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Abstract 
 

With the increasing complexity of optimization problems, 

the requirements for algorithm optimization capabilities are 

getting higher and higher. In order to better solve complex 

optimization problems, this paper proposes a new swarm 

intelligence optimization algorithm named Tumbleweed 

Optimization Algorithm (TOA). The TOA algorithm consists 

of two stages, which simulate the seedling growth phase and 

seed propagation phase of tumbleweed respectively. The TOA 

algorithm adopts a multi-group structure to improve the global 

searching ability of the algorithm. In order to verify the 

performance of the TOA algorithm in numerical optimization 

and solving practical application problems, this paper selects 

the CEC2013 benchmark function library and the vehicle path 

planning in the smart city for testing. Through the comparison 

of experimental results, the TOA algorithm can both show 

strong optimization capabilities. Compared with the other ten 

intelligent optimization algorithms, the TOA algorithm 

proposed in this paper can also show strong competitiveness. 

 

Keywords: Tumbleweed optimization algorithm, Swarm 

intelligence, Multi-group structure, Vehicle path 
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1  Introduction 
 

In the actual production and life process, various “optimal” 

problems are often encountered [1]. Such as maximizing the 

utilization of raw materials, the shortest driving distance, the 

highest production efficiency. Therefore, the “optimal” 

problem can be understood as selecting an optimal solution 

from many or even countless feasible solutions. Or it can also 

be understood as spending the least cost and achieving the best 

results. With the continuous development of human society, 

the scale and complexity of the “optimal” problem are 

becoming larger and more complex. When traditional 

optimization methods deal with these problems, the cost 

increases dramatically and becomes unbearable. Therefore, in 

the face of complex optimization problems, how to design an 

efficient solution algorithm has become an urgent problem to 

be solved. 

Inspired by many biological, physical and chemical 

phenomena in nature, scholars began to explore the internal 

relationship between these natural evolution phenomena and 

solving optimization problems. Since 1980, a series of 

intelligent optimization algorithms have emerged to solve the 

“optimal” problem by simulating various biological 

phenomena in nature [2]. Representative methods include 

genetic algorithm (GA) [3], artificial neural network (ANN) 

[4], simulated annealing (SA) [5], tabu search (TS) [6], 

particle swarm optimization (PSO) [7] and ant colony 

optimization (ACO) [8]. When solving combinatorial 

optimization problems, these algorithms are often called meta-

heuristic algorithms [9]. Compared with traditional 

optimization methods, intelligent optimization algorithms 

have the characteristics of self-learning, self-organization, 

self-adaptation and easy parallelization. Theoretically, the 

optimal solution or approximate optimal solution of the 

problem can be found in a reasonable time. In solving complex 

optimization problems, intelligent optimization algorithms 

have incomparable advantages over traditional optimization 

methods. At present, intelligent optimization algorithms are 

widely used to solve optimization problems in various fields, 

such as engineering optimization [10-11], intelligent 

scheduling [12-13], image processing [14-15], wireless sensor 

networks [16-18], path optimization [19-20], data prediction 

[21-22] and so on [23-24]. 

According to the number of agents included in the 

algorithm, intelligent optimization algorithm can be divided 

into individual based intelligent optimization algorithm and 

population-based intelligent optimization algorithm. The 

intelligent optimization algorithm based on population is also 

called swarm intelligence (SI) optimization algorithm. The 

PSO algorithm [7] and the ACO algorithm [8] mentioned 

above are typical examples. The SI algorithms simulate the 

group behavior of insects, herds, fish, birds and plants in 

nature [25]. These groups look for food or suitable living 

environment through cooperation. Each individual guides its 

activity behavior by learning the experience of itself, 

surrounding individuals or the whole population. Moreover, 

the SI algorithms have the characteristics of simple 

implementation, high scalability and strong adaptability. The 

research on swarm intelligence optimization algorithm has 

become a hot field in the research of intelligent optimization 

algorithm. 

After years of research and development, more and more 

novel swarm intelligence optimization algorithms have been 

proposed. And they are applied to solve complex optimization 

problems in different fields [26-27]. Such as differential 

evolution (DE) algorithm [28], shuffled frog leaping algorithm 

(SFLA) [29-30], whale optimization algorithm (WOA) [31], 

grey wolf optimizer (GWO) [32], cat swarm optimization 
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(CSO) [33], fish migration optimization (FMO) [34], bat 

algorithm (BA) [35], quasi-affine transformation evolution 

(QUATRE) algorithm [36], butterfly optimization algorithm 

(BOA) [37], equilibrium optimizer (EO) [38], jellyfish search 

(JS) optimizer [39], sparrow search algorithm (SSA) [40], 

seagull optimization algorithm (SOA) [41], manta ray 

foraging optimization (MRFO) [42], etc. 

Although there are already many swarm intelligence 

optimization algorithms, as explained in the NFL theorem [43], 

no algorithm is omnipotent. Each intelligent optimization 

algorithm has its shortcomings in some respects and cannot 

effectively solve all optimization problems. Therefore, more 

and more improved algorithms and new algorithms are 

proposed. Inspired by the habits of tumbleweed plants in 

nature, this paper proposes the tumbleweed optimization 

algorithm (TOA), a novel swarm intelligence optimization 

algorithm. The TOA algorithm includes two stages, which 

simulate the seedling growth stage and seed propagation stage 

of tumbleweed respectively. The seedling growth stage 

corresponds to the exploitation stage of the optimization 

algorithm, that is, the local search stage. The seed propagation 

stage corresponds to the exploration stage, that is, the global 

exploration stage. By judging the growth algebra of the 

individual, the switch of two stages is realized. The multi-

group structure is adopted in the TOA algorithm. Each sub-

population contains several tumbleweed individuals. In the 

growth process, according to the specific topology, the 

adjacent sub groups will affect each other. Since the spread 

seeds will be scattered in different areas, it is necessary to re-

divide the sub groups. In the way of division, the TOA 

algorithm adopts k-means algorithm [44] based on individual 

position. 

In order to verify the optimal performance of the TOA 

algorithm, the experiment in this paper consists of two parts. 

The first part is tested with the CEC2013 [45] benchmark 

library. In this part of the experiment, this paper selects three 

different dimensions of 30D, 50D and 100D to test. The 

comparison algorithm includes three classical optimization 

algorithms including the GA, DE and PSO algorithms, as well 

as seven new swarm intelligence optimization algorithms, 

which are proposed in recent years, including the WOA, GWO, 

JS, BOA, SSA, MRFO and SOA algorithms. The other part of 

the experiment is the vehicle path planning in smart city. With 

the continuous development of science and technology, the 

construction of smart city has gradually become a reality. The 

realization of smart city functions is inseparable from the 

association of various internet of thing (IOT) devices and the 

analysis of data [46-47]. Due to the increase of IOT devices, 

the pressure on base stations to store and forward data is also 

increasing. The pressure of base station can be greatly 

alleviated by using data collection vehicle to collect base 

station data regularly. Therefore, how to optimize the path of 

data collection vehicle and maximize the amount of path data 

collection will be a practical application problem to verify the 

effectiveness and feasibility of the proposed TOA algorithm 

in solving practical application problems. Finally, through the 

analysis of two parts of the experimental data, the TOA 

algorithm can show good optimization performance and 

strong competitiveness. 

 

 

 

The remaining sections are arranged as follows: the 

Section 2 introduces the inspiration of the algorithm proposed 

in this paper. The optimization principle and process of the 

TOA algorithm will be introduced in the Section 3. The 

Section 4 is the numerical optimization test of the TOA 

algorithm. The mathematical model and test of the path 

planning of data collection vehicle will be stated in Section 5. 

Finally, the Section 6 is the summary of this paper and the 

future research work. 

 

2  Inspiration 
 

Tumbleweed, also known as prickly russian thistle, is a 

desert plant with strong vitality, which is commonly found in 

the Gobi and desert [48]. The growth process of tumbleweed 

at the seedling stage is similar to that of other plants. 

Depending on where the seeds are scattered, the seedlings tend 

to grow in small groups. The seedlings will be affected by the 

surrounding environment during the growth process. The 

influence of the environment comes from many aspects. On 

the one hand, it comes from the influence of other individuals 

in the same group or the individuals in another group. On the 

other hand, it comes from the influence of natural 

environmental factors, such as light, soil, and moisture. But 

unlike other plants, tumbleweeds are not static in adulthood. 

When the drought comes, the whole tumbleweed will retract 

its roots, move randomly with the wind, and spread its seeds 

in the process of moving. When a suitable environment is 

found, the roots will continue to penetrate deep into the soil to 

absorb water. 

An intelligent optimization algorithm needs to include a 

certain number of agents. And the optimization process is 

divided into two stages: global exploration and local 

exploitation [49]. By analogy with the habits of tumbleweeds, 

each tumbleweed individual corresponds to a particle in an 

intelligent optimization algorithm. Tumbleweeds at the 

seedling stage are stationary and grow by absorbing nutrients 

from their surroundings. This stage can be considered as the 

development of the current environment, corresponding to the 

local exploitation stage in the intelligent optimization 

algorithm. Adult tumbleweed is a dynamic process of moving 

with the wind. This stage can be considered as the exploration 

of the whole search space, corresponding to the global 

exploration stage. 

In order to solve the optimization problem, the 

mathematical modeling and formula expression of this 

biological phenomenon of tumbleweed are carried out in this 

paper. The specific content of tumbleweed optimization 

algorithm is introduced in Section 3. 

 

3  Tumbleweed Optimization Algorithm 
 

In this section, the optimization principle and specific 

process of tumbleweed optimization algorithm (TOA) are 

mainly described. In order to facilitate the subsequent 

description of the algorithm process, the relevant 

mathematical symbols and their meanings used in the TOA 

algorithm are listed in Table 1. 
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Table 1. Description of relevant symbols in the TOA 

algorithm 

Symbol Meaning 

Ω Solution space 
G Subpopulation structure 

ps_g 
The number of individuals in the 

subpopulation 

X Individual representation in subpopulation 

fit Individual fitness 

pbest The best individual in the subpopulation 

pbest_val Optimal individual fitness in subpopulation 

gbest Global optimal individual 

gbest_val Global optimal individual fitness 

grow_iter Growth algebra 

grow_cycle Growth cycle 

K Maximum number of subpopulations 

 

3.1 Algorithm Structure 
 

The TOA algorithm proposed in this paper uses a multi-

group structure. The multi-group structure includes multiple 

sub-populations in the algorithm, and each sub-population 

contains several individuals and corresponds to a sub-region 

in the search space. The structure of each sub-population is as 

follows: 

 

G =< X, fit(X), pbest, pbest_val, ps_g >           (1) 

 

The optimization process of the TOA algorithm is divided 

into two stages, the first stage is the seedling growth stage, and 

the second stage is the seed propagation stage. The two stages 

correspond to the local exploitation and global exploration 

stages of the intelligent optimization algorithm, and each 

account for half of the tumbleweed growth cycle. In the 

process of seed dispersal, there is no guarantee that seeds from 

individuals in the same sub-population will remain in the same 

sub-population. Therefore, k-means clustering algorithm is 

adopted in this paper to achieve the re-division of population 

individuals after each growth cycle. 

The overall architecture of the TOA algorithm is shown in 

Figure 1. 

 

 

Figure 1. The algorithm architecture of the TOA algorithm 

 

 

3.2 Seedling Growth Stage 
 

Like other plants, tumbleweed is affected by the 

surrounding environment during the seedling growth stage. 

Influencing factors include many aspects, such as biological 

factors that compete with surrounding individuals, as well as 

natural factors such as soil, light, and moisture. In the TOA 

algorithm, the fitness of each individual is used as an index to 

evaluate the individual’s adaptability to the environment. The 

individual’s adaptability to the environment is represented by 

the symbol 𝑃𝑘
𝑖 , and the calculation formula is shown in 

Equation (2). 

 

P𝑘
𝑖 =

𝑓𝑖𝑡(𝑋𝑘
𝑖 )

𝑠𝑢𝑚(𝑓𝑖𝑡(𝑋𝑘))+𝜉
                           (2) 

 

where, 𝜉 is a very small number, which can be ignored. It 

should be noted that when solving the minimization problem, 

the fitness needs to be inverted. The greater the 𝑃 value, the 

higher the individual’s adaptability to the current environment. 

There will be more opportunities to learn and communicate 

with external groups, but they are also greatly affected by the 

outside world. Individuals with a lower 𝑃  value are 

compared with the current environment based on their 

adaptability. If its adaptability can meet the current 

environment, it can communicate with the outside world. 

Otherwise, it can only communicate with individuals within 

the group. In the TOA algorithm, individuals who 

communicate outside or only within the group are divided by 

sorting the fitness of individuals in the group. The top half of 

the individuals have the ability to communicate with the 

outside world by default. 

Suppose the distribution of the groups sorted according to 

the optimal value of the sub-population in the space is shown 

in Figure 2. Each sub-population will have an impact on other 

sub-populations within a certain range. In the TOA algorithm, 

we assume that each sub-population can be affected by at most 

the other two sub-populations. Referring to Figure 2, the 

influence on the growth of individuals in group 𝐺1  comes 

from two aspects. On the one hand, it comes from the 

influence of the individual 𝑔𝑏𝑒𝑠𝑡. On the other hand, it comes 

from the influence of the individual 𝑝𝑏𝑒𝑠𝑡 in group 𝐺2. The 

influencing factors in the growth of individuals in the group 

𝐺2 come from group 𝐺1 and 𝐺3. The group 𝐺3 is similar to 

the group 𝐺2, and the influencing factors come from group 

𝐺3 and 𝐺4. The group 𝐺4 is only affected by the group 𝐺3. 

Of course, in addition to external factors, the individual 𝑝𝑏𝑒𝑠𝑡 
in the group will also affect the growth process of other 

individuals in the group. Equation (3) shows the mathematical 

expression of the influencing factors of this part. 

 

Factor =

{
 
 

 
 
𝑐1∗(𝑔𝑏𝑒𝑠𝑡−𝑋𝑘

𝑖 )+𝑐2∗(𝑝𝑏𝑒𝑠𝑡𝑘−𝑋𝑘
𝑖 )+𝑐3∗(𝑝𝑏𝑒𝑠𝑡𝑘+1−𝑋𝑘

𝑖 )

3
, 𝑖𝑓 𝑘 == 1

𝑐1∗(𝑝𝑏𝑒𝑠𝑡𝑘−𝑋𝑘
𝑖 )+𝑐2∗(𝑝𝑏𝑒𝑠𝑡𝑘−1−𝑋𝑘

𝑖 )

2
, 𝑒𝑙𝑖𝑓 𝑘 == 𝐾

𝑐1∗(𝑝𝑏𝑒𝑠𝑡𝑘−1−𝑋𝑘
𝑖 )+𝑐2∗(𝑝𝑏𝑒𝑠𝑡𝑘−𝑋𝑘

𝑖 )+𝑐3∗(𝑝𝑏𝑒𝑠𝑡𝑘+1−𝑋𝑘
𝑖 )

3
, 𝑒𝑙𝑠𝑒

 (3) 
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Figure 2. Spatial distribution map of sub-populations 

 

The evolution formula for individuals who can 

communicate with the outside world is shown in Equation (4). 

 

X𝑛𝑒𝑤,𝑘
𝑖 = 𝑋𝑘

𝑖 + 𝑟1 ∗ 𝐹𝑎𝑐𝑡𝑜𝑟            (4) 

 

For individuals who only communicate within groups, that 

is, the adaptability of individuals cannot meet the current 

living environment. The influencing factors come from 𝑝𝑏𝑒𝑠𝑡 
and other individuals in the current group. In the selection of 

other individuals, this paper uses roulette-wheel [50] to choose. 

The evolution formula is shown in Equation (5). 

 

X𝑛𝑒𝑤,𝑘
𝑖 = X𝑘

𝑖 + 𝑟1 ∗ (𝑐4 ∗ (𝑝𝑏𝑒𝑠𝑡𝑘 − 𝑋𝑘
𝑖 ) +        

                              𝑐5 ∗ (𝑋𝑠𝑒𝑙𝑒𝑐𝑡,𝑘
𝑖 − 𝑋𝑘

𝑖 )) (5) 

 

In the above formula, 𝑐1 , 𝑐2  and 𝑐3  are random 

numbers in interval [0, 2], 𝑐4 and 𝑐5 are random numbers 

in interval [0, 1]. The parameter 𝑟1  is the influence of the 

current environment on the individual, and its value decreases 

linearly from the pre-set value 𝑡  to 0 with the algorithm 

iteration process. Equation (6) gives the iterative formula of 

the parameter 𝑟1. It indicates that with the continuous growth 

of tumbleweed seedlings, the influence of the surrounding 

environment on them is gradually reduced. In the TOA 

algorithm, 𝑡 is set to 2 by default. 

 

r1 = 𝑡 ∗ (1 −
𝑔𝑟𝑜𝑤_𝑖𝑡𝑒𝑟

𝑔𝑟𝑜𝑤_𝑐𝑦𝑐𝑙𝑒
)                    (6) 

 

Finally, the evolution formula of seedling growth stage is 

shown in Equation (7). 

 

X𝑛𝑒𝑤,𝑘
𝑖 =

{
𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (4), 𝑖𝑓 𝑟𝑎𝑛𝑘(𝑖) <

𝑝𝑠_𝑔

2
 𝑎𝑛𝑑 𝑟𝑎𝑛𝑑 < 𝑃𝑘

𝑖

𝐸𝑞𝑢𝑎𝑡𝑖𝑜𝑛 (5), 𝑒𝑙𝑠𝑒
  (7) 

 

3.3 Seed Propagation Stage 
 

The adult tumbleweed will uproot its roots, move with the 

wind, and spread the seeds as it moves. According to the 

literature [51], the propagation distance of seeds can be 

calculated by Equation (8). 

 

D =
𝐻∗𝑈

𝐹
             (8) 

 

where 𝐷 is the propagation distance of the seed, 𝐻 is the 

release height of the seed, 𝐹 is the sedimentation rate of the 

seed, and 𝑈 is the wind speed. For a specific plant, both 𝐻 

and 𝐹 are constants. 

This paper integrates Equation (8) with the iterative 

process of the optimization algorithm. That is, the parameter 

𝐻 corresponds to the difference between the growth cycle and 

the current growth generation. The parameter 𝐹 corresponds 

to the growth cycle. Then the update formula at this stage is 

shown in Equation (9). 

 

X𝑛𝑒𝑤,𝑘
𝑖 = 𝑝𝑏𝑒𝑠𝑡𝑘 + 𝑉 ∗

𝑔𝑟𝑜𝑤_𝑐𝑦𝑐𝑙𝑒−𝑔𝑟𝑜𝑤_𝑖𝑡𝑒𝑟

𝑔𝑟𝑜𝑤_𝑐𝑦𝑐𝑙𝑒
   (9) 

 

where, 𝑉 is a uniformly distributed random number in the 

interval [lb, ub]. 

Algorithm A1 is the pseudo-code of the whole 

optimization process of the TOA algorithm. 

 

4  Numerical Experimental Analysis 
 

In order to verify the optimization ability of the proposed 

TOA algorithm in solving numerical optimization problems, 

this paper selects the CEC2013 benchmark function library for 

testing. It contains two parts in comparison with other 

intelligent optimization algorithms. One part is a comparison 

with classical algorithms such as the GA algorithm, the DE 

algorithm and the PSO algorithm. The other part is a 

comparison with some popular intelligent optimization 

algorithms proposed in recent years. All experiments are run 

on the same computer. The operating system is Windows 10, 

the CPU frequency is 3.0GHz, the memory is 8G, and the 

Matlab version is R2019b. In the process of testing, the 

maximum number of individuals of each algorithm is 30. The 

maximum number of evaluations for each individual is 5000 

times. Each algorithm is tested continuously for 30 times, and 

the test results are recorded. 

 

4.1 The Selection of K Value 
 

Before comparing with other algorithms, this paper first 

makes an experimental comparison of TOA algorithm under 

different 𝐾  values. Here, we constrain the value of 𝐾 . 

According to the algorithm process described in the previous 

section, the minimum value of 𝐾 needs to be 3 to ensure the 

normal operation of the algorithm. For the maximum value of 

𝐾, we suggest that it is best not to exceed 𝑓𝑙𝑜𝑜𝑟(𝑝𝑠/5). This 

is because when the k-means algorithm is used to re-divide the 

population, the more groups, the more probability there is only 

one particle in each group will be increased, and some 

formulas in the TOA algorithm will lose their significance. It 

will also lead to the larger amount of memory occupied by the 

algorithm, resulting in slowing down the algorithm running 

speed. During the experiment, since the maximum number of 

particles 𝑝𝑠 is set to 30, the maximum value of 𝐾 is 6. In 

order to verify the optimal performance of the TOA algorithm 

under different 𝐾  values, this paper tests different 

dimensions of 30D, 50D and 100D on the CEC2013 

benchmark functions. Table 2 to Table 4 records the test 

results of the TOA algorithm. Figure 3 to Figure 5 counts the 
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number of wins on the 28 benchmark functions when 𝐾 takes 

different values.

 

Algorithm 1. Tumbleweed optimization algorithm 

Input: f(x): objective function; ps: population size; K: maximum number of subpopulations;  

dim: problem dimension; gc: growth cycle; Max_gen: maximum number of iterations 

Output: optimal gbest and optimal value f*(gbest). 

 1: Initialize population X;  

 2: The population X is divided into K groups using the k-means method; 

 3: repeat 

 4:   grow_iter – mod(gen, gc);  

 5:   for k = 1 to K do 

 6:     if grow_iter < gc/2 then 

 7:       Calculate the adaptability 𝑃𝑘
𝑖  of each individual using Eq.2; 

 8:       Update r1 using Eq.6;  

 9:       if rank(i) < 
𝑝𝑠−𝑔

2
 && rand < 𝑃𝑘

𝑖  then 

10:         Calculate 𝑋𝑛𝑒𝑤,𝑘
𝑖  using Eq.4; 

11:       else 

12:         Use roulette-wheel to select an individual;  

13:         Calculate 𝑋𝑛𝑒𝑤,𝑘
𝑖  using Eq.5;  

14:       end if 

15:     else 

16:       Calculate 𝑋𝑛𝑒𝑤,𝑘 using Eq.9;  

17:     end if  

18:     Boundary detection;  

19:     Calculate the fitness of each individual in group 𝐺𝑘; 

20:     Update pbest and pbest_val;  

21:     Update gbest and gbest_val;  

22:   end for 

23:   if grow_iter == gc – 1 then 

24:     Re-divide the population into K groups using the k-means method; 

25:   end if 

26: until (gen < Max_gen or Satisfy convergence constraints) 
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Table 2. The comparison of the TOA algorithm with different K values on 30D 

Function K = 3 K = 4 K = 5 K = 6 

 mean std mean std mean std mean std 

F1 0.096144 0.031638 0.276008 0.057915 0.404493 0.0883 0.41858 0.074997 

F2 3067755 1293879 3100794 1564173 3119674 1570796 3015363 1195054 

F3 1.38E+08 1.2E+08 1.47E+08 2.25E+08 1.09E+08 1.19E+08 1.66E+08 1.85E+08 

F4 15959.21 4150.744 28207.08 8174.474 39105.38 12924.39 42377.83 9415.982 

F5 0.134279 0.023901 0.281176 0.049889 0.365343 0.060176 0.3723 0.061835 

F6 42.83187 27.56389 33.61487 23.28851 42.12815 28.59266 45.51614 27.12016 

F7 71.07496 22.56875 60.62711 30.96051 42.71541 25.29023 31.23716 19.02553 

F8 20.96944 0.050252 20.96191 0.057907 20.98514 0.054497 20.96192 0.059769 

F9 19.91767 3.752046 21.80054 3.46938 19.38749 3.333257 19.88533 3.922631 

F10 1.135956 0.07088 1.210449 0.108459 1.224013 0.076668 1.277206 0.121893 

F11 80.60107 43.60489 62.02387 23.83 55.41564 17.32591 48.90504 13.96927 

F12 92.14382 31.17321 71.23077 24.68128 58.13371 38.72918 83.84221 49.57836 

F13 118.4556 41.44931 129.9995 38.26977 139.8033 39.41781 144.9187 27.53465 

F14 1854.124 487.4749 1800.722 367.1469 1880.008 758.3335 2207.487 1249.349 

F15 4416.567 1653.901 5718.174 1223.975 6133.255 391.928 6161.919 429.1614 

F16 2.576708 0.312135 2.638239 0.324074 2.548155 0.39027 2.694517 0.283311 

F17 191.3974 16.85131 199.4993 13.70573 201.2602 13.10772 198.137 12.21287 

F18 217.9314 9.769594 211.8704 11.4511 210.2548 12.95397 213.3991 10.69973 

F19 10.9281 1.515602 12.24005 1.099761 12.71881 1.341417 12.81897 0.950398 

F20 12.64727 1.138753 12.27071 0.619029 12.24363 0.412427 12.17 0.38342 

F21 313.4878 83.51404 319.342 79.63762 337.334 84.03659 320.9395 79.01058 

F22 2123.634 654.0388 1816.455 455.8738 1730.149 786.0082 1366.033 465.016 

F23 3814.234 1254.59 5405.479 1390.501 6097.164 796.1703 6360.263 302.8975 

F24 273.8766 8.926126 264.6838 9.808036 262.1296 7.504067 261.2456 8.595267 

F25 282.2473 9.524555 277.0566 6.69639 269.9496 8.294088 266.0621 8.018754 

F26 347.2767 40.85647 337.9296 47.31488 334.5717 46.17868 302.271 68.12984 

F27 892.9098 98.23928 857.8346 78.98519 838.4401 89.54661 815.682 79.37482 

F28 389.1508 309.1235 543.9761 549.0281 421.3195 339.2462 392.048 279.4487 

 

Table 3. The comparison of the TOA algorithm with different K values on 50D 

Function K = 3 K = 4 K = 5 K = 6 

 mean std mean std mean std mean std 

F1 0.63242 0.158301 1.844837 0.272823 2.419604 0.420692 2.545371 0.423594 

F2 10713038 4201223 9574927 2454249 8405185 3371731 9045569 3866231 

F3 1.46E+09 1.16E+09 1.41E+09 1.27E+09 1.12E+09 1.03E+09 1.23E+09 1.05E+09 

F4 49061.03 9700.018 69348.99 19194.6 85947.18 18115.12 86188.71 15346.32 

F5 0.622664 0.110201 1.100688 0.150874 1.312444 0.169935 1.392056 0.228668 

F6 62.55962 25.01869 62.29403 28.67781 66.77283 34.50577 64.27811 30.94774 

F7 119.5093 27.47312 99.36241 23.69478 79.52415 19.56601 72.35749 20.46601 

F8 21.16217 0.035182 21.1741 0.034261 21.17288 0.026717 21.1694 0.034013 

F9 44.49343 4.873374 42.46374 6.554176 44.83882 8.672894 44.68382 8.928748 

F10 3.555221 0.877774 3.915795 1.102638 4.189038 1.065539 4.421568 1.132691 

F11 158.1064 34.24508 180.5887 58.20192 156.5413 40.77313 139.8908 27.48833 

F12 321.2626 139.7587 217.7524 71.16986 187.8925 90.79656 255.1405 111.8631 

F13 354.6633 56.09104 357.0827 32.4481 358.2374 22.47033 354.8136 27.23791 

F14 3744.468 843.3797 3622.209 774.8077 4050.258 2204.117 4738.309 2666.25 

F15 11316.21 2530.887 12528.9 964.2468 12924.31 486.5203 12776.65 474.0312 

F16 3.592678 0.349183 3.561117 0.433072 3.61176 0.444092 3.723119 0.340352 

F17 403.3359 17.90593 403.6531 21.11961 403.212 21.1225 400.6012 21.02536 

F18 442.2797 17.12376 433.3843 13.11045 418.6148 15.0859 424.5426 15.43264 

F19 25.93426 2.700165 27.41984 1.971856 27.62178 1.663883 27.47743 1.741964 

F20 22.15482 0.401716 22.02722 0.348817 22.30325 0.273764 22.14621 0.249159 

F21 893.0278 361.4853 776.2925 387.6969 911.6565 368.2556 754.5459 402.9422 

F22 4870.086 889.4075 4212.007 720.8297 3864.382 699.6814 4365.26 1578.757 

F23 10331.79 2832.575 12493.69 1066.011 12682.51 459.2605 12852.77 494.529 

F24 339.7667 11.91717 328.8694 10.56459 314.6382 11.61081 315.3647 10.62349 

F25 362.6314 11.24134 351.9789 10.85247 338.4745 11.0536 334.1057 12.79486 

F26 421.6564 12.28735 410.1403 12.16856 391.8521 37.66203 390.804 38.21663 

F27 1545.562 141.5493 1454.324 107.2984 1339.917 139.307 1353.446 111.013 

F28 1697.873 1611.931 1484.343 1549.585 1923.036 1651.005 1851.478 1685.664 
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Table 4. The comparison of the TOA algorithm with different K values on 100D 

Function K = 3 K = 4 K = 5 K = 6 

 mean std mean std mean std mean std 

F1 6.616276 1.076467 16.32805 2.312258 21.00996 3.04936 23.65251 3.424116 

F2 50293628 15130891 51632909 13732257 52187198 11830649 45181707 10220826 

F3 1.84E+10 6.94E+09 1.71E+10 7.37E+09 1.85E+10 9.72E+09 1.69E+10 7.82E+09 

F4 143960.7 23557.11 193404.8 31619.13 210640.1 23223.85 243493.9 24350.6 

F5 6.033462 1.391409 10.51364 1.853699 13.12416 2.18062 14.83327 2.707704 

F6 312.2888 50.84528 317.8085 43.41032 344.2609 48.20632 349.8414 69.71744 

F7 194.2171 23.578 176.4001 27.92209 152.0233 29.98462 140.2535 20.84657 

F8 21.29226 0.040594 21.29205 0.036094 21.30712 0.033867 21.31208 0.029554 

F9 110.7328 11.27031 115.1592 14.1134 115.5936 14.40197 115.6692 17.51954 

F10 53.26273 14.15987 62.41185 16.75785 66.33938 18.16628 67.63841 16.36318 

F11 787.6178 149.9097 728.9065 116.8229 658.37 134.4109 607.915 75.25374 

F12 1052.646 333.0881 735.4677 162.8394 614.0463 218.588 621.529 202.238 

F13 1025.473 59.71336 957.6716 51.69219 933.3907 47.90764 922.795 37.76413 

F14 12222.25 1555.31 12290.15 1850.717 17140.31 7589.048 22540.06 7580.966 

F15 28217.36 3263.074 29186.79 488.4754 29287.04 617.603 29336.69 537.1106 

F16 4.350836 0.27027 4.431802 0.189435 4.392862 0.216579 4.375448 0.219281 

F17 1035.532 52.4735 1018.092 36.52744 1006.721 38.20327 991.939 20.94016 

F18 1100.239 33.16431 1077.23 34.0352 1045.594 27.5264 1033.107 28.69193 

F19 75.50668 4.514959 73.39763 4.119254 72.99276 4.002279 71.77608 3.893688 

F20 50 4.59E-10 50 1.42E-11 50 0 50 1.72E-12 

F21 619.0414 132.8384 542.5915 149.6047 571.299 151.2571 599.8269 156.9915 

F22 13793.08 1619.26 13280.18 1218.49 13916.92 3351.274 19987.17 7253.811 

F23 28065.65 4445.921 29820.02 610.6007 29798.52 574.341 29948.13 472.3997 

F24 541.8713 24.09574 524.5773 25.03967 495.6027 17.21219 489.8223 17.03644 

F25 582.3262 20.97765 554.0448 27.18328 547.8547 22.45242 531.1209 22.17413 

F26 584.6752 25.62407 571.7645 21.16896 558.5504 18.20557 547.7483 16.29979 

F27 3374.463 217.8345 3201.656 222.7551 3055.537 197.6016 2997.57 254.5037 

F28 5387.74 2495.625 5371.55 2382.901 5469.859 2204.019 5910.61 2918.885 

 

  
Figure 3. The number of wins under different  

K values on 30D 

Figure 4. The number of wins under different  

K values on 50D 

 

 

Figure 5. The number of wins under different K values on 100D 

 

 

The average ranking is calculated by sorting the test results 

of the four values in each dimension. The following sorting 

results can be obtained: 

mean: “K = 3”, “K = 6”, “K = 5”, “K = 4”.  

std: “K = 6”, “K = 3”, “K = 4”, K = 5”. 

In general, the optimization ability of the TOA algorithm 

with “𝐾 =3” on the CEC2013 test set is the best among the 

four values. “𝐾 =6” is weaker than “𝐾 =3” in the mean, but 

better than “𝐾 =3” in the standard deviation. The mean value 

reflects the accuracy of the algorithm, and the standard 

deviation reflects the stability of the algorithm. When the 

number of groups is 3, each group contains more particles, so 

the solution accuracy will be better than the other three values. 

But it is also very easy to fall into the local optimum, 

especially the problem to be solved is a multi-modal problem 

containing multiple local optimum solutions. Therefore, the 

results of each solution may vary greatly. Although the 

number of groups is 6, each group contains fewer particles, 
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which may reduce the final solution accuracy of the algorithm. 

But the algorithm is easier to jump out of the local optimal 

solution, and stability will also bring certain benefits. Because 

the two values have different advantages. Therefore, in the 

subsequent comparison with other intelligent optimization 

algorithms, the value of the grouping number in the TOA 

algorithm will be set to “𝐾 =3” and “𝐾 =6”, respectively. But 

by default, the TOA algorithm takes “𝐾 =3”.  

 

4.2 Comparison with Other Intelligent 

Optimization Algorithms 
 

In this section, two TOA algorithms with different 𝐾 

values are compared with other ten intelligent optimization 

algorithms. The compared algorithms include three classical 

intelligent optimization algorithms including the GA, the DE 

and the PSO algorithms, as well as seven new swarm 

intelligent optimization algorithms proposed in recent years, 

including the WOA, the GWO, the JS, the BOA, the SSA, the 

MRFO and the SOA algorithms. Table 5 to Table 10 records 

the mean and standard deviation of these ten algorithms on 

30D, 50D and 100D in the CEC2013 benchmark functions. 

The row 𝑤𝑖𝑛 in the tables indicates the number of wins of the 

TOA algorithm compared with these ten algorithms. 

The CEC2013 benchmark function set contains 28 test 

functions, which are divided into three function types. Among 

them, functions F1-F5 are unimodal functions, F6-F20 are 

multimodal functions, and F21-F28 are composite functions. 

In order to be able to visually observe the comparison of TOA 

algorithm with other algorithms in different function types, we 

make statistical processing on the results and records the 

relevant results in Table 11 to Table 14. The part of the TOA 

algorithm that performs poorly (the number of wins is less 

than half of the total number of test functions) is bolded. 

It can be seen from the data in the table that the TOA 

algorithm with different 𝐾 values performs better than other 

algorithms on the mean of three dimensions. And as the 

dimension increases, the TOA algorithm can still maintain its 

quantitative advantage. In the comparison of standard 

deviation, there is a clear gap between the two TOA 

algorithms and the DE algorithm. The two TOA algorithms 

are worse than the DE algorithm in three dimensions. 

However, compared with other algorithms, the TOA 

algorithm still has certain advantages.  

By comparing each function type, the number of wins in 

the mean and standard deviation of the two TOA algorithms 

on the unimodal function type is better than that of the DE 

algorithm. But in the other two types of standard deviations, 

the TOA algorithm is weaker than the DE algorithm, which 

leads to weaker than the DE algorithm in the total number of 

standard deviation wins. In comparison with the JS algorithm, 

the total number of wins in the mean and standard deviation 

of the two TOA algorithms is better than that of the JS 

algorithm. In the comparison of 30D and 50D unimodal 

functions, the two TOA algorithms are worse than JS 

algorithm in mean and standard deviation. However, with the 

increase of dimension, the two TOA algorithms are better than 

the JS algorithm in the comparison of 100D unimodal 

functions. The two TOA algorithms are also weaker than the 

SSA algorithm and the MRFO algorithm in the performance 

of unimodal functions. Except for 30D, the TOA algorithm 

with “𝐾 = 3” is slightly better than the SSA algorithm in mean 

and standard deviation. The mean and standard deviation of 

other dimensions are worse than the SSA algorithm. 

Compared with the MRFO algorithm, the two TOA 

algorithms are worse than the MRFO algorithm in unimodal 

functions. In comparison with other intelligent optimization 

algorithms, except that the TOA algorithm with “𝐾 = 3” is 

weaker than the GWO algorithm in the mean value of 50D, 

the two TOA algorithms perform better in the comparison of 

the total number of wins and each function type. 

Figure 6 shows the convergence curves of some test 

functions. It can be seen from the convergence curve that the 

TOA algorithm also has a better convergence performance. In 

the first 500 generations of the iterative process, except that 

the SOA algorithm has early stagnation on some test functions, 

the remaining algorithms are able to achieve the convergence 

optimization. In the later iterative optimization process, each 

algorithm has different evolution strategies, so different 

convergence accuracy will be achieved. Such as the WOA 

algorithm and the SOA algorithm, the convergence 

performance of the algorithm is greatly affected by the linearly 

decreasing parameter, so it is prone to premature convergence. 

Although the similar concept is also introduced in the TOA 

algorithm, the parameter is only related to the algebra of the 

growth cycle and is less affected by the iterative process. 

Therefore, even in the later stage of the algorithm, the TOA 

algorithm still has a strong global search capability, and can 

jump out of the local optimal solution in time, thereby 

achieving higher convergence accuracy. For example, in the 

function F23, the TOA algorithm has stagnated during the 

iteration process from 500 to 1000 generations. However, 

through the two-stage conversion, the TOA algorithm jumps 

out of the local optimal solution in time, and finally achieves 

better convergence accuracy. 

 

4.3 The Exploration and Exploitation 

Conversion Process 
 

According to the description of the TOA algorithm in the 

Section 3, the exploitation and exploration process of the 

algorithm is transformed and differentiated according to the 

growth cycle. Figure 7 shows the particles distribution and 

phase switching process in the solution process of the TOA 

algorithm. The test function used is the square function. In the 

TOA algorithm, the 𝑔𝑟𝑜𝑤_𝑐𝑦𝑐𝑙𝑒 is set to 50. Therefore, the 

first 25 iterations are the seedling growth stage of the 

algorithm. At this stage, it needs to realize the convergence of 

the algorithm, so as to fully mine the information of the current 

region. From (a) to (b) of Figure 7, it can be seen that the 

algorithm has achieved convergence, and all particles are 

distributed near the optimal value. In the last 25 iterations, it 

is the seed propagation stage of the algorithm. The particles 

are updated in space according to Equation (9) to simulate the 

moving process of tumbleweeds. It can be observed that (c) to 

(d) in Figure 7, the distribution of particles is scattered. 

Through this stage, it can help the algorithm to mine new 

information and jump out of the local optimal solution in time. 

(e) to (f) in Figure 7 are the seedling growth stage of the new 

growth cycle. It can be seen that the particles gradually gather 

near the optimal value, that is, the algorithm realizes the 

mining of information in the previous stage. (g) in Figure 7 is 

the seed propagation stage of several growth cycles, and the 

distribution of particles is still scattered. It shows that the 

algorithm still has a strong global search capability and can 

still conduct new explorations in the current area. 
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Table 5. The experimental results of the GA, DE, PSO, WOA and GWO algorithms on 30D 

Function GA DE PSO WOA GWO 

 mean std mean std mean std mean std mean std 

F1 8.661649 4.345551 60.46126 189.6953 2714.171 2065.21 4.090751 1.360965 1385.978 1172.106 

F2 24595181 9052123 46828774 14769298 58108170 92596312 55845455 23832416 27522249 14254199 

F3 3.35E+09 2.85E+09 3.77E+08 6.32E+08 2.17E+12 1.03E+13 2.16E+10 1.24E+10 5.82E+09 4.29E+09 

F4 17826.57 5311.842 36419.21 7625.011 19830.61 16822.87 73589.2 22333.16 37494.3 7975.682 

F5 3.207309 1.160075 5.524236 30.25749 4269.918 6561.401 132.8654 28.99177 1147.789 1160.091 

F6 94.74387 33.161 36.1114 15.79434 407.7684 380.0673 146.4584 48.07945 161.5487 46.02031 

F7 122.5543 31.21892 63.83607 15.13432 381.5227 501.0868 365.0493 407.8801 54.81723 16.71206 

F8 21.01456 0.062922 20.97727 0.047266 20.97577 0.061351 20.963 0.053337 20.98347 0.045214 

F9 31.57857 3.567546 32.39764 1.9602 32.53643 3.68242 37.54293 3.444963 20.5147 3.593446 

F10 37.06136 12.80079 3.372953 9.320364 826.4471 660.6651 119.5265 49.89614 337.9304 176.2492 

F11 12.46478 3.227798 12.25511 7.787907 253.2155 118.103 494.1376 98.91452 117.2497 38.36261 

F12 166.7471 46.86798 179.2385 15.38812 342.4555 109.8611 517.1603 104.6119 160.1306 64.49017 

F13 220.5353 44.3755 185.12 15.17705 363.5705 111.7234 494.7345 100.9042 196.1197 47.04376 

F14 1095.452 277.4216 710.2058 250.2053 4276.665 1008.22 5324.428 922.3581 3061.444 655.2746 

F15 5532.33 716.6023 7074.786 452.8437 4894.003 766.8807 5868.402 971.1377 4039.845 1672.409 

F16 2.523974 0.388452 2.640978 0.302431 1.89517 0.531663 1.900875 0.503098 2.71892 0.312373 

F17 52.22566 4.501254 44.65577 8.797319 321.8197 153.3608 622.049 82.69208 199.9262 44.10574 

F18 269.0597 25.17444 222.8703 11.97936 366.4005 155.2992 588.3506 109.9185 287.1607 44.12155 

F19 7.035856 2.162483 88.2282 448.8411 53496.45 206947.8 63.22957 22.45551 411.4745 887.3135 

F20 13.79839 0.874531 12.8085 0.25925 13.22101 0.991915 14.78657 0.248251 13.15225 1.343945 

F21 364.9776 67.52968 271.4515 57.58184 680.7613 501.7437 382.1256 67.99994 1309.703 383.6555 

F22 1100.562 300.5451 511.3767 223.7623 4466.315 886.1114 6540.228 945.0371 3300.589 713.2825 

F23 6290.525 943.0522 7149.653 442.7992 5719.571 999.8704 6598.121 1065.787 4404.052 1454.952 

F24 279.6475 15.72454 279.5597 6.123687 307.4106 9.454427 313.5599 12.77925 257.2353 8.36071 

F25 303.8829 11.45014 285.1288 5.489875 318.0505 14.38233 324.0143 11.60171 275.4095 8.101226 

F26 312.7265 86.62918 257.6766 83.55917 352.6611 74.5788 367.3623 75.79114 325.7925 57.28825 

F27 1085.431 103.4058 1096.417 56.83421 1227.7 99.40051 1323.541 69.48118 825.9263 65.72772 

F28 824.0976 844.5101 534.305 410.7301 2836.366 975.1396 4516.61 569.0731 1398.433 443.5709 

K=3, win 21 19 20 10 27 24 26 22 22 21 

K=6, win 19 20 19 12 24 26 26 22 24 20 

 

Table 6. The experimental results of the JS, BOA, SSA, MRFO and SOA algorithms on 30D 

Function JS BOA SSA MRFO SOA 

 mean std mean std mean std mean std mean std 

F1 6.73E-10 1.59E-09 57531.15 3448.22 1.08E-12 4.5E-13 7.27E-12 1.51E-11 5767.182 2127.976 

F2 2466906 973506.9 1.54E+09 5.3E+08 3156405 1554435 719649.4 272431.7 36279968 14602409 

F3 4.53E+08 6.2E+08 1.39E+21 4.29E+21 1.16E+09 8.89E+08 2.96E+08 3.17E+08 1.37E+10 6.32E+09 

F4 16523.06 3746.482 66766.61 2228.394 39295.36 5656.328 6479.481 3620.848 36246.24 6953.384 

F5 2.28E-08 9.89E-08 37819.9 10599.97 7.08E-12 1.01E-11 1.93E-12 2.03E-12 2005.619 1052.616 

F6 71.28246 18.66047 13938.69 3490.159 36.61546 26.76641 37.94645 28.04896 264.9357 83.91498 

F7 98.68171 23.97042 8692121 8761836 461.3639 1383.957 125.8213 30.97999 99.17569 16.19126 

F8 20.96523 0.067653 20.96654 0.048356 20.9753 0.048827 20.98071 0.063598 20.99725 0.045557 

F9 30.37451 3.164516 37.76753 1.760165 35.1354 3.072498 31.64337 3.7894 29.77655 3.601051 

F10 1.136888 0.699928 9962.625 1393.658 0.266622 0.147702 0.193446 0.116717 702.2485 280.9877 

F11 267.1178 58.13557 848.4123 60.1566 366.8806 103.0253 284.1898 99.63411 260.2921 37.08796 

F12 233.731 57.97031 809.3627 94.53336 567.4477 186.9021 323.9546 89.55887 245.3688 53.77497 

F13 290.1981 70.06344 802.9679 66.84484 561.2594 170.3178 355.9022 68.87073 310.6366 49.94417 

F14 2127.966 588.8412 7784.21 457.9327 3512.519 572.1674 3279.588 720.5992 4778.072 774.2109 

F15 6168.199 1395.788 7762.64 379.7931 5037.948 789.4932 4075.993 510.3017 4995.815 849.2191 

F16 2.529235 0.305255 2.801721 0.248536 1.746564 0.479397 2.475954 0.433586 2.082306 0.400395 

F17 290.8306 83.25273 855.8822 39.21048 705.2523 126.0239 402.8115 133.211 458.5184 57.04758 

F18 309.083 37.05812 838.7355 56.06826 735.2734 125.5794 279.5979 131.9974 449.499 69.13246 

F19 88.57673 75.12815 710644.3 190711.2 25.86628 10.34279 20.44952 8.441692 9102.513 41849.82 

F20 12.15662 0.75601 14.99993 0.000359 14.80375 0.567777 13.15939 1.171283 12.80903 0.68778 

F21 381.3417 72.34723 2572.389 60.86354 350.751 85.0941 368.0083 96.76306 1688.898 308.2996 

F22 2932.12 662.0221 8385.241 315.4982 4426.713 938.3524 3722.385 970.6226 5239.346 751.8852 

F23 5681.708 1431.926 8463.848 375.1362 5973.113 1063.452 4916.12 768.7731 5729.366 1079.06 

F24 286.7253 11.52224 374.3448 39.78452 326.126 86.62957 295.158 11.95336 287.2667 10.86883 

F25 311.015 9.306193 347.2868 23.11617 320.5632 11.00025 320.4388 13.85018 294.8671 10.68163 

F26 291.6394 81.60908 281.1141 60.74828 362.1012 74.09312 200.0431 0.016256 224.0683 58.928 

F27 1002.553 106.5557 1914.951 188.7125 1227.955 109.3907 1151.464 98.16136 1079.788 100.9288 

F28 2757.278 713.7003 5493.255 499.2617 4268.823 1303.935 3218.544 718.0367 1878.418 198.2351 

K=3, win 21 17 26 18 23 20 19 20 26 20 

K=6, win 18 20 27 18 20 21 18 20 23 21 
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Table 7. The experimental results of the GA, DE, PSO, WOA and GWO algorithms on 50D 

Function GA DE PSO WOA GWO 

 mean std mean std mean std mean std mean std 

F1 138.4604 45.32537 31.26765 171.26 6951.315 9296.255 117.1347 61.26803 4769.89 2612.421 

F2 77677480 19904935 2.01E+08 63004332 1.68E+08 3.13E+08 90660402 21109402 59601675 24624726 

F3 1.94E+10 1.31E+10 1.66E+10 7.77E+09 3.01E+11 8.04E+11 4.55E+10 1.51E+10 2.41E+10 7.31E+09 

F4 33811.94 7898.252 91997.23 11110.11 37800.16 23107.45 68923.24 10924.72 49957.55 7337.647 

F5 20.26826 5.086442 51.14632 119.9528 6275.362 7099.478 261.9072 90.31555 1168.734 981.6189 

F6 170.0405 80.44957 46.25593 11.56224 414.1749 329.0915 265.861 67.97517 397.0171 108.2144 

F7 155.2019 24.83774 129.7206 18.67058 300.1518 199.4576 662.8723 734.4361 73.33709 11.04796 

F8 21.19226 0.043877 21.16519 0.028805 21.16782 0.038569 21.15428 0.035305 21.16348 0.04461 

F9 61.49513 6.103541 67.62077 2.127592 61.85371 4.550176 69.75953 4.125024 40.2868 3.520289 

F10 297.0652 61.04447 5.058406 14.15881 1268.147 964.7758 379.9499 98.38282 960.0045 249.1535 

F11 84.35533 12.17755 30.82997 9.290483 543.6186 149.3913 810.7925 90.05439 302.3784 55.29677 

F12 465.5647 72.00788 418.1629 18.32047 651.5593 142.6071 955.4687 143.831 306.8703 86.97624 

F13 515.802 79.05696 410.7213 18.32807 738.548 130.7393 978.7048 134.4973 419.2359 84.75965 

F14 2996.24 483.7888 1073.449 387.5915 7582.233 1287.488 9860.203 1388.217 6258.712 1598.336 

F15 12183.31 1078.137 14354.47 370.5647 9730.845 1031.935 11154.85 1429.48 8256.744 3160.583 

F16 3.869842 0.616202 3.690207 0.322226 2.630718 0.639014 2.715584 0.638379 3.679927 0.274768 

F17 168.1921 16.84471 188.2981 9.365485 842.6115 200.1628 1152.252 115.8864 387.0248 64.34234 

F18 557.81 56.35016 448.2396 18.54875 863.6423 251.1883 1153.813 143.4793 586.1874 78.13226 

F19 25.07318 6.437512 39.41424 112.357 476067.6 959660 180.917 44.9029 3282.201 6036.917 

F20 23.63635 0.900632 22.76847 0.265106 23.61885 0.995594 24.66064 0.357453 21.41506 0.793517 

F21 795.7041 382.7631 849.8604 381.379 1125.131 532.8774 1469.072 540.8025 2631.727 666.1197 

F22 3552.827 555.9556 1669.622 1494.143 9526.982 1238.024 11777.07 1462.901 7714.162 2053.726 

F23 13836.83 982.38 14399.89 449.4398 11264.49 2055.838 13417.28 1298.598 8811.322 2119.322 

F24 350.3481 18.47074 361.1505 8.356525 402.6694 19.66707 412.3706 14.54932 313.9142 11.15468 

F25 398.8186 16.42209 372.1048 7.249977 419.7917 14.5425 436.2235 17.69039 354.5284 11.92513 

F26 409.9057 94.60607 338.0832 121.1317 433.2152 85.7065 466.1766 71.57856 381.7858 61.04963 

F27 1842.515 187.5039 1932.262 91.28491 2069.93 96.18577 2272.513 109.1509 1346.654 105.9469 

F28 1281.121 1552.038 1258.751 1435.903 4230.783 2023.156 8172.634 1686.339 2437.073 1148.367 

K=3, win 19 18 20 11 25 24 25 23 17 19 

K=6, win 20 19 19 9 23 24 24 23 17 19 

 

Table 8. The experimental results of the JS, BOA, SSA, MRFO and SOA algorithms on 50D 

Function JS BOA SSA MRFO SOA 

 mean std mean std mean std mean std mean std 

F1 0.658438 3.597024 79614.83 4387.491 2.98E-12 1.71E-12 5.67E-07 3.1E-06 19483.91 4600.396 

F2 7098967 1326959 3.14E+09 9.46E+08 6358213 2060433 2590323 1067854 97517434 43820073 

F3 2.01E+09 9.71E+08 1.93E+20 5.53E+20 3.36E+09 2.88E+09 1.12E+09 1.32E+09 4.15E+10 1.27E+10 

F4 31362.65 4952.535 94486.37 7257.858 102740.3 17571.6 28978.81 8723.476 59496.57 7151.036 

F5 0.074729 0.28068 25243.55 4383.78 1.68E-05 1.04E-05 4.06E-10 1.51E-09 3372.928 1397.865 

F6 98.62407 35.81018 11263.49 1678.882 75.40745 31.61675 73.9747 28.88176 1191.523 353.4238 

F7 105.0368 20.89968 83789.81 79290.35 271.7981 164.4141 124.242 30.56187 112.6048 14.59396 

F8 21.17242 0.054077 21.16285 0.038189 21.16796 0.031733 21.15879 0.057575 21.16598 0.037629 

F9 55.35956 3.68367 71.31799 2.001563 66.2454 4.979508 61.9705 4.929116 57.03193 4.016654 

F10 16.58311 9.961833 14576.12 1380.691 0.394054 0.327302 0.16967 0.074998 2175.525 460.8635 

F11 557.1529 71.42898 1110.704 52.62632 638.4877 104.191 575.1105 136.3661 584.936 53.93134 

F12 457.2435 88.29039 1198.373 58.34024 1061.026 57.29857 672.8795 136.0627 563.4211 66.22554 

F13 588.6189 67.72029 1199.316 69.28912 1124.448 183.2224 733.0092 117.3841 634.396 70.49256 

F14 4653.865 778.2087 14451.84 469.0507 5672.818 873.2752 5818.202 1210.473 9188.708 964.6076 

F15 13894.76 830.3297 14882.97 520.3422 9070.244 975.6274 7864.908 1014.387 10970.33 1548.845 

F16 3.711419 0.239728 3.849144 0.273853 2.545799 0.653556 3.316913 0.606217 3.286199 0.571076 

F17 663.8371 125.4801 1376.463 42.25339 1017.454 129.7143 826.4854 141.3099 889.4302 114.8224 

F18 651.5616 83.43523 1365.507 57.56635 1148.35 52.50265 688.9859 218.3507 913.9238 81.60569 

F19 390.6677 399.8741 1358382 233141.1 76.84017 22.2787 55.68012 21.07047 30680.87 51459.57 

F20 22.32491 0.877741 24.92593 0.110678 24.74687 0.244052 23.30974 1.082247 22.80691 1.046813 

F21 939.2173 199.2073 4548.103 53.91577 950.7678 142.413 950.7622 142.406 3769.749 340.8457 

F22 6420.441 1171.462 15813.86 398.0635 8510.626 1503.407 7426.211 1504.901 10532.24 1058.846 

F23 13241.58 1798.668 15956.53 417.7359 11314.99 1564.085 9883.46 1175.026 11030.93 1515.45 

F24 368.0008 13.03199 646.8198 130.3581 398.8679 14.40966 386.6209 14.04718 365.6246 13.35288 

F25 413.2591 17.15056 491.1032 27.06354 425.4208 14.35237 439.4362 25.45498 386.9537 15.517 

F26 410.5566 84.08666 443.3786 79.16116 445.6014 83.83203 361.7771 125.1741 450.7944 13.3342 

F27 1864.147 117.5594 3582.503 491.7392 2159.57 167.6418 1975.933 139.1017 1845.072 144.1397 

F28 4827.721 1490.715 9770.834 715.6657 5995.975 2994.601 4692.022 2298.082 4278.481 931.3917 

K=3, win 23 15 28 17 22 18 17 18 25 20 

K=6, win 22 18 27 18 20 17 17 18 23 19 
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Table 9. The experimental results of the GA, DE, PSO, WOA and GWO algorithms on 100D 

Function GA  DE  PSO  WOA  GWO  

 mean std mean std mean std mean std mean  std 

F1 1909.327 381.4485 117.5413 443.9738 20322.81 15070.91 2507.652 785.8997 29357.94 7602.8 

F2 3.16E+08 52161982 9.72E+08 1.46E+08 8.14E+08 9.8E+08 3.13E+08 66176140 2.04E+08 74334905 

F3 1.4E+11 3.49E+10 8.98E+10 3.17E+10 8.28E+13 4.23E+14 1.18E+14 3.81E+14 2.64E+12 4.66E+12 

F4 98041.91 16741.1 257622.1 17968.63 123599.7 52803.15 480937.5 70094.94 126503 10649.23 

F5 167.9382 33.42148 520.5181 1222.608 24479.2 22137.97 1369.543 206.7681 6735.436 2140.254 

F6 1061.354 129.5758 242.8282 26.94896 2080.662 1335.255 1089.383 220.1019 3107.467 1134.132 

F7 1020.958 1389.564 189.3974 13.6291 84606.22 183236.6 2193102 4361836 485.8619 264.6581 

F8 21.34051 0.044407 21.33393 0.019357 21.31489 0.044329 21.3331 0.03411 21.3478 0.024128 

F9 137.3006 10.67964 159.9213 3.051253 148.6034 5.343238 157.4193 5.711231 99.97048 5.801225 

F10 1642.724 235.7736 49.0652 72.8573 4197.962 1947.641 1650.312 317.8302 3446.464 567.3849 

F11 484.6748 52.88436 463.8083 38.75041 1903.606 335.2896 2340.769 159.0941 933.6864 112.9413 

F12 1296.838 179.1738 1034.374 34.24023 2103.463 315.8261 2433.679 253.7415 928.0646 154.2877 

F13 1384.332 103.7523 1036.462 33.58637 2134.813 352.1454 2616.658 219.6085 1201.362 166.4994 

F14 12195.48 835.9804 15141.6 1152.272 20214.09 2219.777 23410.22 2811.295 16204.39 1182.912 

F15 29452.4 1257.904 31666.37 545.1553 21855.38 1392.4 25767.42 1945.68 15713.5 4226.84 

F16 4.604012 0.258509 4.389798 0.2488 3.645832 0.588476 3.625004 0.472722 4.359996 0.230861 

F17 661.632 54.17324 656.1054 24.07945 2651.336 594.7682 2999.877 143.1233 1311.181 181.053 

F18 1514.006 117.9767 1099.863 34.44211 2811.369 417.5795 3016.177 131.0211 1678.297 168.047 

F19 128.343 44.37648 8399.177 45181.77 971991.3 1315773 1102.3 424.5641 86405.53 120404.8 

F20 49.99995 0.000283 50 0 50 0 50 0 49.99427 0.022289 

F21 1113.785 544.9645 424.5252 305.8433 2151.405 1855.473 1114.871 584.2577 5691.105 589.8719 

F22 14314.03 2148.82 13338.46 2477.874 24022.5 2632.255 26883.29 2028.015 19537.7 2878.451 

F23 31410.77 1688.875 32245.57 610.56 26692.57 1914.301 30181.42 1972.731 21671.18 5047.083 

F24 569.6793 31.88158 586.2984 10.29793 745.9387 83.87324 685.5783 28.34847 488.2359 23.1066 

F25 650.6229 32.4003 612.6162 15.10679 710.4656 40.87077 736.4244 41.36531 597.8205 24.44788 

F26 638.8822 31.74385 695.5814 7.761697 652.9042 114.3959 710.1191 11.76008 542.4258 62.22963 

F27 3791.994 255.5844 4257.914 90.28709 4523.522 204.9405 4737.575 223.7674 3061.916 209.9649 

F28 9044.458 2156.747 4533.795 1122.073 19101.41 3435.119 23260.2 2115.844 9321.781 837.7965 

K=3, win 23 19 18 9 24 22 26 20 19 18 

K=6, win 22 21 20 12 23 23 26 21 18 20 

 

Table 10. The experimental results of the JS, BOA, SSA, MRFO and SOA algorithms on 100D 

Function JS BOA SSA MRFO SOA 

 mean std mean std mean std mean std mean std 

F1 0.658438 3.597024 79614.83 4387.491 2.98E-12 1.71E-12 5.67E-07 3.1E-06 19483.91 4600.396 

F2 7098967 1326959 3.14E+09 9.46E+08 6358213 2060433 2590323 1067854 97517434 43820073 

F3 2.01E+09 9.71E+08 1.93E+20 5.53E+20 3.36E+09 2.88E+09 1.12E+09 1.32E+09 4.15E+10 1.27E+10 

F4 31362.65 4952.535 94486.37 7257.858 102740.3 17571.6 28978.81 8723.476 59496.57 7151.036 

F5 0.074729 0.28068 25243.55 4383.78 1.68E-05 1.04E-05 4.06E-10 1.51E-09 3372.928 1397.865 

F6 98.62407 35.81018 11263.49 1678.882 75.40745 31.61675 73.9747 28.88176 1191.523 353.4238 

F7 105.0368 20.89968 83789.81 79290.35 271.7981 164.4141 124.242 30.56187 112.6048 14.59396 

F8 21.17242 0.054077 21.16285 0.038189 21.16796 0.031733 21.15879 0.057575 21.16598 0.037629 

F9 55.35956 3.68367 71.31799 2.001563 66.2454 4.979508 61.9705 4.929116 57.03193 4.016654 

F10 16.58311 9.961833 14576.12 1380.691 0.394054 0.327302 0.16967 0.074998 2175.525 460.8635 

F11 557.1529 71.42898 1110.704 52.62632 638.4877 104.191 575.1105 136.3661 584.936 53.93134 

F12 457.2435 88.29039 1198.373 58.34024 1061.026 57.29857 672.8795 136.0627 563.4211 66.22554 

F13 588.6189 67.72029 1199.316 69.28912 1124.448 183.2224 733.0092 117.3841 634.396 70.49256 

F14 4653.865 778.2087 14451.84 469.0507 6572.818 873.2752 5818.202 1210.473 9188.708 964.6076 

F15 13894.76 830.3297 14882.97 520.3422 9070.244 975.6274 7864.908 1014.387 10970.33 1548.845 

F16 3.711419 0.239728 3.849144 0.273853 2.545799 0.653556 3.316913 0.606217 3.286199 0.571076 

F17 663.8371 125.4801 1376.463 42.25339 1017.454 129.7143 826.4854 141.3099 889.4302 114.8224 

F18 651.5616 83.43523 1365.507 57.56635 1148.35 52.50265 688.9859 218.3507 913.9238 81.60569 

F19 390.6677 399.8741 1358382 233141.1 76.84017 22.2787 55.68012 21.07047 30680.87 51459.57 

F20 22.32491 0.877741 24.92593 0.110678 24.74687 0.244052 23.30974 1.082247 22.80691 1.046813 

F21 939.2173 199.2073 4548.103 53.91577 950.7678 142.413 950.7622 142.406 3769.749 340.8457 

F22 6420.441 1171.462 15813.86 398.0635 8510.626 1503.407 7426.211 1504.901 10532.24 1058.846 

F23 13241.58 1798.668 15956.53 417.7359 11314.99 1564.085 9883.46 1175.026 11030.93 1515.45 

F24 368.0008 13.03199 646.8198 130.3581 398.8679 14.40966 386.6209 14.04718 365.6246 13.35288 

F25 413.2591 17.15056 491.1032 27.06354 425.4208 14.35237 439.4362 25.45498 386.9537 15.517 

F26 410.5566 84.08666 443.3786 79.16116 445.6014 83.83203 361.7771 125.1741 450.7944 13.3342 

F27 1864.147 117.5594 3582.503 491.7392 2159.57 167.6418 1975.933 139.1017 1845.072 144.1397 

F28 4827.721 1490.715 9770.834 715.6657 5995.975 2994.601 4692.022 2298.082 4278.481 931.3917 

K=3, win 23 15 28 17 22 18 17 18 25 20 

K=6, win 22 18 27 18 20 17 17 18 23 19 
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Table 11. The mean of the TOA algorithm with K = 3 

Dim Type GA DE PSO WOA GWO JS BOA SSA MRFO SOA 

D=30 Unimodal 5 5 5 5 5 2 5 3 1 5 

 Multimodal 10 10 14 13 13 12 14 12 11 14 

 Composition 6 5 8 8 4 7 7 8 7 7 

 win 21 20 27 26 22 21 26 23 19 26 

D=50 Unimodal 4 5 4 5 5 2 5 2 0 5 

 Multimodal 11 11 13 12 9 14 15 12 11 12 

 Composition 4 4 8 8 3 7 8 8 6 8 

 win 19 20 25 25 17 23 28 22 17 25 

D=100 Unimodal 4 5 4 5 4 4 5 2 0 5 

 Multimodal 11 8 13 13 11 13 15 11 11 13 

 Composition 8 5 7 8 4 7 8 6 6 7 

 win 23 18 24 26 19 24 28 19 17 25 

 

Table 12. The std of the TOA algorithm with K = 3 

Dim Type GA DE PSO WOA GWO JS BOA SSA MRFO SOA 

D=30 Unimodal 5 5 5 5 5 1 4 3 1 5 

 Multimodal 9 3 12 12 11 10 9 10 14 9 

 Composition 5 2 7 5 5 6 5 7 5 6 

 win 19 10 24 22 21 17 18 20 20 20 

D=50 Unimodal 4 5 5 5 4 2 4 2 1 4 

 Multimodal 9 3 13 12 11 9 9 10 12 11 

 Composition 5 3 6 6 4 4 4 6 5 5 

 win 18 11 24 23 19 15 17 18 18 20 

D=100 Unimodal 4 4 5 5 4 4 5 2 1 4 

 Multimodal 9 3 11 10 9 9 7 8 8 10 

 Composition 6 2 6 5 5 4 5 5 4 3 

 win 19 9 22 20 18 17 17 15 13 17 

 

Table 13. The mean of the TOA algorithm with K = 6 

Dim Type GA DE PSO WOA GWO JS BOA SSA MRFO SOA 

D=30 Unimodal 4 4 4 5 4 1 5 2 1 4 

 Multimodal 9 10 13 13 14 11 15 11 11 13 

 Composition 6 5 7 8 6 6 7 7 6 6 

 win 19 19 24 26 24 18 27 20 18 23 

D=50 Unimodal 4 5 4 4 4 1 5 2 0 4 

 Multimodal 10 9 12 12 9 13 14 11 11 12 

 Composition 6 5 7 8 4 8 8 7 6 7 

 win 20 19 23 24 17 22 27 20 17 23 

D=100 Unimodal 4 5 4 5 4 4 5 2 1 4 

 Multimodal 11 10 12 13 10 11 15 10 10 13 

 Composition 7 5 7 8 4 6 8 5 5 7 

 win 22 20 23 26 18 21 28 17 16 24 

 

Table 14. The std of the TOA algorithm with K = 6 

Dim Type GA DE PSO WOA GWO JS BOA SSA MRFO SOA 

D=30 Unimodal 4 4 5 5 4 1 4 2 1 4 

 Multimodal 10 5 13 11 11 12 9 11 12 11 

 Composition 6 3 8 6 5 7 5 8 7 6 

 win 20 12 26 22 20 20 18 21 20 21 

D=50 Unimodal 4 4 5 4 4 2 4 2 1 4 

 Multimodal 10 4 13 13 10 11 10 9 11 11 

 Composition 5 1 6 6 5 5 4 6 6 4 

 win 19 9 24 23 19 18 18 17 18 19 

D=100 Unimodal 4 4 5 5 4 4 5 2 0 4 

 Multimodal 11 6 12 12 11 12 10 8 9 11 

 Composition 6 2 6 4 5 5 5 4 5 5 

 win 21 12 23 21 20 21 20 14 14 20 
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(a) F9 (b) F13 

  

(c) F20 (d) F23 

  

(e) F25 (f) F28 

Figure 6. Convergence curve of functions F9, F13, F20, F23, F25, F28 

 

5  The Application of Path Planning 

Problem in Smart City 
 

For numerical optimization problems, the TOA algorithm 

has better convergence performance and optimization effect. 

In order to further verify the effectiveness of the proposed 

algorithm in solving practical problems, the TOA algorithm is 

further tested in this paper. In this section, the application of 

TOA algorithm in path planning problem in smart city will be 

introduced. 

 

5.1 System Model 
 

Suppose there is a city with an area of 𝑀 ×𝑀. The city is 

divided into multiple areas, and each area contains a different 

number of sensor nodes and a base station. The sensor node is 

responsible for monitoring the current area and collecting data 

in the monitored area (such as air temperature and humidity, 

smoke, traffic flow, etc.). The sensor node sends the collected 

data to the base station in the area. Each base station has a 

fixed storage capacity, so the collected data will first be stored 

in the storage area of the base station. When the data in the 

storage area reaches the upper limit of the storage capacity, the 

base station organizes and packs the collected data. It is 

transmitted to the data center through wireless transmission or 

optical fiber transmission. The data center processes the data 
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from the base station to form a visual report, thus realizing the 

monitoring of the entire city. 

 

    
(a) (b) (c) (d) 

   
 

(e) (f) (g) (h) 

Figure 7. The distribution of particles in the solving process of the TOA algorithm 

 

 
Figure 8. The system model 

 

In order to relieve the pressure of base stations to transmit 

data, the data collection vehicles are introduced in the city. 

The collection vehicle starts from the data center, traverses 

each monitoring area at a certain speed, and collects the data 

stored in the storage area of the base station. The data 

collection vehicle finally returns to the data center and delivers 

the collected data to the processing program of the data center. 

Figure 8 shows the system model. 

 

5.2 Objective Function Establishment 
 

In this system, the main goal is to optimize the path length 

of the data collection vehicle, thereby reducing the fuel 

consumption of the collection vehicle. At the same time, it also 

needs to maximize the amount of path data collection to 

reduce the forwarding pressure of the base station. Equations 

(10) and (11) give mathematical models for these two goals. 

Table 15 gives the definition and meaning of related symbols 

in this section. The above two goals are based on the following 

assumptions: 

(1) The data receiving rate and moving speed of the data 

acquisition vehicle are constant. 

(2) Do not consider the failure of the data collection 

vehicle and the base station. 

(3) The data storage capacity of the data collection 

vehicle is not considered. 

 

𝑓(1) = min (∑ 𝑑𝑠(𝑖),𝑠(𝑖+1)
𝑁+1
𝑖=1 )            (10) 

 

𝑓(2) = max (∑ 𝑐𝑠(𝑖)
𝑁
𝑖=1 )                 (11) 

 

Because the data collection vehicle needs to start from the 

data center and eventually return to the data center. Therefore, 

when encoding, the first element and the last element of the 



Tumbleweed Optimization Algorithm and Its Application in Vehicle Path Planning in Smart City 941 

 

 

sequence 𝑠 are the numbers corresponding to the data center. 

In this paper, the data center node is set to node 1 by default. 

Therefore, the sequence 𝑠 actually contains 𝑁+2 elements. 

Equation (12) gives the calculation formula of the objective 

function 𝑓(2). As the process of data collection by sensor 

nodes is continuous, data is added in the storage area of base 

stations all the time. When the data collection vehicle does not 

reach the base station and the data storage capacity has 

reached the maximum, the base station will directly forward 

the data to the data center. So we carry on the operation of mod 

to this process. The calculation of the time for the data 

collection vehicle to arrive at base station 𝑖  includes two 

parts, one part is the total movement time of the data collection 

vehicle, and the other part is the sum of the data collection 

time of the previous 𝑖 -1 nodes. Equation (13) is the 

calculation formula for this process. 

 

c𝑠(𝑖) = 𝑚𝑜𝑑(𝑅𝑠(𝑖) ∗ 𝑡𝑠(𝑖) + 𝐶𝑠(𝑖), 𝑀𝑎𝑥_𝐶)         (12) 

 

t𝑠(𝑖) =
∑ 𝑑𝑠(𝑘),𝑠(𝑘+1)
𝑖−1
𝑘=1

𝑣𝑚
+

∑ 𝑐𝑠(𝑘)
𝑖−1
𝑘=1

𝑆𝑒𝑛𝑑
                (13) 

 

Since the objective function 𝑓(1)  is a minimization 

problem, the objective function 𝑓(2)  is a maximization 

problem. Therefore, in order to simplify the solution, this 

paper takes the reciprocal of objective function 𝑓(2)  and 

unifies the two objectives into a minimization problem. By 

setting the priority of each objective, the optimization problem 

of the above two objectives is transformed into a single 

objective problem. Finally, the objective function and the 

fitness function in the algorithms are shown in Equation (14). 

𝛼 and 𝛽 represent the priority of the two goals. 𝛼 > 𝛽, the 

priority is to minimize the path length; 𝛼 < 𝛽, the priority is 

to maximize the amount of path data collection; 𝛼 = 𝛽, the 

priority is the same, and the result is a compromise between 

the two goals. In this paper, both 𝛼 and 𝛽 are set to 0.5. The 

path planning problem proposed in this paper can be regarded 

as a TSP problem considering the time factor. The TSP 

problem itself is an NP-Hard problem, so the problem 

proposed in this paper is also an NP-Hard problem. 

min 𝑓 = 𝛼𝑓(1) + 𝛽
1

𝑓(2)
                      (14) 

Table 15. Description of relevant symbols in smart city path 

planning 

Symbol Meaning 

N Number of base stations 

s Sequential sequence of the data collection 

vehicle visiting the base stations 

d Distance matrix 

cs(i) The amount of data stored in the i-th base 

station storage area 

Rs(i) The rate at which the i-th base station 

collects node data 

Cs(i) The initial data of the i-th base station 

storage area 

Max_C Maximum storage capacity of base station 

vm The moving speed of the data collection 

vehicle 

Send The rate at which the base station transmits  

data to the data collection vehicle 

 

5.3 Experiment Analysis 
 

In order to verify the effectiveness of the proposed 

algorithm in solving this problem, simulation experiments are 

carried out in this subsection. The selected urban area is 

1000km×1000km, and the data center is located in the center 

of the area, and the coordinate is (500, 500). Due to the 

different number of nodes connected to each base station, the 

amount of data collected per unit time is different. Initially, the 

amount of data stored in the storage area of each base station 

is also different. The maximum capacity 𝑀𝑎𝑥_𝐶 of each base 

station is set to 2048MB. The data transmission rate Send to 

the collection vehicle is set to 20MB/s. The moving speed of 

the data collection vehicle is set to 36km/h (10m/s). During 

the experiment, the maximum number of iterations for each 

algorithm is 2000, and the number of consecutive tests is 20. 

The other parameter settings of the experiment are the same as 

those in the Section 4. Table 16 records the mean, standard 

deviation, and algorithm ranking when the city has different 

numbers of base stations. 

It can be seen from the table that the TOA algorithm also 

has certain competitiveness when solving this problem. By 

calculating the average ranking, the following ranking results 

are obtained: 

TOA with “𝐾 = 6” (2.625) < DE (3.625) < JS (3.875) < 

TOA with “𝐾 = 3” (4.875) < GA (5.625) = GWO (5.625) < 

WOA (6.875) < MRFO (8) < BOA (8.5) < SSA (9.125) < SOA 

(9.5) < PSO (9.75) 

The TOA algorithm with “𝐾 = 6” has the best overall 

performance, followed by the DE algorithm. It can also be 

seen that the performance of the TOA algorithm with “𝐾 = 3” 

is weaker than that of the TOA algorithm with “𝐾 = 3”. This 

is because in this problem, the optimization algorithm not only 

optimizes each dimension, but also considers the final 

generated path order. It means that each dimension needs to 

have strong mutation, that is, the algorithm needs to have 

strong global search ability. According to the analysis in 

Section 4.1, when 𝐾 value is small, the algorithm has strong 

local search ability. For larger 𝐾 value, the algorithm will 

have stronger global search ability. Therefore, for the solution 

of this problem, the TOA algorithm with “𝐾 = 3” is slightly 

weaker than the TOA algorithm with “𝐾 = 6”. 

Figure 9 shows the convergence curves of all algorithms 

in solving the above examples. Due to the large number of 

groups, the TOA algorithm with “𝐾 = 6”, the convergence 

speed in the early stage will be weaker than that of “𝐾 = 3”. 

However, in the later stage, the TOA algorithm with “𝐾 = 3” 

relies on its strong global search ability, its final convergence 

accuracy will be better than “𝐾 = 3”. This is also consistent 

with the comparison of the experimental results of the two 

algorithms in Table 16. Figure 10 shows the path planning 

diagrams of the TOA algorithm with “𝐾 = 6”. 

On the whole, the TOA algorithm can also achieve a better 

solution in the solution of the practical application problem. 

Compared with other algorithms, it also has strong 

competitiveness, especially when the number of base stations 

is large. This verifies the feasibility of the TOA algorithm in 

solving practical application problems. 
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6  Conclusion 
 

Inspired by the habits of tumbleweed plants in nature, this 

paper proposes a new swarm intelligence optimization 

algorithm called the tumbleweed optimization algorithm 

(TOA). The TOA algorithm simulates the two stages of 

tumbleweed seedling growth and seed propagation. The two 

stages correspond to the exploitation and exploration of 

algorithm respectively. And through the growth cycle, the 

two-stage switching is realized. The TOA algorithm is a multi-

group structure algorithm. The introduction of multi-group 

structure can ensure that the algorithm can have a large search 

space, and then ensure the global search ability. In order to 

verify the optimization performance of the proposed algorithm, 

relevant experimental tests are carried out in this paper. On the 

test of CEC2013 benchmark functions, the TOA algorithm 

shows good optimization performance. Compared with the 

other ten intelligent optimization algorithms, the TOA 

algorithm also has strong competitiveness. At the same time, 

in order to verify the effectiveness and feasibility of the TOA 

algorithm in solving practical application problems, this paper 

establishes the data collection vehicle path planning model for 

testing. Through experimental comparison, the TOA 

algorithm can also better optimize this problem, which shows 

the feasibility in solving practical application problems. Like 

most algorithms, the TOA algorithm also has the problem of 

difficult parameter selection. Therefore, in the following work, 

we will focus on solving the problem of setting 𝐾 value and 

further improve the optimization performance of TOA 

algorithm. In the future, we will also expand the application 

fields of the TOA algorithm to solve more practical 

application problems [52-54]. 

 

Table 16. The experimental results of the algorithms in solving cases with different N 
Algorithm N=10 N=20 N=30 N=50 

 mean rank std rank mean rank std rank mean rank std rank mean rank std rank 

TOA, 

K=3 

1.37E+06 6 4.38E+04 4 2.43E+06 4 2.43E+05 7 3.40E+06 5 2.95E+05 5 5.96E+06 2 6.12E+05 6 

TOA, 

K=6 

1.34E+06 3 2.13E+04 3 2.25E+06 2 2.03E+05 5 3.01E+06 2 2.62E+05 3 5.17E+06 1 5.07E+05 2 

GA 

 

1.42E+06 10 1.11E+05 11 2.49E+06 6 2.01E+05 4 3.39E+06 4 2.86E+05 4 6.29E+06 5 4.08E+05 1 

DE 1.33E+06 2 6.82E+03 2 2.10E+06 1 6.88E+04 1 2.73E+06 1 3.18E+05 7 6.25E+06 4 1.06E+06 11 

PSO 1.45E+06 12 1.28E+05 12 2.87E+06 10 4.76E+05 12 4.20E+06 8 5.09E+05 11 8.15E+06 8 5.44E+05 5 

WOA 1.36E+06 5 5.49E+04 5 2.72E+06 7 2.82E+05 8 4.00E+06 7 4.06E+05 9 8.00E+06 7 7.24E+05 7 

GWO 1.39E+06 8 9.91E+04 9 2.48E+06 5 2.00E+05 3 3.47E+06 6 2.17E+05 1 6.05E+06 3 9.86E+05 10 

JS 1.32E+06 1 2.12E-06 1 2.36E+06 3 1.92E+05 2 3.38E+06 3 3.06E+05 6 7.22E+06 6 9.65E+05 9 

BOA 1.44E+06 11 9.91E+04 10 3.31E+06 12 2.26E+05 6 5.10E+06 12 2.39E+05 2 1.02E+07 12 5.18E+05 3 

SSA 1.40E+06 9 7.27E+04 8 3.17E+06 11 3.31E+05 9 4.83E+06 11 4.22E+05 10 9.78E+06 11 5.26E+05 4 

MRFO 1.36E+06 4 7.18E+04 7 2.75E+06 8 3.32E+05 10 4.33E+06 9 3.97E+05 8 8.84E+06 10 8.48E+05 8 

SOA 1.39E+06 7 6.66E+04 6 2.80E+06 9 4.16E+05 11 4.40E+06 10 5.48E+05 12 8.49E+06 9 1.06E+06 12 

 

 

  
(a) 𝑁=10 (b) 𝑁=20 
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(c) 𝑁=30 (d) 𝑁=50 

Figure 9. The convergence curves of the algorithms in solving cases with different 𝑁 

 

  
(a) 𝑁=10 (b) 𝑁=20 

  
(c) 𝑁=30 (d) 𝑁=50 

Figure 10. The path planning diagrams of the TOA algorithm with “𝐾= 6” 
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