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Abstract 
 

Elephant flow (elephant) classification is significant for 

network performance management and resource optimization. 

Classifying elephants over Software Defined Networks (SDNs) 

often relies on statistics counted by switches and transferred 

to controllers, leading to a huge control channel bandwidth 

occupation that degrades network latency and user experience. 

Classifying elephants using flow packets forwarded to 

controllers completely avoids moving statistics from switches 

to controllers, but couples flow entry timeouts to elephant 

classification accuracy, time efficiency, flow table size, 

control channel bandwidth usage, and network latency. This 

paper aims to find the best flow entry timeouts to optimize the 

objectives by modeling the objectives and formulating a multi-

objective optimization problem. The number of objectives is 

further reduced to 3 and the problem is solved by Machine 

Learning (ML) approaches. Extensive evaluations are made 

over real packet traces. To the best of our knowledge, this 

work is the first effort that explores all the objectives related 

to flow entry timeouts when using flow packets forwarded to 

controllers to classify elephants over SDNs. 

 

Keywords: SDN, Elephant flow classification, Flow table 

size, Control channel bandwidth usage, Flow 
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1  Introduction 
 

Elephant flows (elephants) refer to the flows having large 

packet counts, byte counts, and time durations, while mice 

flows (mice) are others. Elephants consume the majority of 

network bandwidth, and mice are latency sensitive. Although 

the quantity of elephants is far less than mice, it is significant 

to identify elephants for network performance management 

and resource optimization in a global manner, as two elephants 

sharing the same link may cause network congestion and 

degrade network Quality of Service (QoS) [1].  

Elephant classification over conventional computer 

networks typically relies on packet traffic/statistics collected 

by hosts or switches. Since hosts and switches are only able to 

gather their local traffic/statistics in a network, extra costs and 

difficulties are needed to gather global traffic/statistics and 

enable QoS management and resource optimization over the 

entire network [2]. 

Software Defined Networks (SDNs) have a layered 

architecture with separated control and data planes [3]. The 

control plane consists of controllers and the data plane 

includes devices and hosts. Devices in the data plane are dumb 

and rely on flow entries to forward packets. Flow entries are 

flow-based forwarding rules generated by controllers but 

stored in flow tables located in the Ternary Content 

Addressable Memory (TCAM) of switches.  

Besides forwarding flow packets, flow entries also count 

statistics of packets triggering the entries. Therefore, SDN 

controllers can collect the statistics of each switch using 

standardized protocols and specifications, and form the global 

statistics. Based on such statistics, SDN controllers can 

classify elephants and further optimize network performance 

and resource usage in a global manner.  

However, simply moving such statistics from all the 

switches to controllers occupies too much control channel 

bandwidth. Such bandwidth is consumed periodically as the 

statistics needs to be periodically updated for elephant 

classification. Since control channel transfers general network 

management messages, including flow entry installation 

messages, controller-switch connection establishing messages, 

and flow statistics polling and response messages, between 

switches and controllers, the more control channel bandwidth 

is used to transfer network statistics, the less bandwidth is left 

for other control messages, leading to a longer network latency 

degrading network performance and QoS. 

To reduce the control channel bandwidth used to transfer 

network statistics, current research often deploys agents at 

switches to sample flow packets forwarded to controllers, or 

allows switches to have the intelligence to sample or aggregate 

the statistics forwarded to controllers. However, deploying 

sampling agents often needs to update the software of switches, 

and aggregating statistics at switches lacks standardized 

hardware and interfaces to support programmable data planes, 

raising a big concern on system compatibility, interoperability, 

and usability in practice [2]. 

Our previous work proposed to allow controllers to 

classify elephants using the flow statistics generated by the 

received packets [4]. In SDNs, switches forward the first 

packet of each flow to controllers to set up its flow entry when 

flow entries are generated in a reactive mode. Switches also 

forward some of the following packets of each flow to 
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controllers if the matched flow entry has been timed out when 

the packets arrive in switches. SDNs enforce each flow entry 

in flow tables to have a timeout to better use the flow table 

space, because flow tables are stored in the TCAM of switches 

and the size of TCAM is limited due to its power consumption. 

Therefore, flow packets forwarded to controllers are actually 

the packets sampled by the flow entry timeouts. Since 

elephants often have larger packet counts and longer time 

duration than mice, elephants have a trend to forward more 

packets to controllers than mice given flow entry timeouts. 

Therefore, it is feasible to classify elephants using the flow 

packets sampled by the flow entry timeouts.  

However, such an approach couples flow entry timeouts to 

elephant classification accuracy and time efficiency. This is 

because packet sampling based on flow entry timeouts causes 

packet missing that affects the total byte counts of flows 

forwarded to controllers, leading to a distribution shift 

between the sampled and unsampled packet data sets. 

Therefore, it is significant to optimize flow entry timeouts to 

provide accurate and time efficient elephant classification 

when classification is based on the flow packets sampled by 

the flow entry timeouts. 

It is significant to configure flow entry timeouts 

considering the optimization of flow table size, control 

channel bandwidth usage, network latency, elephant 

classification accuracy and time efficiency. This is because 

flow entry timeouts directly affect such objectives. While flow 

table and control channel bandwidth are valuable resources in 

SDNs, network delay, elephant classification accuracy and 

time efficiency are critical performance measures for SDNs 

when elephant classification is applied over the flow packets 

forwarded to controllers. Therefore, this paper considers an 

optimization problem that finds the best flow entry timeouts 

to optimize the flow table usage, the control channel 

bandwidth consumption, the network delay, and the elephant 

classification accuracy and time efficiency.  

This is an optimization problem with 5 objectives. Among 

them, some objectives are conficted. For instance, shorter 

timeouts makes flow entries timed out more frequently, 

leaving more flow table space to new flow entries for 

incoming flows and leading to a better flow table usage. 

However, shorter flow entry timeouts enforce more flow 

packets forwarded to controllers, leading to a higher elephant 

classification accuracy and time efficiency, larger controller 

channel bandwidth usage, and longer network delay. To 

reduce the control channel bandwidth usage and network 

delay, the value of timeouts has to be larger, making less 

quantity of flow packets of forwarded to controllers that 

reduces the elephant classification accuracy. Longer flow 

entry timeouts also enforce flow entries to live longer in flow 

tables. As SDNs have more mice than elephants, giving longer 

timeouts to flow entries make mice’ flow entries still active in 

flow tables but the respective flows have been out of their 

lifetime in the network, wasting the valuable flow table space 

and leading to a poor table space usage.  

Accordingly, this paper firstly fomulates a multi-objective 

optmization problem, then simplifies the number of objectives 

and applies Machine Learning (ML) algorithms to solve the 

simplified problem. Although our previous work has 

optimized the flow entry timeouts when classifying elephants 

over the flow packets forwarded to controllers, this paper 

considers more related objectives and finds ways to simplify 

and solve them. The major contributions of this paper are three 

folds. 

1. A multi-objective optimization problem that finds the 

best set of flow entry timeouts to simultaneously 

optimize the flow table usage, control channel bandwidth 

usage, network delay, elephant classification accuracy 

and time efficiency is formulated. 

2. Objectives are simplified and 9 types of flow entry 

timeouts adjustment strategies are proposed. 

Nondominated Sorting Genetic Algorithm-II (NSGA-II) 

[5] and Multi-objective Bayesian Optimization (MBO) 

[6] algorithms are applied to solve the simplified 

problem. 

3. Extensive evaluations are made to discuss the tradeoff of 

objectives over real packet traces of networks. 

The rest of this paper is organized as follows. While the 

relate work is summarized in Section 2, the multi-objective 

optimization problem is formulated in Section 3. Section 4 

solves the problem, Section 5 evaluates the proposed 

approaches followed by the conclusion drawn in Section 6.  
 

2  Related Work and Background 

 
2.1 Single Objective Problem 

 

In SDNs, the major single objective optimization problems 

typically relate to the optimization of elephant classification, 

control channel bandwidth usage, and flow table management. 

 

2.1.1 Flow Table Management 

 

Flow table optimization usually optimizes the flow table 

usage due to the space shortage. The major strategies used 

consist of dynamic flow entry timeouts and eviction, flow 

entry aggregation and compression, flow entry splitting, 

distribution, and caching.  

Giving dynamic timeouts to flow entries and designing 

efficient eviction mechanisms can minimize the number of 

flow entries in flow tables, and hence reduce the flow table 

size. Flow entry timeouts typically can be adjusted based on 

the estimation of the number of flow entries that may appear 

at the next sampling time in probability [7-8]. Flow entry 

eviction approaches [9-10] can efficiently remove timed out 

flow entries to ease the impact of flow table overflowed. 

Aggregation compresses fine-grained forwarding entries into 

fewer coarse-grained with slightly larger matching range to 

reduce the number of entries to be stored [11-12]. By deciding 

which rules to be placed on which switch while respecting 

memory constraint and rule dependency, flow entries can be 

split and distributed over the network to reduce the flow table 

space used by a single switch [13-14]. Caching timed out flow 

entries in memory instead of kicking them out enables the 

efficient use of flow table meanwhile reducing network 

latency [15-16]. 

 

2.1.2 Control Channel Bandwidth 

 

In SDNs, control channel transfers the control requests and 

responses such as flow entries installation and reactivation 

messages, network traffic/statistics polling requests and 
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responses. The total number of flow packets forwarded to 

controllers are typically controlled by the flow entry timeouts. 

Distributing the total number of flow packets to multiple 

controllers reduces the control channel bandwidth usage for 

each controller in general [17-18]. 

Regarding the control channel bandwidth used to move 

network traffic/statistics from switches to controllers, 

aggregation and sampling are often applied. DevoFlow [19] 

and iSTAMP [20] applied various aggregation strategies to 

reduce the volume of flow statistics forwarded to controllers. 

Traffic/statistics sampling also applied to detect elephants [21], 

monitor network [22], and measure network latency [23]. 

 

2.1.3 Elephant Classification 

 

Studies on elephant classification in current research 

typically focus on the improvement of classification accuracy, 

efficiency, and stability. Elephant classifications often can 

achieve a very high accuracy over the training data sets. 

However, the accuracy over the testing data sets (the stability) 

may significantly decreased due to the distribution shift of 

testing data sets in the reality. 

Elephant classification time efficiency is highly relied on 

the features used to model and the interval during which 

traffic/statistics are collected. Carefully choosing the 

collection interval improves the time efficiency of elephant 

classification. Optimizing the sampling period can reduce the 

distribution shifts and hence improve the classification 

accuracy and time efficiency. The typical optimization 

problem related to elephant classification is to find the best 

collection or sampling periods to maximize the classification 

accuracy [24-26]. 

 

2.2 Multi-objective Problems 
 

Managing network performance and optimizing network 

resource usage over SDNs often have to consider at least two 

objectives due to the dependency. Flow table usage can be 

presented as the table size, hit ratio, and the number of 

capacity misses. Such objectives may be jointly optimized to 

find the best flow entry timeouts [27-29]. 

Current studies on flow table optimization also jointed 

with the optimization of network delay and resource usage. As 

references [30] and [31] reduced the number of flow entries 

and the load imbalance on link resource utilization; reference 

[32] optimized the value of idle timeouts of flow entries to 

jointly minimize the flow table resource usage and the 

controller computing resource cost; reference [33] formulated 

an optimization problem that found the best active links to 

minimize the flow table size and power consumption; and 

reference [34] tried to find the Pareto frontier of routing routes 

that optimize both congestion metric and link utilization. 

 

2.3 Algorithms 
 

The algorithms used to solve the optimization problems 

search the best solution in the given solution space. Exhaustive 

search, heuristic search, and ML-based search are often used.  

 

2.3.1 Exhaustive Search 

 

Given a solution space, exhaustive search goes through 

every solution in the solution space. Exhaustive search 

guarantees global optima but not time acceptable or 

impossible when the solution space is too big or continuous. 

 

2.3.2 Heuristic Search 

 

Heuristic search refers to a type of search approaches that 

optimizes a problem by iteratively improving the solution 

based on a given heuristic function or a cost measure. 

Heuristic search finds a good or acceptable solution within a 

reasonable amount of time and memory space instead. 

Heuristic search is widely used to improve the flow table 

usage [28], control channel bandwidth consumption [27], and 

flow classification over SDNs [25-26]. 

 

2.3.3 ML-based Search 

 

ML-based algorithms are widely used in current research. 

Although ML techniques are used in flow classification, flow 

monitoring, and attack detection, they do not directly solve 

optimization problems but provide strategy to provide better 

solutions in various user scenarios [2]. 

Bayesian Optimization (BO) is a type of searching 

approaches widely used to tune hyperparameters of ML 

algorithms. For continuous functions, BO typically assumes 

the unknown function is sampled and maintains a posterior 

distribution for this function as observations are made. Based 

on the function evaluation, several potential solutions are 

picked as the hyperparameters of the next experiment. BO has 

been applied to tune the parameters of flow classifiers [35] and 

the routing of SDNs [36]. MBO is the multi-objective version 

of BO [6], and has been applied in optimizing SDNs [37]. 

Evolutionary Algorithms (EAs) are search approaches 

inspired by the natural biological evolution or social behaviors. 

EAs can be seen as heuristics search algorithms in the sense 

that such algorithms need to initialize solutions to start the 

searching iteration. EAs also can be seen as ML-based 

searching algorithms, since they allow machines to learn the 

strategy. Genetic algorithms (GAs) are EAs that mimics the 

natural biological evolution. GAs often solve the single-

objective optimization problems, and the multi-objective 

version, NSGA-IIs, can solve multi-objective optimization 

problems with higher quality of solutions. GAs and NSGA-IIs 

can be used to solve any optimization problems in general. In 

SDNs, GAs have been applied to select features of flows to 

model flows for accurate flow classification [38], and NSGA-

IIs have been involved to optimize various metrics [33-34].  

 

3  Multi-objective Optimization Problem 

Formulation 
 

This section firstly models the objectives, then formulates 

the multi-objective optimization problem. Finally, the 

objectives are discussed and simplified.  

Let F be the flow set maintained by controllers to be 

classified, for each flow 𝑓𝑖F , 𝐽𝑖  be the total number of 

packets of flow 𝑓𝑖. Let 𝑝𝑖𝑗 be the size of the jth packet of 𝑓𝑖, 

and 𝑎𝑖𝑗 be a binary parameter representing whether or not the 

jth packet of flow 𝑓𝑖 is forwarded to controllers. 𝑎𝑖𝑗 is 1 if 

the jth packet of 𝑓𝑖  is forwarded to controllers and 0 

otherwise. The total byte count of flow 𝑓𝑖  forwarded to 

controllers and the total byte count of all the flows forwarded 
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to controllers are denoted by 𝑃𝑖 and P and they are computed 

by Equations (1) and (2), respectively. 

 

𝑃𝑖 = 𝑃𝑖1 + ∑ (𝑎𝑖𝑗𝑝𝑖𝑗)
𝐽𝑖

𝑗=2
               (1) 

 

𝑃 = ∑ (𝑃𝑖)
F
𝑓𝑖

                         (2) 

 

To determine 𝑎𝑖𝑗, we have to consider the timeout of flow 

entries. Let 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 be the current timeout of 

the flow entry and the current update time of the flow entry of 

𝑓𝑖 , respectively, we consider the hard and idle types of 

timeouts. For hard timeouts, let 𝑡𝑖𝑗 be the timestamp that the 

jth packet of 𝑓𝑖 being forwarded to controllers, then 𝑎𝑖𝑗 is 1 

(being forwarded to controllers) if  𝑡𝑖𝑗 -𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 >𝑇𝑖_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 

and 0 otherwise (not being forwarded). Regarding idle 

timeouts, 𝑎𝑖𝑗 is 1 if 𝑡𝑖𝑗-𝑡𝑖(𝑗−1)>𝑇𝑖_𝑐𝑢𝑟𝑟𝑒𝑛𝑡 and 0 otherwise. 

 

3.1 Modeling Control Channel Bandwidth Usage 
 

To compute the control channel bandwidth usage C, we 

consider a 1000Mbits SDN and let the total bandwidth of 

control channel be 1000Mbits per second, then C can be 

computed by Equation (3), as P is total byte counts forwarded 

to controllers during the interval of T minutes. 

 

𝐶 = (8 × P)/(T × 60 × 109)           (3) 

 

3.2 Modeling Flow Table Size 
 

We compute the number of active flow entries in flow 

table (S) during the given interval of T and take the maximum 

as the usage of flow table. Let 𝑒𝑖  be a binary parameter 

representing the state of flow entry of 𝑓𝑖 in flow tables. We 

let 𝑒𝑖 be 1 if the flow entry is active and 0 otherwise, then for 

each time spot ∈ 𝑇, the total number of active flow entries in 

flow tables S can be computed by Equation (4) 

 

𝑆 = max
𝑡∈𝑇

∑ 𝑒𝑖
𝐹
𝑓𝑖

                      (4) 

 

3.3 Network Latency 
 

Since the number of flow packets forwarded to controllers 

implies the number of interaction between switches and 

controllers, we directly use the number of flow packets 

forwarded to controllers P to represent the network latency L, 

as shown in Equation (5).  

 

𝐿 = 𝑃                             (5) 

 

3.4 Modeling Elephant Classification Inaccuracy 
 

Let 𝑙𝑎𝑏𝑒𝑙𝑖  be the label of 𝑓𝑖 , and it is 1 if flow 𝑓𝑖  is 

marked as a real elephant and 0 otherwise. We let plabeli be 

the prediction flow 𝑓𝑖 made by the model. Since each packet 

received by controllers can trigger an action of classification, 

while each flow may forward multiple packets to controllers, 

𝑝𝑙𝑎𝑏𝑒𝑙𝑖 is the final prediction made by the classifier. Then, 

the F1-score (F1) of elephant classification can be computed 

using Equation (6), in which Rec and Pre are the recall and 

precision that can be computed using Equations (7) and (8), 

respectively. We use Equation (9) to present the elephant 

classification inaccury. 

 

𝐹1 = 2(𝑃𝑟𝑒 × 𝑅𝑒𝑐)/(𝑃𝑟𝑒 + 𝑅𝑒𝑐)     (6) 

 

𝑅𝑒𝑐 =  ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖)/ ∑ 𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

    (7) 

 

𝑃𝑟𝑒 =  ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖)/ ∑ 𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

   (8) 

 

A = 1/F1       (9) 

 

3.5 Elephant Classification Time Inefficiency 
 

Regarding the elephant classification time cost E, we let 

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖  be the accumulated time when flow 𝑓𝑖  is 

classified as an elephant, and 𝑇𝑖 be the life span of 𝑓𝑖. Then 

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖/𝑇𝑖  computes the classification time cost of 𝑓𝑖 , 

and the overall classification time cost E is the average 

classification time cost for all real elephants being classified 

correctly, as shown in Equation (10). We simply use E to 
model the elephant classification time inefficiency. 

 

𝐸 =  ∑ (𝑝𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

 × 𝑙𝑎𝑏𝑒𝑙𝑖 × 𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖/𝑇𝑖)/

           ∑  (𝑝𝑙𝑎𝑏𝑒𝑙𝑖 × 𝑙𝑎𝑏𝑒𝑙𝑖
𝐹
𝑓𝑖

)               (10) 

 

3.6 Multi-objective Optimization Problem 

Formulation 
 

Let 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 be the current timeout of 𝑓𝑖F, objectives 

of A, C, L, E, and S are the functions of 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
. Therefore, 

the proposed multi-objective optimization problem can be 

formulated to find the best set of timeout 𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 for each 

𝑓𝑖F such that the active flow table size S (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), the 

control channelbandwidth usage C (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), the network 

latency E (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), and elephant classification inaccuracy A 

(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
) and time inefficiency E (𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_

) are jointly 

minimized, as illustrated by Equation (11), TT is the largest 

value of timeout that a flow entry can have. Table 1 lists the 

symbols and their descriptions used in this paper 

 

minimi𝑧𝑒
𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡(0,𝑇𝑇)

𝑓𝑢𝑛(S(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), C(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), 

                L(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
), A(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_

), E(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
)) (11) 

 

3.7 Simplifying Optimization Problem  
 

Optimization problems with 3 more objectives are very 

hard to be solved. Since some of the objectives modeled above 

are not conflicted, they can be simplified. Particularly, when 

classifying elephants based on the flow packets sampled by 

the flow entry timeouts, optimizing flow table usage S is to 

optimize the elephant classification inaccuracy A. This is 

because decreasing the value of flow entry timeouts can send 

more flow packets to controllers and save more flow table 

space for incoming flows, leading to smaller S and A 

simultaneously. Similarly, more flow packets sent to 

controllers consumes higher control channel bandwidth, and 

also means more interaction between switches and controllers, 

leading to bigger C and longer L. Therefore, optimizing control 

channel bandwidth usage C is to optimize the network latency 
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L. However, improving S and A does worsen C and L, because 

shorter timeout value decreases S and A but increases C and L. 

Accordingly, the proposed optimization problem can be 

simplified as a multi-objective optimization problem that finds 

the best flow entry timeouts to minimize the controller channel 

bandwidth usage C, elephant classification inaccuracy A, and 

elephant classification inefficiency E, as shown in Equation 

(12). It should be noticed that classification time efficiency E 

seems to have the same optimization direction with S and A, 

because shorter flow entry timeouts also reduce E, the time 

cost of elephants in the given data set being correctly classified. 

However, we keep E in Equation (12) considering its 

importance. 

 

minimize
𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡(0,TT)

𝑓𝑢𝑛(C(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), A(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡), E(𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡)) 

(12) 

 

Table 1. Symbols used and the description 

Symbols Descriptions 

F flow set 

i flow identifier 

j packet identifier  

𝑓𝑖 flow i in F 

A elephant classification inaccuracy 

E elephant classification time efficiency 

S flow table size 

L network latency 

C control channel bandwidth usage 

𝑡𝑖𝑗 timestamp of 𝑓𝑖’s jth packet 

𝑡𝑖_𝑢𝑝𝑑𝑎𝑡𝑒 update time of 𝑓𝑖’s flow entry  

𝑇𝑖𝑐𝑢𝑟𝑟𝑒𝑛𝑡_
 𝑓𝑖’s current flow entry timeout 

𝑝𝑖𝑗 size of 𝑓𝑖’s jth packet  

𝑎𝑖𝑗 𝑓𝑖’s jth packet forwarded or not 

𝑃𝑖 byte count of fi forwarded 

P total byte count of flows forwarded 

Ji 𝑓𝑖’s packet count 

𝑒𝑖 𝑓𝑖’s flow entry active or not 

T time interval 

t time spot in T 

𝑙𝑎𝑏𝑒𝑙𝑖 label of flow 𝑓𝑖 

𝑝𝑙𝑎𝑏𝑒𝑙𝑖 prediction of flow 𝑓𝑖 

𝐹1 elephant classification F1-score 

𝑅𝑒𝑐 elephant classification recall 

𝑃𝑟𝑒 elephant classification precision 

𝑇𝑖 Time duration of flow 𝑓𝑖 

𝑇𝑒𝑙𝑒𝑝ℎ𝑎𝑛𝑡𝑖 𝑓𝑖’s duration when detected as elephant 

TT  timeout’s upper bound 

4 Solving Optimization Problem 
 

This section firstly develops strategies adjusting the flow 

entry timeouts, then NSGA-II and MBO are applied to solve 

the simplified problem for each strategy.  

 

4.1 Timeout Adjustment Strategies 
 

Given the interval T during which the objectives are 

computed, the flow entry timeouts can be fixed or dynamically 

changed. While fixed idle or hard timeouts are often given to 

flow entries for the simplicity, dynamical timeouts are 

involved to reduce the flow table size, although they are 

complicated and may add overhead on controllers. To reduce 

the solution space of the proposed optimization problem, we 

consider the following timeout strategies: fixed hard and idle 

timeouts, hard and idle timeouts dynamically adjusted based 

on their averaged variances, hard and idle timeouts 

dynamically changed with a fixed ratio, and hybrid timeouts, 

as listed in Table 2. 

 

• Fixed timeouts refer to hard or idle timeouts with fixed 

value during the interval T.  

• Variance-averaged strategy allows each flow entry to 

have a hard or idle timeout with an initial value. Such 

value remains unchanged until the corresponding flows 

are identified as elephants. The flow entry timeout of an 

elephant classified is adjusted to the sum of the mean 

and the variance of packet inter-arrival time of the flow. 

This strategy has a high probability to make the flow 

entry of an elephant live to the arrival of the next packet 

of the flow, leading to a reduced control channel usage 

and flow table size. 

• Fixed-ratio strategy allows each flow entry to have a 

hard or idle timeout with an initial value and remains the 

value unchanged until the corresponding flow is 

classified as an elephant. After flows are classified as 

elephants, the value of their timeouts is increased with a 

fixed ratio whenever their flow entry is timed out. Fixed-

ratio strategy considers elephants forward more packets 

to controllers, reducing the number of packets elephants 

forward to controllers is to reduce the control chanel 

bandwidth usage. 

• Hybrid timeouts dynamically adjust the type and value 

of flow entry timeouts during the interval T. It gives hard 

timeouts to flow entries and switched hard timeouts to 

idle timeouts after flows are classified as elephants. It 

balances the elephant classification inaccuracy, flow 

table size, and control channel bandwidth usage. The 

value of timeouts can be fixed or dynamically adjusted 

using variance -averaged, fixed-ratio, or many more. 
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Table 2. Flow entry timeouts adjustment strategies 

Types Strategies Descriptions # 

Fixed Hard Value not changed 1 

 Idle Value not changed 2 

Var-ave Hard Value changed after ants elephant classified based on the mean  

packet inter-arrival time 

3 

 Idle  4 

Fixed-ratio Hard Value increased proportionally after elephants classified 5 

 Idle  6 

Hybrid of Hard/Idle Fixed Switch type fix value 7 

 Var-ave Type/value changed based on the mean packet inter-arrival time  

after elephants classified 

8 

 Fixed-ratio Type/value proportionally changed after elephants classified 9 

 

 

4.2 Solving Problems 
 

After applying the timeout adjustment strategies, the 

proposed problem is converted to find the best initial value of 

timeouts to minimize the control channel bandwidth usage, the 

elephant classification inaccuracy, and the elephant 

classification time inefficiency. To solve this problem, we 

apply NSGA-II and MBO algorithms. The result is not unique. 

It is a Pareto frontier that consists of a set of Pareto optimal 

solutions in the objective space, each of which is at least as 

good as the others in at least one but not all dimensions. The 

final Pareto frontier is the mix of the frontiers generated by 

NSGA-II and MBO. 

 

4.2.1 NSGA-II 

 

NSGA-II is a multi-objective evolutionary algorithm that 

uses a fast nondominated sorting procedure, an elitist-

preserving approach, and a parameterless niching operator [5]. 

Given a population size N and the number of objectives M, 

NSGA-II has the overall computation complexity of 𝑂(𝑀𝑁2) 

to find the Pareto-optimal frontier among all nondominated 

levels of frontiers, while a naive sorting procedure requires 

𝑂(𝑀𝑁3) comparisons. NSGA-II also can maintain a good 

spread of solution in the Pareto-optimal frontier by computing 

the crowding distance to estimate the density of solution 

surrounding a particular solution in the population, and 

selecting the solutions with lower (better) nondomination rank 

and located in a lesser crowded region to form the Pareto-

optimal frontier. The crowding distance is the average distance 

of two solutions on either side of this solution along each of 

the objective. 

Since NSGA-II has been widely used in current research, 

we apply the existing NSGA-II algorithm implemented in 

Python1 to solve the problem. In particular, we let the value 

of timeouts varying in (0,10s) due to 91% of the elephants and 

88% of the mice having mean packet inter-arrival time 

between 0 and 10 seconds. We let each population consisting 

of 30 solutions and the total of 50 generations are evolved, 

which are the default configuration in many NSGA-II 

algorithms. NSGA-II is a procedure that finds the Pareto-

optimal frontier iteratively. Given the population initialized 

randomly, NSGA-II starts to generate its child generation 

using crossover and mutation operators. The fitness of each 

solution in both parent and child generations is calculated and 

 
1 github.com/anyoptimization/pymoo 

sorted. The solutions with the best nondomination ranks and 

crowding distance are chosen to form the next generation of 

parent population and restart the iteration again until the 

number of generations evolved hits the maximum. The fitness 

of a solution can be calculated using the objective functions. 

For the proposed three-objective optimization problem, each 

solution has a fitness value corresponding to an objective 

computed by Equations (3), (9), and (10). 

 

4.2.2 Multi-objective BO 

 

As similar as NSGA-II the multi-objective version of GA 

for multi-objective optimization problems, MBO algorithm is 

the multi-objective version of BO algorithm. Unlike a GA 

using selection, crossover, and mutation to generate next 

generation of population, BO uses the information extracted 

from the entire set of promising solutions. A BO algorithm 

often starts from a randomly generated population of solutions, 

then applies Bayesian network to estimate the distribution of 

the selected set of solutions. New solutions are selected 

according to the estimation and added to the original 

population to form the offspring population. The process is 

repeated until the termination criteria are met. The MBO 

incorporates the selection method of NSGA-II into BO. 

Therefore, the MBO has the same computation complexity of 

𝑂(𝑀𝑁2) as NSGA-II, although a BO algorithm may be faster 

than a GA. Applying MBO to solve the proposed problem is 

due to: (1) MBO is highly efficient regarding the number of 

objective function evaluation, and (2) it does not require any 

analytical knowledge of the objectives, allowing the methods 

to perform well with black-box functions [39]. 

In particular, MBO methods start from randomly 

generating n solutions (parent population), then build a 

probabilistic model (Bayesian network) of the promising 

solutions. After new solutions (offspring population) are 

sampled based on the Bayesian network, both the parent and 

the offspring population are combined to perform a non-

dominated sorting based on the crowding distance and 

nondomination ranks. The n best (based on the rank and 

crowding distance) solutions are selected to form the next 

generation of parent population to repeat the process till some 

convergence criteria are satisfied. 
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4.2.3 Solutions with Given Timeouts 

 

As NSGA-II and MBO are both algorithms have 

populations initialized randomly, they can only generate 

approximation Pareto optimal frontiers for multi-objective 

optimization problems. To further improve the quality of the 

fronts generated, we manually generate 15 initial values of 

timeouts varying from 0.001 × 20 to 0.001 × 213s plus 10s. 

We apply the 9 timeout adjustment strategies and calculate the 

values of each objective. We add the results to the final fronts 

generated by both NSGA-II and MBO and choose the 

nondominated solutions to form the final frontiers. 

 

5  Evaluation 
 

This section evaluates the Pareto frontiers generated by 

NSGA-II and MBO together with the solutions with given 

initial timetous over the data set of TR1, which is the packet 

trace caught from the campus network of Guilin University of 

Aerospace Technology in December 2019. Three types of 

timeouts and 9 types of timeout adjustment strategies, as listed 

in Table 2, are considered. A threshold-based elephant model 

that identifies the flows with total byte counts greater than 6K 

forwarded to controllers as elephants is used to classify 

elephants. 

This section firstly evaluates the Pareto frontiers of the 

proposed problems with two of the three objectives. We do not 

directly solve the three-objective optimization problems due 

to the difficulty in presenting the three-dimension Pareto 

frontiers. We consider to simultaneously optimize the elephant 

classification inaccuracy and control channel bandwidth usage, 

and the elephant classification time inefficiency and control 

channel bandwidth usage, respectively, because they conflict 

with each other. We do not simultaneously minimize the 

elephant classification time inefficiency and inaccuracy, 

because they are not conflicted. We also do the sensitivity 

analysis over the three objectives and discuss the further work.  

 

5.1 Optimizing Classification Inaccuracy and 

Control Channel Bandwidth Usage 
 

We firstly apply the three methods to solve the 

optimization problem that finds the best set of initial timeouts 

to minimize the elephant classification inaccuracy and control 

channel bandwidth usage. The approximation Pareto optimal 

fronts generated by the three methods are combined to form 

the final Pareto fronts. We consider 9 types of timeouts, and 

the final Pareto fronts are shown in Figure 1. Figure 1(a) to 

Figure 1(c) present three fronts, each of which combines the 

timeouts generated by the three methods. It is apparent that the 

fronts of timeout types 5, 6, and 9 have the better quality. It is 

noticed from Table 2 that the timeout types 5, 6, and 9 refer to 

the hard, idle, and hybrid timeouts with the value proportional 

increased after the flows are classified as elephants. As such 

types of adjustments keep the initial timeouts unchanged but 

proportional increase them with a given ratio (we let the ratio 

be 1.2) after the flows are identified as elephants, leading to a 

reduced control channel bandwidth usage and elephant 

classification inaccuracy. The other types of adjustment 

strategies do not able to effectively control the number of flow 

packets forwarded to controllers, and hence the control 

channel bandwidth usage. 

 

 

Figure 1. Pareto frontiers for the objectives of control channel 

bandwidth usage and elephant classification inaccuracy 

 

It is also noticed that each Pareto front consists of the 

solutions generated by NSGA-II, MBO, and the given 

timeouts, represented by the solid, hollow, and solid with 

black frame icons in Figure 1, respectively. This indicates that 

all three methods cannot generate approximation Pareto fronts 

outperforming each other, although we have applied them 

several times and take the best solutions. It seems that MBO 

generates more solutions with lower elephant classification 

inaccuracy in the fronts than NSGA-II. However, we cannot 

determine the major reasons as two algorithms initial the 

population randomly, and more research should be done in our 

future research. 

 

5.2 Optimizing Elephant Classification Time 

Inefficiency and Control Channel 

Bandwidth Usage 
 

As similar as the fronts for elephant classification 

inaccuracy and control channel bandwidth usage, the fronts for 

elephant classification time inefficiency and control channel 

bandwidth usage also consist of the solutions generated by all 

NSGA-II, MBO, and the given timeouts, and each method 

cannot out perform the others in generating high quality 

approximation Pareto fronts. As shown in the Figure 2, the 

solid and hollow ones in the fronts represent the solutions 
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generated by NSGA-II and MBO, respectively, and the solid 

one with black frame represent the solutions generated by 

given timeouts. The types of adjustment strategies 5, 6, and 9 

also outperform others, because increasing the value of 

timeouts after flows classified elephants effectively reduce the 

control channel bandwidth usage.  

 

 

Figure 2．Pareto frontiers for objectives of control channel 

bandwidth usage and classification time inefficiency 

 

5.3 Sensitivity Analysis 
 

As the Pareto frontiers of the proposed optimization 

problems consist of multiple solutions and present the 

tradeoffs of objectives, this subsection evaluates how the 

initial value of timeouts affects the optimization of the 

objectives. As shown in Figure 3, the frontiers of the hybrid 

timeouts demonstrated a better quality than hard and idle 

timeouts increasing proportionally for objectives of control 

channel bandwidth usage and elephant classification 

inaccuracy, although the frontiers of types 9 and 6 have the 

similar quality for objectives of control channel bandwidth 

usage and elephant classification time inefficiency. We choose 

types 7, 8, and 9 for the sensitivity analysis. The timeout 

adjustment strategies 7, 8, and 9 refer to the hybrid type of 

timeout with value unchanged, updated based the mean 

variance of packet inter-arrival time of flows, and proportional 

increased after flows classified as elephants. 

 

Figure 3. Pareto frontiers for the value of timeouts 

proportionally increased 

 

Particularly, we let the initial values of timeout be 

0.00001s, 0.00004s, 0.001s, 0.004s, 0.1s, 0.4s, 1s, 4s. We 

calculate the values of three objectives when the timeouts 

adjusted using strategies 7, 8, and 9. We use the values of 

objectives under strategy 7 with initial timeout value of 

0.00001s as the baseline and calculate the ratio of other initial 

timeouts for each objective. The results are shown in Figure 4. 

Figure 4(b) has logarithmic scale for horizontal ax and is able 

to present the objective values under smaller initial values of 

timeouts more clearly. 

It is apparent that under the three strategies the elephant 

classification inaccuracy and flow table size increased as the 

initial values of timeouts grew, but the control channel 

bandwidth usage decreased as the initial value of timeouts 

increased. This is because larger timeouts forwarded less 

packets of flows to controllers, leading to the reduced byte 

counts forwarded, the reduced control channel bandwidth 

usage, and the increased elephant classification inaccuracy. 

Timeouts with larger value increase the life time of flow 

entries in flow tables, leading to a larger flow table size. For 

each initial value of timeouts, the adjustment strategies 7, 8, 

and 9 demonstrated the same elephant classification 

inaccuracy, because they applied the same initial value to 

timeouts and maintained the value unchanged till the flows 

classified as elephants. After flows are classified as elephants, 

adjustment strategies 7, 8, 9 switched the hard timeout to idle 

timeout, however, strategy 7 remained the value of timeout 

unchanged, strategy 8 adjusted the value of timeout based on 

the mean and variance of packet inter-arrival time of flows, 

and strategy 9 increased the value of timeout with the ratio of 

1.2. Therefore, strategy 8 costs the lest flow table size, strategy 

7 has the higher control channel bandwidth than strategy 9 

when the initial values of timeouts are small (less than 0.1s, as 

shown in Figure 4). Strategies 8 and 9 cost lower control 

channel bandwidth than strategy 7, because they forwarded 

less number of packets of flows to controllers. However, as the 

value of initial timeouts increased to larger than 1s, the control 

channel bandwidth usage under three strategies tends to be the 

same, because most of the elephants have a relatively small 

mean packet inter-arrival time, increasing the value of idle 
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timeouts when the value has been greater than the packet inter-

arrival time does not really reduce the number of packets 

forwarded to controllers and the control channel bandwidth 

usage. 

In general, all objectives are sensitive to short timeouts of 

flow entries. The objectives of elephant classification 

inaccuracy and flow table size are more sensitive than the 

objective of control channel bandwidth usage given the 

proposed timeout adjustment strategy. However, other 

adjustment strategies such as adjusting the value of timeouts 

before flows classified as elephants may perform very 

differently. More research should be done in our future 

research. 

 

 

Figure 4. Sensitivity analysis, the value of objectives via the initial flow entry timeout 

 

 

It is apparent that under the three strategies the elephant 

classification inaccuracy and flow table size increased as the 

initial values of timeouts grew, but the control channel 

bandwidth usage decreased as the initial value of timeouts 

increased. This is because larger timeouts forwarded less 

packets of flows to controllers, leading to the reduced byte 

counts forwarded, the reduced control channel bandwidth 

usage, and the increased elephant classification inaccuracy. 

Timeouts with larger value increase the life time of flow 

entries in flow tables, leading to a larger flow table size. For 

each initial value of timeouts, the adjustment strategies 7, 8, 

and 9 demonstrated the same elephant classification 

inaccuracy, because they applied the same initial value to 

timeouts and maintained the value unchanged till the flows 

classified as elephants. After flows are classified as elephants, 

adjustment strategies 7, 8, 9 switched the hard timeout to idle 

timeout, however, strategy 7 remained the value of timeout 

unchanged, strategy 8 adjusted the value of timeout based on 

the mean and variance of packet inter-arrival time of flows, 

and strategy 9 increased the value of timeout with the ratio of 

1.2. Therefore, strategy 8 costs the lest flow table size, strategy 

7 has the higher control channel bandwidth than strategy 9 

when the initial values of timeouts are small (less than 0.1s, as 

shown in Figure 4). Strategies 8 and 9 cost lower control 

channel bandwidth than strategy 7, because they forwarded 

less number of packets of flows to controllers. However, as the 

value of initial timeouts increased to larger than 1s, the control 

channel bandwidth usage under three strategies tends to be the 

same, because most of the elephants have a relatively small 

mean packet inter-arrival time, increasing the value of idle 

timeouts when the value has been greater than the packet inter-

arrival time does not really reduce the number of packets 

forwarded to controllers and the control channel bandwidth 

usage. 
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In general, all objectives are sensitive to short timeouts of 

flow entries. The objectives of elephant classification 

inaccuracy and flow table size are more sensitive than the 

objective of control channel bandwidth usage given the 

proposed timeout adjustment strategy. However, other 

adjustment strategies such as adjusting the value of timeouts 

before flows classified as elephants may perform very 

differently. More research should be done in our future 

research. 

 

6 Conclusions 
 

This paper formulated a five-objective optimization 

problem that found the best flow entry timeouts to jointly 

minimize the elephant classification inaccuracy, time 

inefficiency, control channel bandwidth usage, network 

latency, and flow table size. As optimization of control 

channel bandwidth usage is to optimize network latency and 

optimization of elephant classification inaccuracy is to 

optimize flow table size, the number of objectives was reduced 

to three to simplify the problem. As flow entries may have 

hard, idle, and hybrid types of timeouts, while the value of 

timeouts can be static and dynamically adjusted, nine types of 

adjustment strategies were proposed. Under such strategies, 

the simplified optimization problem was converted to a three-

objective optimization problem that found the best initial 

value of flow entry timeouts to jointly minimize the elephant 

classification inaccuracy and time inefficiency and control 

channel bandwidth usage. To provide a better quality of fronts, 

NSGA-II and MBO methods were applied to solve the 

problem. The fronts generated were combined, the 

nondomination solutions are chosen for the final fronts. The 

quality of fronts is further improved by combining the 

solutions with initial value of timeouts manually generated. A 

threshold-based elephant model was chosen for elephant 

classification. The solutions are evaluated over a real traffic 

trace. The results shew that the hybrid of hard and idle 

timeouts with the value proportionally increased can achieve 

fronts with better quality. All objectives are very sensitive to 

the short timeouts, especially the classification accuracy, time 

efficiency, and flow table size. More adjustment strategies 

should be investigated to jointly minimize the three objectives 

in our future research. 
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