently, 

Garcia and Shihab used random forests to predict blocking 

bugs [5]. Xia et al. proposed the ELBlocker, which divides the 

data set into multiple disjoint sets, trains different classifiers, 

and combines them to distinguish blocking and non-blocking 

bugs [9]. Motivated by their work, we use Bi-LSTM and CNN 

to build weak classifiers and combine them to build a 

predictive model. Furthermore, we compare our approach 

with these two baselines. 

To train a reliable and stable model, we perform 10-fold 

cross-validation with 10 repetitions for seven open-source 

projects, and then calculate the average of the Precision, 

Recall, and F1-measure of the compared models (i.e., Bi-

LSTM+CNN, ELBlocker, and Gar.). 

Figure 3 to Figure 5 illustrate the experimental results of 

our approach compared with the ELBlocker, Garcia and 

Shihab’s approach (denoted as Gar.) on seven open-source 

projects. Note that: the baseline approaches in the original 

papers only conducts empirical research on the former five 

open-source projects. So we only utilized the experimental 

data of the baseline on five projects from the original papers. 

The scores of Precisions, Recall and F1-measure are 0.376 to 

0.542, 0.376 to 0.680, and 0.375 to 0.589. On average, Bi-

LSTM+CNN can achieve Precision, Recall, and F1-measure 

scores of 0.483, 0.480, and 0.477 on seven projects, 

respectively. Although in Figure 4, the Recall rate of our 

approach in OpenOffice is slightly lower than that of the two 

baselines. But in other cases, it has improved performance 

compared to other approaches.  

 

 

Figure 3. Precision comparison on seven subjects 

 

 

Figure 4. Recall comparison on seven subjects 

 

 

Figure 5. F1-measure comparison on seven subjects 

 

Besides, our approach can achieve 0.512 to 0.612 of 

Precision, 0.423 to 0.587 of Recall, and 0.482 to 0.564 of F1-

measure on the last two projects (i.e., RedHat and Gentoo). In 

summary, our approach can achieve performance 

improvement compared with the two baselines (i.e., 

ELBlocker and Gar.) on Precision and F1-measure.  

Furthermore, we applied the paired Wilcoxon signed-rank 

tests to evaluate the significance of the difference between Bi-

LSTM+CNN and compared ones (i.e., ELBlocker and Gar.). 

Table 3 show the Wilcoxon signed-rank test results of F1-

measure between Bi-LSTM+CNN and ELBlocker, Bi-
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LSTM+CNN and Gar., respectively. We noticed that our 

approach outperforms the two baseline approaches. Among 

them, each p-value is 0.043. The results indicate that our 

approach has a significant improvement compared with the 

other two baselines. 

 

Table 3. Wilcoxon test of F1-measure between Bi-

LSTM+CNN and ELBlocker, Bi-LSTM+CNN and Gar 

 
Null  

Hypothesis 
Test Sig. Decision 

1 

The  

Median 

of differences  

between Bi- 

LSTM+CNN 

and ELBlocker 

equals 0-. 

Related- 

Samples  

Wilcoxon 

Signed  

Rank Test 

0.043 

Reject  

the null  

hypothesis 

2 

The 

median  

of differences  

between Bi- 

LSTM+CNN  

and Gar.  

equals 0. 

Related- 

Samples  

Wilcoxon 

Signed  

Rank Test 

0.043 

Reject  

the null  

hypothesis 

 

Summary for RQ1: Our approach performs better than 

the two compared baselines. On average, our approach 

achieves 73.53% and 101.44% performance improvements 

over the ELBlocker and Gar’s approach of the F1-measure on 

the seven open-source projects, respectively. Furthermore, our 

approach improves performance significantly. 

 

5.2 Result Analysis for RQ2 
 

We built two classifiers and applied two deep learning 

models (i.e., Bi-LSTM and CNN) to identify the blocking 

relationship between bug pairs. Since both Bi-LSTM and 

CNN can predict the blocking relationship to a certain extent, 

although their performance is different. Now, we use a fully 

connected neural network (as shown in Equation (1)) to assign 

two weights to the two classifiers, and then combine them into 

a hybrid model. Then we use model evaluation measures to 

compare the effectiveness of a single classifier and a combined 

classifier. Therefore, we propose a new research question, 

which is to compare the performance of the Bi-LSTM model, 

the CNN model, and the proposed hybrid model (Bi-

LSTM+CNN). Our goal is to explore which classifier can 

achieve better prediction performance. We perform 10-fold 

cross-validation with ten repetitions for each of the seven 

projects, and then calculate the average of the Accuracy, 

Precision, Recall, and F1-measure of the three classification 

models in the two pieces of information. Then we compared 

the performance of each classifier based on four measures. 

Table 4 shows the comparison of Bi-LSTM and CNN on 

summary. It is not difficult to find from it, although there are 

situations where CNN is better. But overall, the effect of Bi-

LSTM is better than that of CNN. 

Table 5 shows the experimental results of Bi-LSTM, CNN 

and the hybrid model (Bi-LSTM+CNN) in different open-

source projects, which uses the summary and description of 

the bug report to predict the blocking relationship of the bug 

pair. Although F1-measure can be calculated by Precision and 

Recall, as shown in Equation (5), we present F1-measure in 

Table 5 to get a more intuitive and direct explanation. 

 

Table 4. Comparison of Bi-LSTM and CNN on summary 

Project Method Acc Pre Recall F1 

Eclipse Bi-LSTM 0.486 0.360 0.038 0.070 

 CNN 0.287 0.315 0.462 0.375 

Mozilla Bi-LSTM 0.513 0.556 0.127 0.207 

 CNN 0.315 0.412 0.118 0.183 

NetBeans Bi-LSTM 0.352 0.231 0.125 0.162 

 CNN 0.276 0.125 0.151 0.137 

Chromium Bi-LSTM 0.368 0.397 0.152 0.220 

 CNN 0.246 0.159 0.177 0.168 

OpenOffice Bi-LSTM 0.495 0.484 0.144 0.222 

 CNN 0.527 0.339 0.192 0.245 

RedHat Bi-LSTM 0.353 0.268 0.429 0.330 

 CNN 0.169 0.182 0.177 0.179 

Gentoo Bi-LSTM 0.485 0.357 0.364 0.360 

 CNN 0.343 0.251 0.389 0.305 

 

Table 5. Performances comparison between Bi-LSTM, CNN 

and Bi-LSTM+CNN 
Project Method Acc Pre Recall F1 

Eclipse Bi-LSTM 0.486 0.360 0.038 0.070 

 CNN 0.539 0.514 0.462 0.487 

 Bi-LSTM+CNN 0.567 0.542 0.500 0.520 

Mozilla Bi-LSTM 0.513 0.556 0.127 0.207 

 CNN 0.524 0.501 0.618 0.553 

 Bi-LSTM+CNN 0.601 0.520 0.680 0.589 

NetBeans Bi-LSTM 0.352 0.231 0.125 0.162 

 CNN 0.451 0.344 0.367 0.355 

 Bi-LSTM+CNN 0.534 0.376 0.421 0.397 

Chromium Bi-LSTM 0.368 0.397 0.152 0.220 

 CNN 0.462 0.418 0.351 0.382 

 Bi-LSTM+CNN 0.529 0.442 0.376 0.406 

OpenOffice Bi-LSTM 0.495 0.484 0.144 0.222 

 CNN 0.527 0.498 0.394 0.440 

 Bi-LSTM+CNN 0.643 0.535 0.421 0.471 

RedHat Bi-LSTM 0.353 0.268 0.429 0.330 

 CNN 0.412 0.451 0.481 0.466 

 Bi-LSTM+CNN 0.536 0.620 0.365 0.546 

Gentoo Bi-LSTM 0.485 0.357 0.364 0.360 

 CNN 0.526 0.418 0.429 0.423 

 Bi-LSTM+CNN 0.594 0.487 0.527 0.431 

 

It can be found from Table 5 that in the Mozilla project, 

the Accuracy of CNN is slightly lower than that of Bi-LSTM. 

In other cases, the four measures of CNN are better than Bi-

LSTM in all projects. On average, the Accuracy and F1-

measure of Bi-LSTM are 0.436 and 0.224, respectively. 

CNN’s Accuracy and F1-measure are 0.492 and 0.444, 

respectively. The hybrid model (i.e. Bi-LSTM+CNN) can 

outperform CNN and Bi-LSTM in all four measures of the 

project. The average Accuracy and F1-measure of Bi-

LSTM+CNN are 0.572 and 0.480, respectively. 

To evaluate the significance of the difference between Bi-

LSTM, CNN and Bi-LSTM+CNN, we applied the paired 

Wilcoxon test between their F1-measure. To show that CNN 

is more effective than Bi-LSTM and that the hybrid model is 

improved compared to a single model, we made a one-tailed 

alternative hypothesis to verify that the F1-measure of CNN is 

significantly higher than that of Bi-LSTM, and the F1-

measure of Bi-LSTM+CNN significantly higher than CNN. 

As shown in Table 6, all the p-values are less than 0.05. 

We can conclude that CNN’s performance is significantly 

better than Bi-LSTM’s on seven subjects. Similarly, Bi-

LSTM+CNN significantly improves performance than CNN. 
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Table 6. Wilcoxon test of F1-measure between Bi-

LSTM+CNN and CNN, CNN and Bi-LSTM 

 
Null  

Hypothesis 
Test p-value. Decision 

1 

The  

Median 

of differences  

between Bi- 

LSTM+CNN 

and CNN 

equals 0-. 

Related- 

Samples  

Wilcoxon 

Signed  

Rank Test 

0.018 

Reject  

the null  

hypothesis 

2 

The 

median  

of differences  

between Bi- 

LSTM  

and CNN  

equals 0. 

Related- 

Samples  

Wilcoxon 

Signed  

Rank Test 

0.018 

Reject  

the null  

hypothesis 

 

Summary for RQ2: The results show that, among all the 

projects, Bi-LSTM+CNN has the best performance, followed 

by CNN, and then Bi-LSTM. At the same time, the 

significance test shows that the performance improvement of 

Bi-LSTM+CNN is significant. 

 

5.3 Result Analysis for RQ3 
 

The efficiency of the prediction model will affect its actual 

application in real-world software maintenance. Therefore, we 

investigated the time cost of our approach. This research 

question reports the size of the input data fed into the neural 

network, model building time, and prediction time. 

Specifically, the model building time refers to the time 

required to pre-process the training data, feed it into the neural 

network and complete the training to convert it into a model 

classifier. The prediction time refers to the time for the model 

classifier that has completed the construction to predict the 

labels of the new bug reports. 

Considering that the experimental platform and 

application technology are different, we did not compare the 

building time of our model with these methods. In the future, 

we aim to reproduce these two baselines and compare them 

with our proposed approach. 

 

Table 7. Model building time and Prediction time (in seconds) 

Project 
Sum 

(MB) 

Des 

(MB) 

Model  

building 

time 

Prediction 

time 

Eclipse 6.11 21.13 2056.64 128.53 

Mozilla 1.02 19.76 1945.53 134.25 

NetBeans 0.86 10.05 1927.12 123.68 

Chromium 1.06 12.48 1933.51 126.53 

OpenOffice 0.93 10.94 1966.75 127.59 

RedHat 1.01 11.56 1994.79 116.64 

Gentoo 2.56 16.82 2165.23 129.31 

Average 1.94 14.68 1998.51 126.65 

 

Table 7 shows the size of the training data contained in 

each of the seven projects, model building time, and prediction 

time. On average, the summary size for model training is 

1.94MB, the description size for model training is 14.68MB, 

the model building time is 1998.51 seconds, and the prediction 

time of the model is 126.65 seconds. In general, our model 

takes about half an hour to complete the pre-processing of the 

training data and the model’s training. It takes about two 

minutes to predict the blocking relationship. 

Summary for RQ3: Although our hybrid model (Bi-

LSTM+CNN) takes about half an hour for training, it takes 

less than two minutes to predict the blocking relationship for 

new bug pairs using the trained model. This means that our 

prediction model is satisfactory to a certain extent and can 

indicate whether multiple bug pairs have a blocking 

relationship within a few minutes. 

 

6  Related Work 
 

6.1 Bug Report Analysis via Deep Learning 
 

Recently, deep learning models have succeeded in many 

natural language processing tasks, especially in analyzing 

software bug reports. These bug reports analyzing work focus 

on detecting duplicate or similar bugs. For example, an 

information retrieval and classification-based model using 

Convolutional Neural Network (CNN) and Long Short-Term 

Memory (LSTM), proposed by Deshmukh et al., can achieve 

high accuracy of 90% to detect and retrieve duplicate or 

similar bugs [24]. Considering that the similarity of bug 

reports is reflected by some similar characteristics. Kukkar et 

al. proposed an automatic bug report classifying model based 

on Convolutional Neural Network (CNN) to extract relevant 

features [25]. This model identifies duplicate or similar bug 

reports from the text content available in the bug repository. 

They conducted experiments on six publicly available large-

scale data sets and gave detailed experimental results. Their 

experimental results show that the accuracy of the proposed 

system reaches 85% to 99%. 

Inspired by these above works, we can use deep learning 

techniques (such as Bi-LSTM, CNN) to process the text 

content in bug reports and achieve satisfactory results in bug 

classification. Taking it a step further, we combine Bi-LSTM 

with CNN to obtain the characteristics of the bug report and 

then apply it to predict whether the examining bug is a 

blocking bug in the dataset. 

 

6.2 Study on Blocking Bugs 
 

A blocking bug is a special software bug that blocks other 

bugs from being fixed. The study on blocking bugs originated 

from the earlier work by Garcia and Shihab [5]. They are the 

ones who first discovered the issues of maintenance aroused 

by blocking bugs. An empirical study of blocking bugs on six 

open-source projects found that blocking bugs take 

approximately two to three times longer to be fixed than non-

blocked bugs. From then on, researchers conducted a set of 

empirical studies to discover the characteristic of blocking 

bugs, such as the amounts, distributions, and efforts of fixing, 

etc. [4, 6, 26-27]. For example, Ohira et al. introduced their 

dataset of high impact bugs which was created by manually 

reviewing four thousand issue reports in four open-source 

projects (Ambari, Camel, Derby and Wicket) [28]. The dataset 

is the first dataset of impact bugs, including security, 

performance, blocking, and so forth. The latest work by Garcia 
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and Shihab indicates that blocking bugs require more than 1.2 

to 4.7 times of lines of code to be fixed than that of non-

blocking bugs [6]. 

At the same time, researchers focus on identifying 

blocking bugs from bug reports. Garcia and Shihab also build 

prediction models based on decision trees to determine 

whether a bug will be a blocking bug or not. Furthermore, their 

Top Node analysis indicates that the comments, including the 

contents of the comment, comment size, the number of 

developers in the CC list, and the reporter’s experience, are 

the most critical factors to determine blocking bugs [5-6]. 

They further analyzed that source code files affected by 

blocking bugs are more negatively impacted in cohesion, 

coupling complexity, and size than those affected by non-

blocking bugs. In more detail, Ren et al. focus on a particular 

type of blocking bugs which they call Critical Blocking Bugs 

(CBBs), that block at least two bugs [27]. They study CBBs 

from five aspects: the importance, the repair time, the scale of 

repair, the experience of developers who repair CBBs, and the 

circumstance why CBBs block multiple bugs. They compared 

CBBs with normal blocking bugs and other bugs on various 

data sets. The experimental results show that CBBs are more 

important with longer repair time and larger repair scale, and 

CBBs are concentrated on parts of components of the project. 

Xia et al. extend Garcia and Shihab’s work by proposing a 

novel ensemble learning-based approach named ELBlocker, 

which combines multiple classifiers built on different subsets 

of the training set [9]. To examine the benefits of ELBlocker, 

they perform experiments on six large open-source projects. 

The ELBlocker can help deal with the class imbalance 

phenomenon and improve the prediction of blocking bugs. 

ELBlocker achieves a substantial and statistically significant 

improvement over the state-of-the-art methods. More 

specifically, our work is illuminated by ELBlocker. Cheng et 

al. proposed a new approach based on ensemble learning to 

distinguish blocking bugs and non-blocking bugs after Xia, 

called XGBlocker, which includes two stages: feature 

extraction and model construction [28]. They extracted 

enhanced features from bug reports and introduced XGBoost 

advanced algorithms to determine whether the bug was 

blocked. To test the performance of XGBlocker, they 

conducted experiments using three evaluation indicators on 

four open-source projects. The results indicate that 

XGBlocker has improved further than ELBlocker and other 

approaches. 

 

6.3 Novelty of Our Study 
 

Unlike the previous works, we only extracted the summary 

and description from the bug report as the training data for our 

hybrid model. In addition, we are also the first to apply 

combined deep learning techniques (Bi-LSTM and CNN) to 

the prediction of the blocking relationship between reported 

bugs. 

 

7  Conclusion 
 

This paper proposes a novel blocking bug prediction 

method, which uses a combination of different deep learning 

models, such as Bi-LSTM and CNN. The empirical study on 

seven large open-source projects with 129178 bug reports 

indicate that the hybrid model can achieve a substantial and 

statistically significant improvement over the baseline 

methods (i.e., ELBlocker, Gar.). 

In the future, we will obtain more bug reports from more 

open-source projects and commercial projects as research 

subjects to improve the generalization ability of the trained 

model. In addition, we believe that more features in the bug 

report can help improve model performance. We will select 

more features into the training set for evaluation in the bug 

reports to improve model performance because our hybrid 

model has learned more features. Besides, we will consider 

using integrated learning methods because constructing 

predictive models with different features and combining them 

using integrated learning methods can effectively improve the 

performance of our model. 
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