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Abstract 
 

Emerging intelligent and highly interactive services result 

in the mass deployment of internet of things (IoT) devices. 

They are dominating wireless communication networks 

compared to human-held devices. Random access 

performance is one of the most critical issues in providing 

quick responses to various IoT services. In addition to the 

anchor carrier, the non-anchor carrier can be flexibly allocated 

to support the random access procedure in release 14 of the 

3rd generation partnership project. However, arranging more 

non-anchor carriers for the use of random access will squeeze 

the data transmission bandwidth in a narrowband physical 

uplink shared channel. In this paper, we propose the 

prediction-based random access resource allocation (PRARA) 

scheme to properly allocated the non-anchor carrier by 

applying reinforcement learning. The simulation results show 

that the proposed PRARA can improve the random access 

performance and effectively use the radio resource compared 

to the rule-based scheme. 

 

Keywords: Internet of Things, Random access, Anchor 

carrier, LTE, Reinforcement learning 

 

1  Introduction 
 

The internet of things (IoT) concept has been realised in 

several applications, such as environment monitoring, 

industrial automation, safety monitoring and control, and 

disaster prevention. Additionally, ubiquitous sensing enabled 

by the demand for IoT services (i.e. user equipment (UE) in 

the 3rd generation partnership project (3GPP)) requires the 

fast transmission of its sensed data to the server. As IoT 

devices are deployed over widespread areas, wireless 

communication technology is more suitable for real 

applications. The 3GPP proposed NarrowBand IoT (NB-IoT) 

based on long-term evolution (LTE) for IoT application in 

release 13. It modifies and simplifies the LTE specification to 

be compatible with IoT devices and coexist with existing LTE 

systems [1]. A brief comparision for 4G LTE and 5G 

communication technologies was presented in [2]. The uplink 

transmission from many UEs makes random access more 

critical for IoT service deployment. The random access 

procedure (RAP) can be supported in non-anchor carriers in 

release 14 of 3GPP to support the requests from massive UEs. 

This alleviates the network congestion problem that may occur 

if UE can only random access via anchor carrier in the 

narrowband physical random access channel (NPRACH) [3-

4]. Allocating more non-anchor carriers for more random 

access opportunities (RAO) can effectively reduce the 

collision rate of the random access attempts issued by massive 

UEs to shorten the uplink transmission delay. However, it also 

compresses the data transmission resource in the narrowband 

physical uplink shared channel. Thus, the non-anchor carriers 

should be carefully allocated for effective resource use. 

In addition to the relatively large number of deployed UEs 

in IoT services, the traffic pattern is quite different from that 

of the human-held UEs in access behaviour and transmission 

data size. Generally, the sensing UEs of IoT services always 

need to transmit data to the server frequently, and the 

transmitted data size is much smaller than that of traditional 

human-oriented services. Generally, the number of UEs is 

much larger than the human-held devices within the coverage 

of a base station (i.e. eNB). Therefore, the number and 

frequency of uplink access requests to the base station are 

much higher than the traditional services. The uplink 

transmissions of sensing devices can be classified into 

periodic and aperiodic data. The aperiodic data always arrive 

unpredictably with emergent information. The IoT UEs must 

contend with the subcarrier (preamble) for the uplink 

transmission in the RAP. The performance of random access 

affects whether timely uplink data is deliverable. If two or 

more devices use the same subcarrier, then the collision will 

occur, and eNB will not be able to decode it. The collision 

probability can decrease with more subcarriers by allocating 

non-anchor carriers. However, the uplink request is actively 

issued by IoT UEs, and eNB cannot get the request 

information in advance. The radio resource will be wasted if 

the subcarriers are over-provided for contention. In this paper, 

we predict the uplink request from UEs using reinforcement 

learning to arrange the non-anchor carrier for effective radio 

resource use properly. 

The remainder of the paper is organised as follows. 

Section 2 presents the background and related works. Section 

3 describes the proposed prediction-based random access 

resource allocation (PRARA) scheme. In Section 4, we 

evaluate the performance of the proposed scheme through 

exhaustive simulations. We also compare the simulation 

results with the rule-based scheme proposed in [5]. Finally, 

Section 5 presents the conclusion. 

 

2  Overview of Related Works 
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The anchor carrier provides the access medium, i.e. the 

subcarrier or preamble, for the random access. However, in 

release 13, only one anchor carrier can be adopted for paging 

and random access. The total number of subcarriers in the 

anchor carrier is insufficient to support the high access 

attempts issued by the IoT UEs. The main access behaviour of 

UEs in IoT is their high access frequency compared to the 

traditional hand-held UEs. The limited access medium 

restricts the success possibility of the random access, resulting 

in a long uplink delay. The non-anchor carrier can be allocated 

for random access in release 14 to relax the congestion of 

random access. Up to 15 non-anchor carriers can be flexibly 

allocated for random access in addition to the original anchor 

carrier. Additionally, release 13 UE can only use the anchor 

carrier for random access, and release 14 UE can use an anchor 

or non-anchor carrier, as shown in Figure 1. 

 

 

Figure 1. Anchor and non-anchor carriers for random access 

of release 13 and 14 UEs 

 

The total radio resource is constrained. If more non-anchor 

carriers are allocated for random access, the radio resource 

used for data transmission decreases accordingly. The data 

generated by IoT UE are always much smaller than the 

traditional human-based services. In [5], the authors designed 

the collision report flag (CRF) in message 3 to feedback 

whether the end device is the first access or not and proposed 

the rule-based scheme to arrange the non-anchor carrier. The 

proposed small data transmission mechanism allows data to be 

piggybacked by the random access control message [6]. The 

parallel and pipelined scheme was proposed to support 

efficient random access [7]. This scheme divides the 

subcarriers into subgroups for contention. Additionally, each 

collided subcarrier is resolved through the first-in, first-out 

queue. The success ratio of random access can be improved 

using the sequential resolution concept. In [8], the proposed 

access class barring (ACB) mechanism would regulate the 

contention of random access attempts. The original ACB-

based scheme can prevent the PRACH overload issue at the 

cost of a sharp increase in access delay. Several studies have 

suggested discarding the barring time and dynamically 

adjusting the barring factor to decrease the delay [9-11]. The 

author proposed a learning automata-based ACB (LA-ACB) 

to adjust the ACB value [9]. Generally, the same backoff 

procedure is applied to all UEs, and it is not easy to support 

UEs with different quality of services. In addition to using 

ACB, UEs with different transmission behaviour were 

differentiated with different backoff times to smooth the 

access congestion. Most studies analysed the performance of 

ACB by assuming the barring time is fixed. The recursive 

access class barring (R-ACB) technique was proposed in [10] 

to optimally utilize the available resources associated with the 

random access procedure. It suggested that the ACB factor 

shall be adjusted through the estimation. In [11], the ACB 

performance with a randomly selected barring time was 

analysed concerning several performance indexes. Several 

traffic models of a massive number of M2M UEs were 

observed, and the impact of ACB configuration parameters on 

the network performance was analysed [12]. They proposed 

the enhanced access algorithm based on the clustering-reuse 

subcarrier allocation algorithm. The UEs are divided into 

clusters by referring to the distance between the UE and eNB, 

and the access intensity. 

The random access scheme’s design and performance 

depend highly on the access behaviour. However, there is a 

lack of information about access statistics and the occurrence 

of a random collision, and the ideal random access is generally 

challenging. As the random access behaviour is not easy to 

predict, the traditional rule-based scheme has its limitations in 

dealing with this contention issue. In [13], the authors 

reviewed the existing random access methods based on 

machine learning (ML) and non-ML techniques. They found 

that ML-based methods perform better than non-ML-based 

methods due to their capability to solve high-complexity long-

term optimisation problems. The tabular Q-learning (tabular 

Q), linear approximation-based Q-learning (LA-Q), and deep 

neural network-based Q-learning (DQN) schemes for random 

access have been studied and tested. The cooperative multi-

agent learning (CMA-DQN) scheme has been proposed in 

[14]. Their results illustrate that the CMA-DQN scheme 

achieves better training efficiency and access performance. As 

mentioned in the previous section, the non-anchor carrier is 

applicable for random access to relax the access congestion 

and collision from massive IoT UEs. 

The access policy or subcarrier allocation can improve the 

random access performance. The support of non-anchor 

carriers in RAP provides a more flexible allocation of 

sufficient subcarriers for many IoT UEs. However, note that 

the increase in subcarriers is individual to allocate one more 

non-anchor carrier results in the provisioning of several 

subcarriers. Thus, the allocation of non-anchor carriers shall 

be a tradeoff between the access performance and the 

effectiveness of resource utilization, which is the main 

objective of this paper. 

 

3  The Proposed PRARA Scheme 
 

The IoT UE contends the subcarrier for random access can 

be the first access or repeated access after the contention 

failure due to the collision of its first access. As the collision 

of the subcarrier means at least two UEs access the same 

subcarrier simultaneously, the number of UEs that will issue 

the repeated access can be predicted from the number of 

collided subcarriers. Then, the basic framework of the 

proposed PRARA scheme is to allocate the subcarriers into 

two parts. The subcarriers of part A provide the access for the 

initial random access, whereas the part B subcarriers support 

the UEs with repeated access. The base station shall broadcast 

parts A and B allocated subcarriers to all devices through the 

system information block message. Meanwhile, estimating the 

number of devices with initial access is not easy. Therefore, 

we propose the reinforcement ML approach to allocate the 

number of subcarriers in part A rewarded by the number of 

successful subcarriers 𝐴𝑆, the number of collided subcarriers 
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𝐴𝐶, and the number of idle subcarriers 𝐴𝐼 during the previous 

predefined RAO interval in part A. The rewarding function 

will be discussed in the following section. Additionally, the 

number of subcarriers in part B is determined by referring to 

the predicted number of collided UEs and the effectiveness of 

allocating non-anchor carriers. Table 1 presents the notation 

and description of the proposed scheme. 

 

Table 1. Notations and descriptions 

Notations Descriptions 

𝑁𝑆 
Number of subcarriers being detected as 

success in Part A 

𝑁𝐶 
Number of subcarriers being detected as 

collided in Part A 

𝑁𝐼 
Number of subcarriers being detected as 

idle in Part A 

𝐴𝑆 
The average number of subcarriers being 

detected as a success last 3 RAO.in Part A 

𝐴𝐶 
The average number of subcarriers being 

detected as collided last 3 RAO. in Part A 

𝐴𝐼 
The average number of subcarriers being 

detected as idle last three RAO in Part A 

𝑃𝐴 The prediction of Part A subcarriers 

𝑅𝐴 Number of subcarriers allocated for Part A 

𝑅𝐵 Number of subcarriers allocated for Part B 

𝑁𝑆𝑢𝑏 
Maximum number of subcarriers in one 

carrier 

𝑀𝑐 
Maximum number of non-anchor carriers 

can be allocated 

𝑀𝑠 
Maximum number of subcarriers can be 

supported 

𝑊𝐵 The weight to decide Part B resource 

𝑊𝑆 The success weight of the reward function 

 

In the original Q-learning approach, the system calculates 

the Q values for the states with all possible actions denoted as 

Q(s, a) in the Q-table and recursively updates the Q-table 

according to the reward function. The learning rate α and 

discount γare applied to adjust the weight for the actual value 

concerning the predicted value when calculating the new Q 

values. It is worth noting that Q-table may keep expanding in 

each round, and the calculation of the Q-table needs a quite 

large computing overhead. Instead, of Q-table, DQN adopts 

the neural network to determine the Q-value. The use of neural 

networks can resolve the problem of inflation of the Q-table 

and speed up the convergence of the model. Figure 2 and 

Figure 3 show the operational flow and internal architecture 

with the reward function of DQN, respectively. 

 

 

Figure 2. Operational flow of DQN 

 

 

Figure 3. Reward function and internal architecture of DQN 

 

As shown in Figure 2, eNB provides the observed 𝐴𝑆, 𝐴𝐶, 

and 𝐴𝐼 to the DQN to predict required subcarriers in part A. 

In Figure 3, the eval_net and target_net of DQN perform the 

parameter adjustment and the prediction of the learning model, 

respectively. The eNB keeps observing the attribute [state (s), 

action (a), reward value (r), and new state (s’)] and saves them 

for reference in the follow-up training procedure. The saved 

attributes provide the experience replay for learning and are 

recorded from continuous observations. It is worth noting that 

the continuous experience may affect the convergence caused 

by gradient descent towards the same direction. Therefore, the 

attributes shall be randomly selected for training. During the 

training, the Q_target adopted by eval_net is not obtained 

directly from the reward of the actual state; however, it is 

obtained from the reward calculation of the target_net by 

applying the actual state. The eval_net adjusts the weights and 

biases of its neurons during the training procedure. The 

target_net updates its weights and biases during the training 

procedure. It inherits the parameters from the target_net, 

denoted as assign (0–3), after the training. Figure 4 shows the 

parameters of the assign (0–3) in the neural network. The 

neural network size applied in the proposed scheme, which is 

simplified from [14], is one hidden layer with 1536 neurons 

and one output layer with 768 neurons. 

 

 
Figure 4. “Assign” parameter in the neural network 
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As mentioned above, the allocation of subcarriers is per 

anchor carrier basis. Thus, more 𝑁𝑆𝑢𝑏  subcarriers will be 

provided for allocating one non-anchor carrier. After 

predicting the subcarriers of part A ( 𝑃𝐴 ), the proposed 

algorithm considers whether it is worth allocating more non-

anchor carriers. The decision shall consider the predicted 𝑃𝐴 

and the collision status to determine the actual subcarriers to 

be allocated in part A (𝑅𝐴) and part B (𝑅𝐵). Figure 5 presents 

the decision procedure of the proposed algorithm. In addition 

to 𝑃𝐴 , the number of collided subcarriers 𝑁𝐶  reflects the 

congestion status in RAP. The collision of each subcarrier 

means at least two UEs access the same subcarrier. Therefore, 

we can assume that there are 𝑁𝐶*𝑊𝐵 (𝑊𝐵 ≥ 2) collided UEs 

in the previous RAO. As shown in part inside the dashed 

rectangle in Figure 5, the value of (𝑃𝐴+𝑁𝐶*𝑊𝐵) represents the 

number of subcarriers to be allocated in part A if it is less than 

the maximum number of subcarriers that can be offered 

(i.e.  𝑀𝑠 ). For each newly allocated non-anchor carrier, its 

𝑁𝑆𝑢𝑏  subcarriers will be totally allocated for part B or 

partially shared with part A according to whether the above 

(𝑃𝐴+𝑁𝐶*𝑊𝐵) value is divisible by 𝑁𝑆𝑢𝑏 or not. 

 

 

Figure 5. Procedure of subcarriers allocation for parts A and B in PRARA 

 

 

 

 
 

Figure 6. Random access procedure of devices in PRARA 

 

 

 

 

 

The UEs issue the initial random access using the 

subcarriers provided in part A and examine whether there is 

any subcarrier provided in part B in the next RAO or not. It 

will contend with the subcarriers of part B if 𝑅𝐵 is available 

if it collides with part A; otherwise, it will enter the backoff 

stage before the arrival of its next RAO. Figure 6 shows the 

operational procedure of the UE. Note that UE can still 

randomly access one of the subcarriers in part A after backoff. 

This is the main reason why the proposed algorithm first 

allocates the subcarriers for part A. 

 

4  Experimental Results 

 

To evaluate the performance of the proposed scheme, we 

performed exhaustive simulations and compared it with the 

rule-based scheme in [5]. Table 2 presents the parameters 

adopted during the simulations. 
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Table 2. Simulation parameters 

Parameters Values 

Traffic model 
Periodical Beta (3,4) 

distribution 

Duration of traffic period 

(T) 
600 s 

RA period 1280 ms 

𝑊𝐵 2 

Number of anchor carrier 1 

Max. non-anchor carrier 15 

𝑁𝑆𝑢𝑏 48 

Max. retransmission 

times (rtx) 
10 

Backoff time U (0,256*2retx) 

α 0.0001 

γ 0.3 

ε 0 

 

The traffic model is assumed to be periodically beta 

distributed with parameters 3 and 4. Figure 7 shows the 

histogram of the traffic model. 

 

 

Figure 7. Traffic model of simulations 

 

(1) Rewarding Function Design 

The proposed scheme seeks the tradeoff between the low 

collision ratio and high resource utilization. The reward 

function is designed to benefit the number of successful 

subcarriers 𝐴𝑆 , and decrease the reward for the number of 

collided subcarriers 𝐴𝐶 , and the number of idle subcarriers 

𝐴𝐼 as shown in equation (1). 

 

𝑊𝑠 = 𝑁𝑠 ∗ 𝑆 − 𝑁𝐶 − 𝑁𝐼   (1) 

 

The parameter S is adopted to control the elastic of the 

subcarrier allocation. The higher value of S increases the 

preference for success subcarrier and results in allocating 

more radio resources for random access. Note that the above 

reward function tends to provide one subcarrier to achieve a 

higher reward value when S is 2, especially in heavy loads. 

Most subcarriers collide in heavy loads, and the reward from 

the successful subcarrier is only two times that of the collided 

subcarrier. The better way to obtain a higher reward value is 

to provide fewer subcarriers to reduce the number of collided 

subcarriers in equation (1). The beta distribution is adopted as 

the traffic model. Additionally, the low load (30K UEs/period), 

medium load (50K UEs/period), and high load (70K 

UEs/period) are provided during the simulations. The 

experiment results compare the proposed schemes to the 

results of the rule-based scheme [5] by adjusting the parameter 

S of the reward function. However, the case of S = 2 (i.e. 

𝑊𝑆 = 2) is not applied to the heavy load for the above reason. 

Figure 8 shows a preliminary comparison of the reinforcement 

learning (with 𝑊𝑆 = 3 ) and rule-based approaches. To 

observe the allocation in detail, we examine the numbers of 

the random access arrivals and the allocated subcarriers in one 

cycle of the traffic model. The reinforcement learning scheme 

was adopted to allocate the subcarriers of part A in the 

proposed PRARA scheme. Therefore, only the RA arrivals 

and associated allocations in part A are observed. It illustrates 

that the number of subcarriers allocated by the proposed 

scheme is very close to the actual arrivals. However, the rule-

based scheme allocates much more subcarriers than the actual 

arrivals. Additionally, the proposed scheme allocates fewer 

subcarriers than the actual arrivals in some frames because of 

the conservative allocation by applying S = 3. 

 

 

Figure 8. Comparison of subcarrier allocation of the proposed 

scheme (𝑊𝑆 = 3) and rule-based scheme 

 

(2) Simulation Results 

Figure 9 shows the performance comparison of subcarrier 

collided rates for different traffic loads. In the low traffic load, 

the proposed PRARA scheme performs similarly to the rule-

based scheme when S is greater than 6 (i.e. 𝑊𝑆 = 7  and 

𝑊𝑆 = 8 ). Additionally, the proposed scheme can achieve 

lower collided rates than the rule-based scheme for medium 

and high traffic loads. It is worth noting that the proposed 

scheme achieves a lower collided rate when S is greater than 

or equal to 5 in high traffic load. 

 

 

Figure 9. Comparisons of the subcarrier collided rates 

 

Figure 10 compares the performance of the average 

random access delay. The results show that the proposed 

scheme achieves better delay performance than the rule-based 

scheme when S is greater than or equal to 4 in the three 

different traffic loads. This is because the design of the 

subcarriers in part B provides the UE to reissue RA without 
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entering the backoff procedure, as shown in Figure 6. 

Therefore, it can reduce the delay time if UE successfully 

accesses the subcarrier in part B. 

 

 

Figure 10. Comparison of the average access delay 

 

Note that the average delay of the proposed scheme 

decreases when S becomes larger, except for the cases of  

𝑊𝑆 = 8 in the medium and high traffic loads. The average 

delay of 𝑊𝑆 = 8 is slightly higher than that of  

𝑊𝑆 = 7. This is because the number of subcarriers allocated 

in part B is the residual subcarriers after the allocation for part 

A under the constraint of the maximum number of subcarriers 

that can be provided for RA, as illustrated in Figure 5. 

Additionally, the number of subcarriers allocated in part A 

increases as the value of S becomes large. We examine the 

subcarrier allocation in parts A and B in one traffic period. 

Figure 11(a) and Figure 11(b) provide the allocation results of 

the cases 𝑊𝑆 = 7 and 𝑊𝑆 = 8, respectively. It shows that 

part B can still be allocated with some subcarriers when 𝑊𝑆 

equals 7. However, there is no subcarrier allocated in part B 

for the case of 𝑊𝑆 = 8 because all subcarriers are allocated 

in part A. If there is no subcarrier allocated in part B from 

frame 145 to 265, UE can not reissue the RA immediately after 

the collision. Without the subcarrier in part B, the collided UE 

is required to perform backoff procedure, and, therefore, 

results in a longer delay. 

 

 
(a) 𝑊𝑆 = 7 

 

 
(b) 𝑊𝑆 = 8 

Figure 11. Allocations of subcarriers in parts A and B for 

different 𝑊𝑆 
 

Figure 10 shows that the proposed PRARA achieves a 

lower average delay than the rule-based scheme when S is 

greater than or equal to 4, especially for the medium and high 

traffic loads. The larger the value of S, the more easy the 

prediction for the required subcarriers. Although allocating 

more subcarriers can reduce the collision rate and delay time, 

whether the subcarriers are effectively used is a critical issue 

from the resource allocation perspective. Table 3 presents the 

results of the average allocated subcarriers, non-anchor 

carriers, and the use of the rule-based and the proposed 

PRARA scheme (S = 4 to 8).  

 

Table 3. Simulation results of subcarrier allocation and 

utilization 

Schemes 

50K UEs/period 70K UEs/period 

Ave. 

allocated 

subcarriers 

Ave. 

allocated 

non-anchor 

carriers 

Ave. 

utilization of 

subcarrier 

Ave. 

allocated 

subcarriers 

Ave. 

allocated 

non-anchor 

carriers 

Ave. 

utilization 

of 

subcarrier 

Rule 

based 

359.858 6.497 29.624% 465.578 8.700 32.020% 

PRARA 

(Ws =4) 

325.636 5.784 32.724% 433.788 8.037 34.341% 

PRARA 

(Ws =5) 

342.787 6.141 31.097% 445.188 8.275 33.477% 

PRARA 

(Ws =6) 

354.252 6.380 30.095% 449.632 8.367 33.154% 

PRARA 

(Ws =7) 

375.648 6.826 28.385% 457.508 8.531 32.593% 

PRARA 

(Ws =8) 

383.524 6.990 27.803% 467.487 8.739 31.899% 

 

The results show that the proposed scheme allocates fewer 

subcarriers and has higher utilization than the rule-based 

scheme in medium traffic load when S equals 4, 5, or 6. For 

the high traffic load, the proposed scheme also performs better 

than the rule-based scheme when S equals 4, 5, 6, or 7. 

According to the simulation results, the selection for the value 

of S shall consider the traffic load and the allowable radio 

resource for random access. This parameter can be applied as 

the tradeoff role in radio resource management. 

 

5  Conclusions 
 

In this paper, we propose the reinforcement learning-based 

subcarrier allocation scheme to deal with random access from 

mass IoT devices in the 3GPP NB-IoT network. The proposed 

PRARA scheme allocates the subcarriers in two parts. The 

number of subcarriers provided in part A is determined from 

the prediction of the reinforcement learning model and the 

number of collided subcarriers in the previous RAO. 

Additionally, subcarriers allocated in part B allow the collided 

device to reissue the access without a backoff procedure to 

reduce the random access delay. The proposed learning model 

is rewarded by the access conditions of subcarriers, i.e. 

success, idle, or collision. The parameter S is applied to adjust 

the elasticity of the prediction. We conducted exhaustive 

simulations to evaluate the effectiveness of the proposed 

scheme. The results show that the proposed PRARA scheme 

achieves a lower collision rate, delay time, and allocated 

subcarriers than the rule-based scheme [5]. It is noted that the 

subcarrier allocation is in per carrier basis, not in per 

subcarrier, therefore, this issue is very critical from radio 

resource management point of view. The simulation results 

also show that the larger value of S leads the learning model 

to allocate more subcarriers in part A to reduce the collision 

rate. However, it results in a shortage of the number of 

subcarriers allocated in part B, and the access delay time may 

increase. The design of an adjustable reward function, such as 
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a deep deterministic policy gradient [15], could be a possible 

approach to solving this issue, which is one of our ongoing 

research directions. 
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