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Abstract 
 

5G is characterized by ultra-low latency and the 

deployment of large-scale IoT environments. IoT devices with 

weak security can cause security problems such as network 

failures in 5G. To solve this problem, automated intrusion 

detection research using ML was being conducted. In previous 

studies, detection research using ML in the wired network 

environment was active, but it was relatively insufficient in the 

5G network. In addition, the vast amount of traffic in IoT 

devices can create latency problems for intrusion detection 

with ML, making it difficult to achieve ultra-low latency 5G 

service objectives. Therefore, this study analyzed the meaning 

of the performance and required time of an optimized single 

ML model and ensemble learning experiment to detect in real 

time while ensuring high detection performance of large-

capacity DDoS in 5G network. When the 5G GTP 

encapsulated traffic was collected and binary classification 

was performed, the optimized single ML model performed 

more than 99%. Especially, compared with ensemble learning, 

the experimental results showed similar performance and 

reduced detection time by at least 34 times. As a result of the 

experiment, it was shown that a single ML model optimized 

for detecting IoT DDoS in 5G with ultra-low latency is 

significant. 

 

Keywords: 5G mobile network, Machine learning, Binary 

classification, IoT DDoS, DDoS detection 

 

1  Introduction 
 

As the number of internet of things (IoT) connected to the 

5G network increases, the risk of 5G network DDoS attacks is 

increasing. IoT devices may cause security issues such as 

network failure (delay) in 5G core network devices due to 

various security issues [1-2]. This can lead to security issues 

due to infringement of availability [3-4]. Therefore, research 

is needed to analyze and detect IoT traffic in 5G mobile 

networks. 5G is characterized by ultra-low latency and the 

deployment of large-scale IoT environments. To prevent this, 

a security solution is needed to detect attacks in 5G [5-9]. To 

solve this problem, interest in automated intrusion detection 

using ML is increasing. However, the huge amount of data 

generated from 5G IoT devices can bring latency problems to 

intrusion detection using ML. This may give difficulty in 

achieving the purpose of ultra-low latency 5G network service. 

Therefore, in order to provide ultra-low latency 5G service, it 

is important to detect in real time while guaranteeing detection 

performance even for high-volume traffic of the 5G network. 

Representative methods for improving detection performance 

include hyperparameter tuning and ensemble learning [10-11]. 

Hyperparameter tuning is the process of finding the optimal 

combination of hyperparameters that greatly affect 

performance and is used to implement the optimal training 

model. Ensemble uses multiple learning algorithms to derive 

more accurate predictions but has high learning and detection 

costs (time required). Therefore, research is needed to improve 

the detection performance of large-capacity DDoS attacks in a 

5G network environment and to detect them in real time. 

Research to analyze attack detection performance by 

optimizing ML models in a wired network environment is 

being actively conducted [12-18]. In addition, other previous 

studies conducted attack detection studies using ML models in 

5G networks [19-22]. However, studies that consider 

hyperparameter tuning to optimize ML models in 5G networks 

are currently lacking.  

The 3rd Generation Partnership Project (3GPP) has 

defined the network data analytics function (NWDAF), a 

network function that integrates ML into the 5G network [23]. 

It plays a major role in collecting and analyzing data to operate 

the network. However, NWDAF does not deal with security 

data. Therefore, to strengthen the security of 5G networks, 

research is needed to internalize security in the network.  

In this study, a single model optimization experiment was 

performed to detect large-capacity DDoS attacks with high 

performance in a 5G network environment. Then, the time 

required for each optimized single model and ensemble 

learning experiment was analyzed to study a model suitable 

for real-time detection. The configuration of the 5G network 

dataset is as follows. The dataset was constructed by collecting 

and processing packets through the 5G testbed directly built 

with the wired network DDoS attack dataset (Kitsune). The 

ML algorithms for binary classification of attacks were used: 

Decision Tree (DT), Random Forest (RF), K-Nearest 

Neighbors (KNN), and Support Vector Machine (SVM). We 

chose hyperparameters and cv fold values as factors for 

optimizing the models and studied the changes affecting the 

respective models by sequentially changing the values of that. 

The experimental results confirmed that the values of 

hyperparameters and cv fold, which play a major role in each 

model, are important elements for accuracy. The performance 

was improved by a comparative analysis of all experimental 

results. The following are the main contributions of the paper: 



1050 Journal of Internet Technology Vol. 23 No. 5, September 2022 

 

 

 First, this study established a 5G testbed environment 

to detect IP-based DDoS traffic in a 5G network and 

collected and utilized 5G GTP encapsulation traffic. 

 Second, we performed optimization for each ML 

algorithm to improve 5G DDoS detection 

performance and compared/analyzed them. 

 Third, we noted that it is important to fast detection 

of DDoS attacks in the 5G core (5GC) to meet the 

ultra-low latency 5G network service objective. The 

experiments showed the optimized single ML model 

has a lower required time and the similar detection 

performance compared to the ensemble technique. 

 

The structure of this study is as follows. Section 2 reviews 

studies related to our study. Section 3 provides a detailed 

explanation of the concept of the 5G network and 

hyperparameter tuning used in this study. Section 4 describes 

the tuning method for improving DDoS detection performance 

in 5G networks. Section 5 shows the performance results and 

discussion of the ML model according to the tuning method 

described in Section 4. Section 6 presents the conclusions of 

this study and the direction for future research. 

 

2  Related Works 
 

In this section, we present studies similar to ours. In related 

studies, we introduce studies that performed hyperparameter 

tuning to improve DDoS detection performance on wired 

networks and studies that performed DDoS detection on 5G 

mobile networks. 

 

2.1 DDoS Detection with ML Model in Wired 

Network 
 

Sanchez et al. [12] used ML models (DT, KNN, Logistic 

Regression (LR), RF, and Multi-layer Perceptron (MLP)) that 

applied hyperparameters optimized by a grid search to detect 

DDoS attacks effectively in network traffic. The experiment 

was conducted with benign/malicious binary classification 

and showed over 98% accuracy using RF and DT for the CIC 

dataset. These previous work showed that if hyperparameter 

tuning is applied to an ML model, it can perform similar to 

deep learning [12]. 

Ma et al. [13] proposed an optimization model that adjusts 

the hyperparameters of Gaussian kernel SVM for anomaly 

detection in network traffic. The experiment was conducted 

with benign/malicious binary classification (for three datasets), 

which showed an accuracy of 99.98%.  Through the 

experiment, these previous work confirmed that their classifier 

was better than other existing ML-based classifiers while 

saving computational costs [13]. 

Injadat et al. [14] proposed an effective anomaly detection 

framework that uses optimal parameters of SVM-RBF, RF, 

and RNN using the Bayesian Optimization (BO) technique.   

The BO method was applied to find the global minimum of 

the objective function and set the parameters of the 

classification algorithm. Overall, the BO-applied KNN 

showed optimal performance in terms of accuracy, precision, 

recall, and false alarm rate for the UNB ISCX 2012 dataset. 

Misbahuddin et al. [15] clustered unlabelled traffic into 

normal and distributed DDoS and used optimized 

hyperparameters-applied KNN, SVM, and RF algorithms to 

verify them. The hyperparameter optimization was performed 

using Elbow (for KNN) and GridSearchCV (for SVM and RF), 

and their results were compared to the score obtained using the 

default hyperparameters. All three ML algorithms had 

improved accuracy when optimized hyperparameters were 

applied. 

Injadat et al. [16] proposed an optimized ML-based 

Internet of Things (IoT) attack detection framework, which 

was constructed by combining a Bayesian optimization 

Gaussian Process (BO-GP) algorithm and a DT classification 

model. The BO-GP algorithm was used to maximize the 

detection performance by optimizing the hyperparameters of 

DT. As for the framework’s performance, the testing accuracy 

was 99.99% for the Bot-IoT dataset, showing a superior 

detection rate compared to the default DT. 

Ahmad et al. [17] proposed a framework using ML (RF, 

SVM, and ANN) with feature selection and hyperparameter 

tuning to detect malicious IoT traffic efficiently in a network-

based intrusion detection system (NIDS). The hyperparameter 

tuning of RF and SVM was performed through GirdSearchCV. 

In the experimental results, the RF algorithm showed a binary 

classification accuracy of 98.67% and a multiclass 

classification accuracy of 97.37% for the Bot-IoT dataset. 

Idhammad et al. [18] proposed an online sequential semi-

supervised ML approach for DDoS detection. In the 

experiment, the hyperparameters of the ML algorithm were 

adjusted using a procedure based on the GridSearch CV 

method to achieve high performance. Next, a combination of 

hyperparameters that produce high performance was selected 

to assess the performance of the proposed ML approach. The 

experiment showed 98.23%, 99.88%, and 93.71% accuracy 

for the NSL-KDD, UNB ICSX 12, and UNSW-NB15 datasets, 

respectively. 

Previous studies used optimized hyperparameters-applied 

ML for efficient DDoS attack detection in wired networks [12, 

17-18]. Particularly, other studies [13-16] showed 

performance improvement in detection using optimized 

hyperparameters over the existing default models. However, 

hyperparameters of the single ML model were not analyzed in 

order to optimize to perform DDoS detection with ultra-low 

latency using ML in the 5G environment, so there was a limit 

to applying it to detection in the 5G core network. 

 

2.2 5G Network DDoS Detection with ML Model 
 

Yadav et al. [19] proposed a DL algorithm to detect vast 

amounts of IoT malicious network traffic on 5G networks. For 

implementation purposes, they used XGBboost, Adaboost, 

Extra Tree Classifier, and Random Forest Classifier, which 

were ensemble-based ML techniques. The proposed algorithm 

and four additionally provided algorithms (XGBboost, 

Adaboost, ExtraTree, RF) showed 99.76%, 98.4%, 98.3%, 

98.3%, and 98.6% accuracy, respectively, for the UNSW 

NB15 dataset. 

Li et al. [20] proposed an ML-applied intelligent IDS 

based on a software-defined 5G architecture. The proposed 

classification algorithm, KA, was constructed by combining 

k-Means++ and Adaboost. In the experiment, KA and the 

compared algorithms (Gradient Boosting DT, DT, and SVM) 

showed 94.48%, 93.09%, 92.65%, and 90.14% accuracy, 

respectively, for the NSL-KDD dataset. 

Alamri et al. [21] analyzed an appropriate ML to protect 

SDN-based 5G networks from DDoS attacks. This previous 



A Comparison Experiment of Binary Classification for Detecting the GTP Encapsulated IoT DDoS Traffics in 5G Network 1051 

 

 

work prepared an SDN-based 5G network with datasets 

(CICDDoS 2019, NSL-KDD) to build and test the proposed 

ML model. In the experimental results, the XGBoost 

algorithm improved the security performance of the SDN 

controller over the other ML algorithms (LR and RF) 

compared. 

Kim et al. [22] studied a feature selection-applied ML 

method to detect IoT DDoS attacks with low time complexity 

in a 5G mobile network environment. These work constructed 

a virtual 5G experimental environment and used the Kitsune 

dataset to build a 5G GTP-U dataset [22]. In the experimental 

results, the DT, RF, KNN, and Stacking algorithms showed 

88.69%, 92.03%, 82.46%, and 97.18% accuracy, respectively. 

Previous studies used ML to detect DDoS attacks 

effectively on 5G mobile networks [19-22]. Especially final 

previous work is similar to our study in that it constructed a 

virtual 5G environment with a Kitsune dataset, and collected 

a 5G dataset on its own, which was used to perform detection 

[22]. They used one gNB in the 5G testbed, however, we have 

experimented in a more realistic 5G environment by building 

multiple gNBs. In addition, these studies did not consider 

hyperparameter tuning for performance improvement [19-22]. 

As far as we know, hyperparameter optimization research for 

DDoS detection is focused on wire network environments. 

Therefore, we performed a single ML model optimization 

experiment through hyperparameter tuning to effectively 

perform IoT DDoS detection with ultra-low latency in a 5G 

mobile network environment. 

 

3  Background 
 

3.1 5G Core Network and SBA 
 

5GC network is part of the 5G network system (5GS) [24]. 

The 5GC employs a service-based architecture (SBA), which 

divides the necessary functionalities into different network 

functions (NFs). In addition, 5G SBA consists of control and 

user plane separation (CUPS). The NFs on the 5GC, which are 

linked to the base station and send or control user data, is the 

Access and Mobility Function (AMF), Session Management 

Function (SMF), and User Plane Function (UPF). An AMF is 

a function that manages network access and mobility, and an 

SMF is a function that manages sessions between terminals 

and the network. AMF and SMF are responsible for the control 

plane where control signals such as communication 

connection establishment are processed. UPF is a function that 

provides user packet routing between the base station and data 

network (DN) and connections between devices. It handles the 

user plane where user data is transferred. 

The NWDAF is one of the 5GC NFs defined by 3GPP and 

serves to provide network analysis information according to 

the request of the NF. NWDAF is composed of two types: 

Analytics logical function (AnLF), which serves as an 

interface to other NFs, and Model Training logical function 

(MTLF), which is an ML-trained model, for analyzing 

network data with AI technology [23, 25]. As such, 5G defines 

NFs using ML techniques to construct data collection and 

analysis in the 5GC. This study has the purpose of prior 

research to build Security NF grafted with ML technology like 

NWDAF in 5GC. 

 

3.2 5GC NF and Interface N3 

The UPF acts as an external PDU session point of 

interconnection to DN and supports N3, N4, and N6 interfaces. 

The N3 interface is between the RAN and the UPF [26]. And 

GPRS Tunnelling Protocol (GTP) is a protocol for 

encapsulating and tunnelling IP packets sent to and from users 

on the Internet/packet data network. The GTP has been used 

in NR (5G), LTE (4G), UMTS (3G), and GPRS (2.5G) Core 

Networks [27-29]. GTP is a set of three separate protocols: 

GTP Control (GTP-C), GTP User (GTP-U), and GTP Prime 

(GTP’). GTP-C is used within the GPRS core network for 

signaling between gateway GPRS support nodes (GGSN). 

GTP-U carries user data within the GPRS core network, and 

between the radio access network and core network. The GTP-

U supports multiplexing of the traffic from different packet 

data unit (PDU) sessions by tunnelling user data over the N3 

interface in the core network [26]. GTP’ uses the same 

message structure as GTP-C and GTP-U [30]. We collected 

GTP-U packets directly from the N3 interface of the 5GC. 

Also, in this paper, GTP means GTP-U. 

 

4  Experimental Methodology 
 

4.1 Experimental Flow 
 

The experimental order is (a) 5G GTP Dataset 

Configuration and (b) ML Model Performance Optimization 

shown in Figure 1. 5G GTP dataset configuration is the task 

of configuring the raw dataset collected from the wired 

network into the 5G network dataset. A 5G dataset was created 

by conducting an experiment in the testbed where the 5G 

environment was built. In ML model performance 

optimization, an ML model tuning was conducted to increase 

the accuracy of binary classification of 5G GTP packets as 

benign and malicious. Then, the results of optimizing the 

performance of the single ML model were summarized by 

comparing and analyzing the experimental results. 

 

4.2 Experiment Environment 
 

Configuring 5G GTP Dataset requires 5G Testbed and 

benign and malicious packet datasets of the wired network. In 

this section, how to configure the 5G Testbed, its structure 

map, and the selected dataset are explained. 

To build a 5G testbed, UERANSIM and Open5GS were 

used. Figure 2 shows the 5G testbed structure map. 

UERANSIM is an open-source available on GitHub and 

supports 5G UE and RAN (gNB). UE and gNB can be viewed 

as 5G mobile phone and base station. UERANSIM support to 

be executed with Open5GS and Free5GC, which are 5GC 

network open sources [31]. UERANSIM can be connected to 

the 5GC to test the functions. We have built more than one 

UERANSIM. Through this, an experiment environment as 

similar to reality as possible was constructed by using as many 

UEs and gNBs as possible for the experiment. Open5GS is an 

open-source available on GitHub and supports the 5GC based 

on the 3GPP. Currently, it supports 5GC NFs including AMF, 

SMF, PCF, UDR, UDM, NSSF, AUSF, NRF, and UPF [32]. 

We have built the 5G testbed so that the UEs are connected to 

the 5GC via gNBs. 

The Kitsune Network DDoS Attack Dataset, which has 

been open to Kaggle since 2018, was used as the benign and 

malicious packet dataset of the wired network [33-34]. The 
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Kitsune provides the Original Network Packet (.pcap) and 

Benign/Malicious label (.csv) for 9 types of attacks that can be 

seen in real network intrusions. The nine attacks are OS Scan, 

Fuzzing, Video Injection, ARP MitM Active Wiretap, SSDP 

Flood, SYN DoS, SSL Renegotiation, and Mirai [33]. In this 

study, all nine are not used, but seven attacks are used except 

for Video Injection and Mirai. When we checked the type of 

source IP for each attack, other attack types had at least 2 to 8 

source IP types, whereas Mirai had a maximum of 21 source 

IPs, so it was excluded from the experiment. Also, when 

checked the types of protocol, only Video Injection include the 

Logical-Link Control (LLC) protocol of the ethernet layer, so 

it was excluded.

 

 

4.3 5G Dataset: GTP encapsulated IoT DDoS 

Traffics 
 

5G GTP dataset configuration is a task to configure 

Kitsune dataset (.pcap) as 5G GTP dataset (.csv). Figure 3 

describes the 5G GTP dataset configuration procedure. 

First, the original network packet (.pcap) provided by the 

Kitsune dataset is divided using a benign/malicious label 

(.csv). This operation is performed to classify benign and 

malicious through binary classification. When this operation 

is completed, the original network packet of 7 attacks is 

divided into 7 benign pcap files and 7 malicious pcap files. 

Second, the benign/malicious pcap file divided by attacks 

is divided once more based on the source IP (20 types). This 

operation is performed to proceed with the experiment by 

setting the UE and gNB of the 5G testbed based on the source 

Figure 2. 5G Testbed structure map 

 

Figure 1. Experimental order 



A Comparison Experiment of Binary Classification for Detecting the GTP Encapsulated IoT DDoS Traffics in 5G Network 1053 

 

 

IP. The network IP address is composed of the network ID and 

host ID. The IP address is distinguished into the network ID 

and host ID through various classes (e.g. A, B, C, D, and E 

classes). In this study, we distinguished between the network 

ID and host ID based on class C. As shown in Table 1, gNBs 

were specified based on the network ID, and UEs were 

specified based on the host ID. Then, experiments were 

conducted by dumping packets according to the UE and gNB 

specified for each IP. The number of gNBs and UEs used in 

the experiment is 7 and 20, respectively.

 

 

Table 1. gNB-UE allocation by source IP bandwidth  

gNB UE Source IP 

gNB 1 UE 1~5 192.168.2.1~15 

gNB 2 UE 6 192.168.2.3 

gNB 3 UE 7~8 192.168.100.5~222 

gNB 4 UE 9~17 169.254.3.1~107 

gNB 5 UE 18 169.254.176.87 

gNB 6 UE 19 169.254.174.17 

gNB 7 UE 20 0.0.0.0 

 

Third, the GPRS-Tunnelling experiment was conducted 

using the 5G testbed. First, packets are played in the UE 

specified based on the source IP, and then the packet 

transmitted to the 5GC is collected. When UEs play packets 

on the 5G testbed, the packet passes through the 5GC NF, the 

UPF, through the gNB. The network interface through which 

this packet passes is N3. In the N3 network interface, a GTP 

header is added to the existing packet through GPRS-

Tunnelling. We captured GTP packets passing through the N3 

interface. 

Fourth, GTP packets by each source IP collected from the 

5G testbed are again combined for each attack into 7 benign 

pcap files and 7 malicious pcap files. 

Fifth, to perform ML binary classification, feature 

extraction is performed to convert the pcap file to a csv file. 

Considering the IP types (IPv4, IPv6) and protocol types 

(ICMP, ARP, TCP, UDP, IGMP, GTP) of the packets 

collected in the 5G testbed, 93 header information was 

extracted using Wireshark’s Tshark. And labels are specified 

for binary classification. Labels for benign and malicious are 

set to 0 and 1, respectively. 

When all steps are completed, the 5G GTP dataset (.csv) 

is finally configured Table 2. The number of benign and 

malicious packets is 6,500 for each attack, for a total of 45,500 

benign and 45,500 malicious packets. The ratio of the number 

of benign and malicious packets used in the experiment is 

50:50. 

 

Table 2. Dataset for binary classification experiments 

Type Attack name (count) Total (label) 

Benign 

Active Wiretap (6500) 

45500 (0) 

ARP MitM (6500) 

Fuzzing (6500) 

OS Scan (6500) 

SYN DoS (6500) 

SSDP Flood (6500) 

SSL Renegotiation (6500) 

Malicious 

Active Wiretap (6500) 

45500 (1) 

ARP MitM (6500) 

Fuzzing (6500) 

OS Scan (6500) 

SYN DoS (6500) 

SSDP Flood (6500) 

SSL Renegotiation (6500) 

Active Wiretap (6500) 

 

4.4 Experiments Design 
 

Pre-processing before ML model optimization consists of 

(1) Data Cleaning and (2) Data Transformation. Data cleaning 

Figure 3. 5G GTP dataset configuration procedure 
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removes a feature (33) that has no value for all data among the 

extracted features (93). Data transformation does the 

following: Converts a hexadecimal number to a decimal 

number. The object-type variable and the float-type variable 

are transformed into an Integer-type variable. For IP features, 

if Wireshark Tshark is used, “.” is extracted as it is and saved 

as an object type variable (e.g., 192.168.2.1). For the 

experiment, remove “.” and convert it to an integer type 

variable. 

In the ML model performance optimization [35-37], ML 

model optimization steps were conducted to increase the 

accuracy of binary classification of 5G GTP packets into 

benign and malicious ones. Accuracy was used as a 

performance evaluation metric for ML models. DT, RF, KNN, 

and SVM are used as the ML algorithm.The tuned values are 

hyperparameter [GridSearchCV] and cv fold value [Stratified 

K-Fold]. 

The ML model optimization was performed in three orders: 

First, the hyperparameters were tuned for each ML algorithm. 

The method used was grid search, and the cross-validation 

value was set to 5, which is the default. Second, the cross-

validation values were tuned for each ML algorithm. The 

method used was Stratified K-Fold, and the hyperparameter 

value was set to default. Third, the tuning was performed by 

applying the first hyperparameter result and the second cross-

validation result comprehensively. 

 

4.4.1 Single ML Model Optimization 

 

(1) Hyperparameter. Hyperparameter tuning was 

performed to optimize the ML model for each of the four 

algorithms performed in the step. Grid search can specify 

hyperparameters and values to be tuned. 

 

Table 3. GridSearchCV hyperparameter values 

Algorithm Hyperparameter 

DT -max_depth: range (1, 20, 1) 

 -min_samples_split: range (2, 20, 1) 

 -min_samples_leaf: range (1, 20, 1) 

RF -max_depth: range (1, 20, 1) 

 -min_samples_split: range (2, 20, 1) 

 -min_samples_leaf: range (1, 20, 1) 

KNN -weights(uniform), n_neighbors:  

range (1, 20, 1) 

 -weights(distance), n_neighbors:  

range (1, 20, 1) 

 -metric(manhattan), n_neighbors:  

range (1, 20, 1) 

 -metric(euclidean), n_neighbors:  

range (1, 20, 1) 

SVM -kernel(linear),  

C: [1, 10, 100, 300, 1000, 3000, 10000,  

30000] 

 -kernel(rbf), 

C: [1, 10, 100, 300, 10000], 

gamma: [0.00001, 0.0001,0.001, 0.01, 0.1,  

1.0, 3.0] 

 

Table 3 shows the types and values of hyperparameters for 

each algorithm in which the step was conducted. 

Three of the same hyperparameters were tuned for DT and 

RF. The step was carried out one hyperparameter at a time. 

Thus, it was performed three times for DT and RF, 

respectively. The tuning was performed for one 

hyperparameter at a time to examine the accuracy change 

trend of ML affected by one hyperparameter and check its 

impact. First, max_depth represents the tree’s maximum depth 

and is a parameter that splits until the class value is perfectly 

determined or splits until the number of data points becomes 

smaller than min_samples_split. The range of the value is 

between 1 and 20, and the value is set to increase by 1 at a 

time. min_samples_split represents the minimum number of 

samples required to split internal nodes, and as its value is set 

smaller, the number of split nodes increases, which may 

increase the possibility of overfitting. Since the minimum 

value that can be set is 2, the value is set to increase by 1 from 

2 to 20. min_samples_leaf represents the minimum number of 

samples that must exist on a leaf node, and it is used to control 

overfitting. 

The most important hyperparameter for performance in the 

KNN algorithm is n_neighbors, which controls the number of 

neighbors to be searched. The value of n_neighbors was set to 

increase in increments of 1 from 1 to 20, and the tuning was 

performed four times in total by changing the weights or 

metric. First, weights is used for the prediction, with uniform 

giving the same weight to each neighbor and distance giving 

greater weights to a nearby neighbor than to a distant neighbor. 

The metric refers to a hyperparameter that changes the 

distance measurement method, and two methods were used: 

Manhattan and Euclidean. 

In SVM, different hyperparameters are selected depending 

on the type of kernel used. Two kernel types were used in the 

step: rbf and linear. In the case of the kernel-linear, data is 

separated linearly. However, since it is impossible to separate 

them perfectly, a strategy that 

allows the placing of data samples in other classes is used. 

The hyperparameter that can control it is C. As the value of C 

decreases, a larger number is allowed, and as it increases, a 

smaller number is allowed. In the step, seven values between 

1 and 30,000 were set, as shown in Table 3. Kernel-rbf maps 

the given data to a high-dimensional space, which is three-

dimensional. This enables the classification of data, which 

could not be classified linearly. There are two 

hyperparameters that help optimize the kernel-rbf: C and 

gamma. C has the same role as that of the kernel (linear). 

Gamma determines the range of data that affects the curvature 

of the decision boundary. As the gamma value increases, the 

decision boundary becomes more curved, and as it decreases, 

the decision boundary becomes closer to a straight line. In the 

step, five values were set for C and seven values for gamma, 

as shown in Table 3. 

(2) CV Fold. CV fold value tuning was performed for 

optimized cross-validation of the four algorithms performed 

in this step. The cross-validation was to perform training and 

evaluation with the training dataset and validation dataset built 

as separate sets to prevent data bias. In the training process of 

the ML model, the fold value is set to divide the data rather 

than dividing it just once, and the performance of the learning 

model between each fold is compared to derive a mean value. 

The stratified K-fold used in the step is a cross-validation 

method used to prevent the distribution from being biased 

toward one side due to a very small or large value of a certain 

label. The tuning step was performed by increasing the fold 

value in increments of one from 1 to 15 for the four ML 

algorithms. The four ML models were all the same as the 
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Scikit-Learn model used in the first step, and default values 

were set for the hyperparameters. 

(3) GridSearch. The step was performed by 

comprehensively applying the hyperparameter results of and 

the cross-validation results. The performance results for the 

hyperparameters are checked for each algorithm in 

hyperparameter step, and the value to be used in this step is 

determined by dividing it into three cases. The first case is for 

one hyperparameter that has the highest degree of influence 

among the values changed regardless of high accuracy. In this 

study, we established the following hypothesis for the degree 

of influence: Subtract the lowest accuracy from the highest 

accuracy. 

 The second case is for one hyperparameter that shows 

high accuracy, regardless of hyperparameters that have a high 

degree of influence. The third case is for one hyperparameter, 

which is the same in the first and second cases. If the first and 

second hyperparameters are different, both cases are dealt with 

in this step, and if the first and second hyperparameters are the 

same, only one case is treated. In cv fold value, the 

performance result is examined based on the optimized fold 

value for each algorithm, and three cases are divided to 

determine the value for optimizing the model: first, the cv fold 

value at the time of the highest accuracy; second, the cv fold 

value at which accuracy changes and the change is maintained; 

and third, if the first and the second are not the same, the lower 

cv fold value between the two to reduce time and calculation. 

 

4.4.2 Comparison of Single model and Ensemble 

 

The experimental results of single ML model optimization 

(excluding SVM) and stacking of the ensemble technique 

were compared. This was to deal with the performance and 

time required for the single ML model optimized through 

comparative experiments to detect IoT DDoS traffic in the 5G 

network environment. Since the accuracy of SVM is 

significantly lower than that of other models, this comparison 

did not address SVM. The base model of Stacking was DT, 

KNN, and SVM-rbf, and binary classification was performed 

using Logistic Regression. The base model excludes RF, the 

algorithmic ensemble technique we used. Since tuning of the 

stacking base model is not performed, both hyperparameter 

and cv fold values were set to default. 

 

 

 

5 Results and Discussion 
 

First, ML model optimization will be described. Finally, 

the results for optimizing the performance of the ML model 

were summarized by comparing and analyzing the three 

experimental results. In addition, a comparative analysis was 

conducted in terms of performance and required time of the 

optimized single ML model and the existing performance 

improvement method, ensemble. Through ensemble learning 

and comparative analysis, a single ML model will confirm its 

usefulness in detecting IoT DDoS traffic in a 5G environment. 

 

5.1 Single ML Model Optimization Result 
 

5.1.1 Hyperparameter Result 

 

The results of hyperparameter tuning for each ML model 

are explained. Figure 4 to Figure 7 shows (1) “Highest/Lowest 

Accuracy” and (2) “The Degree of Influence” for 

hyperparameter cases set in Table 4. 

The performance of the DT algorithm according to the 

change of hyperparameter values was analyzed. As a result, 

the hyperparameter that showed the highest accuracy 

(79.195%) is “min_samples_split (15)”. And the 

hyperparameter that showed the highest degree of influence 

(11.678) is “max_depth”. The highest accuracy of “max_depth” 

is 79.193% when the value is 13, and the lowest accuracy is 

67.461% when the value is 5. 

The performance of RF algorithms according to changes 

in hyperparameter values was analyzed. As a result of the step, 

the hyperparameter that showed the highest accuracy 

(87.418%) is “min_samples_split (15)”. In addition, the 

hyperparameter showing the highest degree of influence 

(27.985) is “max_depth”. The highest accuracy is 86.357% 

when the value is 18, and the lowest accuracy is 58.372% 

when the value is 1. 

We analyzed the performance of the KNN algorithm 

according to the change of hyperparameter values. As a result 

of the step, the hyperparameter that showed the highest 

accuracy (79.684%) is weights: distance, n_neighbors (2). The 

hyperparameter showing the highest degree of influence 

(2.568) is also weights:distance. For this hyperparameter, the 

highest accuracy is 79.684% for n_neighbors (2), and the 

lowest accuracy is 77.116% for n_neighbors (3). In KNN, the 

hyperparameter showing the highest accuracy and influence is 

the same as weights:distance, n_neighbors (2). 

Table 4. Optimization results by all algorithms hyperparameter 

Algorithm Hyperparameter Highest acc (value) Lowest acc (value) The degree of. influence 

DT 

max_depth 79.179% (13) 67.461% (5) 11.678 

min_samples_leaf 79.194% (10) 76.790% (3) 2.374 

min_samples_split 79.195% (15) 76.796% (17) 2.399 

RF 

max_depth 86.357% (18) 58.372% (1) 27.985 

min_samples_leaf 86.892% (2) 73.164% (17) 13.728 

min_samples_split 87.418% (15) 76.995% (2) 10.423 

KNN 

weights:uniform 79.583% (2) 77.125% (3) 2.458 

weights:distance 79.684% (2) 77.116% (3) 2.568 

metric:manhattan 79.222% (2) 78.027% (19) 1.195 

metric:euclidean 79.583% (2) 77.125% (3) 2.458 

SVM-linear C 57.392% (100) 52.215% (300) 5.177 

SVM-rbf 

C: 1 68.679% (gamma:0.00001) 50.456% (gamma:3) 18.223 

C: 10 67.956% (gamma:0.00001) 50.028% (gamma:3) 17.928 

C: 100 67.901% (gamma:0.00001) 50.045% (gamma:3) 17.856 

C: 300 67.853% (gamma:0.00001) 50.056% (gamma:3) 17.797 

C: 1000 71.349% (gamma:0.00001) 50.050% (gamma:3) 21.299 
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Figure 4. Trend of tuning results by DT hyperparameter 

Figure 5. Trend of tuning results by RF hyperparameter 

Figure 6. Trend of tuning results by SVM hyperparameter 

Figure 7. Trend of tuning results by KNN hyperparameter 
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We analyzed the performance according to the change in 

the hyperparameter value of the SVM algorithm. The 

hyperparameters set for SVM are different depending on the 

kernel type. First, the experimental results of SVM-linear will 

be described. As a result of the step, the result value of the 

hyperparameter that showed the highest accuracy (57.342%) 

is C (100). And the result value of the hyperparameter showing 

the highest degree of influence (5.177) is also C (100). The 

following describes the experimental results of SVM-rbf. In 

the trend of accuracy, high accuracy is obtained when the 

value of C is high and the value of gamma is low. Conversely, 

low accuracy is shown when the value of C is low and the 

value of gamma is high. In the experimental results, the values 

of the hyperparameters that show the highest accuracy 

(71.349%) are 1,000 for C and 0.00001 for gamma. 

Furthermore, the values of the hyperparameters that show the 

highest degree of influence (21.299) are 1,000 for C and 

0.00001 for gamma. In the case of SVM-rbf, the same 

hyperparameter values show the highest accuracy and the 

highest degree of accuracy. Comparing the kernel of SVM, 

SVM-rbf (71.349%) shows higher accuracy than SVM-linear 

(57.392%). Among the kernels of SVM, rbf shows good 

performance. 

 

5.1.2 CV Fold Result 

 

Figure 8 shows the trend of accuracy change according to 

cv fold value tuning for each ML model. Table 5 shows the 

results in terms of the highest, lowest accuracy and the 

difference between the highest/lowest accuracy for each ML 

model. In the results, three algorithms (DT, RF, KNN) show 

the same trend. In the trend, the accuracy rises when the fold 

value is below 7. It decreases at a value of 7 but increases again 

afterward and is maintained. For DT, RF, and KNN, the value 

of folds for optimizing performance is determined to be 9, a 

point where the accuracy increases and is maintained, not 8 

where the accuracy starts to rise. 

 

 

In the case of SVM (linear), the accuracy rises and falls 

repeatedly without having a point where the accuracy is 

maintained. For SVM (linear), the value of the number of folds 

for optimizing the algorithm’s performance is determined to 

be 15, which shows the highest accuracy (68.617%) among 

the results. In the case of SVM (linear), the accuracy rises and 

falls repeatedly without having a point where the accuracy is 

maintained. For SVM (linear), the value of folds for 

optimizing the algorithm’s performance is determined to be 15, 

which shows the highest accuracy (68.617%) among the 

results. In the case of SVM-rbf, the accuracy fluctuates, 

increasing and decreasing repeatedly, when the cv fold value 

is below 9, and then increases afterward. Furthermore, it 

shows the trend that the accuracy is maintained starting from 

a point where the value is 12. For SVM-rbf, the value of folds 

for optimizing the algorithm’s performance is determined to 

be 13, a point where the accuracy increases and is maintained, 

not 12 where the accuracy starts to rise. 

 

Table 5. CV fold value results 

Algorithm 
Highest acc 

(value) 

Lowest acc 

(value) 
Diff in. acc 

DT 99.995% (10) 56.705% (2) 43.29% 

RF 99.986% (15) 53.954% (7) 46.032% 

KNN 99.926% (15) 51.724% (2) 48.202% 

SVM-

linear 
68.617% (15) 42.492% (3) 26.125% 

SVM-rbf 66.571% (15) 39.997% (3) 26.574% 

 

5.1.3 GridSearch Result 

 

Hyperparameter tuning and cv fold tuning were performed 

and the results were analyzed, and values for optimizing the 

model were selected. In this section, (1) this tuning is 

performed by synthesizing the results of two steps, and (2) 

comparative analysis is performed to determine which tuning 

shows the highest performance for each algorithm. Table 7 

Figure 8. CV fold value results trend by algorithms 
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shows the experimental results of all stage for each algorithm 

optimization. 

Hyperparameter tuning, which performed only 

hyperparameter tuning without considering cross-validation, 

showed the lowest accuracy in all algorithms except SVM-rbf 

among the three experiments. KNN showed the highest 

accuracy of cv fold tuning, which performed only cross-

validation tuning without considering hyperparameter tuning. 

RF and SVM (linear, rbf) showed the highest accuracy of 

gridsearch result considering both hyperparameters and cross-

validation. It can be seen that DT has the same accuracy as the 

highest accuracy in cv fold tuning and gridsearch. 

 

5.2 Comparison Result of Single Model and 

Ensemble 
 

Table 6 shows the highest accuracy and time required in 

the DT, RF, and KNN experiment results, and the stacking 

accuracy and time required without tuning. As a result, the 

untuned stacking accuracy showed the highest performance. 

In our experiments, DT, RF, and KNN are lower than Stacking, 

but they perform similarly. Therefore, the tuned DT, RF, and 

KNN have relatively lower performance than stacking but 

require significantly less time to train the model. 

 

Table 6. Comparison result of single model and ensemble  

Algorithm Model tuning Acc 
Time 

required 

DT O 99.989% 0.00215h 

RF O 99.964% 0.00328h 

KNN O 99.968% 0.03575h 

Stacking X 99.996% 1.24882h 

 

5.3 Comparison with Previous Works 
 

Most of the previous studies were introduced in Section 2. 

Among the works introduced in Section 2, we would like to 

compare our study with the previous study of 5G Mobile 

Network DDoS detection to examine the differences. We 

compared in terms of (1) Dataset, (2) ML/DL Model, (3) Key 

Approach, and (4) Results. Previous studies commonly 

performed research for anomaly detection using ML in a 5G 

network environment. However, as shown in Table 8, the 

results of all studies are different. Especially, the research 

results of this paper confirmed that a single ML model 

optimized through ensemble learning and comparative 

experiments in a 5G network environment is useful for IoT 

DDoS detection with ultra-low latency. 

 

 

 

Table 8. Comparison with previous works 

Authors Dataset ML/DL Model Key Approach Results 

Yadav et al. 

[19] 

- UNSW-NB15 DL (Softmax) - Binary Classification 

- AutoEncoder 

Improved accuracy 

(99.76%) 

compared to existing IDS 

Li et al. 

[20] 

- KDDCup99 

- NSL-KDD 

ML (KA that combined 

Kmean++ and Adaboost) 

- Binary Classification 

- Feature Selection 

Improved accuracy 

(99.97%) 

compared to existing IDS 

Alamri et al. 

[21] 

- CICDDoS2019 

- NSL-KDD 

ML (XGBoost) - Binary/Multi 

Classification 

- Using Ensemble 

Improved accuracy 

(99.9%) 

of the proposed SDN 

Kim et al. 

[22] 

- Kitsune ML (DT, RF, KNN, 

Stacking) 

- Multi Classification 

- Feature Selection 

Reduced time complexity 

(88.89%) 

and improved accuracy 

(97.18%) 

Our research - Kitsune ML (DT, RF, KNN, 

SVM, Stacking) 

- Binary Classification, 

- Single Model Optimizing 

Improved required time 

(at least 34 times) and 

accuracy (99.98%) 

Table 7. Final single ML model tuning results 

Algorithm 
Hyperparameter CV fold GridSearch 

value Accuracy Fold Accuracy value Fold Accuracy 

DT 
max_depth(13) 79.193% 

9 99.989% 
max_depth(13) 

9 
99.989% 

min_samples_split(15) 79.195% min_samples_split(15) 99.968% 

RF 
max_depth(18) 86.357% 

9 99.867% 
max_depth(18) 

9 
99.964% 

min_samples_split(15) 87.418% min_samples_split(15) 99.989% 

KNN weights:distance(2) 79.684% 9 99.968% weights:distance(2) 9 99.950% 

SVM 

kernel(linear), C(100) 57.392% 15 68.617% kernel(linear), C(100) 15 69.145% 

kernel(rbf), C(1000), 

gamma(0.00001) 
71.349% 13 66.404% 

kernel(rbf), C(1000), 

gamma(0.00001) 
13 84.629% 



A Comparison Experiment of Binary Classification for Detecting the GTP Encapsulated IoT DDoS Traffics in 5G Network 1059 

 

 

 

6 Conclusion 
 

This study conducted a comparative experiment to detect 

large-capacity IoT DDoS traffic in 5G with high performance 

and ultra-low latency. We optimized a single ML model and 

compared it with ensemble learning, which is a conventional 

performance improvement method. In addition, in order to 

consider IoT DDoS traffic of 5G network, a 5G testbed was 

established and GTP encapsulated traffic was collected and 

used. 

Among the optimized single ML algorithms (DT, RF, 

KNN, SVM) used in the experiment, DT, RF, and KNN 

showed more than 99% accuracy. In particular, we confirmed 

that the optimized single ML model has a similar accuracy of 

more than 99% and at least 34 times faster the required time 

compared to ensemble learning, in experiment that 

comparison of optimized single model and ensemble. 

Experimental results shown that the optimized single ML 

model was meaningful in terms of performance and time 

required for real-time IoT DDoS detection in 5G. 

In addition, we presented the performance results of 

optimizing the training model. This was an experiment 

conducted assuming that the performance results for the testset 

would also be good. In the future, research is needed to 

configure the 5G testset and present performance results. In 

addition, in order to detect IoT DDoS with ultra-low latency 

in 5G, we plan to conduct ML-based native security 

framework research on 5GC in the future. 
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