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Abstract 
 

Mobile edge computing (MEC) has been considered to 

provide computation services near the edge of mobile 

networks, while the unmanned aerial vehicle (UAV) is 

becoming an important integrated component to extend 

service coverage. In this paper, we consider a UAV-enabled 

MEC with binary computation offloading and energy 

constraints, where an energy-limited UAV is employed as an 

aerial edge server and each task of devices is either executing 

locally or offloading to the aerial edge server as a whole. To 

provide fairness among different ground devices, we aim to 

maximize the minimum computation throughput among all 

devices via the joint design of computing mode selection and 

UAV trajectory as well as resource allocation. The 

optimization problem is formulated as a mixed-integer non-

linear problem consisting of binary variables, which is 

difficult to tackle. By employing deductive penalty function to 

penalize the effect of non-binary solution, we develop an 

efficient iterative algorithm to obtain a suboptimal solution via 

leveraging the penalty successive convex approximation (P-

SCA) method and difference of two convex (D.C.) 

optimization framework, where the algorithm is guaranteed to 

converge. Extensive simulations are conducted and the results 

with different system parameters show that the proposed joint 

design algorithm can improve the computation throughput by 

about 40% compared to other benchmark schemes. 

 

Keywords: Unmanned aerial vehicle (UAV), mobile-edge 

computing (MEC), binary computation 

offloading, penalty successive convex 

approximation (P-SCA) 

 

1  Introduction 
 

With the rapid development of 5G networks and Internet 

of Things (IoT), more and more applications and services 

require low latency and large computation capacity to provide 

a better experience for users [1]. For example, auto-driving 

cars, image and video processing, face recognition, real-time 

online games, etc. However, most of the IoT devices are 

resources restrained in terms of energy and computation 

capacity, which leads to difficulty in maintaining endurance or 

producing instantaneous responses [2]. To tackle such 

difficulty, mobile edge computing (MEC) has been introduced 

[3-5] by moving the powerful computation resource to the 

edge of the network, and the tasks can be executed on the edge 

side without transmitting data to remote clouds such that the 

transmission delay can be significantly reduced. With MEC, 

the IoT devices can offload their computation tasks for timely 

processing, thereby saving the energy of the devices [6-7]. The 

work in [8] optimized resource allocation in mobile 
computing, and proposed a gateway-based edge 
computing service model to reduce the latency of data 
transmission. In [9], the application-oriented offloading in 

heterogeneous networks was studied for mobile cloud 

computing, where two algorithms were proposed to minimize 

execution time. In general, MEC consists of two computation 

task offloading models, i.e., partial and binary computation 

offloading [10]. Partial offloading partitions each computation 

task into two parts, one is for locally computing at ground 

devices and the other is for offloading to edge server. Binary 

offloading requires that each task is either executing locally or 

offloading to the edge server as a whole. In practice, it is easy 

to implement binary offloading that is suitable for IoT tasks 

that are not partitionable.  

On the other hand, new challenges arise due to the limited 

coverage of static edge servers. Specifically, static edge 

servers may not support task offloading for remote devices 

with complex radio environment and long-distance path loss. 

In addition, it is very expensive and impractical to deploy a 

large number of static edge servers in a wide area environment. 

To tackle such challenges, the UAV-enabled MEC system that 

supports aerial computing is introduced [11-12], where a 

flying UAV with powerful computation capacity is employed 

to provide computation offloading opportunities for resource-

restrained ground IoT devices. By taking advantage of the 

UAV’s mobility, the UAV can be close enough to IoT devices, 

line-of-sight (LoS) links are able to be established with a large 

probability between the UAV and IoT devices such that the 

communication quality can be enhanced for computation 

offloading [13].  

In [14], the authors addressed the UAV-aided MEC 

system and minimized the maximum delay for all users via 

joint offloading and trajectory design. In [15], the authors 

investigated the security problems over MEC systems with 

dual UAVs and maximized secure computing capacity for 

both time division and non-orthogonal multiple access 

schemes. The cooperation between the access point and UAV 

in wireless-powered MEC was studied in [16], where the 

weighted sum of completed task-input bits was maximized. In 

[17], the authors take the UAV’s trajectory into consideration 

and proposed two path planning algorithms with 3G 
Communication. The work in [18] proposed a low-complexity 

iterative algorithm in a UAV-enabled MEC system with 
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secure consideration to maximize the secrecy capacity subject 

to minimum offloading, latency, and total power constraints. 

The integration of edge computing and relaying with the help 

of the UAV was investigated in [19], where the weighted sum 

of energy consumptions for both users and the UAV was 

minimized. However, the above existing works relied on the 

partial computation offloading policy, which is difficult to 

implement in practice.  

Unlike the aforementioned studies, we adopt a binary 

offloading policy in a UAV-enabled MEC system in this paper, 

which consists of hard combinatorial mode selection and is 

thus more challenging compared to partial computation 

offloading. We aim to maximize the computation throughput 

via the joint design of UAV trajectory and computation 

offloading as well as resource allocation. Computation 

throughput is defined as the total number of processed bits 

computed at both IoT devices and the UAV edge server, which 

is a measure of the system’s computing capability. To the best 

of our knowledge, the computation throughput maximization 

problem for UAV-enabled MEC with binary computation 

offloading is challenging and has not been investigated in prior 

works. We summarize the main contributions of this paper as 

follows:  

• Firstly, in order to achieve fairness among all ground 

devices, we maximize the minimum computation throughput 

among all devices in UAV-enabled MEC with binary 

computation offloading policy and energy constraints by 

jointly optimizing UAV trajectory, computation offloading, 

and computing frequency of devices. The optimization 

problem is formulated as a mix-integer non-linear 

optimization problem, which is challenging to solve in general.  

• Secondly, we reformulate the problem into a 

mathematical equivalent by employing a deductive penalty 

function to penalize the effect of the non-binary solution, and 

then develop an efficient iterative algorithm to obtain the 

binary offloading solution via leveraging the penalty 

successive convex approximation (P-SCA) method and 

difference of two convex (D.C.) optimization framework, 

where the algorithm is guaranteed to converge to a local 

optimal solution satisfying the Karush-Kuhn-Tucker (KKT) 

conditions. 

• Finally, extensive simulations are conducted to verify the 

performance of the proposed design. Simulation results with 

different system parameters show the effectiveness of the 

proposed joint design algorithm, where our proposed method 

can effectively improve computation throughput by 40% 

compared to other benchmarks. 

The rest of this paper is organized as follows. Section 2 

introduces the system model and presents the mathematical 

formulation of the problem. Section 3 proposes an efficient 

solution based on P-SCA and D.C. optimization techniques. 

Section 4 presents the simulation results, and Section 5 

concludes the paper. 

 

2 System Model and Problem 

Formulation 
 

2.1 System Model 
 

As shown in Figure 1, we consider a UAV-enabled MEC 

system for IoT applications where a flying UAV is employed 

as an edge server to provide computation service to a set of 𝐾 

ground devices, which conduct certain computation tasks. 

Denote 𝒦 = {𝑠𝑘, 1 ≤ 𝑘 ≤ 𝐾} as the set of ground devices, 

where the horizontal coordinate of device 𝑠𝑘 ∈ 𝒦  is 

represented by 𝐰𝑘 ∈ ℝ2×1. Let 𝑇 be the total time horizon, 

which corresponds to the completion time requirement for the 

computation tasks. It is assumed that the UAV flies at a fixed 

altitude 𝐻 above ground and its horizontal coordinate varies 

over time, which is represented by 𝐪(𝑡) ∈ ℝ2×1, 𝑡 ∈ [0, 𝑇]. 

For the ease of exposition, the time horizon 𝑇 is discretized 

equally into 𝑁 time slots with element slot length 𝛿𝑡, where 

𝛿𝑡  is sufficiently small so that the UAV’s location can be 

assumed to be approximately unchanged within each time slot. 

Therefore, the UAV trajectory can be approximately 

represented by the sequence {𝐪[𝑛], 1 ≤ 𝑛 ≤ 𝑁} , with 

𝐪[𝑛] ≜ 𝐪(𝑛𝛿𝑡)  denoting the UAV’s horizontal location at 

time slot 𝑛 . As such, 
∥𝖖[𝑛+1]−𝐪[𝑛]∥

𝛿𝑡
≤ 𝑉max, ∀𝑛 , with 𝑉max 

denoting the maximum UAV speed. We assume that the UAV 

would return to its initial location by the end of the time 

horizon 𝑇 in order to periodically serve the ground devices, 

i.e., 𝐪[1] = 𝐪[𝑁]. 
 

 

Figure 1. Overview of the UAV-enabled MEC architecture 

 

For the device 𝑠𝑘, we define 𝐶𝑘 as the number of CPU 

cycles needed for computation of 1-bit input data. Denote 

𝑓𝑘[𝑛]  as the CPU frequency of device 𝑠𝑘  at time slot 𝑛 . 

Thus, we have 𝑓𝑘[𝑛] ≤ 𝑓𝑘
max, ∀𝑛 , where 𝑓𝑘

max  is the 

maximum allowable CPU frequency for 𝑠𝑘 . Similarly, we 

denote 𝑓𝑈,𝑘[𝑛]  as the allocated CPU frequency for 

computation tasks offloaded from device 𝑠𝑘 at time slot 𝑛. 

Thus we have ∑𝑘=1
𝐾  𝑓𝑈,𝑘[𝑛] ≤ 𝑓𝑈

max, ∀𝑛, where 𝑓𝑈
max is the 

maximum allowable CPU frequency of UAV. Furthermore, 

the number of bits computed locally at 𝑠𝑘 in time slot 𝑛 can 

be calculated by 
𝑓𝑘[𝑛]𝛿𝑡

𝐶𝑘
. Due to the limited computing 

capabilities of IoT devices, we assume that the devices adopt 

a binary task offloading policy [20-21], where a task is either 

computed locally or offloaded to the UAV for remote 

computing as a whole. Define 𝑥𝑘[𝑛] ∈ {0,1}  as the 

computation offloading indicator for device 𝑠𝑘 , where 

𝑥𝑘[𝑛] = 1 if the task of 𝑠𝑘 is offloaded to the UAV at time 

slot 𝑛  and 𝑥𝑘[𝑛] = 0  otherwise. To avoid interference 

among devices during the offloading process, we employ a 

time division multiple access (TDMA) scheme for 

computation offloading, where at most, one device offloads 

the task to the UAV at each time slot. Thus, we have 

∑ 𝑥𝑘[𝑛]𝐾
𝑘=1 ≤ 1, ∀n. Similar to [22-23], we assume that the 
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channel between the UAV and each device is mainly a LoS 

channel. Then the channel power gain between the UAV and 

device 𝑠𝑘  at each time slot 𝑛 can be modeled as ℎ𝑘[𝑛] =
𝛽0𝑑𝑘

−𝛼[𝑛], where 𝛼 ≥ 2 is the path-loss exponent, 𝛽0 is the 

average channel power gain at 𝑑0 = 1 m , and 𝑑𝑘(𝑡) =

√𝐻2 + ∥∥𝐪[𝑛] − 𝐰𝑘∥∥
2
 is the distance between the UAV and 

device 𝑠𝑘 at time slot 𝑛. 

Denote 𝑃  as the transmit power for device 𝑠𝑘 . If 

offloading, the achievable rate from 𝑠𝑘 to the UAV at time 

slot 𝑛 can be calculated as 𝑅𝑘[𝑛] = 𝐵log2 (1 +
𝑃ℎ𝑘[𝑛]

𝜎2 ) = 

𝐵log2 (1 +
𝛾0

(𝐻2+∥∥𝐪[𝑛]−𝐰𝑘∥∥
2)

𝛼/2) , where 𝐵  is the channel 

bandwidth and 𝜎2 represents for the noise power. As such, 

𝛾0 ≜
𝑃𝛽0

𝜎2  denotes the received signal-to-noise ratio (SNR) at 

1 m. For offloaded task computation at the UAV, the 

information causality-constraints should be imposed, i.e., at 

any time instant 𝑛, the task-input data can only be computed 

at the UAV if it has already been previously received from the 

IoT devices. The information causality constraints for 

offloaded data computation can be expressed as 

𝛿𝑡∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝑅𝑘[𝑛] ≥ 𝛿𝑡∑𝑛=1

𝑁  
𝑓𝑈,𝑘[𝑛]

𝐶𝑘
, ∀𝑘 , where 

𝛿𝑡∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝑅𝑘[𝑛] represents for the amount of task input 

data that have been received from devices, while 

𝛿𝑡∑𝑛=1
𝑁  

𝑓𝑈,𝑘[𝑛]

𝐶𝑘
 denotes those which have been computed at 

the same time. The energy consumption of IoT device 𝑠𝑘 can 

be constructed by two parts, i.e., the energy consumption 

related to communication ∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝛿𝑡𝑃 , and the energy 

consumption related to computation ∑𝑛=1
𝑁  𝛿𝑡𝜅𝑘𝑓𝑘

3[𝑛], where 

𝜅𝑘 is the effective capacitance coefficient of device 𝑠𝑘 that 

depends on its processor’s chip architecture. To sum up, we 

have ∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝛿𝑡𝑃 + ∑𝑛=1

𝑁  𝛿𝑡𝜅𝑘𝑓𝑘
3[𝑛] ≤ 𝐸𝑘

max , where 

𝐸𝑘
max denotes the energy budget of device 𝑠𝑘 . Let 𝐯[𝑛] ≜

∥𝐪[𝑛+1]−𝐪[𝑛]∥

δt
 as the UAV velocity at time slot n, then the 

energy consumption of rotary-wing UAV at the n-th time slot 

is calculated as 𝐸𝑝[𝑛] = ∑ 𝛿𝑡(𝑃0 +
3𝑃0∥𝐯[𝑛]∥2

𝑈𝑡𝑖𝑝
2 +𝑁

𝑛=1

1

2
𝑑0𝜌𝑠𝐴∥𝐯[𝑛]∥3) + ∑ 𝛿𝑡𝑃𝑖 (√1 +

∥𝐯[𝑛]∥4

4𝑣0
4 −

∥𝐯[𝑛]∥2

2𝑣0
2 )

1/2
𝑁
𝑛=1 , 

where 𝑃0  and 𝑃𝑖  are two constants denoting the blade 

profile and induced power for hovering. 𝑣0  represents the 

mean rotor induced velocity when hovering, and 𝑈𝑡𝑖𝑝 is the 

rotor blade’s tip speed. Furthermore, 𝑠 and 𝑑0 represent for 

the rotor solidity and fuselage drag ratio, respectively. 𝐴 and 

𝜌 represent for the rotor disc area and air density, respectively. 

Then, we have 𝐸𝑝[𝑛] ≤ 𝐸𝑈
max, ∀n, where 𝐸𝑈

max denotes the 

energy budget of the UAV. Note that the binary computation 

offloading is adopted in this article, then the total computation 

throughput of device 𝑠𝑘  can be given as 𝛿𝑡∑𝑛=1
𝑁  

𝑓𝑈,𝑘[𝑛]

𝐶𝑘
+

∑𝑛=1
𝑁  

𝛿𝑡(1−𝑥𝑘[𝑛])𝑓𝑘[𝑛]

𝐶𝑘
.  Similar to [8], we assume that time 

spent on task computation and downloading by the UAV is 

neglected since the edge server has a much stronger 

computation capability than the size-constrained IoT devices 

and the number of bits related to the computation result is very 

small. 

 

2.2 Problem Statement 

In order to achieve fairness among all devices, we aim to 

maximize the minimum computation throughput among all 

the ground IoT devices via joint optimizing the resource 

allocation {𝑓𝑈,𝑘[𝑛], 𝑓𝑘(𝑛)}  and computation offloading 

{𝑥𝑘[𝑛]}  as well as UAV trajectory {𝐪[𝑛]} , subject to the 

energy budgets of devices and the UAV. Let 𝐐 ≜ {𝐪[𝑛]}, 

𝐗 ≜ {𝑥𝑘[𝑛]} , 𝐅𝐤 ≜ {𝑓𝑘[𝑛]} , 𝐅𝐔 ≜ {𝑓𝑈,𝑘[𝑛]}  and 𝜂 ≜

min
𝑘

{𝛿𝑡∑𝑛=1
𝑁  

𝑓𝑈,𝑘[𝑛]

𝐶𝑘
+ ∑𝑛=1

𝑁  
𝛿𝑡(1−𝑥𝑘[𝑛])𝑓𝑘[𝑛]

𝐶𝑘
}. The optimization 

problem can be formulated as follows: 

 

(P1):  max
𝐐,𝐗,𝐅𝐤,𝐅𝐔,𝜂

 𝜂 

s. t.            

 

𝛿𝑡∑𝑛=1
𝑁  

𝑓𝑈,𝑘[𝑛]

𝐶𝑘
+ ∑𝑛=1

𝑁  
𝛿𝑡(1−𝑥𝑘[𝑛])𝑓𝑘[𝑛]

𝐶𝑘
≥   𝜂, ∀𝑘,     (1) 

 

𝑥𝑘[𝑛] ∈ {0,1}, ∀𝑘, 𝑛 = 1, … , 𝑁,                 (2) 

 

∑𝑘=1
𝐾  𝑥𝑘[𝑛] ≤ 1, 𝑛 = 1, … , 𝑁,                   (3) 

 

𝛿𝑡 ∑ 𝑥𝑘[𝑛]𝑅𝑘[𝑛]K
K=1   ≥ 𝛿𝑡 ∑

𝑓𝑈,𝑘[𝑛]

𝐶𝑘

N
n=1   , 𝑛 = 1, … , 𝑁,  (4) 

 

𝑓𝑘[𝑛] ≤ 𝑓𝑘
max, ∀𝑘, 𝑛 = 1, … , 𝑁,                  (5) 

 

∑𝑘=1
𝐾  𝑓𝑈,𝑘[𝑛] ≤ 𝑓𝑈

max, 𝑛 = 1, … , 𝑁,                (6) 

 

∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝛿𝑡𝑃 + 𝛿𝑡 ∑ 𝜅𝑘𝑓𝑘

3[𝑛]N
n=1   ≤ 𝐸𝑘

max, ∀𝑘,      (7) 

 

𝐸𝑝[𝑛] ≤ 𝐸𝑈
max, ∀𝑛,                (8) 

 

∥ 𝐪[𝑛 + 1] − 𝐪[𝑛] ∥≤ 𝑉𝑚𝑎𝑥𝛿𝑡 , 𝑛 = 1, … , 𝑁 − 1,     (9) 

 

𝐪[1] = 𝐪[𝑁],                              (10) 

 

where (2) and (3) indicate that at most one device is scheduled 

for communication with UAV in each time slot due to the use 

of the TDMA. 

Note that (P1) is a mixed-integer non-linear optimization 

problem due to binary constraints in (2) and non-convex 

constraints in (1), (4) and (8), which are difficult to be solved 

optimally. In the following, we propose an efficient algorithm 

to find a suboptimal solution by employing P-SCA and D.C. 

optimization methods. 

 

3  Proposed Solution 
 

To tackle the binary constraints in (2), we employ the P-

SCA method, whose key idea is to add a penalty term that 

violates the binary constraints to the objective function and 

then solve the resultant optimization problem by using the 

SCA technique iteratively. Specifically, we express the 

constraints in (2) as the intersection of the following regions: 

 

0 ≤ 𝑥𝑘[𝑛] ≤ 1, ∀𝑘, 𝑛,                       (11) 

 

∑  𝐾
𝑘=1  ∑  𝑁

𝑛=1   (𝑥𝑘[𝑛] − 𝑥𝑘
2[𝑛]) ≤ 0.             (12) 

 

Note that constraints in (2) are equivalent to constraints in 

(11) and (12), since the feasible solution which satisfies the 

constraints in (2) also satisfies the constraints in (11) and (12) 
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and vice versa. To be specific, it is easy to verify that any 

feasible point in (2) satisfies constraints in (11) and (12). If 

constraints in (11) are satisfied, then 0 ≤ 𝑥𝑘[𝑛](1 −
𝑥𝑘[𝑛]) ≤ 1, ∀𝑘, 𝑛  and ∑𝑘=1

𝐾  ∑𝑛=1
𝑁    (𝑥𝑘[𝑛] − 𝑥𝑘

2[𝑛]) ≥ 0 . 

Combining with (12), we have ∑𝑘=1
𝐾  ∑𝑛=1

𝑁  (𝑥𝑘[𝑛] − 𝑥𝑘
2[𝑛]) =

0 , and thus 𝑥𝑘[𝑛](1 − 𝑥𝑘[𝑛]) = 0, ∀𝑘, 𝑛.  As a result, 

𝑥𝑘[𝑛] ∈ {0,1}, ∀𝑘, 𝑛. Note that the constraints in (11) and (12) 

are now continuous constraints, and we aim to obtain binary 

solution for 𝐗 in (P1). To this end, we introduce a penalty 

term to the objective function such that the objective value is 

penalized if the values of 𝐗 are not binary. Thus, the resultant 

problem is written as 

 

(P2):  max
𝐐,𝐗,𝐅𝐤,𝐅𝐔,𝜂

 𝜂 − 𝜆∑𝑘=1
𝐾  ∑𝑛=1

𝑁  (𝑥𝑘[𝑛] − 𝑥𝑘
2[𝑛]) 

s. t .     (1), (3) − (11). 

 

Where λ ≫ 1 represents for the penalty factor. It is shown 

in [24] that when the penalty factor λ is large enough, problem 

(P2) is equivalent to problem (P1). 

By introducing slack variables 𝐘 ≜ {𝑦𝑘[𝑛]} and {𝜏[𝑛] ≥

0}, where 𝜏[𝑛] = (√1 +
∥𝐯[𝑛]∥4

4𝑣0
4 −

∥𝐯[𝑛]∥2

2𝑣0
2 )

1/2

, we can obtain 

that 
1

𝜏[𝑛]
= 𝜏[𝑛]2 +

∥𝐯[𝑛]∥2

𝑣0
2 . Let 𝐸𝜏[𝑛] ≜ ∑ 𝛿𝑡(𝑃0 +𝑁

𝑛=1

3𝑃0∥𝐯[𝑛]∥2

𝑈𝑡𝑖𝑝
2 +

1

2
𝑑0𝜌𝑠𝐴∥𝐯[𝑛]∥3 + 𝑃𝑖𝜏[𝑛]), (P2) can be written as 

 

(P3): max
𝐐,𝐗,𝐅𝐤,𝐅𝐔,𝐘,{𝜏[𝑛]},𝜂

𝜂 − 𝜆∑𝑘=1
𝐾  ∑𝑛=1

𝑁  (𝑥𝑘[𝑛] − 𝑥𝑘
2[𝑛]) 

s. t .           

 

𝛿𝑡∑𝑛=1
𝑁  𝑥𝑘[𝑛]𝑦𝑘[𝑛] ≥ 𝛿𝑡∑𝑛=1

𝑁   
𝑓𝑈,𝑘[𝑛]

𝐶𝑘
, ∀𝑘,         (13) 

 

𝑅𝑘[𝑛] ≥ 𝑦𝑘[𝑛], ∀𝑘, 𝑛,                  (14) 

 

𝜏[𝑛]2 +
∥𝐯[𝑛]∥2

𝑣0
2 ≥

1

𝜏[𝑛]
, ∀𝑛,                      (15) 

 

𝐸𝜏[𝑛] ≤ 𝐸𝑈
max, ∀𝑛,                (16) 

 

 (1), (3), (5) − (7), (9) − (11).     

 

Without loss of optimality to the problem (P3), it is shown 

that equality holds in constraints in (15). Since otherwise, if 

there exists one constraint in (15) that is satisfied with strict 

inequality, then the slack variable 𝜏[𝑛]  can always be 

decreased to satisfy the equality, and all other constraints are 

still satisfied without changing the objective value. As such, 

we can obtain another feasible solution with the same 

objective value. As a result, problem (P2) is equivalent to the 

problem (P3). Note that (P3) is still a non-convex optimization 

problem since the objective function is non-concave and non-

convex constraints exist in (1), (13), (14) and (15). However, 

it is observed that the non-convex terms 𝑥𝑘[𝑛]𝑦𝑘[𝑛] in (13) 

and −𝑥𝑘[𝑛]𝑓𝑘[𝑛]  in (1) can be expressed as the D.C. 

functions, where D.C. optimization framework [25] can be 

adopted to tackle such issues. Specifically, 𝑥𝑘[𝑛]𝑦𝑘[𝑛] =
1

2
(𝑥𝑘[𝑛] + 𝑦𝑘[𝑛])2 −

1

2
(𝑥𝑘

2[𝑛] + 𝑦𝑘
2[𝑛]) and −𝑥𝑘[𝑛]𝑓𝑘[𝑛] =

1

2
(𝑥𝑘

2[𝑛] + 𝑓𝑘
2[𝑛]) −

1

2
(𝑥𝑘[𝑛] + 𝑓𝑘[𝑛])2 . By applying first-

order Taylor approximation over the convex terms (𝑥𝑘[𝑛] +

𝑦𝑘[𝑛])2 and (𝑥𝑘
2[𝑛] + 𝑓𝑘

2[𝑛]) respectively with given local 

points 𝑥𝑘
𝑟[𝑛], 𝑦𝑘

𝑟[𝑛], 𝑓𝑘
𝑟[𝑛], we have 

 

        𝑥𝑘[𝑛]𝑦𝑘[𝑛] ≥ (𝑥𝑘
𝑟[𝑛] + 𝑦𝑘

𝑟[𝑛])(𝑥𝑘[𝑛] + 𝑦𝑘[𝑛])      

−
1

2
(𝑥𝑘

𝑟[𝑛] + 𝑦𝑘
𝑟[𝑛])2 −

1

2
(𝑥𝑘

2[𝑛] + 𝑦𝑘
2[𝑛]) ≜ �̂�𝑘[𝑛],   (17) 

 

−𝑥𝑘[𝑛]𝑓𝑘[𝑛] ≥ −
1

2
(𝑥𝑘[𝑛] + 𝑓𝑘[𝑛])2 +

1

2
(𝑥𝑘

𝑟[𝑛]2 +

𝑓𝑘
𝑟[𝑛]2) + 𝑥𝑘

𝑟[𝑛](𝑥𝑘[𝑛] − 𝑥𝑘
𝑟[𝑛]) + 𝑓𝑘

𝑟[𝑛](𝑓𝑘[𝑛] − 𝑓𝑘
𝑟[𝑛]) ≜

�̌�𝑘[𝑛],                                           (18) 

 

where �̂�𝑘[𝑛] and �̆�𝑘[𝑛] are both concave functions. 

Then, for (15), given local points 𝜏𝑟[𝑛] and 𝐯𝑟[𝑛] in the 

r-th iteration, we have the following inequation by applying 

the first-order Taylor expansion to approximate the convex 

terms, i.e., 𝜏[𝑛]2 +
∥𝐯[𝑛]∥2

𝑣0
2 ≥ 𝜏𝑟[𝑛]2 + 2𝜏𝑟[𝑛](𝜏[𝑛] −

𝜏𝑟[𝑛]) −
∥∥𝐯𝑟[𝑛]∥∥

2

𝑣0
2 +

2

𝑣0
2 (𝜏𝑟[𝑛])𝑇𝐯[𝑛]  ≜ 𝜑𝑙𝑏[𝑛], where 𝜑𝑙𝑏[𝑛] 

is now joint concave with respect to 𝜏[𝑛] and 𝐯[𝑛]. 
Similarly, the objective function in (P3) is lower bounded 

by 𝜂 − 𝜆∑𝑘=1
𝐾  ∑𝑛=1

𝑁  (𝑥𝑘[𝑛] − 𝑥𝑘
2[𝑛]) ≥  𝜂 −

𝜆∑𝑘=1
𝐾  ∑𝑛=1

𝑁  (𝑥𝑘[𝑛] − 𝑥𝑘
𝑟[𝑛]2 − 2𝑥𝑘

𝑟[𝑛](𝑥𝑘[𝑛] − 𝑥𝑘
𝑟[𝑛])) ≜

Υ𝑙𝑏  through applying first-order Taylor approximation over 

term 𝑥𝑘
2[𝑛]. On the other hand, 𝑅𝑘[𝑛] is convex with respect 

to term ∥∥𝐪[𝑛] − 𝐰𝑘∥∥
2

, then we can obtain the following 

lower bound as in [22, 26], i.e., 

 

𝑅𝑘[𝑛] ≥ −𝐴𝑘
𝑟 [𝑛](∥∥𝐪[𝑛] − 𝐰𝑘∥∥

2
− ∥∥𝐪𝑟[𝑛] − 𝐰𝑘∥∥

2
) +

                             𝐵𝑖
𝑟[𝑛]  ≜ 𝑅𝑘

𝑙𝑏[𝑛]                    (19) 

 

Where 𝐴𝑘
𝑟 [𝑛] =

𝐵γ0(
𝛼

2
) log2 𝑒

Ω(Ω
α
2+γ0)

,  𝐵𝑖
𝑟[𝑛] = 𝐵𝑙𝑜𝑔2(1 +

𝛾0

Ω
α
2

) , 

and Ω ≜ 𝐻2 + ∥∥𝐪𝑟[𝑛] − 𝐰𝑘∥∥
2

. In this case, 𝑅𝑘
𝑙𝑏[𝑛]  is a 

concave function with respect to 𝐪[𝑛] while 𝛶𝑙𝑏 is a linear 

function. By applying the lower bound expressions derived in 

(17)-(19) as well as 𝛶𝑙𝑏, (P3) can be approximated as  

 

(P4): max
𝐐,𝐗,𝐅𝐤,𝐅𝐔,𝐘,{𝜏[𝑛]},𝜂

 𝛶𝑙𝑏 

s. t .    
 

𝛿𝑡∑𝑛=1
𝑁  

𝑓𝑈,𝑘[𝑛]

𝐶𝑘
+ ∑𝑛=1

𝑁  
𝛿𝑡(𝑓𝑘[𝑛]+ �̆�𝑘[𝑛])

𝐶𝑘
≥ 𝜂, ∀𝑘,     (20) 

 

𝛿𝑡∑𝑛=1
𝑁  �̂�𝑘[𝑛] ≥ 𝛿𝑡∑𝑛=1

𝑁   
𝑓𝑈,𝑘[𝑛]

𝐶𝑘
, ∀𝑘,      (21) 

 
𝑅𝑘

𝑙𝑏[𝑛] ≥ 𝑦𝑘[𝑛], ∀𝑘, 𝑛,                   (22) 

 

𝜑𝑙𝑏[𝑛]  ≥
1

𝜏[𝑛]
, ∀𝑛,          (23) 

 
   (3), (5) − (7), (9) − (11), (16).  

 
It can be shown that (P4) is a standard convex optimization 

problem with a concave objective function and a convex 

constraint set. With a given penalty parameter 𝜆 and feasible 

points {𝑥𝑘
𝑟[𝑛], 𝑦𝑘

𝑟[𝑛], 𝑓𝑘
𝑟[𝑛], 𝐪𝑟[𝑛], 𝜏𝑟[𝑛]},  We are able to 

solve (P4) efficiently by standard convex optimization 

techniques or solvers such as CVX [27]. In addition, since the 

lower bound approximation was applied to transform (P3) into 

(P4), then the constraint set of (P4) is stricter than that of (P3). 
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In this case, the optimal solution to (P4) is also feasible to (P3). 

We give the P-SCA-based algorithm to solve problem (P4), 

where the details are summarized in Algorithm 1. In particular, 

(P3) is solved by successively solving (P4) for given feasible 

points {𝑥𝑘
𝑟[𝑛], 𝑦𝑘

𝑟[𝑛], 𝑓𝑘
𝑟[𝑛], 𝐪𝑟[𝑛], 𝜏𝑟[𝑛]}, which is updated 

at the r-th iteration. The initial UAV trajectory can be set as a 

simple circular trajectory with maximum speed, and the circle 

center is the geometric center of all ground IoT devices, such 

that the devices can be served periodically. Similar to [24], the 

P-SCA-based algorithm is guaranteed to converge to a 

stationary point, i.e., satisfying the Karush-Kuhn-Tucker 

(KKT) conditions of (P3). The overall complexity of 

Algorithm 1 can be given as 𝑂((𝐾𝑁)3.5log (1/𝜖)) since we 

solve a standard convex optimization problem in each iteration, 

where 𝜖 denotes the solution accuracy [27]. 

 

Algorithm 1. P-SCA based algorithm for problem (P3) 

1: Initialize {𝐪𝟎[𝒏], 𝒇𝒌
𝟎[𝒏], 𝒙𝒌

𝟎[𝒏], 𝒚𝒌
𝟎[𝒏], 𝝉𝟎[𝒏]};  

Set 𝒓 = 𝟎. 
2: repeat 

3:   With   given   local points {𝐪𝒓[𝒏], 𝒇𝒌
𝒓 [𝒏], 𝒙𝒌

𝒓 [𝒏],  

𝒚𝒌
𝒓 [𝒏], 𝝉𝒓[𝒏]}, obtain optimal solution {𝐪∗[𝒏], 𝒇𝒌

∗ [𝒏],  

𝒙𝒌
∗ [𝒏], 𝒚𝒌

∗ [𝒏], 𝝉∗[𝒏], 𝒇𝑼,𝒌
∗ [𝒏]} by solving convex  

optimization problem (P4) with CVX solver. 

4:   Update the local points by 𝐪𝒓+𝟏[𝒏] = 𝐪∗[𝒏], 𝒙𝒌
𝒓+𝟏[𝒏] 

= 𝒙𝒌
∗ [𝒏], 𝒚𝒌

𝒓+𝟏[𝒏] = 𝒚𝒌
∗ [𝒏], 𝒇𝒌

𝒓+𝟏[𝒏] = 𝒇𝒌
∗ [𝒏], 𝝉𝒓+𝟏[𝒏] 

             = 𝝉∗[𝒏], ∀𝒌, 𝒏.  
5:   Update 𝒓 = 𝒓 + 𝟏. 

6:   until The objective value of (P3) converges. 

 

4  Simulation Results 
 

 

(a) Communication offloading among different ground devices 

 

(b) Optimized UAV trajectories with different T 

Figure 2. Optimized UAV trajectories and computation 

offloading 

In this section, we present simulations to evaluate the 

performance of the proposed algorithm. We consider a UAV-

enabled MEC system with 𝐾 = 6 IoT devices as shown in 

Figure 2(b). The ground devices are randomly and uniformly 

distributed in a 1.6 × 1.6 km
2

 square area. We select 

computation throughput as the performance metric, which is a 

measure of the computing capability of a system. We assume 

that each device has identical energy budget and maximum 

allowable CPU frequency, i.e., 𝐸𝑘
max = 𝐸‾ max,  𝑓𝑘

max = 𝑓‾max, 

𝑓𝑈,𝑘
max = 𝑓‾𝑈,𝑘

max, ∀𝑘 . Unless otherwise stated, the relevant 

parameters are set as follows: 𝐵 = 1MHz, 𝐻 = 100 m,
𝜎2 = −110dBm, 𝜌0 = −50 dB , 𝑃 = 0.1 W, 𝛼 = 2.2 , 

 𝑉max = 50 m/s , 𝐸𝑈
max = 2 × 105 Joule , 𝑓‾max = 0.5 GHz,

𝑓‾𝑈,𝑘
max = 10 GHz, 𝜖 = 10−4, 𝛿𝑡 = 1 s, 𝜆 = 105, 𝐶𝑘 =

103, 𝑘𝑘 = 10−28, ∀𝑘. 

In Figure 2(a), we show the computation offloading 

indicator for different ground devices when 𝑇 = 100 s and 

𝐸‾ max = 1 Joule, 𝐸𝑈
max = 2 × 105 Joule. It is observed that 

the communication offloading indicator is either 0 or 1, which 

means that binary computation offloading policy is adopted, 

and it can be efficiently obtained by the proposed Algorithm 

1. The reason is that the deductive penalty function is 

introduced in our algorithm to penalize the effect of non-

binary solution, and thus each computing task of the devices 

is either executed locally or completely offloaded to the UAV 

server. In Figure 2(b), we show the optimized trajectories 

obtained by Algorithm 1 over different time horizons 𝑇 when 

𝐸‾ max = 1 Joule and 𝐸𝑈
max = 2 × 105 Joule. It can be seen 

that the UAV exploits its mobility to adjust its trajectory to fly 

closer to the devices as 𝑇 increases. The reason is that the 

quality of air-to-ground channels is better when the UAV is 

closer to devices, then offloading tasks to the UAV is more 

energy-efficient than local computing, and thus ground 

devices prefer to offload computation tasks to the UAV. 

Figure 3 shows the max-min computation throughput 

achieved by our proposed algorithm and the following 

benchmark schemes: 1) Local computing benchmark, where 

all ground devices only perform local computing; 2) Only 

UAV computing benchmark, where the devices offload all the 

tasks to the UAV for computation without local computing, 

similar as in [16]; 3) Circular trajectory benchmark, where the 

UAV flies by following a circular centered at the geometric 

center of all ground devices, similar as [22]; 4) Static UAV 

benchmark, where the UAV remains static at the geometric 

center of the devices, similar as [28]. From Figure 3(a), we can 

see that the computation throughput increases with the 

increase of T for all the schemes, and the performance gain is 

more remarkable with larger T since a larger T provides the 

UAV enough time to move closer to the devices to be served. 

For example, when T = 90 s and T = 100 s, the proposed 

scheme can improve the computation throughput by about 

40% compared with other benchmarks. Furthermore, the rate 

of computation throughput decreases with large T, and the 

curves are expected to saturate when T is sufficiently large due 

to the limited device energy. Figure 3(b) shows the max-min 

computation throughput versus energy budget 𝐸‾ max when 𝑇 

= 90 s and 𝐸𝑈
max = 2 × 105 Joule . We can see that the 

computation throughput increases as 𝐸‾ max  increases since 

more computation offloading and local computing capacities 

can be provided from the devices. Furthermore, Figure 4 

shows the max-min computation throughput versus UAV 

energy budget 𝐸𝑈
max when 𝑇 = 90 s and 𝐸‾ max = 1  Joule. 



952 Journal of Internet Technology Vol. 23 No. 5, September 2022 

 

 

We can also observe that the computation throughput 

increases as 𝐸𝑈
max increases since the UAV provides more 

computing resources and edge computing capabilities. By 

comparing the performance of the proposed solution with that 

of the circular trajectory benchmark and static UAV 

benchmark, the advantage of flexible trajectory design is 

demonstrated. The performance gains among the proposed 

solution, local computing benchmark and only the UAV 

computing benchmark demonstrate the flexible computation 

offloading design. 

 

 

(a) Max-min computation throughput versus T 

 

 

(b) Max-min computation throughput versus 𝐸‾ max 

Figure 3. The max-min computation throughput versus time 

horizon T or energy budget 𝐸‾ max 

 

 

Figure 4. The max-min computation throughput versus UAV 

energy budget 𝐸𝑈
max 

 

5  Conclusion 
 

In this paper, we study the computation throughput 

maximization problem in a UAV-enabled multi-user MEC 

system with binary computation offloading scheme. The 

problem is formulated as a joint optimization of computation 

offloading and UAV trajectory as well as the computing 

frequency of devices. We propose an efficient iterative 

algorithm to obtain a suboptimal KKT solution by employing 

the P-SCA method and D.C. optimization framework, where 

the auxiliary penalty function tackles the difficult binary 

computation mode selection and the D.C. optimization 

framework tackles the non-convex terms in the optimization 

problem. Extensive simulation results show that the proposed 

joint design algorithm can improve the computation 

throughput by about 40% compared with other benchmark 

schemes under different network setups. 
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