
Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1029

*Corresponding Author: Miao Zhang; E-mail: zm@qziedu.cn

DOI: 10.53106/160792642022092305011

Flow Entry Timeouts Optimization over Software Defined

Networks Supporting Elephant Flow Classification

Changqing Zhao1, Ling Xia Liao1, Han-Chieh Chao2, Roy Xiaorong Lai3, Miao Zhang4*

1 School of Electronic Information and Automation, Guilin University of Aerospace Technology, China

2 Department of Electric Engineering, National Dong Hwa University, Taiwan
3 Confederal Networks Inc., USA

4 Quanzhou University of Information Engineering, China

zhaochq@guat.edu.cn, liaolx@guat.edu.cn, hcc@ndhu.edu.tw, roy.lai@ieee.org, zm@qziedu.cn

Abstract

Elephant flow (elephant) classification is significant for

network performance management and resource optimization.

Classifying elephants over Software Defined Networks (SDNs)

often relies on statistics counted by switches and transferred

to controllers, leading to a huge control channel bandwidth

occupation that degrades network latency and user experience.

Classifying elephants using flow packets forwarded to

controllers completely avoids moving statistics from switches

to controllers, but couples flow entry timeouts to elephant

classification accuracy, time efficiency, flow table size,

control channel bandwidth usage, and network latency. This

paper aims to find the best flow entry timeouts to optimize the

objectives by modeling the objectives and formulating a multi-

objective optimization problem. The number of objectives is

further reduced to 3 and the problem is solved by Machine

Learning (ML) approaches. Extensive evaluations are made

over real packet traces. To the best of our knowledge, this

work is the first effort that explores all the objectives related

to flow entry timeouts when using flow packets forwarded to

controllers to classify elephants over SDNs.

Keywords: SDN, Elephant flow classification, Flow table

size, Control channel bandwidth usage, Flow

entry timeout

1 Introduction

Elephant flows (elephants) refer to the flows having large

packet counts, byte counts, and time durations, while mice

flows (mice) are others. Elephants consume the majority of

network bandwidth, and mice are latency sensitive. Although

the quantity of elephants is far less than mice, it is significant

to identify elephants for network performance management

and resource optimization in a global manner, as two elephants

sharing the same link may cause network congestion and

degrade network Quality of Service (QoS) [1].

Elephant classification over conventional computer

networks typically relies on packet traffic/statistics collected

by hosts or switches. Since hosts and switches are only able to

gather their local traffic/statistics in a network, extra costs and

difficulties are needed to gather global traffic/statistics and

enable QoS management and resource optimization over the

entire network [2].

Software Defined Networks (SDNs) have a layered

architecture with separated control and data planes [3]. The

control plane consists of controllers and the data plane

includes devices and hosts. Devices in the data plane are dumb

and rely on flow entries to forward packets. Flow entries are

flow-based forwarding rules generated by controllers but

stored in flow tables located in the Ternary Content

Addressable Memory (TCAM) of switches.

Besides forwarding flow packets, flow entries also count

statistics of packets triggering the entries. Therefore, SDN

controllers can collect the statistics of each switch using

standardized protocols and specifications, and form the global

statistics. Based on such statistics, SDN controllers can

classify elephants and further optimize network performance

and resource usage in a global manner.

However, simply moving such statistics from all the

switches to controllers occupies too much control channel

bandwidth. Such bandwidth is consumed periodically as the

statistics needs to be periodically updated for elephant

classification. Since control channel transfers general network

management messages, including flow entry installation

messages, controller-switch connection establishing messages,

and flow statistics polling and response messages, between

switches and controllers, the more control channel bandwidth

is used to transfer network statistics, the less bandwidth is left

for other control messages, leading to a longer network latency

degrading network performance and QoS.

To reduce the control channel bandwidth used to transfer

network statistics, current research often deploys agents at

switches to sample flow packets forwarded to controllers, or

allows switches to have the intelligence to sample or aggregate

the statistics forwarded to controllers. However, deploying

sampling agents often needs to update the software of switches,

and aggregating statistics at switches lacks standardized

hardware and interfaces to support programmable data planes,

raising a big concern on system compatibility, interoperability,

and usability in practice [2].

Our previous work proposed to allow controllers to

classify elephants using the flow statistics generated by the

received packets [4]. In SDNs, switches forward the first

packet of each flow to controllers to set up its flow entry when

flow entries are generated in a reactive mode. Switches also

forward some of the following packets of each flow to

1030 Journal of Internet Technology Vol. 23 No. 5, September 2022

controllers if the matched flow entry has been timed out when

the packets arrive in switches. SDNs enforce each flow entry

in flow tables to have a timeout to better use the flow table

space, because flow tables are stored in the TCAM of switches

and the size of TCAM is limited due to its power consumption.

Therefore, flow packets forwarded to controllers are actually

the packets sampled by the flow entry timeouts. Since

elephants often have larger packet counts and longer time

duration than mice, elephants have a trend to forward more

packets to controllers than mice given flow entry timeouts.

Therefore, it is feasible to classify elephants using the flow

packets sampled by the flow entry timeouts.

However, such an approach couples flow entry timeouts to

elephant classification accuracy and time efficiency. This is

because packet sampling based on flow entry timeouts causes

packet missing that affects the total byte counts of flows

forwarded to controllers, leading to a distribution shift

between the sampled and unsampled packet data sets.

Therefore, it is significant to optimize flow entry timeouts to

provide accurate and time efficient elephant classification

when classification is based on the flow packets sampled by

the flow entry timeouts.

It is significant to configure flow entry timeouts

considering the optimization of flow table size, control

channel bandwidth usage, network latency, elephant

classification accuracy and time efficiency. This is because

flow entry timeouts directly affect such objectives. While flow

table and control channel bandwidth are valuable resources in

SDNs, network delay, elephant classification accuracy and

time efficiency are critical performance measures for SDNs

when elephant classification is applied over the flow packets

forwarded to controllers. Therefore, this paper considers an

optimization problem that finds the best flow entry timeouts

to optimize the flow table usage, the control channel

bandwidth consumption, the network delay, and the elephant

classification accuracy and time efficiency.

This is an optimization problem with 5 objectives. Among

them, some objectives are conficted. For instance, shorter

timeouts makes flow entries timed out more frequently,

leaving more flow table space to new flow entries for

incoming flows and leading to a better flow table usage.

However, shorter flow entry timeouts enforce more flow

packets forwarded to controllers, leading to a higher elephant

classification accuracy and time efficiency, larger controller

channel bandwidth usage, and longer network delay. To

reduce the control channel bandwidth usage and network

delay, the value of timeouts has to be larger, making less

quantity of flow packets of forwarded to controllers that

reduces the elephant classification accuracy. Longer flow

entry timeouts also enforce flow entries to live longer in flow

tables. As SDNs have more mice than elephants, giving longer

timeouts to flow entries make mice’ flow entries still active in

flow tables but the respective flows have been out of their

lifetime in the network, wasting the valuable flow table space

and leading to a poor table space usage.

Accordingly, this paper firstly fomulates a multi-objective

optmization problem, then simplifies the number of objectives

and applies Machine Learning (ML) algorithms to solve the

simplified problem. Although our previous work has

optimized the flow entry timeouts when classifying elephants

over the flow packets forwarded to controllers, this paper

considers more related objectives and finds ways to simplify

and solve them. The major contributions of this paper are three

folds.

1. A multi-objective optimization problem that finds the

best set of flow entry timeouts to simultaneously

optimize the flow table usage, control channel bandwidth

usage, network delay, elephant classification accuracy

and time efficiency is formulated.

2. Objectives are simplified and 9 types of flow entry

timeouts adjustment strategies are proposed.

Nondominated Sorting Genetic Algorithm-II (NSGA-II)

[5] and Multi-objective Bayesian Optimization (MBO)

[6] algorithms are applied to solve the simplified

problem.

3. Extensive evaluations are made to discuss the tradeoff of

objectives over real packet traces of networks.

The rest of this paper is organized as follows. While the

relate work is summarized in Section 2, the multi-objective

optimization problem is formulated in Section 3. Section 4

solves the problem, Section 5 evaluates the proposed

approaches followed by the conclusion drawn in Section 6.

2 Related Work and Background

2.1 Single Objective Problem

In SDNs, the major single objective optimization problems

typically relate to the optimization of elephant classification,

control channel bandwidth usage, and flow table management.

2.1.1 Flow Table Management

Flow table optimization usually optimizes the flow table

usage due to the space shortage. The major strategies used

consist of dynamic flow entry timeouts and eviction, flow

entry aggregation and compression, flow entry splitting,

distribution, and caching.

Giving dynamic timeouts to flow entries and designing

efficient eviction mechanisms can minimize the number of

flow entries in flow tables, and hence reduce the flow table

size. Flow entry timeouts typically can be adjusted based on

the estimation of the number of flow entries that may appear

at the next sampling time in probability [7-8]. Flow entry

eviction approaches [9-10] can efficiently remove timed out

flow entries to ease the impact of flow table overflowed.

Aggregation compresses fine-grained forwarding entries into

fewer coarse-grained with slightly larger matching range to

reduce the number of entries to be stored [11-12]. By deciding

which rules to be placed on which switch while respecting

memory constraint and rule dependency, flow entries can be

split and distributed over the network to reduce the flow table

space used by a single switch [13-14]. Caching timed out flow

entries in memory instead of kicking them out enables the

efficient use of flow table meanwhile reducing network

latency [15-16].

2.1.2 Control Channel Bandwidth

In SDNs, control channel transfers the control requests and

responses such as flow entries installation and reactivation

messages, network traffic/statistics polling requests and

Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1031

responses. The total number of flow packets forwarded to

controllers are typically controlled by the flow entry timeouts.

Distributing the total number of flow packets to multiple

controllers reduces the control channel bandwidth usage for

each controller in general [17-18].

Regarding the control channel bandwidth used to move

network traffic/statistics from switches to controllers,

aggregation and sampling are often applied. DevoFlow [19]

and iSTAMP [20] applied various aggregation strategies to

reduce the volume of flow statistics forwarded to controllers.

Traffic/statistics sampling also applied to detect elephants [21],

monitor network [22], and measure network latency [23].

2.1.3 Elephant Classification

Studies on elephant classification in current research

typically focus on the improvement of classification accuracy,

efficiency, and stability. Elephant classifications often can

achieve a very high accuracy over the training data sets.

However, the accuracy over the testing data sets (the stability)

may significantly decreased due to the distribution shift of

testing data sets in the reality.

Elephant classification time efficiency is highly relied on

the features used to model and the interval during which

traffic/statistics are collected. Carefully choosing the

collection interval improves the time efficiency of elephant

classification. Optimizing the sampling period can reduce the

distribution shifts and hence improve the classification

accuracy and time efficiency. The typical optimization

problem related to elephant classification is to find the best

collection or sampling periods to maximize the classification

accuracy [24-26].

2.2 Multi-objective Problems

Managing network performance and optimizing network

resource usage over SDNs often have to consider at least two

objectives due to the dependency. Flow table usage can be

presented as the table size, hit ratio, and the number of

capacity misses. Such objectives may be jointly optimized to

find the best flow entry timeouts [27-29].

Current studies on flow table optimization also jointed

with the optimization of network delay and resource usage. As

references [30] and [31] reduced the number of flow entries

and the load imbalance on link resource utilization; reference

[32] optimized the value of idle timeouts of flow entries to

jointly minimize the flow table resource usage and the

controller computing resource cost; reference [33] formulated

an optimization problem that found the best active links to

minimize the flow table size and power consumption; and

reference [34] tried to find the Pareto frontier of routing routes

that optimize both congestion metric and link utilization.

2.3 Algorithms

The algorithms used to solve the optimization problems

search the best solution in the given solution space. Exhaustive

search, heuristic search, and ML-based search are often used.

2.3.1 Exhaustive Search

Given a solution space, exhaustive search goes through

every solution in the solution space. Exhaustive search

guarantees global optima but not time acceptable or

impossible when the solution space is too big or continuous.

2.3.2 Heuristic Search

Heuristic search refers to a type of search approaches that

optimizes a problem by iteratively improving the solution

based on a given heuristic function or a cost measure.

Heuristic search finds a good or acceptable solution within a

reasonable amount of time and memory space instead.

Heuristic search is widely used to improve the flow table

usage [28], control channel bandwidth consumption [27], and

flow classification over SDNs [25-26].

2.3.3 ML-based Search

ML-based algorithms are widely used in current research.

Although ML techniques are used in flow classification, flow

monitoring, and attack detection, they do not directly solve

optimization problems but provide strategy to provide better

solutions in various user scenarios [2].

Bayesian Optimization (BO) is a type of searching

approaches widely used to tune hyperparameters of ML

algorithms. For continuous functions, BO typically assumes

the unknown function is sampled and maintains a posterior

distribution for this function as observations are made. Based

on the function evaluation, several potential solutions are

picked as the hyperparameters of the next experiment. BO has

been applied to tune the parameters of flow classifiers [35] and

the routing of SDNs [36]. MBO is the multi-objective version

of BO [6], and has been applied in optimizing SDNs [37].

Evolutionary Algorithms (EAs) are search approaches

inspired by the natural biological evolution or social behaviors.

EAs can be seen as heuristics search algorithms in the sense

that such algorithms need to initialize solutions to start the

searching iteration. EAs also can be seen as ML-based

searching algorithms, since they allow machines to learn the

strategy. Genetic algorithms (GAs) are EAs that mimics the

natural biological evolution. GAs often solve the single-

objective optimization problems, and the multi-objective

version, NSGA-IIs, can solve multi-objective optimization

problems with higher quality of solutions. GAs and NSGA-IIs

can be used to solve any optimization problems in general. In

SDNs, GAs have been applied to select features of flows to

model flows for accurate flow classification [38], and NSGA-

IIs have been involved to optimize various metrics [33-34].

3 Multi-objective Optimization Problem

Formulation

This section firstly models the objectives, then formulates

the multi-objective optimization problem. Finally, the

objectives are discussed and simplified.

Let F be the flow set maintained by controllers to be

classified, for each flow 𝑓𝑖F , 𝐽𝑖 be the total number of

packets of flow 𝑓𝑖. Let 𝑝𝑖𝑗 be the size of the jth packet of 𝑓𝑖,

and 𝑎𝑖𝑗 be a binary parameter representing whether or not the

jth packet of flow 𝑓𝑖 is forwarded to controllers. 𝑎𝑖𝑗 is 1 if

the jth packet of 𝑓𝑖 is forwarded to controllers and 0

otherwise. The total byte count of flow 𝑓𝑖 forwarded to

controllers and the total byte count of all the flows forwarded

1032 Journal of Internet Technology Vol. 23 No. 5, September 2022

to controllers are denoted by 𝑃𝑖 and P and they are computed

by Equations (1) and (2), respectively.

𝑃𝑖 = 𝑃𝑖1 + ∑ (𝑎𝑖𝑗𝑝𝑖𝑗)
𝐽𝑖

𝑗=2
 (1)

𝑃 = ∑ (𝑃𝑖)
F
𝑓𝑖

 (2)

To determine 𝑎𝑖𝑗, we have to consider the timeout of flow

entries. Let 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 be the current timeout of

the flow entry and the current update time of the flow entry of

𝑓𝑖 , respectively, we consider the hard and idle types of

timeouts. For hard timeouts, let 𝑡𝑖𝑗 be the timestamp that the

jth packet of 𝑓𝑖 being forwarded to controllers, then 𝑎𝑖𝑗 is 1

(being forwarded to controllers) if 𝑡𝑖𝑗 -𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 >𝑇𝑖_𝑐𝑢𝑟𝑟𝑒𝑛𝑡

and 0 otherwise (not being forwarded). Regarding idle

timeouts, 𝑎𝑖𝑗 is 1 if 𝑡𝑖𝑗-𝑡𝑖(𝑗−1)>𝑇𝑖_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 0 otherwise.

3.1 Modeling Control Channel Bandwidth Usage

To compute the control channel bandwidth usage C, we

consider a 1000Mbits SDN and let the total bandwidth of

control channel be 1000Mbits per second, then C can be

computed by Equation (3), as P is total byte counts forwarded

to controllers during the interval of T minutes.

𝐶 = (8 × P)/(T × 60 × 109) (3)

3.2 Modeling Flow Table Size

We compute the number of active flow entries in flow

table (S) during the given interval of T and take the maximum

as the usage of flow table. Let 𝑒𝑖 be a binary parameter

representing the state of flow entry of 𝑓𝑖 in flow tables. We

let 𝑒𝑖 be 1 if the flow entry is active and 0 otherwise, then for

each time spot ∈ 𝑇, the total number of active flow entries in

flow tables S can be computed by Equation (4)

𝑆 = max
𝑡∈𝑇

∑ 𝑒𝑖
𝐹
𝑓𝑖

 (4)

3.3 Network Latency

Since the number of flow packets forwarded to controllers

implies the number of interaction between switches and

controllers, we directly use the number of flow packets

forwarded to controllers P to represent the network latency L,

as shown in Equation (5).

𝐿 = 𝑃 (5)

3.4 Modeling Elephant Classification Inaccuracy

Let 𝑙𝑎𝑏𝑒𝑙𝑖 be the label of 𝑓𝑖 , and it is 1 if flow 𝑓𝑖 is

marked as a real elephant and 0 otherwise. We let plabeli be

the prediction flow 𝑓𝑖 made by the model. Since each packet

received by controllers can trigger an action of classification,

while each flow may forward multiple packets to controllers,

𝑝𝑙𝑎𝑏𝑒𝑙𝑖 is the final prediction made by the classifier. Then,

the F1-score (F1) of elephant classification can be computed

using Equation (6), in which Rec and Pre are the recall and

precision that can be computed using Equations (7) and (8),

respectively. We use Equation (9) to present the elephant

classification inaccury.

𝐹1 = 2(𝑃𝑟𝑒 × 𝑅𝑒𝑐)/(𝑃𝑟𝑒 + 𝑅𝑒𝑐) (6)

𝑅𝑒𝑐 = ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖)/ ∑ 𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 (7)

𝑃𝑟𝑒 = ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖)/ ∑ 𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 (8)

A = 1/F1 (9)

3.5 Elephant Classification Time Inefficiency

Regarding the elephant classification time cost E, we let

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖 be the accumulated time when flow 𝑓𝑖 is

classified as an elephant, and 𝑇𝑖 be the life span of 𝑓𝑖. Then

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖/𝑇𝑖 computes the classification time cost of 𝑓𝑖 ,

and the overall classification time cost E is the average

classification time cost for all real elephants being classified

correctly, as shown in Equation (10). We simply use E to
model the elephant classification time inefficiency.

𝐸 = ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖 × 𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖/𝑇𝑖)/

 ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖 × 𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

) (10)

3.6 Multi-objective Optimization Problem

Formulation

Let 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 be the current timeout of 𝑓𝑖F, objectives

of A, C, L, E, and S are the functions of 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
. Therefore,

the proposed multi-objective optimization problem can be

formulated to find the best set of timeout 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 for each

𝑓𝑖F such that the active flow table size S (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), the

control channelbandwidth usage C (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), the network

latency E (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), and elephant classification inaccuracy A

(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
) and time inefficiency E (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_

) are jointly

minimized, as illustrated by Equation (11), TT is the largest

value of timeout that a flow entry can have. Table 1 lists the

symbols and their descriptions used in this paper

minimi𝑧𝑒
𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡(0,𝑇𝑇)

𝑓𝑢𝑛(S(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), C(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡),

 L(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), A(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_

), E(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
)) (11)

3.7 Simplifying Optimization Problem

Optimization problems with 3 more objectives are very

hard to be solved. Since some of the objectives modeled above

are not conflicted, they can be simplified. Particularly, when

classifying elephants based on the flow packets sampled by

the flow entry timeouts, optimizing flow table usage S is to

optimize the elephant classification inaccuracy A. This is

because decreasing the value of flow entry timeouts can send

more flow packets to controllers and save more flow table

space for incoming flows, leading to smaller S and A

simultaneously. Similarly, more flow packets sent to

controllers consumes higher control channel bandwidth, and

also means more interaction between switches and controllers,

leading to bigger C and longer L. Therefore, optimizing control

channel bandwidth usage C is to optimize the network latency

Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1033

L. However, improving S and A does worsen C and L, because

shorter timeout value decreases S and A but increases C and L.

Accordingly, the proposed optimization problem can be

simplified as a multi-objective optimization problem that finds

the best flow entry timeouts to minimize the controller channel

bandwidth usage C, elephant classification inaccuracy A, and

elephant classification inefficiency E, as shown in Equation

(12). It should be noticed that classification time efficiency E

seems to have the same optimization direction with S and A,

because shorter flow entry timeouts also reduce E, the time

cost of elephants in the given data set being correctly classified.

However, we keep E in Equation (12) considering its

importance.

minimize
𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡(0,TT)

𝑓𝑢𝑛(C(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), A(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), E(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡))

(12)

Table 1. Symbols used and the description

Symbols Descriptions

F flow set

i flow identifier

j packet identifier

𝑓𝑖 flow i in F

A elephant classification inaccuracy

E elephant classification time efficiency

S flow table size

L network latency

C control channel bandwidth usage

𝑡𝑖𝑗 timestamp of 𝑓𝑖’s jth packet

𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 update time of 𝑓𝑖’s flow entry

𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 𝑓𝑖’s current flow entry timeout

𝑝𝑖𝑗 size of 𝑓𝑖’s jth packet

𝑎𝑖𝑗 𝑓𝑖’s jth packet forwarded or not

𝑃𝑖 byte count of fi forwarded

P total byte count of flows forwarded

Ji 𝑓𝑖’s packet count

𝑒𝑖 𝑓𝑖’s flow entry active or not

T time interval

t time spot in T

𝑙𝑎𝑏𝑒𝑙𝑖 label of flow 𝑓𝑖

𝑝𝑙𝑎𝑏𝑒𝑙𝑖 prediction of flow 𝑓𝑖

𝐹1 elephant classification F1-score

𝑅𝑒𝑐 elephant classification recall

𝑃𝑟𝑒 elephant classification precision

𝑇𝑖 Time duration of flow 𝑓𝑖

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖 𝑓𝑖’s duration when detected as elephant

TT timeout’s upper bound

4 Solving Optimization Problem

This section firstly develops strategies adjusting the flow

entry timeouts, then NSGA-II and MBO are applied to solve

the simplified problem for each strategy.

4.1 Timeout Adjustment Strategies

Given the interval T during which the objectives are

computed, the flow entry timeouts can be fixed or dynamically

changed. While fixed idle or hard timeouts are often given to

flow entries for the simplicity, dynamical timeouts are

involved to reduce the flow table size, although they are

complicated and may add overhead on controllers. To reduce

the solution space of the proposed optimization problem, we

consider the following timeout strategies: fixed hard and idle

timeouts, hard and idle timeouts dynamically adjusted based

on their averaged variances, hard and idle timeouts

dynamically changed with a fixed ratio, and hybrid timeouts,

as listed in Table 2.

• Fixed timeouts refer to hard or idle timeouts with fixed

value during the interval T.

• Variance-averaged strategy allows each flow entry to

have a hard or idle timeout with an initial value. Such

value remains unchanged until the corresponding flows

are identified as elephants. The flow entry timeout of an

elephant classified is adjusted to the sum of the mean

and the variance of packet inter-arrival time of the flow.

This strategy has a high probability to make the flow

entry of an elephant live to the arrival of the next packet

of the flow, leading to a reduced control channel usage

and flow table size.

• Fixed-ratio strategy allows each flow entry to have a

hard or idle timeout with an initial value and remains the

value unchanged until the corresponding flow is

classified as an elephant. After flows are classified as

elephants, the value of their timeouts is increased with a

fixed ratio whenever their flow entry is timed out. Fixed-

ratio strategy considers elephants forward more packets

to controllers, reducing the number of packets elephants

forward to controllers is to reduce the control chanel

bandwidth usage.

• Hybrid timeouts dynamically adjust the type and value

of flow entry timeouts during the interval T. It gives hard

timeouts to flow entries and switched hard timeouts to

idle timeouts after flows are classified as elephants. It

balances the elephant classification inaccuracy, flow

table size, and control channel bandwidth usage. The

value of timeouts can be fixed or dynamically adjusted

using variance -averaged, fixed-ratio, or many more.

1034 Journal of Internet Technology Vol. 23 No. 5, September 2022

Table 2. Flow entry timeouts adjustment strategies

Types Strategies Descriptions #

Fixed Hard Value not changed 1

 Idle Value not changed 2

Var-ave Hard Value changed after ants elephant classified based on the mean

packet inter-arrival time

3

 Idle 4

Fixed-ratio Hard Value increased proportionally after elephants classified 5

 Idle 6

Hybrid of Hard/Idle Fixed Switch type fix value 7

 Var-ave Type/value changed based on the mean packet inter-arrival time

after elephants classified

8

 Fixed-ratio Type/value proportionally changed after elephants classified 9

4.2 Solving Problems

After applying the timeout adjustment strategies, the

proposed problem is converted to find the best initial value of

timeouts to minimize the control channel bandwidth usage, the

elephant classification inaccuracy, and the elephant

classification time inefficiency. To solve this problem, we

apply NSGA-II and MBO algorithms. The result is not unique.

It is a Pareto frontier that consists of a set of Pareto optimal

solutions in the objective space, each of which is at least as

good as the others in at least one but not all dimensions. The

final Pareto frontier is the mix of the frontiers generated by

NSGA-II and MBO.

4.2.1 NSGA-II

NSGA-II is a multi-objective evolutionary algorithm that

uses a fast nondominated sorting procedure, an elitist-

preserving approach, and a parameterless niching operator [5].

Given a population size N and the number of objectives M,

NSGA-II has the overall computation complexity of 𝑂(𝑀𝑁2)

to find the Pareto-optimal frontier among all nondominated

levels of frontiers, while a naive sorting procedure requires

𝑂(𝑀𝑁3) comparisons. NSGA-II also can maintain a good

spread of solution in the Pareto-optimal frontier by computing

the crowding distance to estimate the density of solution

surrounding a particular solution in the population, and

selecting the solutions with lower (better) nondomination rank

and located in a lesser crowded region to form the Pareto-

optimal frontier. The crowding distance is the average distance

of two solutions on either side of this solution along each of

the objective.

Since NSGA-II has been widely used in current research,

we apply the existing NSGA-II algorithm implemented in

Python1 to solve the problem. In particular, we let the value

of timeouts varying in (0,10s) due to 91% of the elephants and

88% of the mice having mean packet inter-arrival time

between 0 and 10 seconds. We let each population consisting

of 30 solutions and the total of 50 generations are evolved,

which are the default configuration in many NSGA-II

algorithms. NSGA-II is a procedure that finds the Pareto-

optimal frontier iteratively. Given the population initialized

randomly, NSGA-II starts to generate its child generation

using crossover and mutation operators. The fitness of each

solution in both parent and child generations is calculated and

1 github.com/anyoptimization/pymoo

sorted. The solutions with the best nondomination ranks and

crowding distance are chosen to form the next generation of

parent population and restart the iteration again until the

number of generations evolved hits the maximum. The fitness

of a solution can be calculated using the objective functions.

For the proposed three-objective optimization problem, each

solution has a fitness value corresponding to an objective

computed by Equations (3), (9), and (10).

4.2.2 Multi-objective BO

As similar as NSGA-II the multi-objective version of GA

for multi-objective optimization problems, MBO algorithm is

the multi-objective version of BO algorithm. Unlike a GA

using selection, crossover, and mutation to generate next

generation of population, BO uses the information extracted

from the entire set of promising solutions. A BO algorithm

often starts from a randomly generated population of solutions,

then applies Bayesian network to estimate the distribution of

the selected set of solutions. New solutions are selected

according to the estimation and added to the original

population to form the offspring population. The process is

repeated until the termination criteria are met. The MBO

incorporates the selection method of NSGA-II into BO.

Therefore, the MBO has the same computation complexity of

𝑂(𝑀𝑁2) as NSGA-II, although a BO algorithm may be faster

than a GA. Applying MBO to solve the proposed problem is

due to: (1) MBO is highly efficient regarding the number of

objective function evaluation, and (2) it does not require any

analytical knowledge of the objectives, allowing the methods

to perform well with black-box functions [39].

In particular, MBO methods start from randomly

generating n solutions (parent population), then build a

probabilistic model (Bayesian network) of the promising

solutions. After new solutions (offspring population) are

sampled based on the Bayesian network, both the parent and

the offspring population are combined to perform a non-

dominated sorting based on the crowding distance and

nondomination ranks. The n best (based on the rank and

crowding distance) solutions are selected to form the next

generation of parent population to repeat the process till some

convergence criteria are satisfied.

Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1035

4.2.3 Solutions with Given Timeouts

As NSGA-II and MBO are both algorithms have

populations initialized randomly, they can only generate

approximation Pareto optimal frontiers for multi-objective

optimization problems. To further improve the quality of the

fronts generated, we manually generate 15 initial values of

timeouts varying from 0.001 × 20 to 0.001 × 213s plus 10s.

We apply the 9 timeout adjustment strategies and calculate the

values of each objective. We add the results to the final fronts

generated by both NSGA-II and MBO and choose the

nondominated solutions to form the final frontiers.

5 Evaluation

This section evaluates the Pareto frontiers generated by

NSGA-II and MBO together with the solutions with given

initial timetous over the data set of TR1, which is the packet

trace caught from the campus network of Guilin University of

Aerospace Technology in December 2019. Three types of

timeouts and 9 types of timeout adjustment strategies, as listed

in Table 2, are considered. A threshold-based elephant model

that identifies the flows with total byte counts greater than 6K

forwarded to controllers as elephants is used to classify

elephants.

This section firstly evaluates the Pareto frontiers of the

proposed problems with two of the three objectives. We do not

directly solve the three-objective optimization problems due

to the difficulty in presenting the three-dimension Pareto

frontiers. We consider to simultaneously optimize the elephant

classification inaccuracy and control channel bandwidth usage,

and the elephant classification time inefficiency and control

channel bandwidth usage, respectively, because they conflict

with each other. We do not simultaneously minimize the

elephant classification time inefficiency and inaccuracy,

because they are not conflicted. We also do the sensitivity

analysis over the three objectives and discuss the further work.

5.1 Optimizing Classification Inaccuracy and

Control Channel Bandwidth Usage

We firstly apply the three methods to solve the

optimization problem that finds the best set of initial timeouts

to minimize the elephant classification inaccuracy and control

channel bandwidth usage. The approximation Pareto optimal

fronts generated by the three methods are combined to form

the final Pareto fronts. We consider 9 types of timeouts, and

the final Pareto fronts are shown in Figure 1. Figure 1(a) to

Figure 1(c) present three fronts, each of which combines the

timeouts generated by the three methods. It is apparent that the

fronts of timeout types 5, 6, and 9 have the better quality. It is

noticed from Table 2 that the timeout types 5, 6, and 9 refer to

the hard, idle, and hybrid timeouts with the value proportional

increased after the flows are classified as elephants. As such

types of adjustments keep the initial timeouts unchanged but

proportional increase them with a given ratio (we let the ratio

be 1.2) after the flows are identified as elephants, leading to a

reduced control channel bandwidth usage and elephant

classification inaccuracy. The other types of adjustment

strategies do not able to effectively control the number of flow

packets forwarded to controllers, and hence the control

channel bandwidth usage.

Figure 1. Pareto frontiers for the objectives of control channel

bandwidth usage and elephant classification inaccuracy

It is also noticed that each Pareto front consists of the

solutions generated by NSGA-II, MBO, and the given

timeouts, represented by the solid, hollow, and solid with

black frame icons in Figure 1, respectively. This indicates that

all three methods cannot generate approximation Pareto fronts

outperforming each other, although we have applied them

several times and take the best solutions. It seems that MBO

generates more solutions with lower elephant classification

inaccuracy in the fronts than NSGA-II. However, we cannot

determine the major reasons as two algorithms initial the

population randomly, and more research should be done in our

future research.

5.2 Optimizing Elephant Classification Time

Inefficiency and Control Channel

Bandwidth Usage

As similar as the fronts for elephant classification

inaccuracy and control channel bandwidth usage, the fronts for

elephant classification time inefficiency and control channel

bandwidth usage also consist of the solutions generated by all

NSGA-II, MBO, and the given timeouts, and each method

cannot out perform the others in generating high quality

approximation Pareto fronts. As shown in the Figure 2, the

solid and hollow ones in the fronts represent the solutions

1036 Journal of Internet Technology Vol. 23 No. 5, September 2022

generated by NSGA-II and MBO, respectively, and the solid

one with black frame represent the solutions generated by

given timeouts. The types of adjustment strategies 5, 6, and 9

also outperform others, because increasing the value of

timeouts after flows classified elephants effectively reduce the

control channel bandwidth usage.

Figure 2．Pareto frontiers for objectives of control channel

bandwidth usage and classification time inefficiency

5.3 Sensitivity Analysis

As the Pareto frontiers of the proposed optimization

problems consist of multiple solutions and present the

tradeoffs of objectives, this subsection evaluates how the

initial value of timeouts affects the optimization of the

objectives. As shown in Figure 3, the frontiers of the hybrid

timeouts demonstrated a better quality than hard and idle

timeouts increasing proportionally for objectives of control

channel bandwidth usage and elephant classification

inaccuracy, although the frontiers of types 9 and 6 have the

similar quality for objectives of control channel bandwidth

usage and elephant classification time inefficiency. We choose

types 7, 8, and 9 for the sensitivity analysis. The timeout

adjustment strategies 7, 8, and 9 refer to the hybrid type of

timeout with value unchanged, updated based the mean

variance of packet inter-arrival time of flows, and proportional

increased after flows classified as elephants.

Figure 3. Pareto frontiers for the value of timeouts

proportionally increased

Particularly, we let the initial values of timeout be

0.00001s, 0.00004s, 0.001s, 0.004s, 0.1s, 0.4s, 1s, 4s. We

calculate the values of three objectives when the timeouts

adjusted using strategies 7, 8, and 9. We use the values of

objectives under strategy 7 with initial timeout value of

0.00001s as the baseline and calculate the ratio of other initial

timeouts for each objective. The results are shown in Figure 4.

Figure 4(b) has logarithmic scale for horizontal ax and is able

to present the objective values under smaller initial values of

timeouts more clearly.

It is apparent that under the three strategies the elephant

classification inaccuracy and flow table size increased as the

initial values of timeouts grew, but the control channel

bandwidth usage decreased as the initial value of timeouts

increased. This is because larger timeouts forwarded less

packets of flows to controllers, leading to the reduced byte

counts forwarded, the reduced control channel bandwidth

usage, and the increased elephant classification inaccuracy.

Timeouts with larger value increase the life time of flow

entries in flow tables, leading to a larger flow table size. For

each initial value of timeouts, the adjustment strategies 7, 8,

and 9 demonstrated the same elephant classification

inaccuracy, because they applied the same initial value to

timeouts and maintained the value unchanged till the flows

classified as elephants. After flows are classified as elephants,

adjustment strategies 7, 8, 9 switched the hard timeout to idle

timeout, however, strategy 7 remained the value of timeout

unchanged, strategy 8 adjusted the value of timeout based on

the mean and variance of packet inter-arrival time of flows,

and strategy 9 increased the value of timeout with the ratio of

1.2. Therefore, strategy 8 costs the lest flow table size, strategy

7 has the higher control channel bandwidth than strategy 9

when the initial values of timeouts are small (less than 0.1s, as

shown in Figure 4). Strategies 8 and 9 cost lower control

channel bandwidth than strategy 7, because they forwarded

less number of packets of flows to controllers. However, as the

value of initial timeouts increased to larger than 1s, the control

channel bandwidth usage under three strategies tends to be the

same, because most of the elephants have a relatively small

mean packet inter-arrival time, increasing the value of idle

Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1037

timeouts when the value has been greater than the packet inter-

arrival time does not really reduce the number of packets

forwarded to controllers and the control channel bandwidth

usage.

In general, all objectives are sensitive to short timeouts of

flow entries. The objectives of elephant classification

inaccuracy and flow table size are more sensitive than the

objective of control channel bandwidth usage given the

proposed timeout adjustment strategy. However, other

adjustment strategies such as adjusting the value of timeouts

before flows classified as elephants may perform very

differently. More research should be done in our future

research.

Figure 4. Sensitivity analysis, the value of objectives via the initial flow entry timeout

It is apparent that under the three strategies the elephant

classification inaccuracy and flow table size increased as the

initial values of timeouts grew, but the control channel

bandwidth usage decreased as the initial value of timeouts

increased. This is because larger timeouts forwarded less

packets of flows to controllers, leading to the reduced byte

counts forwarded, the reduced control channel bandwidth

usage, and the increased elephant classification inaccuracy.

Timeouts with larger value increase the life time of flow

entries in flow tables, leading to a larger flow table size. For

each initial value of timeouts, the adjustment strategies 7, 8,

and 9 demonstrated the same elephant classification

inaccuracy, because they applied the same initial value to

timeouts and maintained the value unchanged till the flows

classified as elephants. After flows are classified as elephants,

adjustment strategies 7, 8, 9 switched the hard timeout to idle

timeout, however, strategy 7 remained the value of timeout

unchanged, strategy 8 adjusted the value of timeout based on

the mean and variance of packet inter-arrival time of flows,

and strategy 9 increased the value of timeout with the ratio of

1.2. Therefore, strategy 8 costs the lest flow table size, strategy

7 has the higher control channel bandwidth than strategy 9

when the initial values of timeouts are small (less than 0.1s, as

shown in Figure 4). Strategies 8 and 9 cost lower control

channel bandwidth than strategy 7, because they forwarded

less number of packets of flows to controllers. However, as the

value of initial timeouts increased to larger than 1s, the control

channel bandwidth usage under three strategies tends to be the

same, because most of the elephants have a relatively small

mean packet inter-arrival time, increasing the value of idle

timeouts when the value has been greater than the packet inter-

arrival time does not really reduce the number of packets

forwarded to controllers and the control channel bandwidth

usage.

1038 Journal of Internet Technology Vol. 23 No. 5, September 2022

In general, all objectives are sensitive to short timeouts of

flow entries. The objectives of elephant classification

inaccuracy and flow table size are more sensitive than the

objective of control channel bandwidth usage given the

proposed timeout adjustment strategy. However, other

adjustment strategies such as adjusting the value of timeouts

before flows classified as elephants may perform very

differently. More research should be done in our future

research.

6 Conclusions

This paper formulated a five-objective optimization

problem that found the best flow entry timeouts to jointly

minimize the elephant classification inaccuracy, time

inefficiency, control channel bandwidth usage, network

latency, and flow table size. As optimization of control

channel bandwidth usage is to optimize network latency and

optimization of elephant classification inaccuracy is to

optimize flow table size, the number of objectives was reduced

to three to simplify the problem. As flow entries may have

hard, idle, and hybrid types of timeouts, while the value of

timeouts can be static and dynamically adjusted, nine types of

adjustment strategies were proposed. Under such strategies,

the simplified optimization problem was converted to a three-

objective optimization problem that found the best initial

value of flow entry timeouts to jointly minimize the elephant

classification inaccuracy and time inefficiency and control

channel bandwidth usage. To provide a better quality of fronts,

NSGA-II and MBO methods were applied to solve the

problem. The fronts generated were combined, the

nondomination solutions are chosen for the final fronts. The

quality of fronts is further improved by combining the

solutions with initial value of timeouts manually generated. A

threshold-based elephant model was chosen for elephant

classification. The solutions are evaluated over a real traffic

trace. The results shew that the hybrid of hard and idle

timeouts with the value proportionally increased can achieve

fronts with better quality. All objectives are very sensitive to

the short timeouts, especially the classification accuracy, time

efficiency, and flow table size. More adjustment strategies

should be investigated to jointly minimize the three objectives

in our future research.

Acknowledgements

This work was supported by the National Natural Science

Foundation of China through the Grants 61962016 and Guilin

University of Aerospace Technology, China, through the

Grants XJ22KT20.

References

[1] U. Deshpande, N. Rajesh, S. Dhananjaya, Survey of

SDN Traffic Flow Classification Approaches,

INFOCOMP Journal of Computer Science, Vol. 20, No.

1, pp. 1-16, June, 2021.

[2] L. X. Liao, H.-C. Chao, M.-Y. Chen, Intelligently

Modeling, Detecting, and Scheduling Elephant Flows in

Software Defined Energy Cloud: A Survey, Journal of

Parallel and Distributed Computing, Vol. 146, pp. 64-

78, December, 2020.

[3] K. Kirkpatrick, Software-Defined Networking,

Communications of the ACM, Vol. 56, No. 9, pp. 16-19,

September, 2013.

[4] L. X. Liao, X. Ma, Z. Li, H. C. Chao, Dynamic Flow

Entry Timeouts Based Packet Nonuniform Sampling for

Elephant Flow Detection, International Symposium on

Computer Technology and Information Science, Guilin,

China, 2021, pp. 431-439.

[5] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and

Elitist Multiobjective Genetic Algorithm: NSGA-II,

IEEE transactions on evolutionary computation, Vol. 6,

No. 2, pp. 182-197, April, 2002.

[6] P. Galuzio, E. H. V. Segundo, L. S. Coelho, V. C.

Mariani, Mobopt — Multi-Objective Bayesian

Optimization, SoftwareX, Vol. 12, Article No. 100520,

December, 2020.

[7] Y. Liu, B. Tang, D. Yuan, J. Ran, H. Hu, A Dynamic

Adaptive Timeout Approach for SDN Switch, 2nd IEEE

International Conference on Computer and

Communications, Chengdu, China, 2016, pp. 2577-

2582.

[8] B. Isyaku, M. B. Kamat, K. B. A. Bakar, M. S. M. Zahid,

F. A. Ghaleb, Ihta: Dynamic Idle-Hard Timeout

Allocation Algorithm Based Openflow Switch, IEEE

10th Symposium on Computer Applications & Industrial

Electronics, Peneng, Malaysia, 2020, pp. 170-175.

[9] R. Challa, Y. Lee, H. Choo, Intelligent Eviction Strategy

for Efficient Flow Table Management in Openflow

Switches, IEEE NetSoft Conference and Workshops,

Seoul, Korea, 2016, pp. 312-318.

[10] Z. Guo, R. Liu, Y. Xu, A. Gushchin, A. Walid, H. J. Chao,

Star: Preventing Flow-table Overflow in Software-

Defined Networks, Computer Networks, Vol. 125, pp.

15-25, October, 2017.

[11] C. Wang, H. Y. Youn, Entry Aggregation and Early

Match Using Hidden Markov Model of Flow Table in

SDN, Sensors, Vol. 19, No. 10, Article No. 2341, May,

2019.

[12] B. Leng, L. Huang, C. Qiao, H. Xu, X. Wang, Ftrs: A

Mechanism for Reducing Flow Table Entries in

Software Defined Networks, Computer Networks, Vol.

122, pp. 1-15, July, 2017.

[13] X.-N. Nguyen, D. Saucez, C. Barakat, T. Turletti,

Officer: A General Optimization Framework for

Openflow Rule Allocation and Endpoint Policy

Enforcement, IEEE Conference on Computer

Communications (INFOCOM), Hong Kong, China,

2015, pp. 478-486.

[14] J.-F. Huang, G.-Y. Chang, C.-F. Wang, C.-H. Lin,

Heterogeneous Flow Table Distribution in Software-

Defined Networks, IEEE Transactions on Emerging

Topics in Computing, Vol. 4, No. 2, pp. 252-261, April-

June, 2016.

[15] B. Yan, Y. Xu, H. J. Chao, Adaptive Wildcard Rule

Cache Management for Software-Defined Networks,

IEEE/ACM Transactions on Networking, Vol. 26, No. 2,

pp. 962-975, April, 2018.

[16] G. Grigoryan, Y. Liu, M. Kwon, PFCA: A

Programmable FIB Caching Architecture, IEEE/ACM

Transactions on Networking, Vol. 28, No. 4, pp. 1872-

1884, August, 2020.

[17] T. Koponen, M. Casado, N. Gude, J. Stribling, L.

Poutievski, M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue,

Flow Entry Timeouts Optimization over Software Defined Networks Supporting Elephant Flow Classification 1039

T. Hama, S. Shenker, Onix: A Distributed Control

Platform for Large-Scale Production Networks, 9th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI 10), Vancouver, BC, Canada,

2010, pp. 351-364.

[18] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi,

T. Koide, B. Lantz, B. O’Connor, P. Radoslavov, W.

Snow, G. Parulkar, Onos: Towards an Open, Distributed

SDN OS, 3rd workshop on Hot topics in software

defined networking, Chicago, Illinois, USA, 2014, pp.

1-6.

[19] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,

P. Sharma, S. Banerjee, Devoflow: Scaling Flow

Management for High-Performance Networks, ACM

SIGCOMM 2011 Conference, Toronto, Ontario, Canada,

2011, pp. 254-265.

[20] M. Malboubi, L. Wang, C.-N. Chuah, P. Sharma,

Intelligent SDN Based Traffic (de)Aggregation and

Measurement Paradigm (iSTAMP), IEEE Conference

on Computer Communications, Toronto, ON, Canada,

2014, pp. 934-942.

[21] Y. Afek, A. Bremler-Barr, S. L. Feibish, L. Schiff,

Sampling and Large Flow Detection in SDN, 2015 ACM

Conference on Special Interest Group on Data

Communication, London, UK, 2015, pp. 345-346.

[22] R. Cohen, E. Moroshko, Sampling-on-Demand in SDN,

IEEE/ACM Transactions on Networking, Vol. 26, No. 6,

pp. 2612-2622, December, 2018.

[23] J. Suh, T. T. Kwon, C. Dixon, W. Felter, J. Carter,

Opensample: A Low-Latency, Sampling-based

Measurement Platform for Commodity SDN, IEEE 34th

International Conference on Distributed Computing

Systems, Madrid, Spain, 2014, pp. 228-237.

[24] D. Tammaro, S. Valenti, D. Rossi, A. Pescape,

Exploiting Packet-Sampling Measurements for Traffic

Characterization and Classification, International

Journal of Network Management, Vol. 22, No. 6, pp.

451-476, November/December, 2012.

[25] C. MadhusudhanaRao, M. M. Naidu, Flow Sampling for

Network Intrusion Detection –an Acceptance Sampling

Approach, International Journal of Applied

Engineering Research, Vol. 13, No. 13, pp. 11030-11034,

2018.

[26] R. M. A. Ujjan, Z. Pervez, K. Dahal, A. K. Bashir, R.

Mumtaz, J. Gonzalez, Towards Sflow and Adaptive

Polling Sampling for Deep Learning Based DDoS

Detection in SDN, Future Generation Computer

Systems, Vol. 111, pp. 763-779, October, 2020.

[27] J. Zhao, N. Liu, Semi-Supervised Classification Based

Mixed Sampling for Imbalanced Data, Open Physics,

Vol. 17, No. 1, pp. 975-983, December, 2019.

[28] S. Shirali-Shahreza, Y. Ganjali, Delayed Installation and

Expedited Eviction: An Alternative Approach to Reduce

Flow Table Occupancy in SDN Switches, IEEE/ACM

Transactions on Networking, Vol. 26, No. 4, pp. 1547-

1561, August, 2018.

[29] G. Zhao, H. Xu, S. Chen, L. Huang, P. Wang, Joint

Optimization of Flow Table and Group Table for Default

Paths in SDNs, IEEE/ACM Transactions on Networking,

Vol. 26, No. 4, pp. 1837-1850, August, 2018.

[30] S. Q. Zhang, Q. Zhang, A. Tizghadam, B. Park, H.

Bannazadeh, R. Boutaba, A. Leon-Garcia, TCAM

Space-Efficient Routing in a Software Defined Network,

Computer Networks, Vol. 125, pp. 26-40, October, 2017.

[31] Z. Guo, Y. Xu, R. Liu, A. Gushchin, K.-Y. Chen, A.

Walid, H. J. Chao, Balancing Flow Table Occupancy

and Link Utilization in Software-Defined Networks,

Future Generation Computer Systems, Vol. 89, pp. 213-

223, December, 2018.

[32] M. K. Awad, M. El-Shafei, T. Dimitriou, Y. Rafique, M.

Baidas, A. Alhusaini, Power-Efficient Routing for SDN

with Discrete Link Rates and Size-Limited Flow Tables:

A Tree-Based Particle Swarm Optimization Approach,

International Journal of Network Management, Vol. 27,

No. 5, Article No. e1972, September/October, 2017.

[33] J. Galan-Jimenez, J. Berrocal, J. L. Herrera, M.

Polverini, Multi-Objective Genetic Algorithm for the

Joint Optimization of Energy Efficiency and Rule

Reduction in Software-Defined Networks, 11th

International Conference on Network of the Future,

Bordeaux, France, 2020, pp. 33-37.

[34] V. Pereira, M. Rocha, P. Sousa, Hybrid IP/SDN Routing

for Inter-Data Center Communications, IEEE 8th

International Conference on Cloud Networking,

Coimbra, Portugal, 2019, pp. 1-3.

[35] G. A. Ajaeiya, N. Adalian, I. H. Elhajj, A. Kayssi, A.

Chehab, Flow-Based Intrusion Detection System for

SDN, IEEE Symposium on Computers and

Communications (ISCC), Heraklion, Greece, 2017, pp.

787-793.

[36] Q. Xiang, J. Zhang, K. Gao, Y. Lim, F. Le, G. Li, Y. Yang,

Toward Optimal Software-Defined Interdomain

Routing, IEEE Conference on Computer

Communications (INFOCOM), Toronto, ON, Canada,

2020, pp. 1529-1538.

[37] P. Mercati, B. Li, M. Ergin, C. Tai, M. Kishinevsky, B.

Serafimov, S. Ravisundar, E. Walsh, T. Long, Mobo-nfv:

Automated Tuning of a Network Function Virtualization

System Using Multi-Objective Bayesian Optimization,

IFIP/IEEE International Symposium on Integrated

Network Management, Bordeaux, France, 2021, pp. 90-

98.

[38] A. S. D. Silva, C. C. Machado, R. V. Bisol, L. Z.

Granville, A. Schaeffer-Filho, Identification and

Selection of Flow Features for Accurate Traffic

Classification in SDN, IEEE 14th International

Symposium on Network Computing and Applications,

Cambridge, MA, USA, 2015, pp.134-141.

[39]]N. Khan, D. E. Goldberg, M. Pelikan, Multi-Objective

Bayesian Optimization Algorithm, 4th Annual

Conference on Genetic and Evolutionary Computation,

New York City, USA, 2002, pp. 684-684.

Biographies

Changqing Zhao, senior lecturer with the

School of Electronic Information and

Automation of Guilin University of

Aerospace Technology, China. His research

interests include digital image/speech

processing and network management

and optimization.

1040 Journal of Internet Technology Vol. 23 No. 5, September 2022

Ling Xia Liao, professor with the School of

Electronic Information and Automation,

Guilin University of Aerospace Technology,

China. Her research interests include

intelligent network management and

optimization, distributed systems, and edge

computing.

Han-Chieh Chao, professor and chair of the

Department of Electrical Engineering,

National Dong Hwa University, Taiwan. His

research interests include high speed

networks, wireless networks, IPv6 based

networks and digital divide.

Roy Xiaorong Lai, Co-Founder and

Chairman of Confederal Networks Inc.,

Seattle, WA, USA. He is a SM of IEEE. His

research interests includes wireless network,

artificial intelligence algorithms and

applications, and blackchain.

Miao Zhang, Professor with Quanzhou

University of Information Engineering,

China. His research interests include

Internet of Things, distributed networks,

blockchain, and artificial intelligence

algorithms and applications.

	01
	02
	03
	04
	05
	空白頁面
	空白頁面
	空白頁面
	組合
	06
	07
	08
	09
	10
	空白頁面
	空白頁面

	組合
	11
	12
	13
	14
	15
	空白頁面
	空白頁面

	組合
	16
	17
	18
	19
	20
	空白頁面
	空白頁面

	組合
	21
	22
	23
	24
	25
	空白頁面

	JIT2305 Cover.pdf
	Cover-1
	Cover-2

