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Abstract 
 

Click-through rate (CTR) prediction plays a central role in 

online advertising and recommendation systems. In recent 

years, with the successful application of deep neural networks 

(DNNs) in many fields, researchers have integrated deep 

learning into CTR prediction algorithms to model implicit 

high-order features. However, most of these existing methods 

unify the weights of implicit higher-order features to predict 

user behaviors. The importance of such features of different 

dimensions for predicting user click behaviors are different. 

Base on this, we propose a prediction method that dynamically 

learns the importance of implicit high-order features. 

Specifically, we integrate the output features of deep and 

shallow components, and adaptively learn the weights of 

implicit high-order features from among all features through 

the designed attention network, which effectively capturing 

the deep interests of users. In addition, this framework has 

strong versatility and can be combined with shallow models 

such as Logistic Regression (LR) and Factorization Machines 

(FMs) to form different models and achieve optimal 

performance. The extended experiment is conducted on two 

large-scale datasets, AVAZU and SafeDrive, and the 

experimental results show that the performance of the 

proposed model is superior to that of existing baseline models. 

 

Keywords: Recommendation algorithm, Click-through rate, 

Implicit high order feature, Attention network 

 

1  Introduction 
 

As the amount of interconnected data continues to grow, 

how to recommend valuable information to users has become 

a challenging problem. Among the many problems with 

recommendation systems, how to accurately predict the items 

clicked by users has become one of the core issues. This 

problem has attracts an increasing number of researchers in 

academia and industry. In recent years, many CTR prediction 

algorithms have been proposed, which are mainly divided into 

three aspects: CTR prediction models based on shallow 

algorithms, CTR prediction models based on deep networks, 

and CTR prediction models based on hybrid structures. The 

shallow algorithm focuses on modeling the features within the 

second order of users and items; the deep algorithm is a CTR 

prediction algorithm based on deep neural networks, which 

captures high-order features of users and items; the hybrid 

CTR recommendation algorithms combine shallow and deep 

models to jointly model low-order and high-order features of 

users and items. 

The main task of the CTR prediction problem is to predict 

the probability of users clicking on an item, thereby generating 

a list of recommended items. Most of the current research 

work is to capture the interaction characteristics of users and 

items for modeling, and then carry out downstream tasks. 

Logistic regression (LR) is the most classic CTR prediction 

model. The model has a simple structure, is easy to implement 

in parallel, and has strong interpretability, but it cannot handle 

the nonlinear relationships between targets and features [1]. 

The CTR prediction task is a typical nonlinear data processing 

task where the data are sparse and contain multiple types of 

objects with high-dimensional complex relationships. To 

solve this problem, researchers have proposed some improved 

models to address high-order complex feature interactions; for 

example, a gradient boosting decision tree (GBDT) [2], 

Factorization machines (FMs) [3] and the Field-aware 

Factorization Machines (FFMs) [4]. As most of the features in 

a recommendation system are large-scale discretized feature, 

the representation abilities of these shallow models are still 

insufficient in the face of large-scale data. 

With the rapid development of deep neural models, many 

deep models have been proposed to learn the interactions 

between low-order features and high-order features from the 

original features, examples include deep neural networks 

(DNNs), Deep&Cross network (DCN), Wide&Deep, 

DeepFM, etc. [5-8]. In CTR prediction, the DNN can 

automatically learn the interactions between high-order 

features and generate all interactions implicitly. The 

Deep&Cross network (DCN), which retains the advantages of 

the DNN model and also introduces a novel cross network that 

is more efficient in terms of learning certain bounded-degree 

feature interactions. Wide&Deep models first-order linear 

features and implicit high-order features simultaneously, and 

the model combines the “wide” and “deep” structural 

characteristics of DNNs. DeepFM improves the Wide&Deep 

model by replacing the “wide” component with an FM model 

so that the resulting model has the ability to model second-

order interactive features. In recent years, the hybrid CTR 

recommendation algorithm based on the shallow model and 

the deep model is the mainstream CTR recommendation 

algorithm. Under the premise of the hybrid recommendation 

algorithm, various forms of feature interaction emerge in an 
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endless stream. Interaction, multiple interactions of high-level 

features, interaction of first- and second-order features and 

high-level features, etc. Different interaction forms can 

achieve different feature fusion effects. 

 

 

Table 1. Comparison of recommendation algorithms based on user CTR predict 

 User and item 

feature mining 

Feature 

interactions 

Neural  

network 

structure  

optimization 

Implicit  

higher-order  

feature weight 

optimization 

Related references 

 

Feature-based mining 

algorithms 
✓ × × × 

[12], [13], 

[14], [15] 

Feature-based combination 

algorithms 
✓ ✓ × × 

[17], [18], 

[19], [20], 

[21], [22] 

Structure optimization based 

on neural networks algorithms 
✓ ✓ ✓ × 

[23], [28], [31] 

 

Our model ✓ ✓ ✓ ✓ 
 

 

 

 

With the widespread application of attention mechanism 

in intelligent algorithms, researchers have applied attention 

mechanism to CTR prediction algorithm to enhance the 

representation ability of feature information. This method can 

capture the potential interaction information between users 

and items to improved prediction performance [9-11]. 

However, existing methods often unify the weights of implicit 

high-order features to predict user behaviors, there are few 

ways to use attention mechanisms to solve problems regarding 

the imbalance among the importance of higher-order features. 

In this paper, we design an attention network for a hybrid 

CTR prediction recommendation system to solve this problem 

of feature imbalance, thereby modeling the importance of 

high-order features. The attention network adopts the form of 

a combination of a linear function and an activation function, 

takes low-order eigenvectors and high-order implicit 

eigenvectors as inputs, and outputs the modeling weights of 

high-order implicit eigenvectors. Theoretically, useful and 

useless high-level implicit features can be better distinguished.  

In summary, the main contributions of this paper are as 

follows:  

⚫ We propose a CTR prediction method based on implicit 

high-order feature importance modeling. This method 

uses an attention network to model the weight of each 

dimension of high-order features at the element level, 

which makes up for the deficiency of unified high-order 

features parameters into the model. 

⚫ We design an attention network to model the importance 

of high-order features, and flexibly integrate the attention 

network into different hybrid models to form two 

recommendation methods, which can be applied to 

different recommendation situations. 

⚫ We conduct extensive experiments on two real-world 

datasets, and the results show that the performance of our 

model is superior to that of several baseline models. 
 

2  Related Work 
 

At present, the research directions involving 

recommendation systems based on user CTR prediction are 

mainly divided into three kinds of algorithms: feature-based 

mining, feature-based combination and structure optimization 

based on neural networks. Among the studies based on feature 

mining [12-16], Huang et al. [12] introduces a new model of 

FO-FTRL-DCN, mainly based on the prestigious model of 

Deep&Cross Network, using FTRL to build a model to mine 

features. Liu et al. [13] proposed using convolutional neural 

networks to obtain image features of items and integrate them 

into neural networks to make recommendations. Zhu et al. [14] 

proposed a deep attention neural network for news 

recommendation. The developed model uses a convolutional 

neural network and an attention mechanism to gather the users’ 

interest features and capture the users’ click sequence features, 

and it then combines these features to perform 

recommendations. To solve the processing difficulty inherent 

in long user time series data, Qin et al. [15] proposed the use 

of a learnable method to search for the most relevant user 

behaviors from the entire user history. Then, these retrieved 

behaviors are input into a DNNs to make the final CTR 

prediction. 

Although many studies have been sufficient for user and 

item feature mining, they have not fully considered the user or 

item feature combinations or combination optimization. Based 

on this, a large number of rese archers have proposed CTR 

prediction algorithms based on feature combinations [7, 17-

22]. For example, Liu et al. [17] proposed a GCN-int model 

based on the interaction of Graph Convolutional Network to 

mine meaningful feature combinations. Bian et al. [18] 

propose a Co-Action Network (CAN) to approximate the 

explicit pairwise feature interactions without introducing too 

many additional parameters. To automatically identify the 

important interactive features in an FM model, Liu et al. [19] 

proposed the automatic feature interaction selection (AutoFIS) 

algorithm, which can automatically eliminate redundant 

feature interactions during the training process. Finally, useful 

feature interactions are screened through an attention gate. To 

model the meaningful combinations of high-order features, 

Song et al. [20] proposed the automatic feature interaction 

learning (AutoInt) model, which uses multi-head attention to 

model high-order feature interactions from different angles 

and automatically learns the high-order interactions among the 

input features. At present, the process of modeling feature 

interactions is based on their volumes and Hadamard products 

without considering the weights of feature interactions. Based 

on this, Huang et al. [21] proposed the feature-aware bilinear 
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network (FiBiNET), for modeling feature importance and 

feature interactions through a bilinear coupling function. The 

model learns the importance of embedded features through the 

SENET network and learns feature interactions through a 

bilinear coupling function. Considering that the features 

generated by DNNs are implicit high-order features and that 

the existing networks cannot determine the direct interactions 

between low-order and high-order features, Lian et al. [22] 

proposed a recommendation model that combines implicit and 

explicit feature interactions and proved the effectiveness of the 

method on large-scale datasets. 

The above research has fully solved the possible problems 

related to feature interactions, but the structures of neural 

networks have not been fully optimized, leading to certain 

restrictions on the performance of the resulting models. Due 

to this shortcoming, on the basis of related research, many 

researchers have proposed various new network variants to 

address specific problems [23-31]. For example, to further 

model the interactions between and within feature domains, 

Chen et al. [23] proposed a two-way interaction mapping 

model called FLEN based on shared domains; FLEN can 

simultaneously capture the interaction information between 

and within feature domains. To model the importance of 

different second-order interaction features, Xiao et al. [28] 

proposed an FM model based on attention that fully explores 

useful feature interactions. The existing research mainly 

focuses on the representation of user characteristics, and rarely 

studies the correlations between users and items. Based on this, 

Lyu et al. [31] proposed calculating the correlation rankings 

of users and items by calculating the inner product of the 

corresponding features in the mapping space between these 

users and items. This approach has been proven to have 

excellent performance on industrial datasets. 

Although the above research has solved the problem of 

CTR prediction from various angles, a large number of studies 

based on DNNs have not modeled the weights of implicit 

high-order features, which has limited the performance of the 

corresponding models to a certain extent. Aiming at the 

problem that the existing hybrid CTR prediction algorithms do 

not consider the high-order features with different weights at 

the element level, this paper designs a unique attention unit to 

model the high-order features output by the deep neural 

network, capture the weights of the implicit high-order 

features, and improve the performance of click-through rate 

prediction. Moreover, we integrate the designed attention 

network into two classical frameworks to form a new method 

that can be applied to different recommendation situations. 

Table 1 shows the comparison between our model and other 

recommendation algorithms based on user CTR prediction. 

 

3  CTR Prediction Model Based on an 

Attention Network 
 

To solve the above problems, we design a CTR prediction 

model based on an attention network, which can better learn 

the importance of implicit high-order features, thereby 

effectively capturing user interest. The overall structure of the 

model is shown in Figure 1. In this section, we introduce the 

architecture and implementation methods of our proposed 

model in detail. 

 

 

 

 

Figure 1. Structure diagram of the CTR prediction model based on the attention network 

 

 

3.1 FM Unit 
 

FM is a recommended algorithm model proposed by 

Rendle S [3] for learning feature interactions; it can model 

first-order linear features and second-order interactive features.  

3.1.1 Embedding Layer  

 

In the CTR prediction problem, the input features are 

converted into one-hot encoding, and the converted features 

have higher dimensions. To reduce the dimensionality of such 
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features, it is necessary to introduce embedding technology. 

The embedding layer is a fully connected layer, that can map 

an original feature to a dense vector. The attribute 

characteristics of users and items are represented as a sparse 

vector X , which is specifically represented as: 

 

1 2[ , ,... ]mX x x x= .                       (1) 

 

where xi ∈ ℝ ni×1, the subscript m  represents the number of 

feature domains, ix  of domain i  represents a feature vector 

that has been one-hot encoded, the feature embedding matrix 

iv  is used to convert the original encoding vector ix  into a 

low-dimensional dense vector, and the conversion process is 

expressed as follows: 

 

ei = vi ● xi .                          (2) 

 

where vi ∈ ℝl×ni , ei  ∈  ℝ𝑙×1 , l  represents the 

dimensionality of the low-dimensional vector, and 
in  

represents the vector dimensionality of the domain i . ie  

represents the dense feature vector of domain i  after 

undergoing dimensionality reduction. The superposition of the 

low-dimensional vectors of all domains is expressed as:  

 

1 2( ) [ , ,... ]mE x e e e= .                     (3) 

 

After converting the embedding layer, the feature vector is 

mapped to the low-dimensional space ℝl×m, and at the same 

time, the basic semantics of the original feature vector ix  of 

the domain are well preserved. 

 

3.1.2 Feature Interaction Layer 

 

Component 1 shown in Figure 1 represents a logistic 

regression (LR) component, and this part is represented as: 

 

y
LR

(x) = ∑ wi • xi
m
i=1  .                 (4) 

 

where wi ∈  ℝ𝑚  represents the weight of the first-order 

linear feature, and xi  ∈  ℝni×1 represents the original feature 

vector of domain i . The second part shown in Figure 1 is the 

FM component, which is composed of a first-order linear 

feature unit and a second-order inner product feature unit; this 

part is expressed as follows: 

 

y
FM

(x)= ∑ wi
m
i=1 • xi + ∑ ∑ <ei, ej>

n
j=i+1

n
i=1 .    (5) 

 

The first part of formula (5) is the LR component, and the 

second part <ei, ej> represents the inner product interactions 

between the features after the original feature 
ix  is 

transferred to the low-dimensional space. An FM can model 

first-order linear features and second-order interactive features 

in sparse and low-dimensional spaces, while FM components 

can only model features within the second order. This article 

refers to the FM and LR as shallow components. For high-

order features, DNNs need to be used to model the features. 

3.2 Deep Component 
 

The deep component is essentially a forward feedback 

neural network, as shown in the third part of Figure 1, which 

is used to capture implicit high-order feature interactions, and 

the input data of the network are the mapping results of the 

embedding layer: (0) ( )a E x= . The process performed by the 

forward network is: 

 

( )( ) ( ) ( 1) ( )l l l la w a b −= + ,               (6) 

 
( )( ) l

DNNy x a= .                        (7) 

 

In formula (6), l  is the number of layers contained the 

neural network,   is the activation function, 
( )la  is the 

output of layer l , 
( )lw  is the weight parameter of layer l , 

and 
( )lb  is the bias parameter of layer l . After completing 

the above process, the deep component outputs the implicit 

high-order component ( )DNNy x  (formula (7)). 

 

3.3 Attention Network Components 
 

After obtaining the output feature vectors of the shallow 

component and the deep component, they are combined in 

parallel to predict the CTR. In the shallow components, LR 

models first-order linear features, an FM models first- and 

second-order feature interactions, and the deep component is 

used to model implicit higher-order features. Existing methods 

can model first-order and second-order features (as well as 

their weights) and implicit high-order features. However, no 

method is currently available for modeling the weights of 

implicit high-order features, which may limit the performance 

of the model when capturing users’ deep-level interests. Based 

on this, this paper designs the attention network shown in 

Figure 2 to model the importance of implicit higher-order 

features, and the shallow components can be LR or FM models. 

When the shallow component is an FM, this paper adopts the 

following method: 

 

 

Figure 2. Attention network structure 

 

 

1
1

1 1 1( ( ( )) )( )

1

1

FM DNN

w

w y x bxy

e 

 


−

= + +


 +

=
.    (8) 

 

In formula (8), the input of the shallow component is the 

concatenation of the output feature of the FM and the implicit 
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high-order features output by the deep component. wi ∈ ℝl×1 

represents the parameter matrix of the linear layer of the 

attention network, 
1b  represents the bias parameter of the 

layer, and   is the activation function of the unit. λ ∈ ℝl×1 

is the output vector of the attention network; λw1 ∈ ℝl×1 is 

obtained after conducting normalization and denotes the 

weight coefficient of high-order features. When the shallow 

component is LR, similarly, the following methods are used to 

obtain the weight coefficients of higher-order features λw2 ∈
ℝl×1: 

 

 

2
2

2 2 2( ( ( )) )( )

1

1

LR DNN

w

w y x bxy

e 

 


−

= + +


 +

=
.    (9) 

 

By inputting shallow component features and high-order 

features to the designed attention unit, updating the attention 

parameters and other parameters of the model, the attention 

unit outputs the attention weight parameters of the high-order 

features. the model adaptively learns the importance 

coefficient 
1  and 

2  of implicit higher-order features from 

among all the features and obtained 
1w and

2w after 

normalization. The learned attention weights vary greatly with 

the features of the other two shallow units; this strategy greatly 

improves the prediction ability of the model. 

 

3.4 Output 
 

The outputs of the attention-based deep and shallow 

components include low-order feature and implicit high-order 

feature interactions. For the final CTR prediction, we need 

only to concatenate these interactions and then apply a 

nonlinear activation function. The output mapping range of 

sigmoid function is (0,1), and the range is limited, which can 

make the data not easy to diverge in the process of 

transmission, optimization is stable, and is beneficial to 

classification. It can be used as the output layer, and the output 

represents the probability, as follows: 

 

ŷ = sigmoid (y
s
+ λw⊙y

DNN
) .             (10) 

 

where ⊙ represents the dot multiplication operation between 

matrices. According to the different possible shallow 

components, two different models are formed. When using the 

combination of an FM and a DNN based on the attention 

network, 
sy  is ( )FMy x , 

w  is 
1w  , and the model is att-

DeepFM. Similarly, when the shallow component is LR, 
sy  

is ( )LRy x , 
w  is 

2w , and the model is att-Wide&Deep. 

 

3.5 Training 
 

In CTR prediction models, the Logloss function is widely 

used, and its definition is as follows: 

 

1

1
ˆ ˆlog (1 ) log(1 )

N

i i i i

i

L y y y y
N =

= − + − − .  (11) 

 

Formula (11) is the unified loss function of the two models 

in this paper, where iy  is the user’s historical click behavior, 

ˆ
iy  is the click rate predicted by the model, and N  is the total 

number of training samples. 

 

4  Experiments 
 

In this section, this paper makes a large number of 

experimental comparisons between our model and the more 

advanced existing models. The experiment is conducted on 

two large-scale public datasets. First, the data and comparison 

models are introduced; then, the experimental process of this 

article is demonstrated; finally, the experimental results are 

provided, and conclusions are drawn. 

 

4.1 Datasets and Experimental Settings 
 

4.1.1 Datasets  

 

We conduct experiments on two large-scale datasets. The 

SafeDrive dataset is used to predict the probabilities of claims 

made by car insurance policyholders. There are 57 fields in the 

dataset, and features are distributed in different fields 

according to their categories, including binary features, 

classification features, continuous features, discrete features 

and other categories. The AVAZU dataset consists of users’ 

clicks on advertisements, which are sorted according to time 

series, and each piece of data contains 24 characteristic fields. 

Due to the large scale of the AVAZU dataset, this paper 

randomly selects the data at a rate of 20% five times, conducts 

five experiments under the same conditions, and averages the 

obtained experimental results. The data set introduction is 

shown in Table 2. 

 

Table 2. Dataset Statistics 

Dataset Domain Number of  

features 

Occupied 

memory 

AVAZU 24 1544250 5.87G 

SafeDrive 57 595213 110M 

 

4.1.2 Baseline  

 

We compare our method with DNN, Wide&Deep, and 

DeepFM.  

•DNN [5]: The DNN is a model proposed by Google; it 

consists of a forward feedback neural network, which can 

model the implicit high-order features of users or items. 

•Wide&Deep [7]: This method is also a model proposed 

by Google that can model both first-order linear features and 

implicit high-order features simultaneously, where the “wide” 

part of the model is composed of logical regression models for 

learning low-order features, and the “deep” part is composed 

of a DNN for learning implicit high-order features. The model 

combines these two components to model features.  

•DeepFM [8]: This method is a method proposed by 

Huawei Noah Lab. This method explores the limitations of the 

“wide” part of Wide&Deep, and models this part by using an 

FM so that the model has the ability to model second-order 

interaction features. 
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4.1.3 Evaluation Indicators  

 

We adopt two evaluation metrics in our experiments: the 

area under the curve (AUC) and Logloss. The optimization 

goal in the model updating process is to reduce the value of 

Logloss; based on this, this paper uses Logloss as one of the 

evaluation indicators of the models. 

In CTR prediction, predicting that users click on items 

means positive results, while predicting that users do not click 

on items means negative results. Then the CTR prediction will 

have four situations: the user clicks on the item and the 

prediction is positive (TP), the user clicks on the item but the 

prediction is negative (FN), the user does not click on the item 

but the prediction is positive (FP), the user does not click on 

the item and the prediction is negative (TN). In the ROC curve, 

the ratio of the actual clicks to the predicted clicks is the 

vertical axis, and the ratio of the actual unclicks to the 

predicted clicks is the horizontal axis, as follows: 

 

     𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                     (12) 

 

𝐹𝑃𝑅 =
𝐹𝑃

𝑇𝑁+𝐹𝑃
 .                     (13) 

 

Fill in the coordinate value into the coordinate to get the 

ROC curve, and the area under the ROC curve is the value of 

AUC. The ROC curve can be obtained by filling in the 

coordinate values, and the area under the ROC curve is the 

value of AUC. The AUC is a widely used metric for evaluating 

classification problems; the upper limit of the AUC is 1, and a 

higher AUC indicates better model performance. 

 

4.1.4 Experimental Design and Implementation  

 

In this paper, we use TensorFlow to implement all the 

models, and the computer specifications are Intel(R) Core 

(TM) i9-8950HK CPU @ 2.90GH. The dimensionality of the 

feature domain output of the embedding layer is set to 8. For 

shallow components, the experiment chooses to use LR or FM. 

When using LR, the model is att-Wide&Deep, and when using 

FM, the model is att-DeepFM. For the deep components, the 

number of network layers is set to two, and a rectified linear 

unit (ReLU) is used as the activation function. For the 

attention network component, ReLU or Softplus is utilized as 

the activation function. All models use Adam as the optimizer, 

the minimum batch size of input data is 256, the learning rate 

is set as 0.0004, and the number of iterations is set as 30. To 

prevent each model from overfitting, the dropout of the deep 

component is set to 0.4, and the regularization parameter is set 

to 0.02. 

 

4.2 Analysis of the Experimental Results 
 

4.2.1 Model Performance Comparison  

 

In this paper, we embed the designed attention component 

into the hybrid algorithm based on FM and DNN to construct 

att-DeepFM; embed the attention component into the 

combined algorithm of LR and DNN to construct the att-

Wide&Deep model. The method proposed in this paper and 

the baseline method are experimentally verified, and the 

experimental results are summarized in Table 3, which 

includes the experimental AUC and Logloss results obtained 

on the two large-scale public datasets (AVAZU and SafeDrive) 

by the method in this paper and the comparison methods. It 

can be concluded from Table 3 that att-DeepFM has the best 

performance when the experimental dataset is AVAZU, while 

the performance of att-Wide&Deep is not as good as that of 

att-DeepFM and DeepFM but is slightly better than that of 

Wide&Deep. When the dataset is SafeDrive, compared with 

other models, att-Wide&Deep with attention components 

have the best performance in terms of the AUC and Logloss. 

The experimental results in Table 3 verify the effectiveness of 

the attention network component in this paper. 

 

 

 

Table 3. Experimental results obtained by the proposed model and the compared model on two large datasets 

Model AVAZU SafeDrive 

 AUC Logloss AUC Logloss 

att-DeepFM 0.7137 0.4037 0.6250 0.1537 

DeepFM 0.7136 0.4038 0.6275 0.1529 

att-Wide&Deep 0.7011 0.4116 0.6304 0.1525 

Wide&Deep 0.6998 0.4091 0.6303 0.1525 

DNN 0.6948 0.4118 0.6256 0.1534 

 

 

In order to analyze the performance of our model more 

intuitively, we gradually increase the number of iterations for 

comparative analysis. Figure 3 and Figure 4 show the 

comparison of the AUC results obtained in each round by att-

DeepFM, DeepFM, att-Wide&Deep and Wide&Deep in 30 

iterations. In Figure 3, it is seen that att-DeepFM performs 

better than DeepFM in every round. However, in Figure 4, 

Wide&Deep performs better in the first 10 rounds, and after 

the 10th round, att-Wide&Deep is ahead of Wide&Deep. 

From the comparison results of the above two experiments, it 

can be concluded that using an attention network to model the 

importance of implicit high-order features, the performance of 

our model is significantly improved compared with the 

baseline model. 

Figure 5 and Figure 6 show comparisons between the 

Logloss values of the algorithm developed in this paper and 

the comparison models. As seen from Figure 5, the 

performance of the att-DeepFM algorithm in this paper is 
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superior to that of the DeepFM algorithm throughout the 

whole iterative process. However, it can be seen from Figure 

6 that compared with Wide&Deep, att-Wide&Deep is not 

superior in terms of performance. This paper concludes that 

although att-Wide&Deep adds an attention network and 

models the importance of implicit higher-order features, the 

shallow components of att-Wide&Deep do not model second-

order feature interactions, which may lead to the poor 

performance of the model. In terms of the AUC, the 

performance of att-Wide&Deep is still competitive.  

Based on the above analysis, this paper draws a 

preliminary conclusion that the CTR prediction model based 

on an attention network can dynamically obtain the weights of 

implicit high-order features. The model can adaptively learn 

high weights for the implicit high-order features that are useful 

for predicting user behaviors, while the attention network 

components adaptively reduce the weights for the implicit 

high-order features that contribute little to the CTR prediction 

results. In this way, the model can fully integrate the implicit 

high-order features that are beneficial to CTR prediction, thus 

improving the prediction performance of the model. 

 

 

Figure 3. AUC performance of att-DeepFM and DeepFM 

 

 

Figure 4. AUC performance of att-Wide&Deep and 

Wide&Deep 

 

 

Figure 5. Logloss performance of att-DeepFM and DeepFM 

 

 

Figure 6. Logloss performance of att-Wide&Deep and 

Wide&Deep 

 

4.2.2 Activation Function Performance Comparison  

 

In order to observe the effect of the different activation 

functions in the attention network and deep component on the 

model performance. We keep the other parameters in the 

model unchanged. On the AVAZU dataset, we use the att-

DeepFM method and select four activation functions for 

comparative analysis. 

(1) Attention network activation function. The attention 

network is a combination of a linear layer and an activation 

function. After completing the concatenation and linear 

mapping of low-order features and implicit high-order features, 

the activation function is used to perform a nonlinear 

transformation on the linear output of the attention network. 

In the attention network component, the activation function 

used in this paper is ReLU. However, the experimental results 

of att-DeepFM in Figure 7 show that the overall performance 

is better when using the Softplus activation function. 

(2) Deep component activation function. In deep 

component architectures, a common practice is to use 

nonlinear activation functions after linearly mapping the 

network layer [32]. Therefore, this experiment compares the 

effects of different activation functions for the deep 

component on the CTR prediction performance of the 

resulting models. The experimental results of att-DeepFM in 

Figure 8 show that this method achieves the best performance 

when using the ReLU activation function. 
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Figure 7. AUC corresponding to different activation functions 

for the attention unit of att-DeepFM 

 

 

Figure 8. AUC corresponding to different activation functions 

for the deep component of att-DeepFM 

 

4.2.3 Embedding Layer Size 

 

We set the embedding layer size to 8, 16, and 32; evaluate 

the performance of the att-DeepFM model; and compare the 

running times and the total parameter changes yielded under 

different embedding layer sizes. During the experiment, we 

keep the other conditions of the model unchanged: the model 

activation function is kept unified, the optimizer remains 

unified, the number of iterations remains the same, etc. 

The experimental results are shown in Figure 9. Within a 

limited range, as the embedding size doubles, the AUC of the 

model increases slowly. We also compare the running times 

of the model in all rounds and the numbers of model 

parameters. The results are shown in Table 4. As the 

embedding size increases, the number of model parameters 

shows a multiplicative trend. At the same time, the running 

time of the model slowly increases. Therefore, although the 

model performance increases to a certain degree, we still set 

the feature size of the embedding layer to 8. 

 

 

Figure 9. Effect of the embedding layer size on performance 

Table 4. Comparison of the running times and numbers of 

parameters 

Embedding size 8 16 32 

Running time  

per round (seconds) 

290 306 330 

Total number of  

model parameters 

19865 35633 67196 

 

5  Conclusion 
 

Motivated by the drawbacks exhibited by existing models, 

this paper designs an attention network to model implicit high-

order features. This method can dynamically learn the weights 

of implicit high-order features, which can more effectively 

capture the interests of different users from the implicit high-

order features. We also integrate an attention network into two 

different hybrid models to form two different recommendation 

methods: att-DeepFM and att-Wide&Deep, which are suitable 

for recommendation scenarios. We carry out experiments on 

two large-scale datasets, and the results show that the 

prediction performance of the method proposed in this paper 

is significantly improved. This proves the effectiveness of 

learning implicit high-order feature weights for CTR 

prediction. 
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